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Abstract

A central tenet of reproducible research is that scientific results are
published along with the underlying data and software code necessary to
reproduce and verify the findings. A host of tools and software have been
released that facilitate such work-flows and scientific journals have
increasingly demanded that code and primary data be made available with
publications. There has been little practical advice on implementing
reproducible research work-flows for large ’omics’ or systems biology data
sets used by teams of analysts working in collaboration. In such instances it
is important to ensure all analysts use the same version of a data set for
their analyses. Yet, instantiating relational databases and standard
operating procedures can be unwieldy, with high "startup" costs and poor
adherence to procedures when they deviate substantially from an analyst’s
usual work-flow. Ideally a reproducible research work-flow should fit
naturally into an individual’s existing work-flow, with minimal disruption.
Here, we provide an overview of how we have leveraged popular open
source tools, including Bioconductor, Rmarkdown, git version control, R,
and specifically R’s package system combined with a new tool
DataPackageR, to implement a lightweight reproducible research work-flow
for preprocessing large data sets, suitable for sharing among
small-to-medium sized teams of computational scientists. Our primary
contribution is the DataPackageR tool, which decouples time-consuming
data processing from data analysis while leaving a traceable record of how
raw data is processed into analysis-ready data sets. The software ensures
packaged data objects are properly documented and performs checksum
verification of these along with basic package version management, and
importantly, leaves a record of data processing code in the form of package
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vignettes. Our group has implemented this work-flow to manage, analyze
and report on pre-clinical immunological trial data from multi-center,
multi-assay studies for the past three years.
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Introduction

A central idea of reproducible research is that results are published
along with underlying data and software code necessary to repro-
duce and verify the findings. Termed a research compendium, this
idea has received significant attention in the literature'~.

Many software tools have since been developed to facilitate
reproducible data analytics, and scientific journals have increas-
ingly demanded that code and primary data be made publicly
available with scientific publications**~’. Tools like git and
Github, figshare, and Rmarkdown are increasingly used by
researchers to make code, figures, and data open, accessible
and reproducible. Nonetheless, in the life sciences, practicing
reproducible research with large data sets and complex process-
ing pipelines continues to be challenging.

Data preprocessing, quality control (QC), data standardization,
analysis, and reporting are tightly coupled in most discussions
of reproducible research, and indeed, literate programming
frameworks such as Sweave and Rmarkdown are designed
around the idea that code, data, and research results are tightly
integrated>”. Tools like Docker, a software container that
virtualizes an operating system environment for distribution, have
been used to ensure consistent versions of software and other
dependencies are used for reproducible data analysis'®. The use
of R in combination with other publicly available tools has been
proposed in the past to build reproducible research compendia®**’.
Many existing tools already implement such ideas. The workflowr
package provides mechanisms to turn a data analysis project into
a version-controlled, documented, website presenting the results.
The drake package is a general purpose work-flow manager
that implements analytic “plans”, caching of intermediate data
objects, and provides scalability, and provides tangible evidence
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of reproducibility by detecting when code, data and results are in
sync.

However, tight coupling of preprocessing and analysis can be
challenging for teams analyzing and integrating large volumes
of diverse data, where different individuals in the team have dif-
ferent areas of expertise and may be responsible for processing
different data sets from a larger study. These challenges are com-
pounded when a processing pipeline is split across multiple
teams. A primary problem in data science is the programmatic
integration of software tools with dynamic data sources.

Here, we argue that data processing, QC, and analysis can
be treated as modular components in a reproducible research
pipeline. For some data types, it is already common practice
to factor out the processing and QC from the data analysis. For
rnaseq data, for example, it is clearly impractical and time
consuming to re-run monolithic code that performs alignment,
QC, gene expression quantification, and analysis each time the
downstream analysis is changed. Our goal is to ensure that
downstream data analysis maintains dependencies on upstream
raw data and processing but that the processed data can be
efficiently distributed to users in an independent manner and
updated when there are changes.

Here, we present how the Vaccine Immunology Statistical
Center (VISC) at the Fred Hutchinson Cancer Research Center
has addressed this problem and implemented a reproducible
research work-flow that scales to medium-sized collaborative
teams by leveraging free and open source tools, including R,
Bioconductor and git*>!.

Methods

Operation

In order to use DataPackageR an R installation (23.5.0) is
required. Associated dependencies are listed in the package’s
DESCRIPTION file and are automatically installed when using
the install_github() API from the devtools package. There are
no minimum memory, CPU, or storage requirements apart from
what is necessary to perform data processing, which varies on a
case—by-case basis.

Implementation

Our work-flow is built around the DataPackageR R package, which
provides a framework for decoupling data preprocessing from data
analysis, while maintaining traceability and data provenance'®.

DataPackageR builds upon the features already provided by the
R package system. R packages provide a convenient mechanism
for including documentation as part of the built-in help sys-
tem, as well as long-form vignettes, and version information
and distribution of the entire package. Importantly, R packages
often include data stored as R objects, and some packages, par-
ticularly under BioConductor, are devoted solely to the distribu-
tion of data sets”. The accepted mechanism for such distribution
is to store R objects as rda files in the data directory of the
package source tree and to store the source code used to produce
those data sets in data-raw. The devtools package provides
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some mechanisms to process the source code into stored data
objects®.

Data processing code provided by the user (in the form of Rmd
files preferably, and R files optionally) is run and the results are
automatically included as package vignettes, with output data
sets (specified by the user) included as data objects in the pack-
age. Additional languages such as bash and python scripts are
supported via rmarkdown’s multi-language code chunk support.
Notably, this process, while apparently mirroring much of the
existing R package build process, is disjointed from it, thereby
allowing the decoupling of computationally long or expensive
data processing from routine package building and installation.
This allows DataPackageR to decouple data munging and tidy-
ing from data analysis while maintaining data provenance in the
form of a vignette in the final package where the end-user can view
and track how individual data sets have been processed. This is
particularly useful for large or complex data that involve extensive

package root
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preprocessing of primary or raw data (e.g. alignment of fastq
files for rnaseq or gating of fcm data), and where computation
may be prohibitively long or involve software dependencies not
immediately available to the end-user.

DataPackageR implements these features on top of a variety of
tidyverse tools including devtools, roxygen2, rmarkdown, utils,
yaml, purrr. The complete list of package dependencies is in the
package DESCRIPTION file.

Package structure

To construct a data package using DataPackageR, the user invokes
the datapackage.skeleton () API, which behaves like
R’s package.skeleton (), creating the necessary directory
structure with some modifications. A listing of the structure of
DataPackageR skeleton package directory, with other associated
files is shown below:

| --— datapackager.yml # Configuration file controlling

\ # the package build process.

| --— DESCRIPTION # Adds a DataVersion

\ # string to version the

| # data set.
| -—— NAMESPACE

| --— DATADIGEST # Stores an MD5 hash of each

\ # data object in the package.

|--— R
| -—— Read-and-delete-me.txt

| -—- data

#
|--- data-raw #
#
#

# Further instructions

# on building the package.

Holds processed, analysis-ready data objects.
User code for data

processing is placed here by

datapackage.skeleton () .

| --- documentation.R # Auto generated roxygen documentation

| # for data set objects.

|-—— inst
| extdata # (small) raw data files.
| doc # Processed vignettes are moved here.

| # Data processing code is accessible in the

| # final package via the vignette() API.

| --- vignettes # Scripts in data-raw

\ # are processed into vignettes.

| man # Autogenerated documentation is processed

# into rd files.
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The datapackage skeleton API takes several new argu-
ments apart from the package name. First, code files takes
a vector of paths to Rmd or R scripts that perform the data
processing. These are moved into the data-raw directory.
The argument r object names takes a vector of quoted R
object names. These are objects that are to be stored in the final
package and it is expected that they are created by the code
in the R or Rmd files. These can be fidy data tables, or arbitrary
R objects and data structures (e.g. S4 objects) that will be
consumed by the package end-user. Information about the
processing scripts and data objects is stored in a configura-
tion file named datapackager.yml in the package root
directory and only used by the package build process. The
scripts may read raw data from any location, but generally the
package maintainer should place it in inst/extdata if file
size is not prohibitive for distribution.

The build_package API

Once code and data are in place, the build package ()
API invokes the build process. This API is the only way to
invoke the execution of code in data-raw to produce data
sets stored in data. It is not invoked through R’s standard
R CMD build or R CMD INSTALL APIs, thereby decoupling

configuration:
files:
process dataset one.Rmd:
name: process dataset one.Rmd

enabled: yes

process dataset two.Rmd:

name: process dataset two.Rmd
enabled: yes

objects:

- dataset one

- dataset two

- dataset three

render root:

tmp: '298918’

oW W W ow
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long and computationally intensive processing from the
standard build process invoked by end-users. Upon invoca-
tion of build package ()the R and Rmd files specified in
datapackager.yml will be compiled into package vignettes
and moved into the inst/doc directory, data objects will be
created and moved into data, data objects will be version
tagged with their checksum and recorded in the DATADIGEST
file in the package root, and a roxygen markup skeleton will be
created for each data object in the package.

YAML configuration

The datapackager.yml configuration file in the package
root controls the build process by specifying which R and Rmd
files should be processed and which named R objects are
expected to be included as data sets in the package. The
render root property points to a directory where R and Rmd
files will be processed, allowing multi-script pipelines to share
file system artifacts. The datapackage object read()
API also allows downstream scripts to read data objects
creted by earlier scripts. The listing below shows the structure
of the YAML configuration file used by DataPackageR to
control compilation and inclusion of data objects in the
package:

files property lists
R or Rmd code files
Each file has a name
The enabled property specifies

if the file should be processed

A list of the data objects created

by processing the files.

root directory where scripts are
render ()ed for multi-script

pipelines
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The API for interacting with the YAML configuration file is
outlined in Table 1.

Table 1.The API for interacting with a YAML
config file used by DataPackageR allows the user
to add and remove data objects and code files,
toggle compilation of files, and read and write the
configuration to the data package.

API call Property return value
yml add files() file config object
yml remove_ files() file config object
yml add objects () objects config object
yml remove objects()  objects config object
yml find() config file  config object

yml write () config file  null
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Accessing raw data from scripts
Users can access the package root and inst/extdata direc-
tories from within R and Rmd scripts in a portable manner using
the project path() and project extdata path()
APIs. Raw data stored outside the package root should be
accessed relative to these locations.

Dataset versioning

During the build, the DATADIGEST file is auto-generated.
This file contains an md5 hash of each data object stored in
the package as well as an overall data set version string. These
hashes are checked when the package is rebuilt; if they do not
match, it indicates the format of the processed data has changed
(either because the primary data has changed, or because the
processing code has changed to update the data set). In these
cases, the DATADIGEST for the changed object is updated
and the minor version of the DataVersion string in the
DESCRIPTION file is automatically incremented. The DataVer-
sion for a package can be checked by the data version()
and assert data version() APIs, allowing end-users to

yml enable compile() enable config object .
. . . i produce reports based on the expected version of a data set
yml _disable compile() enable config object (Figure 1)
Git / GitHub
DataPackageR ot : Standardized Code
L
1 ] [ 0. ———————————————————
1 : _-«**" [ packaged Analytic .
{ ¢ Run user-defined processing ?(' === *Depend on 9 .
i o ] . Data Set
: « Build vignettes from output ] ! L J L]
( > ; o Checksum data objects « ' Import
{ * Version data set Depend on %
Read + Document data objects 7 * ".
l -

fePUSh to github

Depend on
-
-

\4

Manuscripts }

\/

Statistical Reports

Version Control of

code

data packages
manuscripts
statistical reports

g Analysts
Scientific Programmers
Statisticians

Figure 1. A schematic overview of the components in our reproducible data packaging work-flow that decouples data processing

from data analysis.
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Data documentation

DataPackageR ensures that documentation is available for each
data object included in a package by automatically creating a
roxygen markup stub for each object that can then be filled in by
the user. Undocumented objects are explicitly excluded from the
final package.

Packages can be readily distributed in source or tarball form
(together with the processed data sets under data/ and raw
data sets under inst/extdata). Within VISC we leverage
git and github to provide version control of data package source
code. By leveraging DataPackageR, the data processing is
decoupled from the usual build process and does not need to be
run by the end-user each time a package is downloaded and
installed. Documentation in the form of Rd files, one for each data
object in the package, as well as html vignettes describing the
data processing, are included in the final package. These describe
the data sets as well as how data was transformed, filtered, and
otherwise processed from its raw state.

Use cases

DataPackageR was developed as a lightweight alternative to
existing reproducible work-flow tools (e.g. Galaxy*), or to fully
fledged database solutions that are often beyond the scope of most
short-term projects. DataPackageR plugs easily into any existing
R-based data analysis work-flow, since existing data processing
code needs only to be formatted into Rmarkdown (ideally). It is
particularly suited for long-running or complex data processing
tasks, or tasks that depend on large data sets that may not be avail-
able to the end user (e.g. FASTQ alignment or raw flow cytom-
etry data processing). Such tasks do not fit well into the standard
R CMD build paradigm, for example either as vignettes or
.R files under /data since these would be invoked each time
an end user builds a package from source. We desire, however,
to maintain a link between the processed data sets and the
processing code that generates them. We note that DataPackageR
is distinct from other reproducible research frameworks such
as workflowr or drake®, in that it is designed to reproducibly
prepare data for analysis, using an existing code base, with
little additional effort. The product of DataPackageR is
nothing more than an R package that can be used by anyone. The
resulting data packages are meant to be shared, to serve as the
basis for further analysis (Figure 1) and distributed as part of
publications. These downstream analyses may leverage any of
the existing work-flow management tools. Our goal is that data
sets forming the basis of scientific findings can be confidently
shared in their processed form which is often much smaller and
easier to distribute.

Within the VISC, a team of analysts, statistical programmers,
and data managers work collaboratively to analyze pre-clinical
data arising from multiple trials. There are multiple assays per
trial. The challenges associated with ensuring the entire team
works from the same version of a frequently changing and
dynamic data set, motivated the development of DataPackageR.
The tool is routinely used to process and standardize trial data
for submission to The Collaboration for AIDS Vaccine Discovery
(CAVD) Data Space.
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We demonstrate how DataPackageR is used to process and
package multiple types of assay data from an animal trial of an
experimental HIV vaccine.

Data

We demonstrate the use of DataPackageR for processing data
from a vaccine study, named MXI, designed to examine the anti-
body responses to heterologous N7 Env prime-boost immunization
in macaques. The study had four treatment groups plus a control
arm, with six animals per group. Samples were collected at three
time points: t1: baseline, post-prime 2, post-boost 1, t2: post-boost
2, t3: post-boost 3. Six assays were run at each time point,
using either serum samples or peripheral blood mononuclear cells
(PBMCs). The assays were: 1) enzyme-linked immunosorbent
assay (ELISA), an immunological assay that enables detection
of antibodies, antigens, proteins and/or glycoproteins (serum);
2) a neutralizing antibody (Ab) assay (serum); 3) a binding
antibody multiplex assay (BAMA) to assess antibody response
breadth (serum); 4) a BAMA assay to permit epitope mapping
(serum); 5) an antibody dependent cellular cytotoxicity (ADCC)
assay (serum); and 6) an intracellular cytokine staining assay to
assess cellular responses (PBMCs).

The raw data and environment to reproduce the processing
with DataPackageR are distributed as a Docker image on
hub.docker.com as gfinak/datapackager:latest.
We have restricted the number of FCS files distributed in the
container to limit the size of the image and speed up processing
of FCM data for demonstration purposes.

Flow cytometry and other assay data

Flow cytometry (FCM) is a high content, high throughput assay
for which VISC leverages specialized data processing and
analytics tools. Raw FCS files and manual gate information in
the form of FlowJo (FlowJo LLC, Ashland, OR) workspace
files are uploaded directly to VISC by the labs. The raw data are
processed with open source BioConductor software (flowWork-
space) to import and reproduce the manual gating, extract cell
subpopulation statistics, and access the single-cell event-level
data required for downstream modeling of T-cell polyfunction-
ality and immunogenicity*—°. Tables of extracted cell popula-
tions, cell counts, proportions, and fluorescence intensities are
included in study packages, together with an Rmarkdown vignette
describing the data processing. Due to the size of the raw FCS
files, they are imported for processing from a location external to
the data package source tree, so that the raw files are not part of
the final package, but vignettes outlining the data processing are
automatically included.

Remaining assay data are of reasonable size and are provided raw
data in tabular (csv) form, imported into the package, processed
and standardized from the inst/extdata package directory.
Users can run and connect to an Rstudio instance in the con-
tainer, where code and data to build the MX/ data package
reside.

MX1 is just one study from over 33 prepared by VISC over
the past 3 year using the DataPackageR infrastructure. Each
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study consists of three to seven data types, each with different
QC and standardization criteria, each produced by different labs,
all on a different time line. For each data type, VISC produces
QC reports for the labs, statistical analysis plans for each data
type, statistical reports and analyses for each data type, and an
integrated analysis for manuscripts and publications. The data
generally arrive over a time period of several months, and reports
are also generated over several months. Different individuals are
responsible for the generation of different reports. It is critical
that all reports are based off the same data set, and that they are
updated when individual data sets are updated. For the MX1 study
above, the data package was updated 29 times between 2015 and
2017. The data set version was incremented from 0.1.0 to 0.2.21
over that time frame. Six data sets were added to the package
over two years, 17 commits were associated with corrections or
updates to data sets (e.g. additional or corrected annotations).
Six follow up reports based on the data package were updated
each time there was an addition, or correction to the data.
DataPackageR helped ensure consistency between the dif-
ferent reports and the data, something that would have been
incredibly difficult without this framework.

Caveats

We note a number of limitations with the existing framework
that we hope to address in the future. First, our dependence on
git and gtihub to version control data sets means that in the long-
term the size of the local copy of a repository will grow with
every changed data set. We are exploring approaches to cache
older versions of data sets remotely, analogous to approaches taken
by BioConductor’s ExperimentHub (https://doi.org/doi:10.18129/
B9.bioc.ExperimentHub), and packages like datastorr (https:/
github.com/ropenscilabs/datastorr).

Summary

Reproducibility is increasingly emphasized for scientific pub-
lications. We describe a new utility R package, DatraPackageR
that serves to help automate and track the processing and
standardization of diverse data sets into analysis-ready data
packages that can be easily distributed for analysis and
publication. DataPackageR, when paired with a version control
system such as gif, decouples data processing from data analy-
sis while tracking changes to data sets, ensuring data objects are
documented, and keeping a record of data processing pipelines
as vignettes within the data package. The principle behind the
tool is that it remains a lightweight and non-intrusive framework
that easily plugs into most R-based data analytic work-flows.
It places few restrictions on the user code therefore most
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existing scripts can be ported to use the package. The VISC has
been using DataPackageR for a number of years to perform
reproducible end-to-end analysis of animal trial data, and the
package has been used to publicly share sets for a number of
published manuscripts*>*"-¥.
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http://github.com/RGLab/
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org/10.5281/zenodo.1292095%

Reproducible
datapackager/

examples: http://hub.docker.com/r/gfinak/

License: MIT license
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using DataPackageR are available as a docker container
from gfinak/DataPackageR:latest. The processed MX1
data are available on the CAVD DataSpace data sharing
and discovery tool at http://dataspace.cavd.org under study
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data set is available to CAVD members only.
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Ben Marwick
Department of Anthropology, University of Washington, Seattle, WA, USA

This is a well-written and clear paper about a very interesting package that helps to raise awareness
about the challenges of collaborating on data sets that change over time. The package describes is a
useful addition to the toolkit of R-based infrastructure to promote transparent and open research.

Previous work includes workflowr and drake. This is a very incomplete list. There are many other R
packages that deal specifically with data provenance that would be relevant to note here. And it's not
clear specifically what the previous work lacks? The authors say that rerunning rnaseq code is impractical
and time consuming, but there are many existing approaches to manage that problem, e.g. the venerable
make. It's not clear how this package solves a problem that can't be solved with existing packages. How
is their package different to any previous effort? What specific problem does it solve? What makes it
notable and a unique contribution? I'm confident the authors can answer these questions, and | think it
would make the ms. more useful and impactful if they could do so more directly and specifically. The
reader will want to know that this is not just a re-invention of the wheel, or a thin wrapper around
something they already use heavily.

The detail that it is a lightweight alternative to Galaxy is an important motivation that should be noted to
the reader earlier in the paper. This sentence seems to hint at the unique value of this package: "itis
designed to reproducibly prepare data for analysis, using an existing code base" but it needs more
description and elaboration to more clearly show the reader why this package is necessary. It would also
be helpful to hear more about the research context where this package is optimal, you say something
about medium-sized organisations. But for researchers who don't do DNA analysis and flow cytometry, a
little more detail on the size and structure of the research team and typical research process will help
them recognise if this solves a problem they also have.

It is a nice touch to prompt documentation of data sets. | wonder about having so many top-level
non-standard package files, that will be off-putting to some people who are not used to overloading the

package structure that.

How do packages made by this package communicate to the user the initial source of the data, and the
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final location? For example, how does it capture the date, time, instrument, etc where the data came from,
and the DOI and repository of where the data has been finally deposited? Is this added in free text in the
roxygen documentation, or are there fields especially for this? The system provided by this package
seems a bit disconnected from the full pipeline, which might limit its archival value. Seems that it's
optimised for work-in-progress data management, with less concern for the long term. Where do the
authors recommend the resulting packages go when the work is complete? | don't think GitHub is a good
solution for long term archiving.

There is a mention of Docker in the 'Use Case' section, but no explanation of whether or not the package
no handles this, or not. Also in this section it would be good to have URLs to the packages being
discussed so the reader can inspect them in more detail, and see proof of the concept.

In the 'caveat' section there is a mention of the size of the data, but no specific details. It would be more
helpful to users to know the ballpark sizes that this package is good for. It is up to 5 MB of processed data
files? Do the authors have any guidance or rules of thumb such as 10 MB of FCM raw data can typically
be stored as 5MB of package data? These would be very helpful for potential users to gauge the
usefulness of this tool their own situation.

In the console output for DataPackageR::datapackage_skeleton it would be nice to use usethis:::done()
for more consistent formatting of the messages. Also, in the example code on the GitHub readme,
creating the pkg in a tmp directory makes it quite hard to find to edit the yml file and inspect the contents. |
understand that using a tempfile makes it easy to test and knit, but it's not very user-friendly. Perhaps
worth noting somewhere that the packages this package creates are not CRAN-ready (I got 1 warning
and 1 note with the mtcars20 package). It would be good to have some guidance about how the authors
recommend packages created by this method be shared (presumably github?).

Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: | have co-authored a similar R package to help with organising research materials
into a compendium to enable reproducibility and versioning. | am not familiar with omics research.
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| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Reviewer Report 24 July 2018
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v

Ted Laderas
Department of Medical Informatics and Clinical Epidemiology, Knight Cancer Institute, Oregon Health &
Science University (OHSU), Portland, OR, USA

The authors have designed a package that allows for bundling of multiple data types that can be
versioned, along with preprocessing scripts and raw data into an R data package. The main use case for
this package seems to be systems biology projects where multiple datatypes (such as RNAseq, DNAseq,
flow cytometry, etc.) need to be aggregated together for analysis by multiple groups. As a systems
biologist, | believe that *DataPackageR’ does fill a useful niche between complete research compendia
and storage of results in a database, which may require dedicated data modeling.

I have run the docker container example and built the MR1 data package in the vignette. The ability to
version aggregated datasets and tie an analysis to a version is a very important one. As the other reviewer
did suggest, putting large datasets into GitHub would cause the repo to become very large and I'm glad
that the authors have tried to address this.

| see 'DataPackageR’™ working well with both workflow tools (such as "drake’) but also potentially data
integrity testing tools (such as “assertr’) to guarantee a common version of the data. | believe it serves a
useful purpose within data analysis.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes
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Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: | utilize some of the data processing tools that have been developed in the
Gottardo lab for analysis of flow cytometry data.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Reviewer Report 11 July 2018
https://doi.org/10.21956/gatesopenres.13917.r26556
© 2018 Lun A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution

Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

" AaronT.L.Lun
Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK

The authors have addressed my concerns in their responses and revisions.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.
I have read this submission. | believe that | have an appropriate level of expertise to confirm that

it is of an acceptable scientific standard.
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Reviewer Report 25 June 2018

https://doi.org/10.21956/gatesopenres.13908.r2654 1

© 2018 Lun A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution
Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

? Aaron T.L. Lun
Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK

In this article, Finak et al. describe a new package for pre-processing and sharing of data within the R
programming language. Their DataPackageR package provides a standardized framework for traceable
pre-processing and version control of R data objects, facilitating reproducible research across a diverse
team of collaborators. The manuscript is clear and concise, and the function and benefits of the software
are clear. Nonetheless, | have some comments (listed below) that the authors might consider to improve
both the software and the manuscript.

1. The processed data are stored as RData files in the data/ directory and distributed as part of the
constructed data package. These files can become somewhat large (> 100 MB), which in and of
itself is not a problem; indeed, having to deal with large data files may not be avoidable in some
contexts. However, the text on page 5 and Figure 1 suggest that the user should place the
generated data files under version control via Git prior to distribution. With Git, every clone of the
package will contain every version of all data files, inflating the size of the repository for download
and on disk. This may become prohibitive for practical use (e.g., GitHub forbids uploads of files
above a certain size), and feels unnecessary given that only one version of the data will be active
at any one time. Perhaps the authors would consider supporting the versioning and acquisition of
RData files from a separate location, mimicking the behaviour of (or directly using) Bioconductor's
ExperimentHub where large data files are downloaded and cached locally as needed?

2. The YAML header seems to be limited to R scripts or Rmd files for data pre-processing. However,
as the authors would appreciate, a lot of pre-processing is performed on the command line, e.g.,
with aligners and related software. It would be awkward (and involve extra work) to have to wrap
these scripts in R/Rmd files in order for them to be executed by DataPackageR. To provide a
concrete example: | would like DataPackageR to directly call my existing Bash scripts for
alignment of RNA-seq data, followed by execution of Rmd reports for assigning reads to genes to
get a count table that is saved as an RData object.

3. Does the YAML header permit dependencies between scripts? Say | have a long pre-processing
pipeline that is split across multiple scripts for convenience. Does the order of files in the header
reflected in the order of execution? And are they executed in the same location, so that
intermediate files produced by one script (that are not intended to be included in the final package)
can be picked up as inputs to the following script?

4. The MX1 use case on pages 6-7 seems under-described - | don't get an intuition as to why
DataPackageR was beneficial for this project. It would be demonstrative to have some specific
examples of how the version control and change tracking were advantageous in a collaborative
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environment. For example, how many DataVersion bumps were performed throughout the course
of the project, and why? Were there any issues arising from changes to the processed data, and
how were these resolved?

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Greg Finak,

Thank you for taking the time to review our work and providing feedback that will improve the
manuscript and the software. You will find our responses the points you raised below. | look
forward to continue the conversation. We will submit a revised version of the manuscript in due
course.

1. In response to the first point, | agree that this can become a problem, particularly with large data
sets. ExperimentHub is an interesting option to circumvent the file size limits of github (and indeed
of data packages in general), although | feel that it is not a sufficiently general solution since
ExperimentHub is “moderated” and requires a submission and approval process in order to have
data appear there. One option to get around files bloat in local git repositories is simply to checkout
the latest revision via "git clone —depth 1" . Git LFS could also be used to track large files, although
this is a "pay to play’ option. None of these options are particularly satisfactory for me.

A general solution may be support a remotely stored data types via some new class or object type
that stores a pointer to the data and makes it the users’ responsibility to provide a method for
pushing and pulling data from the remote resource. Such an object could point to an
ExperimentHub resource or any other remote resource the user wishes to support, but | don’t
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believe it's in the scope of DataPackageR to provide such support for specific resources. We will
discuss this limitation in the revised manuscript and aim to provide support for remote data files in a
future release, as it is going to require some more thought on our part. Again we thank the reviewer
for this suggestion.

2. Regarding the second point, the infrastructure does not directly supporting running bash or other
script via the YAML configuration at this time, but it is none the less possible to do so. Of course we
are well aware of the need for support of other languages and at the moment this is handled
through the multiple language support of rmarkdown and knitr. Code chunks in knitr can be used to
process different languages, not just R, including bash, python, SQL, javascript, STAN, Rcpp, and
javascript by replacing the language specifier in the code chunk header (e.g., the “{r}” language
specifier at the beginning of a code chunk) with another supported language. For the bash
example specifically, a code chunk in an Rmd file would begin with “**{bash}”, and the code would
be no different than a command-line invocation of a bash script.

We do not see this as particularly awkward or extra work, but if the reviewer has something else in
mind, we are happy to follow up. We will highlight this manner of support for bash and other
languages in the revised manuscript.

3. Regarding point 3, we feel this is an excellent suggestion. At the time of submission,
dependencies between scripts were not supported, althought the order of execution is preserved
and the scripts are all executed in the same location. We have made changes to the latest version
of the software so that scripts run in a user-defined or temporary (default) directory, configurable in
the YAML file as the “render_root” property and passed to render’s knit_root_dir argument. This
will allow multi-script jobs to execute correctly, so the outputs of one script can be used as the
inputs for another (without polluting the data-raw directory). Additionally, we have made the objects
created by previous processing scripts in the pipeline accessible to subsequent processing files
via the “datpackager_object_read()" API. In this way, if file1.Rmd creates table1, then file2.Rmd
can access table1 using the API without polluting the environment where file2.Rmd is executed.
This should make file-system artifacts as well as objects available to a multi-script pipeline. We will
revise the manuscript to mention these features. We thank the reviewer for this suggestion.

4. Regarding point 4, we include more detail here, and will update the revised manuscript
accordingly.

MX1 is just one study from over 33 prepared by VISC over the past 3 year using the
DataPackageR infrastructure. Each study consists of three to seven data types, each with different
QC and standardization criteria, each produced by different labs, all on a different time line. For
each data type, VISC produces QC reports for the labs, statistical analysis plans for each data
type, statistical reports and analyses for each data type, and an integrated analysis for manuscripts
and publications. The data generally arrive over a time period of several months, and reports are
also generated over several months. Different individuals are responsible for the generation of
different reports. Clearly, for a single project, perhaps this can be handled in an ad-hoc manner,
but for VISC, with many studies on the go, it is critical that all reports are based off the same data
set, and that those are updated appropriately when a data set is updated. For the MX1 study, the
data package was updated 29 times between 2015 and 2017. The data set version was bumped
from 0.1.0 to 0.2.21 over that time frame. Six data sets were added to the package over two years,
17 commits were associated with corrections or updates to data sets (e.g. additional or corrected
annotations). Six follow up reports based on the data package were updated each time there was
an addition, or correction to the data. Ensuring consistency between the different reports and the
data would have been incredibly tedious without this framework (and has been in the past, prior to
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our adoption of this framework). We will update the revised manuscript with discussion of how
DataPackageR has been beneficial for this study and in general.

Competing Interests: No competing interests were disclosed.
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