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Abstract. In hydropower plants benefits depends on available flow. The paper presents a hybrid model for 
forecasting the operation of a hydropower plant, including the production of electricity. The possibility of 
mathematical modeling was chosen to show connections between observed in the past hydrological 
conditions (available flow) and energy deliver in the future. The available flow which is not enough for start 
turbines was forecasting by logistic regression model. The opposite situation when the flow starts turbine to 
produce energy, regression models (the support vector machines SVM, random forest RF, k nearest 
neighbour k-NN) were used. Results from hybrid model were compared with chosen data-mining methods. 
The possibility of forecasting of the length of periods when hydropower plant will be working could be very 
useful. It provides the prognosis of energy value which could be produced from hydropower plant. From the 
investors' point of view the economic justification for the execution of the project based on the future 
energy producing could be a main criteria to realize or buy/sell hydropower plant.  Also the secondary 
importance could be a possibility of planning review and maintenance work. Knowledge of power plant 
working periods could be a base for assessing a potential production from hydropower plant. 

1 Introduction 

With the vast changes that have taken place in the world 
over past years there is now a great demand for 
renewable energy and countries are being required to 
generate and utilize a specific amount of renewable 
energy by the year 2020. In recent years, dynamic 
growth of expenditure on environmental protection has 
been observed in European Union (EU) countries [1]. 
Access to EU funds has allowed significant resources for 
the financing of investment and ecological activities to 
accumulate in some countries [2]. Renewable power 
engineering sector investments are recognised, by virtue 
of the European Parliament and Council Directive 
2009/28/EC of 23 April 2009 on the promotion of the 
use of energy from renewable sources [3] as important 
sources of energy, supported due to the care about the 
environment. Thus, the benefits from execution of such 
investments are highly valued in both regional and 
global scale, especially in the aspect of climatic changes 
and progressing pollution of the environment. To 
confirm the priority of sources of energy recognised as 
renewable and friendly to the environment, the directive 
imposes the obligation of generating and managing 
resources of renewable sources energy, thus defining the 
objectives for the member countries, including Poland – 
at 15% of the gross final consumption of energy by 2020 

[4]. A large amount of investment has been made during 
recent years and the advancement of technology has 
enabled countries to produce renewable energy more 
cost effectively [5]. An energy production forecast, 
which gives information about how much energy will be 
produced effectively by a certain power station in a 
certain period can be useful for optimising the marketing 
of a renewable energy [6, 7]. Such regional hydroelectric 
energy projections can then be used to support energy 
resource planning and also to evaluate the climate-
related risk for long-term power marketing activities in 
further investigations [8]. Giving the status of a 
renewable source to such facilities also enables to get 
preferential funding sources as well as obtain certificates 
of origin, which greatly improves the economic 
efficiency of the project [4]. In run-of-the-river power 
plants benefits depend strictly on the available river 
flow. The operating principle of hydroelectric power 
plants is based on utilizing the potential energy of water, 
which constitutes the basic component of the plant. In 
other words, water is crucially important in energy 
production in hydroelectric power plants [9]. On the 
other hand, the hydropower plants may degradated of 
water habitats, which is reflected in reduced abundance 
and diversity of fishspecies and other aquatic organisms 
[10]. 
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Forecasting production of electricity generated in 
hydropower plants most often refer to large pumped-
storage power stations, i.e. those with two water 
reservoirs (the upper one and the lower one) along with 
the possibility of water management [11]. The review of 
the literature shows that models executed with the 
methods of artificial neuron networks [12, 13, 14] and 
their modifications [15, 16] were used for calculations. 
These models required implementation of complex 
mathematical algorithms.  

However, from a practical point of view, information 
solely about whether the analysed facility is functioning 
or not is insufficient. A prospective investor, or the 
owner of the hydropower plant is interested in a specific 
value of production of electricity and a period in which 
he could rationally use excess of the produced energy. 
Therefore, development of the so-called hybrid models 
appears to be advisable in modelling operation of run-of-
the-river power plants, which constitute the combination 
of classification models (forecasting of the periods in 
which the analysed power plant does not generate 
energy) and a regression model (simulation of discrete 
values of the values of electricity).  

The usefulness and universality of used methods is 
demonstrated by the fact that they are commonly used in 
the water-sanitary sector for the development of short-
term water usage forecasts for the waterworks and 
sewerage systems as well as for the sewage treatment 
plants’ optimization  [17].. 

2 Example database 

The proposed hydropower plant is located at the existing 
Dillon Dam, Ohio, United States of America. The dam 
was built on the Licking River near the town Zanesville. 
The Dillon Dam near Dillon Falls water-level indicator 
is located directly below the barrier closing the Dillon 
Lake (Fig. 1). The information for this water-level 
indicator available in the database of daily flow 

observations cover the years since 1939. The Dillon 
Dam impounds a reservoir but the proposal hydropower 
plant will be operated on a strict run of the river mode.  

For described analyses, series of daily flows in the 
Licking River in United States were used as an example 
database from USGS Water Data.  

A sample turbine solution has been choosen, along 
with simultaneous reduction of production costs of the 
turbine sets by use of four identical units. The proposed 
turbine equipment includes 4 turbines with the nominal 
discharge 20 m3/s and the installed capacity of 1,700 kW 
each. The simulation conducted within this article is an 
example, without discussing alternative solutions, if any, 
that could be economically more justified.  

For the Dillon Dam near Dillon Falls water-level 
indicator, daily observations of the flow of water are 
available for the period from 01.10.1939 to 30.09.1991 
[18]. The Dillon Reservoir was completed in 1961 for 
flood control because the initial database for further 
calculations was limited to the this year, so that the 
developed forecast model could be applied to the power 
plant operated in the run-of-river system without the 
possibility of managing water in the reservoir.  

The value of the power head was assumed in 
accordance with the characteristics of the existing 
ground dam as equal to 10.36 m. In reality, the value of 
the head is strictly dependent on the flow. The run-of-
river hydropower plant will not be operated under flood 
conditions due to the necessity of maintaining free 
passage of flood waters. 

The hydropower plant starts to produce electricity 
when the flow in the Licking River achieves 8 m3/s, 
which activates the first turbine. The maximum 
discharge of a single turbine is 24 m3/s. When the river 
flow achieves the level of 32 m3/s, the second turbine is 
activated, and the third and fourth turbines are activated 
at the flow of 56 m3/s and 80 m3/s, respectively. In case 
of flows below 8 m3/s and above 140 m3/s, the power 
plant will not be operated (Fig. 2).  

 

 

Fig. 1. Watergauge „Dillon Dam near Dillon Falls” on Licking River (USGS Water Data) 
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Fig. 2. The curve of the sums of duration along with the higher for the Dillon profile on the Licking River along with characteristics 
of the power plant operation. 

Due to the fact the analysed power plant has the 
concept nature, the temporary achieved power of the 
turbine P [kW] is calculated from the formula: 

P = 9.81∙Q∙H∙η [W]  (1) 

where: Q – disposable temporary flow [m3/s], H – head, 
η – turbine performance according to Table 1, 9.81 – the 
value of normal acceleration of gravity [m/s2]. 

Table 1. Turbine performance characteristics 

Q [m3/s] η [-] 
24.0 0.76 
22.0 0.79 
20.0 0.85 
18.0 0.81 
16.0 0.77 
14.0 0.71 
12.0 0.62 
10.0 0.48 
8.0 0.27 

 
The 24-h production of energy was determined from 

the formula: 
E = 24·P    (2) 

On the basis of the equation (1) and 2), the curve E = 
f(Q, H, η) was determined. Moreover, using the 
dependences 1 and 2, the theoretical 1–14-day 
production of electricity was calculated. 

3 Long-term electricity forecast 

This publication presents a hybrid statistical model for 
forecasting operation of a hydropower plant, including 
production of electricity. The obtained results of the 
simulation were compared with the forecasts from 
typical regression models. Due to the fact that the 

analysed power plant has the concept nature and no long 
term measurement series of the above parameter were 
available, the dependence between flow intensity and the 
parameters of the initially selected turbines was used to 
determine the theoretical quantity of energy. The 
possibility of forecasting periods (1–14 days) was 
included in the developed model, during which the 
power plant is not functioning, using logistic regression. 
To forecast discrete values of energy, the selected data 
mining methods were used (support vector, the k nearest 
neighbour, random forests). The logit model constitutes 
a simple and clear regression dependence and is one of 
classification models commonly used in economics and 
medicine and is often implemented in statistical software 
packages (R, STATISTICA, SPSS, etc.). 

The paper calls for two methods of calculation of 
electricity produced by the hydropower plant. In the first 
case, on the basis of the measurement results of the flow 
rate Q(t-i) and the determined theoretical energy 
production, long-term forecasts were provided for 
theoretical production of energy E(t = 1–14 days). In the 
second case, the hybrid model was used to forecast 
electricity. In the first stage of the analyses, a 
classification type of the model was planned, which will 
allow to identify the periods where the planned power 
plant will not be operated – the application of logistic 
regression was considered for this purpose. When 
calculations provided with the logistic regression model 
showed that the turbines will produce energy in the 
consecutive days (t = 1–14), long-term forecasts were 
provided with regression models. Prediction of 
electricity E(t)>0 was executed on the basis of the value 
of the flow from the preceding days Q(t-i). 

In the logistic regression model, the probability (p) of 
occurrence of an event that would consist in production 
of electricity with the turbines or its lack may be 
expressed in general with the dependence: 
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where: β0 – absolute term, β1, β2,… βj – regression 
coefficients determined with the maximum likelihood 
method, Xj - dependent variables, which include here: the 
daily inflow to the power plant in the previous days, i.e. 
Q(t-i). 

Assessment of the prediction capacity of the logistic 
regression model (accuracy of forecasts) was provided 
on the basis of sensitivity (SENS), specificity (SPEC) 
and calculation error (Rz

2). To assess prediction capacity 
of the model, the calculated values of McFadden’s R2 
and Cox–Snell R2 coefficient and the Akaike 
information criterion were also used.  

The obtained result of the logistic regression model is 
the probability of operation of the water power plant (p). 
Thus, in the case when the value p defined with the 
formula (3) for the adopted independent variables is 
smaller than p = 0.5, production of electricity is 0. In the 
case when the value of probability p determined with the 
formula (3) is larger than 0.5, the value E > 0 and then 
the regression model is used.  

To calculate flow rate, three methods of data mining 
were used: support vector, the k nearest neighbours and 
random forests.  

To make the training process appropriate, and then to 
properly assess the performance of a statistical model, 
the data were partitioned into the training set (75%), and 
the validating and testing set (25%). Prior to the start of 
the construction of mathematical models, input and 

output data normalization was performed by means of 
normal form transformation.  

Support Vector Machines (SVM) cover a group of 
methods developed by Vapnik [19] first exclusively for 
classification purposes, which expanded over time to 
include regression issues (SVR). For that reason, the 
dependence between the model output and input 
variables can be non-linear. As a result, in this method a 
non-linear transformation of N – dimensional space to K 
– dimensional feature space of much larger size is 
applied. In this study, the support vector regression 
method with the radial kernel function was applied to 
predict electric energy.  

The k - nearest neighbour method (k-NN) is one of 
the simplest non-parametric methods, and like those 
already mentioned can be applied to classification and 
regression problems [20, 21]. In this case, the dependent 
variable prediction is expressed by formula: 

   (4) 

where: xi is one of K number of nearest neighbours of xj 
when the distance d(xi, xj) belongs the smallest distances 
between observations from set ZN = {(x1, y1), …, (xn, 
yn)}ϵRm+1 where: xi = (x1,i, …, xp,i) is the i-th vector of 
independent variables with m number of coordinates, yi 
is the  i-th dependent variable, N – number of 
observations,  J(xi, xj) – function of the form: 

   (5) 

In the computations shown above, Euclidean 
(employed here) and Mahalanobis distances are most 
frequently used. The number of neighbours (K) was 
established by trial and error, seeking such a value of K, 
for which the model devised would show the best 
predictive abilities.  

The random forests algorithm was proposed by [20] 
and it is a development of the bootstrap method. In the 
first stage, k-time sampling of the n-element training set 
is done, allowing repetitions, and then regression trees 
are created based on the obtained sets. The process of 
their construction in reference to the classic algorithm 
was modified so as to make the best breaking down in 
each node of the tree not on the basis of all, but random 
attributes (the explaining variables). In this way, k 
regression trees are obtained that make up the forest on 
the basis of which the forecast is determined that 
consists in calculation of arithmetical mean of individual 
forecasts of single trees as a result of the entire model. 

To assess prediction capacity of the developed 
regression models, the values were used: mean absolute 
error (MAE), mean absolute percentage error (MAE) and 
correlation coefficient (R).  

 
 

4 Results 

On the basis of historical measurement series of 
flows, one may conclude that the flow rate in the 
analysed water-level section varied from 1.25 m3/s to 
1019 m3/s, with the average value equal to 21.66 m3/s.  

The analysis of data showed that over a major period 
of time, i.e. 104 days a year, the analysed hydropower 
plant will not produce energy due to too low flows run in 
the river (below the so-called turbine start) or flood 
flows that force lowering of impoundage and turning off 
the power plant.  

With the historical data and the knowledge that the 
power plant is operating in the range of the flows of Q = 
<8; 140 m3/s >, the input data Q(t-i) were identified, 
where: i =1, 2, 3, 4, 5…n, n = 14, and the output data for 
the logit model. When the determined value of the daily 
production of energy for of the period of 1–7 days was 
larger than 0, the output value of the logistic regression 
model equal to 1 (the power plant running), or 0 was 
assigned. The calculations proved (Table 2) that the logit 
models developed on the basis of Q(t-1), Q(t-2), Q(t-3), 
and Q(t-4) in case of E(t = 1–14 days) feature 
satisfactory predictive capacity with statistically 
significant parameters at the adopted confidence limit p 
= 0.05.  
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Fig. 3. The curve of daily production of electricity (theoretical and approximated) depending on the flow rate. 

The values of the parameters SENS, SPEC and Rz
2 in 

these models change in the ranges 92.18–95.15%, 
82.95–92.47% and 86.24–92.14% respectively, which 
indicates satisfactory matching of the results of the 
calculations to the measurements.  

In the next stage of the calculations, based on 
discrete values of production of 1- to 14-day production 
of electricity and the input data Q(t-1), Q(t-2), Q(t-3), 
Q(t-4), the mathematical models were developed for 
prediction of E with support vector machines, k-nearest 
neighbour and random forest: the results of the obtained 
calculations are presented in Table 3. Table 4 presents 
the results of the calculations of the theoretical 
production of energy by a hydropower plant obtained 
based on the traditional support vector, random forests 
and k nearest neighbours methods. These calculations 
included also values in a time series, when production of 
energy during the analysed period was zero and the 
power plant did not produce electricity. It was found 
from the analyses that error in the forecast of electricity 

generated by the power plant is reduced along with 
extension of the period for which the forecast is 
provided. Tables 3 and 6 show that the lowest values of 
errors in the forecast of energy was received with the 
support vector methods, both in the classic and hybrid 
models. In turn, the largest values of errors in the 
forecast of energy were obtained with the models in 
which the k nearest neighbours method was used. It 
follows from the conducted analyses (Tables 3 and 4) 
that smaller values of errors in the forecast of electricity 
were obtained with the hybrid model than with the 
classic models. These differences result from the fact 
that the days / periods in the developed mathematical 
model in which the power plant is not functioning are 
forecast with satisfactory accuracy with logistic 
regression (Table 2). In the regression models in which 
only the SVM, RF or k-NN method was used, the errors 
in the forecast of production of energy during the period 
when it is not generated are considerably larger than 
those obtained in the hybrid model.  

Table 2. The summary of the values of parameters (β) and the corresponding test probabilities (p) in logistic regression models 
and parameters of matching the results of calculations for the measurements. 

variables β0 Q(t-4) Q(t-3) Q(t-2) Q(t-1) 
SENS, 

% 
SPEC, 

% 
Rz

2, 
% R2

McFadden    AIC 

1 day -1.689 0.039 0.021 0.096 -0.023 95.18 92.47 92.14 0.496 0.497 5175 

2 days -18.733 0.057 -0.008 -0.586 3.226 94.36 89.14 91.76 0.545 0.543 4873 

3 days -4.649 0.016 -0.005 -0.173 0.75 95.24 88.02 91.19 0.588 0.563 4288 

4 days -4.744 0.004 -0.001 -0.146 0.774 93.91 86.51 89.52 0.640 0.597 3817 

5 days -4.507 0.014 -0.009 -0.13 0.743 93.04 85.03 88.14 0.640 0.62 3826 

6 days -4.297 0.019 -0.008 -0.134 0.725 92.69 83.88 87.15 0.635 0.603 3931 

7 days -4.130 0.023 -0.009 -0.112 0.688 92.18 82.95 86.24 0.624 0.601 4097 

8 days -9.488 0.114 0.183 0.154 0.212 96.10 93.86 95.33 0.839 0.660 1539 

9 days -8.685 -0.029 0.348 -0.064 0.651 93.63 95.93 95.17 0.818 0.646 1715 

10 days -8.753 0.231 0.186 0.016 0.576 96.10 93.62 95.31 0.818 0.641 1690 

11 days -7.988 -0.032 0.311 -0.074 0.723 95.47 93.18 94.77 0.795 0.626 1876 

12 days -7.679 -0.037 0.309 -0.085 0.737 95.22 93.10 94.59 0.784 0.616 1955 

13 days -7.398 -0.026 0.298 -0.085 0.738 95.11 92.48 94.34 0.773 0.606 2030 

14 days -7.205 -0.018 0.304 -0.091 0.746 94.98 91.54 94.01 0.764 0.597 2084 
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Table 3. The parameters for matching measurement data for the results of the calculations obtained with artificial neural networks for 
forecasting production of electricity during the period of 1–14 days. 

E, 
kWh 

SVM RF k-NN 

R MAE MAPE R MAE MAPE R MAE MAPE 

t=1 0.82 10549 34.4 0.81 11791 36.67 0.72 13301 41.36 

t=2 0.89 15196 29.6 0.81 17907 32.52 0.79 18366 33.17 

t=3 0.91 17889 25.3 0.84 19216 28.51 0.78 20726 30.63 

t=4 0.95 18641 19.6 0.89 19233 20.36 0.78 22076 23.37 

t=5 0.96 18818 18.1 0.88 19932 19.75 0.81 21791 21.48 

t=6 0.97 18997 16.9 0.92 21143 19.66 0.79 24514 22.65 

t=7 0.98 18521 15.7 0.93 20915 18.50 0.84 23319 20.43 

t=8 0.99 19263 15.02 0.94 21949 17.29 0.85 24413 19.23 

t=9 0.98 19083 12.13 0.95 25839 15.27 0.85 28900 17.08 

t=10 0.99 22151 10.64 0.93 23802 14.83 0.92 24011 14.98 

t=11 0.99 21044 9.16 0.95 22032 12.46 0.91 22900 12.97 

t=12 0.98 22663 8.26 0.96 23979 11.83 0.91 25271 12.50 

t=13 0.99 22039 8.09 0.95 24685 11.14 0.92 25530 11.53 

t=14 0.99 22743 8.07 0.94 23783 10.04 0.89 23639 10.60 

Table 4. The parameters for matching measurement data for the results of the calculations obtained with artificial neural networks for 
forecasting production of electricity during the period of 1–14 days. 

E, 
kWh 

SVM RF k-NN 

R MAE MAPE R MAE MAPE R MAE MAPE 

t=1 0.74 11789 36.21 0.61 15133 43.06 0.51 18738 49.21 

t=2 0.76 18146 35.45 0.51 21832 36.65 0.58 25516 43.15 

t=3 0.77 18575 27.85 0.62 21649 30.12 0.57 27887 39.28 

t=4 0.81 22412 22.55 0.62 21914 26.20 0.56 31447 33.29 

t=5 0.82 19390 18.33 0.59 22968 26.76 0.54 32287 28.69 

t=6 0.82 21756 19.24 0.72 24548 27.82 0.50 38743 33.15 

t=7 0.83 20719 15.98 0.69 27071 26.95 0.52 37322 30.70 

t=8 0.84 23314 15.90 0.72 27256 25.47 0.59 34976 24.26 

t=9 0.83 21349 12.64 0.60 29933 19.69 0.55 45307 25.12 

t=10 0.82 23609 12.93 0.72 27075 18.42 0.63 32551 20.85 

t=11 0.83 20549 10.74 0.61 28356 20.79 0.62 31707 16.89 

t=12 0.83 21136 10.66 0.63 29336 17.51 0.59 39288 17.98 

t=13 0.84 21830 10.81 0.76 28716 13.87 0.64 36348 15.87 

t=14 0.84 27320 10.99 0.70 32847 17.73 0.59 35842 15.96 

 

5 Conclusions 

It follows from the provided analyses that a hybrid 
model presented in the publication may be useful in 
modelling production of electricity in a hydropower 
plant operated on the run-of-river principle, i.e. in a non-
continuous way, resulting from periods of low water and 
freshet of flood nature. The obtained values of errors in 
the forecast of electricity produced by the hydropower 
plant with the support vector, random forests and k 
nearest neighbours method are higher than with the 
proposed mathematical model. Within the analysed 
methods (classical and the proposed hybrid model), the 
lowest values of errors in the forecast of electricity were 
received with the support vector method. On the basis of 
the calculations, the logistic regression was found out to 
be applicable in forecasting periods during which a 
power plant is not operated. The possibility of 

forecasting the length of idle periods in operation of a 
hydropower plant is very important because it offers the 
possibility of planning inspection and maintenance work 
for the individual components of a hydropower plant, 
which is included in the models developed so far in a 
limited degree. 
 Due to the fact that the small hydropower plant 
analysed in this paper was a concept design, and the used 
data and their further analysis were aimed at showing the 
possibility of application of the method presented in the 
paper for forecasting electricity and the length of the 
period in which the power plant is not functioning, 
which is why verification of the developed methodology 
is recommended based on the data in the functioning 
facility. 
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