
 

 
 

Fast Augmented STPA 
 

Odd Ivar Haugen1,* and Børge Rokseth2 
1DNV GL, Group Technology & Research, Trondheim, Norway 

2Department of Marine Technology, Norwegian University of Science and Technology, Norway 
 
 

ABSTRACT 

All elements (agents) in the STPA control structure (control algorithm, actuator, sensor system, 
process model) consist of a set of functions. These can be visualised and analysed using the 
Functional Analysis System Technique (FAST). The control action is executed by the control 
algorithm agent. By using FAST we can analyse the sub-functions of the control action and identify 
scenarios that may cause unsafe control actions. In the same way, the actuator agent, sensor 
agent and the process model agent can be visualised and analysed through FAST to identify 
scenarios that may cause unsafe control actions. When identifying scenarios that may lead to 
unsafe control actions, analysts tacitly create a mental model of these dependencies. One of the 
strengths of STPA is in agent analysis, by identifying the system agents responsible for enforcing 
safety constraints as well as other agents whose actions (or lack of them) may cause unsafe 
control actions. The strength of FAST is function analysis through making the functional 
dependencies explicit. Small FAST trees within the STPA control structure increase the information 
density without creating too much clutter. The semantics in FAST are relatively easy and quick to 
learn for Subject Matter Experts (SMEs) and others. FAST trees can guide refinement of the 
control structure by identifying functions as new lower-level or higher-level control actions that 
need further investigation in new control structures. The original purpose of FAST was to spark the 
creativity to find an alternative solution to a problem, or alternative ways of achieving a function. 
This is valuable early in the concept and design phase of any system development, including when 
using STPA in early system safety engineering phases. 

 
Keywords: STPA; Functional Analysis System Technique; FAST; Function analysis; Agent 
analysis. 
 

1. INTRODUCTION 

It Identifying scenarios that may lead to unsafe control actions requires profound knowledge 
about the system under consideration, the technology used and of the intended operation, and the 
environment of which the operation is conducted. This paper suggests augmenting the System-
Theoretic Process Analysis (STPA) introduced by Leveson (2011) by using Functional Analyse 
System Technique (FAST) to assist in the identification of causal scenarios leading to unsafe 
control actions. Moreover, FAST may also be used by the analyst in the refinement of the control 
structures.   

FAST was first described by Charles W. Bytheway in 1964 and presented as a paper to the 
Society of American Value Engineers conference in 1965, and later published in the book of 
Bytheway (2007). An introduction to FAST is given in the Appendix of this paper, and further 
information can be found in the Society of American Value Engineering (SAFE)†. In FAST, a 
functional relationship is developed by repetitive asking two questions: How a function is 
accomplished, and Why a function must be accomplished. The answers are formulated as 

                                                 
* Corresponding author: +4791715040, odd.ivar.haugen@dnvgl.com 
† https://www.value-eng.org/ 

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution  
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201199779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

functions together with their relationship. The How/Why relationship is also described by 
Rasmussen, Pejtersen, & Goodstein (1994) within the means-end relationship. Both work 
mentioned above describe how we can move up and down in a hierarchy of abstraction levels, 
which is a well-known strategy for dealing with complexity and human problem-solving. This aligns 
with Leveson (2011): 
 

“To create causal scenarios, the control structure diagram must include the process 
models for each component. If the system exists, then the content of these models should be 
easily determined by looking at the system functional design and its documentation. If the system 
does not yet exist, the analysis can start with a best guess and then be refined and changed as 
the analysis proceeds. (p. 221)” 

 
FAST is a way of visualising, structuring and analysing the "system functional design", and a 

help in providing a "best guess" early in the system concept and design phases. If STPA is 
performed on a "black-box" system, perhaps by a third-party analyst who is not granted access to 
the internal system design documentation, she/he can use FAST to identify the required generic 
functions, and then perform the analysis. 

2. APPLYING FAST IN STPA 

Although FAST makes functional dependencies explicit, it lacks strong semantics for 
temporal relationships between functions (i.e. identifying the supporting functions in FAST will give 
some temporal information), and the ability to analyse agency. Agency is central to STPA through 
the identification of the controller and thereby the control algorithm - that is instrumental for the 
accomplishment of control actions. Temporal causes of hazards are also part of STPA through 
some of the guidewords. Hierarchical functional relations, however, can be modelled in other ways, 
like FAST. 

The control algorithm in the controller is basically a set of functions and sub-functions. When 
identifying scenarios that may lead to unsafe control actions, the control algorithm is one place to 
investigate. Sometimes, the mechanisms of the control algorithm may be well known to all 
participants in the analysis, and there may be no need to explicitly state these functional 
dependencies. However, other times it would be beneficial to explicitly depict these dependencies 
to make certain that important aspects are not missing from the analysis, and to inform non-expert 
team members about these relationships. 

The "output" of the control algorithm is the control action(s). Control actions are functions 
executed by agents that have the ability to control systems states that are important for safety, or 
in other words: "...enforce constraints on the behavior of the controlled process". (Leveson & 
Thomas, 2018, p. 22). What we want to do is to investigate the functions executed by the agents in 
the control structure (i.e. control algorithm, process model, actuator, sensors) that can cause 
Unsafe Control Actions (UCAs).  

Figure 1 shows a dynamic positioning control system (DP control system), where the control 
action is the command of force through the use of the thruster system. The hazard to avoid is 
losing the ship’s position and heading. For safety-critical operations, this is seen from regulatory 
bodies as the hazardous system state (International Maritime Organization [IMO], 2017), or in 
other words: remain at the location where you are supposed to be located. The ship is to be 
designed in such way that it will remain stationary in case of a single fault. The standard means of 
achieving this goal is component redundancy. Of course, component redundancy is not seen as an 
adequate requirement for safety in complex software-intensive systems (Leveson, 1995; Ericson II, 
2013), however, this is the current focal point in (IMO, 2017), where FMEA is the required method 
for analysing the system. 

At this level of authority (DP control system), we assume that the desired position and 
heading is set at a safe location. Selecting a safe location is the responsibility of a higher-level 
authority (e.g. DP operator or an autonomous navigation system) and is therefore excluded for 

2

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

functions together with their relationship. The How/Why relationship is also described by 
Rasmussen, Pejtersen, & Goodstein (1994) within the means-end relationship. Both work 
mentioned above describe how we can move up and down in a hierarchy of abstraction levels, 
which is a well-known strategy for dealing with complexity and human problem-solving. This aligns 
with Leveson (2011): 
 

“To create causal scenarios, the control structure diagram must include the process 
models for each component. If the system exists, then the content of these models should be 
easily determined by looking at the system functional design and its documentation. If the system 
does not yet exist, the analysis can start with a best guess and then be refined and changed as 
the analysis proceeds. (p. 221)” 

 
FAST is a way of visualising, structuring and analysing the "system functional design", and a 

help in providing a "best guess" early in the system concept and design phases. If STPA is 
performed on a "black-box" system, perhaps by a third-party analyst who is not granted access to 
the internal system design documentation, she/he can use FAST to identify the required generic 
functions, and then perform the analysis. 

2. APPLYING FAST IN STPA 

Although FAST makes functional dependencies explicit, it lacks strong semantics for 
temporal relationships between functions (i.e. identifying the supporting functions in FAST will give 
some temporal information), and the ability to analyse agency. Agency is central to STPA through 
the identification of the controller and thereby the control algorithm - that is instrumental for the 
accomplishment of control actions. Temporal causes of hazards are also part of STPA through 
some of the guidewords. Hierarchical functional relations, however, can be modelled in other ways, 
like FAST. 

The control algorithm in the controller is basically a set of functions and sub-functions. When 
identifying scenarios that may lead to unsafe control actions, the control algorithm is one place to 
investigate. Sometimes, the mechanisms of the control algorithm may be well known to all 
participants in the analysis, and there may be no need to explicitly state these functional 
dependencies. However, other times it would be beneficial to explicitly depict these dependencies 
to make certain that important aspects are not missing from the analysis, and to inform non-expert 
team members about these relationships. 

The "output" of the control algorithm is the control action(s). Control actions are functions 
executed by agents that have the ability to control systems states that are important for safety, or 
in other words: "...enforce constraints on the behavior of the controlled process". (Leveson & 
Thomas, 2018, p. 22). What we want to do is to investigate the functions executed by the agents in 
the control structure (i.e. control algorithm, process model, actuator, sensors) that can cause 
Unsafe Control Actions (UCAs).  

Figure 1 shows a dynamic positioning control system (DP control system), where the control 
action is the command of force through the use of the thruster system. The hazard to avoid is 
losing the ship’s position and heading. For safety-critical operations, this is seen from regulatory 
bodies as the hazardous system state (International Maritime Organization [IMO], 2017), or in 
other words: remain at the location where you are supposed to be located. The ship is to be 
designed in such way that it will remain stationary in case of a single fault. The standard means of 
achieving this goal is component redundancy. Of course, component redundancy is not seen as an 
adequate requirement for safety in complex software-intensive systems (Leveson, 1995; Ericson II, 
2013), however, this is the current focal point in (IMO, 2017), where FMEA is the required method 
for analysing the system. 

At this level of authority (DP control system), we assume that the desired position and 
heading is set at a safe location. Selecting a safe location is the responsibility of a higher-level 
authority (e.g. DP operator or an autonomous navigation system) and is therefore excluded for 

 
 

now. However, we will return to it later in the example. If the commanded thrust is too low, or too 
high, or in the wrong direction, the ship will move away from the required location. So, the objective 
of the STPA analysis is to find scenarios that may cause the commanded thrust to be too low, too 
high, or in the wrong direction compared to what is necessary to keep the ship stationary. To assist 
in the identification of scenarios, we must investigate the different agents in the control structure. 

Figure 1: Control structure of a dynamic positioning control system 
As stated above, the control action is a function executed by an agent. A function is always a 

sub-function of a principal-function, or as they say: "There's always a bigger fish". At the same 
time, it can be divided into several sub-functions.  We know that the agent responsible for the 
control action is the control algorithm. What is the purpose of this agent? The purpose is to 
minimize the deviation between the position/heading setpoint and the actual 
position/heading of the ship by providing force and azimuth setpoints to the thruster 
system. Thus, the functions the particular agent contains are “Minimize pos/head deviation”and 
“Provide force/azimuth setpoint”. We may claim that the principal function is “Minimize pos/head 
deviation”, because if this function were not necessary, then the other function would not be 
needed. The two functions identified so far are placed in a hierarchy of principal-functions and sub-
function:  
 

Minimize pos/head deviation 
 Provide force/azimuth setpoint 
 

The purpose of STPA is to identify scenarios that may cause "Provide force/azimuth 
setpoint" to fail in different modes that may put the system into a hazardous state or condition. The 
guidewords help to identify these modes at a high abstraction level and form a complete set of fault 
modes (Leveson & Thomas, 2018). By keep asking How, with respect to the control action, we 
identify the sub-functions needed to perform it. And through these sub-functions, we can identify 
how an unsafe control action can be executed. 

There are two functions related the How-question: “Compute pos/head deviation” and 
“Allocate force to each thruster”. These are supporting functions which must be executed to 
perform the function: "Provide force/azimuth setpoint”. These functions are marked with ^ in front 
of the name in the FAST tree as they all are necessary support functions. They are numbered to 
indicate that they belong to the same function. A FAST tree will look like this:  

 
Minimize pos/head deviation 
Provide force/azimuth sepoint (CA) 

3

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

  Provide force/azimuth setpoint 
 ^1Compute current pos/head deviation 
 ^2Allocate force to each thruster  
 
Different teams will certainly come up with different names for the functions. The point is 

whether or not the list is useful in identifying scenarios for unsafe control actions. With a "few" 
words (name of each function), and a limited set of semantics (format of the FAST tree, the 
why/how logic, and the supporting functions), we can already start to get an idea of how unsafe 
control actions may occur. Any fault in the sub-functions or supporting functions of the control 
action can potentially cause an unsafe control action. 

Note that FAST lacks strong semantics for a temporal relationship between functions, and 
agency is not part of FAST; however, STPA includes both. STPA and FAST are therefore 
complimentary. The suitability with respect to hazards analysis of the combined STPA and FAST 
approaches can be thought of as an emergent property of its constituents, or in other words:  the 
combined use of the methods exceeds the sum of its parts.  

Of course, someone could dig even deeper into each sub-function or supporting function. For 
instance, regarding the supporting function: "Compute current pos/head deviation": 

Q: "How is "Compute pos/head deviation” performed"? 

A: “Compute distance between desired and current pos/head “ 
Furthermore, what other function(s) must be performed when/if the newly identified function 

is to be accomplished? The answer may consist of two functions: “Retrieve desired 
pos/head/speed” and “Retrieve estimated pos/head/speed”. The revised FAST tree may look like 
this: 

 
Minimize pos/head/speed deviation 
 Provide force vector 
  Provide thruster force/azimuth setpoint (CA) 
  ^1Compute pos/head deviation 
  ^^1 Retrieve desired pos/head/speed 
  ^^2 Retrieve estimated pos/head/speed 
  ^2Allocate force to each thruster 
 
Any of the two newly identified functions may cause "Compute current pos/head deviation" to 

fail, resulting in an unsafe control action. Notice the two carats in front of the newly identified 
functions, they indicate that the functions are support functions to another support function.  

 
2.1. FAST Tree and STPA Control Structure 

In Figure 2, the FAST tree is included into the STPA control structure. Whether the FAST 
tree should be included inside the control structure, or as an add-on on the side, will depend on the 
level of refinement in the FAST tree. Large trees are difficult to visualize inside without introducing 
clutter and therefore decreasing the usefulness of the control structure in achieving its purpose. 
However, keeping the FAST tree small may maintain a "clean" control structure and at the same 
time provide useful insight into the inner workings of the different agents, helping to spark the 
imagination and creativity of the analysis team to identify scenarios leading to unsafe control 
actions.  

  

4

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

  Provide force/azimuth setpoint 
 ^1Compute current pos/head deviation 
 ^2Allocate force to each thruster  
 
Different teams will certainly come up with different names for the functions. The point is 

whether or not the list is useful in identifying scenarios for unsafe control actions. With a "few" 
words (name of each function), and a limited set of semantics (format of the FAST tree, the 
why/how logic, and the supporting functions), we can already start to get an idea of how unsafe 
control actions may occur. Any fault in the sub-functions or supporting functions of the control 
action can potentially cause an unsafe control action. 

Note that FAST lacks strong semantics for a temporal relationship between functions, and 
agency is not part of FAST; however, STPA includes both. STPA and FAST are therefore 
complimentary. The suitability with respect to hazards analysis of the combined STPA and FAST 
approaches can be thought of as an emergent property of its constituents, or in other words:  the 
combined use of the methods exceeds the sum of its parts.  

Of course, someone could dig even deeper into each sub-function or supporting function. For 
instance, regarding the supporting function: "Compute current pos/head deviation": 

Q: "How is "Compute pos/head deviation” performed"? 

A: “Compute distance between desired and current pos/head “ 
Furthermore, what other function(s) must be performed when/if the newly identified function 

is to be accomplished? The answer may consist of two functions: “Retrieve desired 
pos/head/speed” and “Retrieve estimated pos/head/speed”. The revised FAST tree may look like 
this: 

 
Minimize pos/head/speed deviation 
 Provide force vector 
  Provide thruster force/azimuth setpoint (CA) 
  ^1Compute pos/head deviation 
  ^^1 Retrieve desired pos/head/speed 
  ^^2 Retrieve estimated pos/head/speed 
  ^2Allocate force to each thruster 
 
Any of the two newly identified functions may cause "Compute current pos/head deviation" to 

fail, resulting in an unsafe control action. Notice the two carats in front of the newly identified 
functions, they indicate that the functions are support functions to another support function.  

 
2.1. FAST Tree and STPA Control Structure 

In Figure 2, the FAST tree is included into the STPA control structure. Whether the FAST 
tree should be included inside the control structure, or as an add-on on the side, will depend on the 
level of refinement in the FAST tree. Large trees are difficult to visualize inside without introducing 
clutter and therefore decreasing the usefulness of the control structure in achieving its purpose. 
However, keeping the FAST tree small may maintain a "clean" control structure and at the same 
time provide useful insight into the inner workings of the different agents, helping to spark the 
imagination and creativity of the analysis team to identify scenarios leading to unsafe control 
actions.  

  

 
 

Minimize pos/head/speed deviation
Provide force vector

Provide thruster force/azimuth setpoint (CA)
^1Compute pos/head deviation
^^1 Retrieve desired pos/head/speed
^^2 Retrieve estimated pos/head/speed
^2Allocate force to each thruster

Provide desired ship position/heading/speed

Provide thruster force/
azimuth setpoint

Vessel pos/head/
speed

Position, heading, 
thruster status

 
 

Figure 2: STPA control structure augmented with the FAST tree in the control algorithm 
 

2.2. FAST Trees Inside Other Control Structure Agents 

All agents in the control structure serves a purpose, and that purpose is achieved through a 
set of functions. Again, STPA is well suited as an agency-analysis method.   

The actuator in the running example of the DP control system, is a thruster system consisting 
of a number of units with their own local control system. STPA instructs us to investigate all agents 
in the control structure for scenarios of unsafe control actions. 

2.2.1. Thruster Control System 

Assuming pitch-controlled azimuth thrusters, thrust is generated through altering the 
propeller blade angle. The blade angle, or just pitch, is altered by the use of hydraulic pumps. 
Thrust direction is altered through rotating the thruster, i.e. altering the azimuth. There are two 
control actions coming from the DP control system; the “Provide force setpoint”, and “Provide 
azimuth setpoint”. Therefore, there must exist two agents responsible for achieving the objectives 
expressed through the control actions (force and azimuth). Below we will only focus on the control 
action related to force. Without going into the same level of detail as with the control algorithm, the 
FAST tree for the thruster system may look as follows: 

 
Minimize force deviation 
 Provide thruster pitch setpoint (CA) 
 ^1Map force to pitch 
 ^2 Compute delta pitch 
 ^^1 Retrieve desired pitch 
 ^^2 Retrieve current pitch 
 

The FAST tree within the actuator agent in the STPA control structure is shown in Figure 4. 
Notice that the FAST tree of the actuator contains the function, "Provide thruster pitch/azimuth 
setpoint", that affect the system state that is important for safety, or in other words, can put the 
system into a hazardous state. It may be tempting to just continue with FAST and elaborate around 

5

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

possible causes of why this function may fail. However, recall the deficiency of FAST; semantics 
for temporal information and agency (i.e. the sequence of action, and who is responsible for what 
action), and how these agents depend upon each other, which is where STPA excels. 

By identifying control actions among the functions in the FAST tree, we can refine the higher-
level control structure into details about the actuator. The control action is identified as the function 
directly affecting the system state that is important for safety. In this case, thruster pitch affects the 
generated force acting on the ship. The FAST tree describing the actuator can be thought of as 
describing the functional dependencies of the control algorithm in the lower level control structure 
(Figure 3). The responsibility of the particular controller is to minimize the deviation between 
desired and current force. Another controller will be responsible to minimizing delta azimuth. Both 
are important for avoiding the defined hazard, but on different level of authority compared to the 
DP controller. 

Provide force setpoint

Thruster pitch angle

Provide thruster 
pitch setpint

Minimize force deviation
Provide thruster pitch setpoint (CA)
^1Map force to pitch
^2 Compute delta pitch
^^1 Retrieve desired pitch
^^2 Retrieve current pitch

 
 

Figure 3: STPA control structure of the actuator augmented with a FAST tree in the control algorithm 

2.2.2. Sensor System 

The sensor system can also be visualised through FAST. In a DP control system, the 
sensors consist of system state sensors, environmental sensors, and actuator sensors:  

 
Measure ship pos/head 
 Collect position 
  Collect GPS data 
 Measure ship heading 
  Collect Gyro compass data 
Measure ship pitch/roll 
 Collect Vertical Reference Unit data 
Measure environmental variables 
 Collect wind data  
Measure thruster variables 
 Collect pitch data 
 Collect azimuth data 
 

6

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

possible causes of why this function may fail. However, recall the deficiency of FAST; semantics 
for temporal information and agency (i.e. the sequence of action, and who is responsible for what 
action), and how these agents depend upon each other, which is where STPA excels. 

By identifying control actions among the functions in the FAST tree, we can refine the higher-
level control structure into details about the actuator. The control action is identified as the function 
directly affecting the system state that is important for safety. In this case, thruster pitch affects the 
generated force acting on the ship. The FAST tree describing the actuator can be thought of as 
describing the functional dependencies of the control algorithm in the lower level control structure 
(Figure 3). The responsibility of the particular controller is to minimize the deviation between 
desired and current force. Another controller will be responsible to minimizing delta azimuth. Both 
are important for avoiding the defined hazard, but on different level of authority compared to the 
DP controller. 

Provide force setpoint

Thruster pitch angle

Provide thruster 
pitch setpint

Minimize force deviation
Provide thruster pitch setpoint (CA)
^1Map force to pitch
^2 Compute delta pitch
^^1 Retrieve desired pitch
^^2 Retrieve current pitch

 
 

Figure 3: STPA control structure of the actuator augmented with a FAST tree in the control algorithm 

2.2.2. Sensor System 

The sensor system can also be visualised through FAST. In a DP control system, the 
sensors consist of system state sensors, environmental sensors, and actuator sensors:  

 
Measure ship pos/head 
 Collect position 
  Collect GPS data 
 Measure ship heading 
  Collect Gyro compass data 
Measure ship pitch/roll 
 Collect Vertical Reference Unit data 
Measure environmental variables 
 Collect wind data  
Measure thruster variables 
 Collect pitch data 
 Collect azimuth data 
 

 
 

The FAST tree within the sensor agent in the STPA control structure is shown in Figure 4. 
The team of analysts can get an overview of the feedback path in the control structure and identify 
possible scenarios for unsafe control actions.   

2.2.3. Controller Process Model 

The last agent to check for scenarios that may cause unsafe control actions is the 
controller’s process model:  

Estimate pos/head 
Update pos/head model 
^Retrieve ship states 
Estimate ship speed vector 
 Compute force balance to ship speed 
 ^1Estimate thruster forces 
 ^2Estimate environmental forces 
  

The FAST tree within the process model agent in the STPA control structure is shown in 
Figure 4. Note that the DP control system control algorithm contains the supporting function: 
"Retrieve estimated pos/head/speed". These system states are calculated by the process model 
agent, and by investigating the sub-functions of the process model, possible scenarios about why 
these functions may fail and cause unsafe control actions may be found. 

 

Estimate pos/head
Update pos/head model
^Retrieve ship states

Estimate ship speed vector
Compute force balance to ship speed
^1Estimate thruster force
^2Estimate environmental force

Provide desired ship position/heading/speed

Measure ship pos/head
Collect position

Collect GPS data
Measure ship heading

Collect Gyro compass data
Measure ship pitch/roll

Collect VRU data
Measure environmental variables

Collect wind data 
Measure thruster variables

Collect pitch data
Collect azimuth data

Vessel pos/head/
speed

Minimize pos/head/speed deviation
Provide force vector

Provide thruster force/azimuth setpoint (CA)
^1Compute pos/head deviation
^^1 Retrieve desired pos/head/speed
^^2 Retrieve estimated pos/head/speed
^2Allocate force to each thruster

Minimize force deviation
Provide thruster pitch/azimuth setpoint
^1Map force to pitch
^2 Compute delta pitch
^^1 Retrieve desired pitch
^^2 Retrieve current pitch

Provide force/
azimuth setpoint

 
 

Figure 4: STPA control structure augmented by FAST trees in all agents 

3. IDENTIFYING AND ANALYSING HIGHER-LEVEL AUTHORITIES 

Higher level authorities can be identified and analysed in the same way as lower level 
authorities. The input to the DP control system "Provide desired ship position/heading/speed" is in 

7

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

fact a control action given by a controller at a higher level of authority. Providing and keeping the 
ship position is just a means to an end, where the end is the goal or the mission of the operation. 
In this higher-level system, the DP control system is one part of the actuator system, other 
actuators are all other means necessary to achieve the mission. However, we must limit our 
analysis to hazards that may be caused by the system under investigation, which in this example is 
the DP control system. 

We perform the steps of FAST to identify the functions in the control algorithm, starting with 
the control action going into the DP control system: "Provide desired ship position/heading/speed". 
Another well-known function in any controller is "Minimize operational goal deviation" and 
"Compute current operational deviation":  

 
Minimize operational deviation 
 Provide desired ship position/heading/speed 
 ^Compute current operational deviation 
 ^^1Retrieve desired operational goal 
 ^^2Retrieve current operation status 

Figure 5 shows the STPA control structure of the higher-level authority including FAST trees 
within all control structure agents. 

Minimize operational deviation
Provide desired ship position/heading/speed
^Compute current operational deviation
^^1Retrieve desired operational goal
^^2Retrieve current operation status

Provide operational goal

Provide ship position/
heading/speed setpoint

The mission

Estimate operation status
Update throughout put model
Update time schedule

Collect setpoints
Transmit setpoints

Collect throughout put
«Collect» time schedule
Collect actuator status
Collect environmental status

Vessel pos/head/
speed

 
 

Figure 5: STPA control structure of higher-level authority augmented with FAST trees 

4. SMALL FAST TREES WITHIN THE STPA CONTROL STRUCTURE IN A STUDY SESSION 

STPA is a function-centric analysis method. While other function-centric methods, like 
Functional Hazard Analysis (FHA) make function names and their relationships explicit, STPA 

8

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

fact a control action given by a controller at a higher level of authority. Providing and keeping the 
ship position is just a means to an end, where the end is the goal or the mission of the operation. 
In this higher-level system, the DP control system is one part of the actuator system, other 
actuators are all other means necessary to achieve the mission. However, we must limit our 
analysis to hazards that may be caused by the system under investigation, which in this example is 
the DP control system. 

We perform the steps of FAST to identify the functions in the control algorithm, starting with 
the control action going into the DP control system: "Provide desired ship position/heading/speed". 
Another well-known function in any controller is "Minimize operational goal deviation" and 
"Compute current operational deviation":  

 
Minimize operational deviation 
 Provide desired ship position/heading/speed 
 ^Compute current operational deviation 
 ^^1Retrieve desired operational goal 
 ^^2Retrieve current operation status 

Figure 5 shows the STPA control structure of the higher-level authority including FAST trees 
within all control structure agents. 

Minimize operational deviation
Provide desired ship position/heading/speed
^Compute current operational deviation
^^1Retrieve desired operational goal
^^2Retrieve current operation status

Provide operational goal

Provide ship position/
heading/speed setpoint

The mission

Estimate operation status
Update throughout put model
Update time schedule

Collect setpoints
Transmit setpoints

Collect throughout put
«Collect» time schedule
Collect actuator status
Collect environmental status

Vessel pos/head/
speed

 
 

Figure 5: STPA control structure of higher-level authority augmented with FAST trees 

4. SMALL FAST TREES WITHIN THE STPA CONTROL STRUCTURE IN A STUDY SESSION 

STPA is a function-centric analysis method. While other function-centric methods, like 
Functional Hazard Analysis (FHA) make function names and their relationships explicit, STPA 

 
 

relies on the functional control structure for representing functions, and their relations. Diagrams 
and drawings are imperative when a team is gathered to study a system. These "studies" should 
be conducted in all hazard identification and analysis methods, including STPA. 

Drawing boxes with names, and linking them with lines and arrows, in the context of FHA, is 
an intuitive way of depicting relationships between functions. However, the diagrams may quickly 
become cluttered, and the meaning of the lines and arrows may be ambiguous. To improve the 
situation, the diagram may be spread over several pages and the lines may be tagged. Decreasing 
the number of boxes on a single page will also decrease the information density, which result in 
decreasing the usefulness of the diagram when used in a study-session. Tagging lines and other 
objects increases the information density, while at the same time adds to the clutter, thus 
decreasing the readability. A good diagram is packed with relevant information, conveying 
important system aspects with respect to the objective of the study, with minimum clutter and 
maximum readability. 

The most obvious way of maximizing information density, while keeping clutter to a 
minimum, is to use dedicated and well-defined symbols. The more meaning put into a symbol, the 
more information will that symbol carry, leading to increased information density, while keeping 
clutter to a minimum. The challenge with this approach is that these diagrams may only be 
readable by method-specific specialists and not Subject-Matter Experts (SMEs). In a study, this 
approach will make the diagram less useful because the SMEs become alienated, preventing the 
analysts’ creativity to be ignited and reducing their involvement. 

The functional control structure used in STPA depicts dependencies and relations essential 
to the understanding of what may lead to a hazard in a fairly compact way, while at the same time, 
it is readable and understandable to SMEs. This makes the functional control structure well suited 
for a study-session with a team of STPA specialists and SMEs. Small FAST trees have been 
shown to reveal more information about functional relationships in order to ignite creativity and 
increase the understanding of implicit functional (hierarchical) dependencies. Together with the 
STPA "guidewords", this will increase the probability of identifying more scenarios for inadequate 
control that could lead to hazards. 

5. SUMMARY 

All agents (control algorithm, actuator, sensor system, process model) in the control structure 
consist of a set of functions which may be visualized and analysed using FAST. The control action 
is the “output” from the control algorithm. By using FAST we can analyse the sub-functions of the 
control action and identify scenarios that may cause unsafe control actions. The actuator is often a 
control system on its own, and FAST can help identifying new control structures and control 
actions though explicitly showing functional dependencies within the actuator system.  

Even the "sensor system" in the feedback path, may in some instances be analysed as a 
control structure including functions visualized as FAST trees, if there is an agent that is 
responsible to trigger the sensor system to start transmitting feedback. Other times, the feedback 
path consists of only the sensor agent that automatically transmits feedback, which however, still 
may be analysed using FAST to identify why the feedback may lead to unsafe control actions. 
Last, the responsibility of the process model agent is to create an adequate and useful model of 
the process under consideration. The functions needed can be analysed using FAST to 
understand how flaws in the process model agent can cause unsafe control actions, and why they 
can occur. 

6. DISCUSSION AND CONCLUSION 

FAST trees make hierarchical functional dependencies explicit. When identifying scenarios 
that may lead to UCAs, analysts tacitly create a mental model of these dependencies. However, 
the strength of STPA is in agent analysis, by identifying system agents responsible for enforcing 
safety constraints, while the hierarchical functional dependencies are more implicit. 

9

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

Hierarchical functional dependencies and agent analysis may be thought of as two important 
dimensions in function analysis. Function dependencies depicted in FAST creates holarchy-like 
functional abstraction levels ("Holarchy" was first coined by Arthur Koestler in his 1967 book "The 
ghost in the Machine", which in contrast to a hierarchy does not have a top or a bottom, and each 
level constitutes a set of holons). On the other hand, agent analysis in STPA creates holarchy-like 
levels of authority. These two dimensions are linked in such a way that the function on a certain 
level in the abstraction-holarchy can identify new control action levels that further will identify a new 
controller, and control structures in the authority-holarchy. When a new level in the authority-
holarchy is identified, the functions within each agent in this control structure can again be 
analysed using FAST. 

There are two types of functions visualised in FAST trees: inter-agent functions (agent-to-
agent functions), or intra-agent function. An inter-agent function requires a correct 
command/response pair in order to be successfully accomplished, while an intra-agent function 
only depends on the agent responsible for conducting it. A control action is one special case of an 
inter-agent function, requiring that the actuator agent responds adequate to be successfully 
accomplished, and of course it will directly affect the system state important for safety. In addition 
to a control action, an inter-agent function may also be that the state estimator or "process model" 
agent in a control structure requests a measurement from the sensor agent. The principal-function 
dependent upon the inter-agent function may fail (perhaps causing an unsafe control action) if the 
request comes too late, or too early, but also if the sensor agent transmits the wrong value, or 
transmits too late and so on.   

Small FAST trees within the control structure increase the information density hopefully 
without creating too much clutter. The semantics in FAST are relatively easy and quick to learn for 
SMEs and others. The level of detail in the FAST trees should be adjusted to fit the purpose of the 
analysis. If they become too large to fit inside the control structure, they can be printed and 
labelled to identify the agent in separate drawings. 

The human brain is predisposed to think in hierarchies to deal with complexity and problem-
solving, therefore, FAST trees resonate well with the human brain. Also, FAST trees can guide 
refinement of the control structure by identifying functions as new lower-level or higher-level control 
actions that need further investigation in new control structures. Moreover, FAST can be used both 
when the system details are known to the analyst and when these details are not known, either 
because it is early in the design, or the analyst is analysing the system as a black-box (third party 
analyst).  

The original purpose of FAST was to spark the creativity to find alternative solution to a 
problem, or alternative ways of achieving a function. This is valuable early in the concept and 
design phase of any system development, including using STPA in system safety engineering. The 
paper has investigated the potential for using FAST within the SPTA technique. We believe that 
FAST can augment STPA by systematically analyse the hierarchical functional dependencies 
within each agent in the STPA control structure. FAST may guide the refinement of control 
structures as well as assist to identify new lower level, or higher-level control actions. Moreover, 
FAST, together with STPA, can assist in analysing and selecting alternative designs early in the 
development of new systems. 

ACKNOWLEDGEMENT 

The authors would like to thank Dag McGeorge who is a colleague in DNV GL, for the introduction 
to FAST. Without this introduction, FAST would probably remain unknown to the authors. 
This work is funded by the project “Online Risk management and risk Control for Autonomous 
Ships” (ORCAS). The Norwegian Research Council, DNV GL and Rolls Royce Marine are 
acknowledged as sponsors of project number 280655. 

10

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

Hierarchical functional dependencies and agent analysis may be thought of as two important 
dimensions in function analysis. Function dependencies depicted in FAST creates holarchy-like 
functional abstraction levels ("Holarchy" was first coined by Arthur Koestler in his 1967 book "The 
ghost in the Machine", which in contrast to a hierarchy does not have a top or a bottom, and each 
level constitutes a set of holons). On the other hand, agent analysis in STPA creates holarchy-like 
levels of authority. These two dimensions are linked in such a way that the function on a certain 
level in the abstraction-holarchy can identify new control action levels that further will identify a new 
controller, and control structures in the authority-holarchy. When a new level in the authority-
holarchy is identified, the functions within each agent in this control structure can again be 
analysed using FAST. 

There are two types of functions visualised in FAST trees: inter-agent functions (agent-to-
agent functions), or intra-agent function. An inter-agent function requires a correct 
command/response pair in order to be successfully accomplished, while an intra-agent function 
only depends on the agent responsible for conducting it. A control action is one special case of an 
inter-agent function, requiring that the actuator agent responds adequate to be successfully 
accomplished, and of course it will directly affect the system state important for safety. In addition 
to a control action, an inter-agent function may also be that the state estimator or "process model" 
agent in a control structure requests a measurement from the sensor agent. The principal-function 
dependent upon the inter-agent function may fail (perhaps causing an unsafe control action) if the 
request comes too late, or too early, but also if the sensor agent transmits the wrong value, or 
transmits too late and so on.   

Small FAST trees within the control structure increase the information density hopefully 
without creating too much clutter. The semantics in FAST are relatively easy and quick to learn for 
SMEs and others. The level of detail in the FAST trees should be adjusted to fit the purpose of the 
analysis. If they become too large to fit inside the control structure, they can be printed and 
labelled to identify the agent in separate drawings. 

The human brain is predisposed to think in hierarchies to deal with complexity and problem-
solving, therefore, FAST trees resonate well with the human brain. Also, FAST trees can guide 
refinement of the control structure by identifying functions as new lower-level or higher-level control 
actions that need further investigation in new control structures. Moreover, FAST can be used both 
when the system details are known to the analyst and when these details are not known, either 
because it is early in the design, or the analyst is analysing the system as a black-box (third party 
analyst).  

The original purpose of FAST was to spark the creativity to find alternative solution to a 
problem, or alternative ways of achieving a function. This is valuable early in the concept and 
design phase of any system development, including using STPA in system safety engineering. The 
paper has investigated the potential for using FAST within the SPTA technique. We believe that 
FAST can augment STPA by systematically analyse the hierarchical functional dependencies 
within each agent in the STPA control structure. FAST may guide the refinement of control 
structures as well as assist to identify new lower level, or higher-level control actions. Moreover, 
FAST, together with STPA, can assist in analysing and selecting alternative designs early in the 
development of new systems. 

ACKNOWLEDGEMENT 

The authors would like to thank Dag McGeorge who is a colleague in DNV GL, for the introduction 
to FAST. Without this introduction, FAST would probably remain unknown to the authors. 
This work is funded by the project “Online Risk management and risk Control for Autonomous 
Ships” (ORCAS). The Norwegian Research Council, DNV GL and Rolls Royce Marine are 
acknowledged as sponsors of project number 280655. 

 
 

REFERENCES 

Bunge, M. (2003). Emergence and Convergence. University of Toronto Press. 
Bytheway, C. W. (2007). FAST, Creativity & Innovation. Florida: J. Ross Publishing. 
Ericson II, C. A. (2013). Software Safety Primer.  
International Maritime Organization [IMO]. (2017). GUIDELINES FOR VESSELS AND UNITS 

WITH DYNAMIC POSITIONING (DP) SYSTEMS. MSC.1/Circ.1580. 
Leveson, N. (1995). Safeware, System Safety and Computers. Boston: Addison-Wesley. 
Leveson, N. (2011). Engineering a Safer World, Systems Thinking Applied to Safety. MIT Press. 
Leveson, N., & Thomas, J. P. (2018). STPA Handbook.  
Rasmussen, J., Pejtersen, A. M., & Goodstein, L. P. (1994). Cognitive System Engineering. Wiley-

Interscience. 
Society of American Value Engineering (SAFE). (n.d.). Retrieved from https://www.value-eng.org/ 

11

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

APPENDIX: A QUICK FAST OVERVIEW 

Fast is a method for sparking the imagination and creativity to identify functions. Moreover, it 
facilitates communication of the processes that make the system behave the way it does, or the 
Mechanisms in the CESM-model, (Bunge, 2003). FAST can be done by one person, but the best 
result is achieved when it is performed in a team. 

A central feature in FAST is the function, and its name. In FAST, there are certain rules or 
conventions for naming functions. These rules serve different purposes, such as being specific 
about the intension of the function, and sparking the imagination and creativity. 

There are two ways of visually communicating functions and functional dependencies within 
FAST: FAST diagrams, and FAST trees. Both will be described below, but briefly, FAST diagrams 
are good for brainstorming about smaller systems, or parts of systems because the method is 
more graphical in the context of a brainstorming session. The challenge is that diagrams take up a 
lot of space, and therefore become large if the analysis goes into much detail. FAST trees, on the 
other hand, take less space, and therefore are more convenient for visualising larger systems, or 
larger parts of systems. 

The most central concept in FAST is the Why-How logic. In order to establish cause-effect 
relations between the branches in the FAST tree, one asks one either (Why or How questions). 
This relation can also be thought of as a means-end relation (Rasmussen, Pejtersen, & Goodstein, 
1994). 

Naming functions 

"The function name should immediately say something about what is to be accomplished 
without disclosing the method of accomplishment" (Bytheway, 2007). The name should be short 
and concise. The main rule in FAST is that functions names starts with an active verb, and end 
with the noun. An active verb defines an action upon something, and the noun is this "something". 
A snow shuffle is an object; “Shuffle snow” is a function. 

Sometimes a function may need to be more specific, and a modifier can be added to the 
function name. There might be a function that monitors the commands given to the system. These 
commands may have different origins, such as a remote operator location, from another system 
based upon some condition, or from a local operator. The function name may be "Monitor 
command", however, to be more specific about the context, the name can be rephrased to 
"Monitor remote operator command". Although the name contradicts the basic naming rule by 
containing more than an active verb and a noun, it is still better than e.g. "Command monitoring of 
commands given by remote operator location", or even "Monitoring of commands performed by 
remote operator". 

Functions should be restricted to only one action, describing multiple actions should be done 
by adding more functions and linking them together in a FAST diagram or FAST tree. In  

Table A.1 there are a few examples from a Power Management System (PMS), where the 
original function name is written in the left-hand column, and an alternative function name following 
the FAST naming convention is in the right-hand column. Note that some function names on the 
right omit some details in the original name. The names are a trade-off between length, specificity, 
and detail level, governed by the cognitive ease required to grasp the meaning of the function, and 
the knowledge of the people involved in the analysis. Longer names tend to require more cognitive 
effort to grasp the meaning which tends to decrease the ability to be creative in the analysis. 
However, shorter names require more system knowledge by the participants. It is expected that 
the names in the "FAST name"-column ignite more cognitive reactions compared to the original 
names. 

 
 

12

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

APPENDIX: A QUICK FAST OVERVIEW 

Fast is a method for sparking the imagination and creativity to identify functions. Moreover, it 
facilitates communication of the processes that make the system behave the way it does, or the 
Mechanisms in the CESM-model, (Bunge, 2003). FAST can be done by one person, but the best 
result is achieved when it is performed in a team. 

A central feature in FAST is the function, and its name. In FAST, there are certain rules or 
conventions for naming functions. These rules serve different purposes, such as being specific 
about the intension of the function, and sparking the imagination and creativity. 

There are two ways of visually communicating functions and functional dependencies within 
FAST: FAST diagrams, and FAST trees. Both will be described below, but briefly, FAST diagrams 
are good for brainstorming about smaller systems, or parts of systems because the method is 
more graphical in the context of a brainstorming session. The challenge is that diagrams take up a 
lot of space, and therefore become large if the analysis goes into much detail. FAST trees, on the 
other hand, take less space, and therefore are more convenient for visualising larger systems, or 
larger parts of systems. 

The most central concept in FAST is the Why-How logic. In order to establish cause-effect 
relations between the branches in the FAST tree, one asks one either (Why or How questions). 
This relation can also be thought of as a means-end relation (Rasmussen, Pejtersen, & Goodstein, 
1994). 

Naming functions 

"The function name should immediately say something about what is to be accomplished 
without disclosing the method of accomplishment" (Bytheway, 2007). The name should be short 
and concise. The main rule in FAST is that functions names starts with an active verb, and end 
with the noun. An active verb defines an action upon something, and the noun is this "something". 
A snow shuffle is an object; “Shuffle snow” is a function. 

Sometimes a function may need to be more specific, and a modifier can be added to the 
function name. There might be a function that monitors the commands given to the system. These 
commands may have different origins, such as a remote operator location, from another system 
based upon some condition, or from a local operator. The function name may be "Monitor 
command", however, to be more specific about the context, the name can be rephrased to 
"Monitor remote operator command". Although the name contradicts the basic naming rule by 
containing more than an active verb and a noun, it is still better than e.g. "Command monitoring of 
commands given by remote operator location", or even "Monitoring of commands performed by 
remote operator". 

Functions should be restricted to only one action, describing multiple actions should be done 
by adding more functions and linking them together in a FAST diagram or FAST tree. In  

Table A.1 there are a few examples from a Power Management System (PMS), where the 
original function name is written in the left-hand column, and an alternative function name following 
the FAST naming convention is in the right-hand column. Note that some function names on the 
right omit some details in the original name. The names are a trade-off between length, specificity, 
and detail level, governed by the cognitive ease required to grasp the meaning of the function, and 
the knowledge of the people involved in the analysis. Longer names tend to require more cognitive 
effort to grasp the meaning which tends to decrease the ability to be creative in the analysis. 
However, shorter names require more system knowledge by the participants. It is expected that 
the names in the "FAST name"-column ignite more cognitive reactions compared to the original 
names. 

 
 

 
 

Table A.1 Modified function names using FAST naming rules in context of the Power Management System 
Original name FAST name 

Monitoring and command of PMS functions in HMI 1) Monitor operator commands 
2) Execute operator commands 

Active power load sharing between generator sets Share active load 

Active power unbalance detection Detect active power unbalance 

Reactive power load sharing Share reactive power 

Reactive power unbalance detection and handling 1) Detect reactive power unbalance 
2) Control reactive power unbalance 

Bus frequency control Control bus frequency 

Under and over-frequency detection and handling 1) Detect over-frequency 
2) Control over-frequency  

Power reservation functions Reserve power 

Start interlock and load shedding of heavy consumers 1) Shed load from heavy consumers 
2) Interlock heavy consumers 

  
Why-How logic 
 

There is a reason for functions to be executed. To understand the reason, we ask “Why?” 
with respect to the function in question. "Why do I want to perform this function?" (Bytheway, 
2007), or "Why do I want to perform" “Shed load from heavy consumers”? The answer is: To 
prevent overloading the generators by limiting the power consumption to avoid a total blackout of 
the switchboard. How many function does the previous answer contain? Let us now analyse the 
answer and transform it to functions: 

The answer is to prevent overloading of the generators by limiting the power 
consumption to avoid a total blackout of the switchboard. The answer contains at least three 
functions. "Prevent generator overload", "Limit power consumption", and "Avoid blackout". It 
seems like all these functions are the reason for the function: "Shed load from heavy consumers", 
but at the same time it seems that there is some hierarchical structure built into the answer to the 
Why-question, represented by the three functions.  

Let us have a look at the function "Limit power consumption". If we ask "Why", the answer is 
straight forward: "Prevent generator overload". If the "Why"-question is asked concerning "Prevent 
generator overload", the answer is also straight forward: "Avoid blackout". Now we can see the 
hierarchical structure of these questions and answers, starting at the bottom: "Shed load from 
heavy consumers" Why? -> "Limit power consumption" Why? -> "Prevent generator overload" 
Why? -> "Avoid blackout".  

Turning the above Why question/answer "upside down", gives the How question/answer. 
"How is this function actually performed?" (Bytheway, 2007). Starting at the top function: "Avoid 
blackout" How? -> "Prevent generator overload" How? -> "Limit power consumption" How? -> 
"Shed load from heavy consumers". 

Sometimes the answers are not obvious. Asking a verification question will clarify whether or 
not the answer to the How-question is valid: "Does this How-function help its Why-function?" If the 
answer is yes, then the logic holds (Bytheway, 2007). 

This is the principle of the Why-How logic. The Why-question need not stop at "Avoid 
blackout"; there is a reason why we want to avoid blackout - we may keep asking the Why-
question, and we will end up with the primary goal of the entire system or mission. 

13

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018



 
 

There are other ways than "Limit power consumption" to "Prevent generator overload", e.g. 
by connecting additional generators to the switchboard. Then the load of each generator is 
decreased, and "Prevent generator overload" is achieved. This has identified one new function: 
"Connect generator". In a brain storming session, another function may come into mind: "Start 
generator". One may think that "Start generator" is in a Why-How relationship to "Connect 
generator", but that is not the case. 

By asking the "Why" question with respect to "Start generator", the answer could be to be 
able to "Connect generator" because you cannot connect the generator to the switchboard without 
first starting it. Asking the other way around: How is "Connect generator" actually performed?", the 
answer is not "Start generator". Instead, asking again the Why-question with respect to "Connect 
generator", and answering it by: "Add power source", then "Connect generator" and "Add power 
source" is in a why-how relationship. "Start generator" is instead a supporting function to the 
"Connect generator" function. 

To identify a supporting function, we ask the question: "When/if this function is performed, 
what other function must be performed?" - at the same time or prior to "this function": "When/if 
connect generator is performed, what other function must be performed? The answer is (among 
other things) "Start generator". The function "Start generator" will now be the starting point of a 
new hierarchy on its own by continuing asking the “How”-question.  

FAST diagrams and FAST trees 

The above discussion indicates that there is a hierarchy of functions resulting from the Why-
How questions. This hierarchy is visualized through FAST diagrams or FAST trees. Which one to 
select, depends on the objective and context of the analysis. FAST diagram is well suited for brain 
storming of smaller parts of the system, while the FAST tree is more compact and therefore is 
suited for larger parts of the system, and for documentation. Figure A.1 shows the FAST diagram 
of the above discussed PMS functions. A FAST tree will look something like Figure A.2. Notice the 
carat preceding the function "Start generator" function, this indicates a supporting function. 

 
Figure A.1: FAST diagram of some PMS functions 

 
Figure A.2: FAST tree of some PMA functions 

 

14

MATEC Web of Conferences 273, 02007 (2019) https://doi.org/10.1051/matecconf/201927302007
ICSC-ESWC 2018


