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Abstract

Environmental computer models are deterministic models devoted to predict sev-

eral environmental phenomena such as air pollution or meteorological events. Nu-

merical model output is given in terms of averages over grid cells, usually at high

spatial and temporal resolution. However, these outputs are often biased with un-

known calibration and not equipped with any information about the associated un-

certainty. Conversely, data collected at monitoring stations is more accurate since

they essentially provide the true levels. Due the leading role played by numerical

models, it now important to compare model output with observations. Statisti-

cal methods developed to combine numerical model output and station data are

usually referred to as data fusion.

In this work, we first combine ozone monitoring data with ozone predictions

from the Eta-CMAQ air quality model in order to forecast real-time current 8-

hour average ozone level defined as the average of the previous four hours, current

hour, and predictions for the next three hours. We propose a Bayesian downscaler

model based on first differences with a flexible coefficient structure and an efficient

computational strategy to fit model parameters. Model validation for the eastern

United States shows consequential improvement of our fully inferential approach

compared with the current real-time forecasting system. Furthermore, we con-

sider the introduction of temperature data from a weather forecast model into the

downscaler, showing improved real-time ozone predictions.

Finally, we introduce a hierarchical model to obtain spatially varying uncer-

tainty associated with numerical model output. We show how we can learn about

such uncertainty through suitable stochastic data fusion modeling using some exter-

nal validation data. We illustrate our Bayesian model by providing the uncertainty

map associated with a temperature output over the northeastern United States.
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Chapter 1

Combining monitoring data and

numerical model output

Environmental computer models are playing an increasing role as tools to under-

stand and predict complex systems. They are deterministic simulation models

that mathematically approximate the underlying physical and chemical processes

via nonlinear partial differential equations. These models are often implemented

as computer codes and depend on a number of input parameters which determine

the nature of the output. The resulting output is usually given in terms of averages

over grid cells. Using a large number of grid cells, the numerical model estimates

can cover large spatial domains and may also have very high temporal resolution

for current, past, and future time periods.

Several environmental sciences use numerical models to predict spatio-temporal

processes. Meteorological centers produce weather forecasts using numerical weather

prediction models; oceanographers forecast storm surges and ocean wave fields us-

ing computer models that simulate hurricane intensity and trajectory; atmospheric

scientists predict concentration for several pollutants using air quality models. Pre-

dictions from numerical models are also used for environmental regulatory purposes

and improved decision making strategies.

However, numerical model output are often biased with unknown calibration.

Moreover, they are not equipped by any information about the associated uncer-

tainty since they have been derived under a deterministic paradigm. In this regard,

the paper by Kennedy and O’Hagan (2001) discusses prediction and uncertainty

analysis for systems approximated by mathematical models.

For large spatial regions, the spatial coverage of the available network of mon-
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2 1. Combining monitoring data and numerical model output

itoring stations can never match the coverage at which computer models produce

their output. However, monitoring data represent the most accurate way to obtain

information on the variable of interest since, up to measurement error, they provide

the actual true levels.

Due to the social and economic consequences, it is becoming more and more

important that output from numerical models are evaluated and also calibrated.

To accomplish that, output from numerical models must be compared with obser-

vations. Statistical methods developed to combine numerical model output and

station data are usually referred to as data fusion. As shown in the next chapters,

data fusion modeling may be motivated by different goals. For instance, we would

combine monitoring data and numerical model output to improve the forecast-

ing of some environmental variables or we could be interested in quantifying the

uncertainty associated with computer models output.

While numerical model predictions are given in terms of averages over grid cells,

observations are collected at points in the spatial domain. The spatial misalignment

between point- and grid-referenced data is an example of what, in spatial statistics,

is called the change of support problem (COSP; see e.g., Cressie 1993; Gelfand et al.

2001; Gotway and Young 2002; Banerjee et al. 2004; Gelfand 2010), which concerns

the inference of a spatial variable at a certain resolution using data with different

spatial support. A brief review of this problem is given in the next section.

1.1 Change of support problem

According to Gotway and Young (2002), “One of the most challenging and fasci-

nating areas in spatial statistics is the synthesis of spatial data collected at different

spatial scales”. In fact, the spatial scale is the key choice for the study of spatial

processes since it affects the process dynamics; mechanisms operating at small spa-

tial scale may be not relevant at large scales and, conversely, mechanisms operating

at large spatial scale may not even be seen at fine scale. Such scaling concerns are

particularly appreciated in studying human, animal and plant populations as well

as environmental phenomena and investigated by researchers in many different

fields.

Consider a variable that is observed either at points in space (i.e. point-

referenced data) or over areal units (i.e. block data). Then, the change of support

problem refers to making inference about the variable at a different spatial scale

from the one at which it has been observed. COSP may result also when studying
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the connections between spatial variables with different supports. As an example,

we might have weather predictions at low-resolution from a global climate forecast

model, and seek to predict at higher resolution. Or, we might obtain the spatial

distribution of some variable at the county level, even though it was originally col-

lected at the census tract level. Also, the change of support problem arises when

the objective is the calibration of weather radar data using raingauge observations

(e.g. Fuentes et al., 2008; Orasi et al., 2009; Bruno et al., 2013a).

A solution of the change of support problem is also required in many health

science applications, such as spatial and environmental epidemiology. Most of this

research focuses on the effect of air quality on health (Dominici et al., 2002; Zhu

et al., 2003; Greco et al., 2005; Fuentes et al., 2006). In this context, exposure

and response variables are often measured at different levels of spatial aggregation:

disease data are often collected as counts over spatial units e.g., zip codes, coun-

ties, or census tracts, while environmental exposure is measured by monitoring

networks producing point-referenced data. In other cases, data are available for

both disease and environmental exposure on an aggregate scale, but on different

grids; for instance when air quality data are provided by computer models.

Arbia (1989) uses the terminology spatial data transformations to refer to sit-

uations where the process of interest has a different spatial scale with respect to

the spatial form of the observed data. These transformations are the basis of the

so-called modifiable areal unit problem (MAUP). In this case, the purpose is to

understand the distribution of the variable at a new level of spatial aggregation

or perhaps relate it to another variable that is already available at this level. A

special case of MAUP is the so called ecological inference problem (Robinson, 1950;

Wakefield, 2003, 2008) which concerns the process of deducing individual behavior

and relationships from aggregated data, leading to “ecological bias”. The relation-

ships observed between variables measured at the ecological (aggregate) level may

not accurately reflect the relationship between the same variables measured at the

individual level. This bias depends upon two components: the aggregation bias

due to the grouping of individuals and the specification bias due to the fact that

the distribution of confounding variables varies with grouping.

In COSP, following Gelfand (2010), we can envision four different situations

(univariate setting):

1. We have observations at point-level Y (si) at locations si, i = 1, 2, . . . , n and

we would infer about the process at new locations s′j, j = 1, 2, . . . ,m (point-
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Table 1.1: Examples of COSP.

Observed Inference Examples

Point-level Point-level Kriging

Point-level Areal unit Spatial smoothing, Block kriging

Area unit Point-level Ecological inference

Area unit Area unit MAUP, areal interpolation

to-point).

2. We have, as above, observations at point-level Y (si) at locations si, i =

1, 2, . . . , n and we would infer about the process at a collection of areal units

Y (Bk) associated with Bk, k = 1, 2, . . . , K (point-to block).

3. We have, observations associated with areal units Y (Bk) at areal unit Bk,

k = 1, 2, . . . , K and we would infer about the process at a collection of sites

s′j, j = 1, 2, . . . ,m (block-to-point).

4. We have, as above, observations associated with areal units Y (Bk) at areal

unit Bk, k = 1, 2, . . . , K and we would infer about the process at a collection

of areal units Y (Bk′), associated with Bk′ , k
′ = 1, 2, . . . , K ′ (block-to-block).

Here, the Bk′ ’s can be nested or not within the Bk’s.

The above scheme can be easily arranged to the regression setting where the COSP

arises from the difference in spatial resolution between the response variable and

the covariates. Some common COPS are given in Table 1.1, adapted from Gotway

and Young (2002) where a comprehensive review of the literature on the change of

support problem is discussed.

To study the COSP in details, we introduce the following notation. Let {Y (s) :

s ∈ D ⊂ Rd} be the spatial process measured at location s in some region of

interest D. Assume that Y (s) has mean E
(
Y (s)

)
= µ(s;β) and covariance function

Cov
(
Y (s), Y (s′)

)
= C(s, s′;θ) for s, s′ ∈ D. For block data we assume that the

observations arise as block averages Y (B) where

Y (B) =
1

|B|

∫
B

Y (s)ds (1.1)

and |B| denotes the area of the block B ⊂ D. The integration (1.1) is an average

of random variables, hence a stochastic integral. The assumption underlying the
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spatial process is appropriate only for block data that may be viewed as an average

over point data; for instance it might include pollutant level, rainfall, temperature,

etc. but it would not be suitable for a population (i.e. there is no population at a

given point).

The moments of Y (B) can be derived from the moments of the underlying

process as follows:

E
(
Y (B)

)
=

1

|B|

∫
B

µ(s;β)ds

Cov
(
Y (B), Y (B′)

)
=

1

|B|
1

|B′|

∫
B

∫
B′
C(s, s′;θ)ds ds′

Here, we focus on the point-to-block COSP which represent the most attrac-

tive situation according to our scope, as we clarify in the next chapters. The

inferential problem concerns the prediction of YT
B =

(
Y (B1), . . . , Y (BK)

)
from

point-referenced data YT
s =

(
Y (s1), . . . , Y (sn)

)
observed at a finite set of sites si,

i = 1, . . . , n. In the geostatistical framework, the solution to the point-to-block

change of support problem is given by the block kriging (Cressie, 1993; Chiles and

Delfiner, 1999) which enables predictions of Y (Bk) given observations collected at

points; some extensions of the block kriging have been proposed by Carroll et al.

(1995) and Gotway and Young (2007).

Alternatively, Bayesian hierarchical models have been developed to address the

COSP (e.g. Mugglin et al. 2000; Best et al. 2000; Gelfand et al. 2001; Wikle

and Berliner 2005). Following Gelfand et al. (2001), we consider a stationary

Gaussian process with mean µs(β)i = µ(si;β) and covariance matrix
(
Cs(θ)

)
ii′

=

C(si − si′ ;θ) that is,

Ys | β,θ ∼ N
(
µs(β), Cs(θ)

)
.

Under the Bayesian perspective, the prediction for blocks B1, B2, . . . , BK are based

upon the predictive distribution f
(
YB | Ys,β,θ

)
given by

N
(
µB(β) + CT

s,B(θ)C−1s (θ)
(
Ys − µs(β)

)
, CB(θ)− CT

s,B(θ)C−1s (θ)Cs,B(θ)
)

(1.2)

where

µB(β)k =
1

|Bk|

∫
Bk

µ(s;β)ds

(
CB(θ)

)
kk′

=
1

|Bk|
1

|Bk′

∫
Bk

∫
B′k

C(s− s′;θ) ds ds′

and the matrix Cs,B(θ) contains the point-to-block covariance given by

Cov
(
Y (Bk), Y (si)

)
=

1

|Bk|

∫
Bk

C(si − s′;θ)ds′ .
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All the entries in (1.2) requires a stochastic integration; in practice integrals are

computed by approximations such as Monte Carlo integration.

We recall that the COSP arises from the combination of monitoring data ob-

served at point-level with numerical model output expressed as averages over grid

cells. Such synthesis is referred in the literature to as data fusion.

1.2 Data fusion modeling

Data assimilation, or data fusion, refers to the statistical techniques used to com-

bine numerical models with observations to give an improved estimate of the state

of a system or process (Nychka and Anderson, 2010). Recently, many papers have

been published on data fusion methods for combining observed data and computer

model output (see Gelfand and Sahu (2010) and references therein). In this sec-

tion we review the main fully model-based approaches proposed to address the

data fusion problem.

In air quality context, Meiring et al. (1998) propose to predict hourly ozone

concentrations on grid cell scale by using the observations at monitoring site in

order to compare these predictions with those provided by a numerical model at the

grid cell level. A different strategy has been proposed by Jun and Stein (2004) who

ignore the difference in spatial resolution between model output and observations,

rather suggesting to evaluate a numerical model by looking for differences between

the model output and the observations in terms of variograms and correlograms.

Wikle and Berliner (2005) presented a hierarchical Bayesian model to combine

data observed at different spatial scales. Their approach is based on the idea of

conditioning a “true” unobserved spatially continuous process on a areal average

of the process at some resolution; then, also the data are conditioned to this areal

averaged true process. In a similar fashion, Fuentes and Raftery (2005) proposed

a Bayesian model to fuse air pollution measurements and predictions from an

air quality model. Working with block averaging as in (1.1), the model could

be considered an instance of Bayesian Melding (Poole and Raftery, 2000) and

builds upon earlier works of Cowles et al. (2002) and Cowles and Zimmerman

(2003). Fuentes and Raftery (2005) assumed that there exists an underlying point-

level spatial process driving both the monitoring data and the numerical model

output. In particular, observations are linked to the latent spatial process via a

measurement error model while the numerical model output is expressed in terms

of stochastic integrals over grid cells of the underlying process, also accounting for
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potential bias in the output. This approach has gained considerable popularity

and used in several applications (Swall and Davis, 2006; Smith and Cowles, 2007;

Fuentes and Foley, 2008; Liu et al., 2011). However, despite its popularity, the

Bayesian melding fusion strategy suffers from some limitations. First, it becomes

computationally infeasible for fusing a very large number of grid cells (and usually

a sparse number of monitoring sites); in fact, a huge amount of stochastic integrals

needs to be computed. Secondly, it does not consider the temporal dimension and

the implementation of the dynamic extension becomes even more infeasible.

A Bayesian space-time data fusion model has been proposed by McMillan et al.

(2010) for combining output from a numerical model and measurements of fine

particulate matter from the U.S. monitoring network. As in Fuentes and Raftery

(2005), both sources of data are driven by an underlying “true” process; however,

rather than assuming the latent process at the point-level, McMillan et al. (2010)

specified the “true” process at the grid cell level. In this fashion, the model offers

a solution to the upscaling problem and the computation is simplified because it

avoids the computationally demanding stochastic integrations required in Fuentes

and Raftery (2005).

A different solution to the data fusion problem uses two-stage regression models;

building upon the work of Guillas et al. (2008) and subsequently Zidek et al. (2012),

this approach enables to calibrate the numerical model output by downscaling the

predictions from grid cells to point level and comparing them with observations.

Within this fashion, Berrocal et al. (2010b) introduce the downscaler model that

we review in the next section.

1.3 Downscaler models: a review

Recently, an innovative solution to the COSP has been provided by the so called

downscaler model introduced by Berrocal et al. (2010b). Rather than assuming the

existence of a latent process driving both the observations and the numerical model

output, Berrocal et al. (2010b) take the numerical model output as explanatory

variable and relate observations and numerical model output using a regression

model with spatially varying coefficients (Gelfand et al., 2003) in turn, modeled

as Gaussian processes. The authors address the difference in spatial scale between

the two sources of data for bias-correcting the predictions generated by the numer-

ical model. The downscaler is simple, very flexible, computationally feasible and

allows straightforward prediction to point level. Thus, it offers a fully model-based
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solution to the problem of downscaling.

In the next sub-sections we review the spatial static version of different down-

scaler models, specified within the Bayesian framework. Each of these model can

be also extended to handle spatio-temporal data, as we illustrate in Chapter 2.

1.3.1 Univariate downscaler

In this section we review the univariate spatial downscaler presented in Berrocal

et al. (2010b). Let Y (s) denote the observed concentration of a pollutant at a

generic location s and W (B) be the output from a numerical model at the grid cell

B. The downscaler model addresses the difference in spatial resolution between

monitoring data and numerical model output, by associating to each site s the grid

cell B that contains s. So, all the points s falling in the same grid cell are assigned

to the same numerical model output value.

Then, the model links the observational data and the numerical model output

as follows:

Y (s) = β̃0(s) + β̃1(s)W (B) + ε(s) (1.3)

where

β̃0(s) = β0 + β0(s)

β̃1(s) = β1 + β1(s)
(1.4)

and ε(s) is a white noise process with nugget variance τ 2. The spatially varying

coefficients β̃0(s) and β̃1(s) can be interpreted as a random intercept process and a

random slope process, respectively. Equivalently, β0(s) and β1(s) can be viewed as

local spatial adjustments to the overall additive bias β0 and global multiplicative

bias β1.

In order to introduce association between β0(s) and β1(s), the two spatially

varying coefficients are in turn modeled as correlated mean-zero Gaussian spatial

processes using the method of coregionalization1 (Wackernagel, 2003; Gelfand et al.,

2004). Therefore, they are modeled as a linear combination of two latent zero-mean

unit-variance independent Gaussian processes w0(s) and w1(s) each equipped with

an exponential covariance structure2 having decay parameters, respectively, φ0 and

1 The term ‘coregionalization’ is intended to denote a model for measurements that co-vary

over a region.
2 Exponential correlation function: cov(wj(s), wj(s

′)) = exp(−φj ‖s− s′‖), having j = 0, 1.
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φ1, such that (
β0(s)

β1(s)

)
= A

(
w0(s)

w1(s)

)
(1.5)

where the unknown A is the coregionalization matrix, usually assumed to be lower-

triangular. Matrix A in (1.5) determines the correlation between the two spatially-

varying coefficients β0(s) and β1(s) and thus on the covariance structure of Y (s).

The downscaler is specified under the Bayesian perspective and the prior distri-

butions for all unknown model parameters complete the Bayesian hierarchy of the

model.

Via a simulation study and a series of experiments carried out with ozone

concentration data for 2001, Berrocal et al. (2010b) show that the downscaler

outperforms Bayesian melding and ordinary kriging both in terms of computing

speed and predictive performance: predictions obtained with the downscaler are

better calibrated i.e. lower predictive mean square and absolute value errors and

predictive intervals have empirical coverage closer to the nominal values.

1.3.2 Multivariate downscaler

Berrocal et al. (2010a) extend the downscaler model from the univariate setting

to a bivariate setting in order to fuse ozone and fine particulate matter (PM2.5)

concentrations with the output of an air quality numerical model. The bivariate

downscaler exploits the correlation between the observed levels of the pollutants

and in the output provided by the numerical model. Moreover, the model enables

to handle not only the spatial misalignment between monitoring data and model

output, but also it allows to accommodate the spatial misalignment between the

ozone and PM2.5 monitoring data.

We illustrate the general multivariate downscaler in the static formulation of

the model. Let Yi(s), i = 1, . . . , p be the observed data of the i-th variable at a

site s and Wi(B), i = 1, . . . , p, be the numerical model output of the i-th variable

over the grid cell B. Again, each site s is associated to the grid cell B in which s

lies; then, the observational data and the numerical model output are linked via

the model

Yi(s) = β̃i0(s) +

p∑
i=1

β̃ij(s)Wj(B) + εi(s) (1.6)

where εi(s) are IID N(0, τ 2i ). As in the univariate case, each of the p(p+ 1) terms
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β̃ij, i = 1, . . . , p, j = 0, . . . , p is decomposed in the sum of an overall term and a

random local adjustment, that is:

β̃ij(s) = βij + βij(s) (1.7)

where the βij(s) are in turn modeled as correlated zero-mean Gaussian processes

using the method of coregionalization. Therefore, the spatially varying coefficients

βij(s) are expressed as a linear combination of zero-mean unit-variance independent

Gaussian processes wij(s), each equipped with an exponential covariance structure

such that 
β10(s)

. . .

βij(s)

. . .

βpp(s)

 = A


w10(s)

. . .

wij(s)

. . .

wpp(s)

 (1.8)

The coregionalization matrix A is a p(p + 1) × p(p + 1) matrix that is assumed,

without loss of generality, to be lower-triangular. Matrix A determines the correla-

tion between the spatially varying coefficients βij(s) and also induces a correlation

structure on the multivariate random vector Y = {Yi(s)i=1,...,p, s ∈ S}. So, simpli-

fications of model (1.6) - (1.8) can be considered by setting to zero some entries

of the matrix A. Again, the multivariate downscaler arises as a Bayesian hier-

archical formulation and is completely specified by the prior distribution for all

unknown parameters. Finally, the multivariate downscaler model can be extended

to accommodate data collected also over time.

The empirical study in Berrocal et al. (2010a) shows that the bivariate down-

scaler leads predictions of both ozone and particulate matter levels more accurate

than those obtained using the univariate downscaler which does not account for

the association between the two pollutants.

1.3.3 Smoothed univariate downscaler

In Berrocal et al. (2012) two neighbor-based extensions of the univariate downscaler

model have been proposed. The first extension introduces a Gaussian Markov

random field (GMRF) to smooth the computer model output, while the second

extension introduces spatially varying weights driven by a latent Gaussian process.

First, the authors smooth the numerical model output, W (B), via the model

W (B) = W̃1(B) + η(B)



1.3 Downscaler models: a review 11

where η(B) ∼ N(0, σ2) and W̃1(B) = µ + x(B) represents a smoothed version of

W (B). Here, x(B) is a zero-mean Gaussian Markov random field equipped with a

conditionally autoregressive (CAR) structure (Besag, 1974; Banerjee et al., 2004).

Then, for s ∈ B, model (1.3) is replaced by

Y (s) = β̃0(s) + β1W̃1(B) + ε(s)

where β̃0(s) and ε(s) are defined as above.

The second extension proposed by Berrocal et al. (2012) introduces smoothing

via random spatially varying weights. In particular, the monitoring data are linked

to a new point-level variable W̃2(B) obtained, at each site s, as weighted average

of all the numerical model output. Hence, model (1.3) is modified as

Y (s) = β̃0(s) + β1W̃2(s) + ε(s)

where β̃0(s) and ε(s) are defined as above and

W̃2(s) =

g∑
k=1

ωk(s)W (Bk)

where g is the number of numerical model grid cells. The spatially varying weights

ωk(s) at each site s, with k = 1, . . . , g are defined by

ωk(s) =
K
(
s− rk;ψ

)
exp
(
Q(rk)

)∑g
l=1K

(
s− rl;ψ

)
exp
(
Q(rl)

)
where rk are the centroids of the grid cells, Q(rl) is a zero-mean Gaussian process

having exponential covariance function and K
(
s − rl;ψ

)
is an exponential kernel

with decay parameter ψ.

The authors apply their approach to predict daily ozone levels for the eastern

United States during the summer 2001 using station data and the Community

Multiscale Air Quality (CMAQ) model output. The results of both methods show,

respectively, a 5% and a 15% predictive gain in overall predictive mean square

error over the univariate downscaler model described in Section 1.3.1.

Currently, the space-time smoothed downscaler with spatially varying random

weights is used by the U.S. Environmental Protection Agency (USEPA) to fuse

daily ozone (8-hour max) and fine particulate air (24-hour average) monitoring

data from the National Air Monitoring Stations/State and Local Air Monitoring

Stations (NAMS/SLAMS) with 12 km gridded output from the CMAQ model.

Daily predictions are available at the 2000 Census Tract centroid locations over

the eastern U.S.; see Heaton et al. (2012) for details.
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1.3.4 Downscaler with point masses

A further version of the downscaler model appears in Sahu et al. (2010), where

observed point-referenced monitoring data and gridded output from the CMAQ

numerical model are combined to provide accurate spatial interpolation and tem-

poral aggregation of weekly wet chemical deposition in the eastern United States.

The authors use precipitation information to model wet deposition since no de-

position exists without precipitation. Moreover, their modeling for monitoring

stations allows to accommodate point masses at 0 for both precipitation and wet

deposition. First, they model precipitation and then, deposition given precipita-

tion, considering the spatial misalignment. Both precipitation and wet deposition

are driven by a point-referenced latent space-time atmospheric process. Similarly,

the computer model output also supplies 0 values for wet deposition in some grid

cells. To capture these point masses at 0, the authors introduce a latent process at

the grid scale modeled through a conditionally autoregressive (CAR) specification.

Then, the downscaling connects the point-level process to the grid-scale process

using a measurement error model.

Here, we introduce some details of the static model developed by Sahu et al.

(2010). Let P (s) and Z(s) denote the observed precipitation and deposition re-

spectively at site s. Both P (s) and Z(s) are driven by the latent process V (s) as

follows:

P (s) =

{
exp{U(s)} if V (s) > 0

0 otherwise
(1.9)

and

Z(s) =

{
exp{Y (s)} if V (s) > 0

0 otherwise
(1.10)

The random variables U(s) and Y (s) represent the log observed precipitation and

deposition respectively when V (s) > 0. Similarly, for the CMAQ output at grid

cell B, Q(B), we have:

Q(B) =

{
exp{X(B)} if Ṽ (B) > 0

0 otherwise
(1.11)

leading to positive numerical model output when the areal level latent variable

Ṽ (B) is positive. The likelihood at the first stage is derived from definitions (1.9)-

(1.11) and is given by:

f
(
P,Z,Q | U,Y,X,V, Ṽ

)
= f

(
P | U,V

)
f
(
Z | Y,V

)
f
(
Q | X, Ṽ

)
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where P,Z,Q collect, respectively, all the precipitation values, deposition values

and the CMAQ output while U,Y,X,V, Ṽ denote the vectors corresponding to

the random variables.

In the second stage the models for the latent variables are defined. First, the

authors specified a spatial regression for the log-precipitation based on the latent

process V (s), that is

U(s) = α0 + α1V (s) + ε(s)

where ε =
(
ε(s1), . . . , ε(sn)

)
is a Gaussian process equipped with an exponential

correlation function.

Second, for each s in B, the model for the log-deposition is given by:

Y (s) = β̃0 + β̃1X(B) + β2U(s) + β3V (s) + η(s)

where β̃0 and β̃1 are independent and defined as in (1.4) and η(s) ∼ N(0, σ2
η).

Then, the CMAQ output X(B) is modeled using the latent process Ṽ (B) as

follows:

X(B) = γ0 + γ1Ṽ (B) + δ(B)

where δ(B) ∼ N(0, σ2
δ ). The latent process Ṽ (B) is assumed to follow a CAR

process in space.

Finally, the spatial misalignment between the observation and the numerical

model output are addressed via a measurement error model, that is: V (s) ∼
N(Ṽ (B), σ2

v). The Bayesian hierarchy is completed with non-informative prior

distributions.

The space-time model is fitted on weekly wet chemical deposition data both

for the sulfate and nitrate compounds covering the eastern United States. The

comparison of the prediction of wet deposition obtained from the model above with

the current system based on Inverse Distance Weighting (IDW) shows a remarkable

reduction in mean-squared error calculated over validation sites.

1.4 Overview

In this chapter we have reviewed the main literature for combining monitoring data

and numerical model output. We have discussed the change of support problem

and detailed the downscaler approach. Our purpose was to introduce the reader

to the next chapters where Bayesian data fusion models are proposed to achieve

different goals.
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Our first objective is to improve real-time forecasting of current 8-hour average

ozone levels on the scale of the entire United States (U.S.). Current 8-hour ozone

is defined as the average of the previous four hours, current hour, and predictions

for the next three hours. In Chapter 2, we combine first differences of ozone

monitoring data and air quality numerical model output via a regression model

having space-time varying coefficients in order to forecast current 8-hour average

ozone exposure in real-time. We propose an hybrid strategy blending offline model

fitting with online predictions and interpolation to obtain ozone forecast maps

within the real-time environment. We illustrate our strategy by modeling and

forecasting ozone level for a large subregion of U.S. showing that our approach

outperforms the current forecasting system.

In Chapter 3, a further version of our earlier real-time downscaler will be dis-

cussed. The model regresses ozone monitoring data on real-time temperature data

arising as output from a weather computer model. Again, we exploit first differ-

ences to expedite computation. Model validation for the eastern U.S. shows how

we can improve the forecasting of current 8-hour average ozone by downscaling

temperature data.

Finally, in Chapter 4, we propose a Bayesian hierarchical model following the

approach proposed by Ghosh et al. (2012) to attach uncertainty to deterministic

spatial maps. As we already noted, numerical models output are not equipped

with any measure of uncertainty since they are derived under the deterministic

paradigm. We develop a Bayesian data fusion model to assess the uncertainty

associated with forecast maps from a numerical model using external observed

point-level data.



Chapter 2

Spatio-temporal modeling for

real-time ozone forecasting

The evaluation and control of air pollution levels are fundamental environmental

issues for environmental decision-makers. Tropospheric, or ground level ozone is

one key air pollutant as defined and regulated in the United States (U.S.). A

practical challenge facing the U.S. Environmental Protection Agency (USEPA) is

to provide real-time forecasting of current 8-hour average ozone defined as the

average of the previous four hours, current hour, and predictions for the next three

hours. Such real-time forecasting is now provided as spatial forecast maps over the

entire conterminous U. S. by the EPA-AIRNow web site (http://www.airnow.gov).

The capability to provide real-time air quality information is important to protect

public health. For many individuals, children, outdoor workers, and those who

suffer from respiratory or cardiac problems knowing the quality of the air they

breathe can affect their lives and their daily activities.

Here, we illustrate the spatio-temporal data fusion model for real-time ozone

forecasting proposed by Paci et al. (2013). The contribution of this work is to show

how we can substantially improve upon current real-time ozone forecasting systems.

We introduce a Bayesian downscaler fusion model based on first differences of

real-time ozone monitoring data and numerical model output. The model has a

flexible coefficient structure with an efficient computational strategy to fit model

parameters. This strategy can be viewed as hybrid in that it blends offline model

fitting with online predictions followed by fast spatial interpolation to produce

the desired real-time forecast maps. Moreover, the strategy provides uncertainty

assessment associated with these predictions. Model validation for the eastern U.S.

15
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shows consequential improvement of our fully inferential approach compared with

the existing implementations.

The chapter is organized as follows. In Section 2.1 we describe the main features

of the tropospheric ozone pollution. Section 2.2 provides the details of the AIRNow

system and the current ozone forecasting. In Section 2.3 we present our strategy

to produce real-time 8-hour average ozone forecasts. We also discuss model fitting,

with computational details deferred to Appendix A. The prediction method is

developed in Section 2.4. Model validation for the eastern U.S. is given in Section

2.5. Section 2.6 gives the detail on the feasibility of our method for real-time use.

Finally, Section 2.7 presents a brief summary of the chapter.

2.1 Ground level ozone

Ozone (Cocchi and Trivisano, 2013) is a reactive oxidant that occurs in two parts

of the Earth’s atmosphere: the stratosphere (the layer between 20-30 km above the

Earth’s surface) and the troposphere (ground level to 15 km). Stratospheric ozone,

also known as “the ozone layer”, is formed naturally and shields life from the sun’s

harmful ultraviolet rays. Conversely, near the earth’s surface, ground-level ozone

can be harmful to human health and vegetation.

Ground level ozone is not emitted directly into the air but is produced as

secondary pollutant by chemical reactions between oxides of nitrogen (NOx) and

volatile organic compounds (VOC). Ozone, in high concentrations, is a toxic gas

that can damage pulmonary tissues. People with lung disease, children, older

adults, and people who are active outdoors may be particularly sensitive to ozone.

Ozone also affects sensitive vegetation and ecosystems, including forests, parks,

wildlife refuges and wilderness areas. Emissions from industrial facilities and elec-

tric utilities, motor vehicle exhaust, gasoline vapors, and chemical solvents are

some of the major sources of NOx and VOC.

Meteorological factors such as solar radiation, wind speed, temperature, and

pressure influence directly the photochemical reactions that produce ozone. In par-

ticular, solar radiation enters into the main reactions determining ozone and wind

speed promotes transport and accumulation of primary pollutants. The tempera-

ture affects directly the kinetics of reactions determining ozone and produces the

mixing height, which influences the accumulation of the other chemical pollutants.

Major episodes of high concentrations of ozone were most likely in the presence

of weak, slow-moving, persistent high-pressure systems. Due to the strong depen-
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dence on meteorological conditions, ozone levels are highly seasonal. The ozone

annual behavior is characterized by higher values in summer and minimum values

in winter. Also, a diurnal cycle is present since a peak in concentration occurs in

the early afternoon. In urban areas, ozone levels decrease during the night while

in rural areas, concentrations are stationary due to the absence of NOx sources.

In the last few decades, the phenomenon of ozone pollution has been analyzed

extensively. Researchers proposed, besides chemistry transport and meteorological

deterministic models, statistical models for the analysis of ozone data. Statisti-

cal analysis of ozone data is motivated by the need to summarize large amounts

of data collected in time and space, to account for confounders and to evaluate

uncertainties due to measurement errors. Space-time modeling of ground level

ozone has received much recent attention in the literature; Cox and Chu (1993)

used a generalized linear model to estimate site specific trends in daily maximum

ozone levels. Guttorp et al. (1994) developed models for the space-time correlation

structure that enable to spatially interpolate ozone data in a moderately homo-

geneous region. Bruno et al. (2009), instead of assuming the traditional spatio-

temporal stationarity and the separability of spatial and temporal components,

proposed a model with nonseparable structures arising from nonstationarity due

to time. Nychka et al. (2002) described a multiresolution (wavelet) approach to

produce nonstationary spatial covariance functions for daily average surface ozone

level. Wavelets are also used to model high-frequency ozone concentration as, for

instance, in Katul et al. (2006). Ignaccolo et al. (2008) developed a two-stage pro-

cedure to classify ozone monitoring stations using functional cluster analysis where

Partitioning Around Medoids algorithm is embedded.

Hierarchical Bayesian approaches for spatial prediction of air pollution have also

been developed; see, e.g. Wikle (2003); Huerta et al. (2004); McMillan et al. (2005)

and references therein. Sahu et al. (2007) proposed a very flexible model which

detects long-term trends, handles the problem of misalignment between ozone and

meteorological data, and allows the calculation of summaries coherent with regu-

latory standards both at the local and the global scale. Dou et al. (2010) intro-

duced complex Bayesian space-time models for hourly ozone concentration fields.

Sahu and Bakar (2012) compared the dynamic linear model (see Stroud et al.,

2001) with a hierarchical version of the auto-regressive model for daily maximum

8-hour average ozone concentration data. Bruno et al. (2013b) proposed hierar-

chical spatio-temporal model to account for differences between ozone background

monitoring stations and traffic sites.
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2.2 AIRNow system and ozone forecasting

Accurate assessment of exposure to ambient ozone concentrations is important for

informing the public and pollution monitoring agencies about ozone levels that may

lead to adverse health effects. The United States Environmental Protection Agency

developed the AIRNow web site to provide the public, air regulatory agencies and

health scientists with easy access to real-time national air pollution information.

Current and next day forecasts of ozone and fine particulate matter are produced

at over 300 cities across the United States on a daily basis. For ozone, forecasts at

these monitoring sites are then interpolated across the continent, at a chosen spatial

scale, to provide forecast maps for current 8-hour average ozone levels and next day

patterns of 8-hour maximum ozone concentration. We focus here on current 8-hour

average patterns which are updated hourly throughout the day on the AIRNow web

site in the form of point estimates with no uncertainties provided. Here, current

8-hour ozone is defined as the average of the previous four hours, current hour,

and predictions for the next three hours. Current patterns are updated hourly

throughout the day on the EPA-AIRNow web site.

Measurements at monitoring stations present the most direct and accurate way

to obtain air quality information. However, monitoring sites are often sparsely and

irregularly spaced over large areas and affected by missingness. These data are the

sole data source used to develop the AIRNow forecasts. However, a second source

of real-time spatial information is available that could be used to improved fore-

casting. A numerical atmospheric model known as the Eta-Community Multi-Scale

Air Quality (CMAQ) model (Yu et al., 2010) is used by EPA to simultaneously esti-

mate multiple air pollutants (http://www.epa.gov/asmdnerl/CMAQ). Using emis-

sion inventories, meteorological information and chemical modeling components,

Eta-CMAQ provides predictions of average pollution concentrations at 12 km grid

cell resolution for successive time periods including 48 hours into the future. At

this resolution, we have hourly numerical model information for approximately

54, 000 grid cells spanning the conterminous U.S.. However, these predictions are

expected to be biased with unknown calibration.

Thus, it is important to develop computationally efficient models to combine

air monitoring data and numerical model output to improve air pollution fore-

casting. Sahu et al. (2009a) proposed a Bayesian spatio-temporal model applied

to hourly ozone concentrations. They used data over a running window of seven

days to predict 8-hour average ozone level for the current hour. To allow real-time
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hourly forecasting, they developed a spatial regression model that avoids iterative

algorithms such as Markov Chain Monte Carlo (MCMC) methods. In Sahu et al.

(2009b), a dynamic model is developed for forecasting next day 8-hour maximum

ozone patterns. However, the dynamic model is computationally intensive and

not feasible for use in real-time forecast applications. Kang et al. (2008) consider

Kalman-filter approaches to improve next day forecasts of ozone concentrations at

individual U.S. monitoring sites for the summer of 2005.

We develop a new space-time data assimilation strategy to enable use of both

data sources to provide the forecasts of current 8-hour average ozone level in real-

time. Data from the real-time ozone monitoring network and the output from

the Eta-CMAQ computer model are combined, using first differences along with

a regression model having spatio-temporally varying coefficients. We propose a

combination of offline fitting, post-model fitting prediction, and fast online inter-

polation using an available kriging package to enable feasible real-time forecasting.

2.2.1 Data description

To evaluate the accuracy of the forecasts, we use historical data from a large

conterminous subregion of U.S. to show that our overall approach validates well

and provides significant improvement in the accuracy of forecasting relative to that

of AIRNow. The first source of data we use consists of current 8-hour average ozone

concentrations in parts per billion units (ppb) collected at 717 real-time monitoring

stations operating in the eastern U.S. during a two-week period over August 1-14,

2011; see Figure 2.1. The region used in our application covers roughly half the

conterminous U.S. and the monitoring sites farthest apart are about 2860 km from

each other. We set aside data from 70 monitoring sites for validation purposes;

these sites were chosen at random (again, see Figure 2.1).

The second source of data is the numerical output of the Eta-CMAQ model.

This model uses meteorological information, emission inventories, and land usage

to estimate average pollution levels for gridded cells (at 12 km2 resolution) over

successive time periods without any missing values. In practice, real-time hourly

output from the Eta-CMAQ model is available up to 48 hours in the future. Figure

2.2 shows the Eta-CMAQ predictions of the current 8-hour average ozone level in

the eastern U.S. at 12PM on August 8th, 2011. There are 21,109 Eta-CMAQ grid

cells spanning our study region.
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Figure 2.1: Ozone monitoring sites in the eastern U.S.. Dots and crosses represent data

and validation sites, respectively.



2.2 AIRNow system and ozone forecasting 21

20 40 60 80

Figure 2.2: Eta-CMAQ predictions of the current 8-hour average ozone level in the

eastern U.S. on August 8th, 2011.
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2.3 Modeling

The spatial downscaler introduced by Berrocal et al. (2010b) has been illustrated

in Section 1.3.1. In this section, we briefly review the univariate downscaler for

spatio-temporal data and we propose the model for current 8-hour average ozone

concentration. Then, we present our strategy to obtain real-time and accurate

predictions within the real-time environment.

2.3.1 Downscaler for 8-hour average ozone level

Recall the downscaler in (1.3) - (1.4). The model can be extended to accommodate

data collected over time as follows. Let Yt(s) denote the ozone concentration at a

generic location s for the hour t and Wt(B) be the hourly Eta-CMAQ output over

grid cell B. Again, the downscaler addresses the difference in spatial resolution

between monitoring data and numerical model output, by associating to each site

s the grid cell B that contains s. Then, the model links the observational data

and the Eta-CMAQ output via a regression model with spatio-temporally varying

coefficients, that is:

Yt(s) = β̃0,t(s) + β̃1,t(s)Wt(B) + εt(s) (2.1)

where

β̃0,t(s) = β0 + β0,t(s)

β̃1,t(s) = β1 + β1,t(s)
(2.2)

and εt(s) is a white noise process with τ 2 as the nugget variance1. Coefficients

β̃0,t(s) and β̃1,t(s) can be interpreted as a spatio-temporal intercept process and

a spatio-temporal slope process, respectively. Equivalently, β0,t(s) and β1,t(s) in

(2.2) can be viewed as local spatio-temporal adjustment to the overall intercept β0

and global slope β1.

Now, consider the current 8-hour average ozone level Zt(s) defined, from above,

as the average of the previous four hours, the current hour and the next three hours

in the future, that is

Zt(s) =
1

8

+3∑
k=−4

Yt+k(s) (2.3)

1In principle, other explanatory variables, such as real-time temperature or elevation, could

be added to the downscaler model. Moreover, these variables can be at areal or point scale. We

defer the discussion to Chapter 3.
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According to the definition in (2.3), under the model in (2.1)-(2.2), the downscaler

model for Zt(s) is given by:

Zt(s) =
1

8

+3∑
k=−4

β̃0,t+k(s) +
1

8

+3∑
k=−4

β̃1,t+k(s)Wt+k(B) +
1

8

+3∑
k=−4

εt+k(s) (2.4)

Hourly modeling to obtain real-time prediction of the 8-hour averages, Zt(s), in

(2.4) is infeasible. Furthermore, model fitting based upon modeling the Zt(s)

will also be not feasible within a real-time environment. The induced dependence

structure in the Zt(s) process will become very messy and intractable for fast model

fitting; consider, for example, the induced association between Zt(s) and Zt−1(s
′).

However, if we work with differences we can simplify the specifications and can still

capture the ozone diurnal variation, the influence of the Eta-CMAQ output, and

the space-time random variation. Moreover, less uncertainty is associated to the

predictions when modeling monitoring data differences compared with modeling

the hourly ozone concentrations and converting to the Zt(s)’s, as we show below.

2.3.2 Downscaler for monitoring data differences

Denote the monitoring data differences ∆Z
t (s) by

∆Z
t (s) = 8(Zt(s)− Zt−1(s)). (2.5)

First differences are a commonly-used tool in time series analysis settings and

motivate the introduction of ∆Z
t (s). The spatial time series of first differences in

(2.5) is more stable than the original series and enables us to highlight the short-

term pattern which strongly characterizes the ozone levels. Moreover, we can

reduce our attention from eight to only two elements when we compute monitoring

data differences. That is, we have

∆Z
t (s) = Yt+3(s)− Yt−5(s). (2.6)

Suppose we insert (2.1) into (2.6). For the resulting ∆Z
t (s), the overall intercept

β0 will disappear and we obtain

∆Z
t (s) =β0,t+3(s) +

(
β1 + β1,t+3(s)

)
Wt+3(B) + εt+3(s)

− β0,t−5(s)−
(
β1 + β1,t−5(s)

)
Wt−5(B)− εt−5(s).

(2.7)

Expression (2.7) is still too cumbersome to work with. To expedite computation

for model fitting, we will simplify (2.7) so that we regress ∆Z
t (s) on the change
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in Eta-CMAQ. Let Xt(s) denote the current 8-hour average Eta-CMAQ output

for each site s belonging to the grid cell B. Analogous to (2.5), we define the

Eta-CMAQ data differences

∆x
t (s) = 8(Xt(s)−Xt−1(s)).

In fact, for s ∈ B,

∆x
t (s) = Wt+3(B)−Wt−5(B). (2.8)

Figure 2.3 shows the monitoring data differences for four randomly chosen sites

and the Eta-CMAQ data differences for the corresponding grid cells, for one-week

period. The plots show good agreement between ∆Z
t (s) and ∆x

t (s) suggesting that

the Eta-CMAQ data differences will be useful predictors of the monitoring data

differences.

So, we make two simplifying assumptions in (2.7) to connect ∆Z
t (s) to ∆x

t (s).

First, we assume that the slope random effects are not time dependent. This

reduces (2.7) to

∆Z
t (s) = β∗0,t(s) + β̃1(s)∆x

t (s) + ∆ε
t(s) (2.9)

where ∆ε
t(s) = εt+3(s)− εt−5(s) and

β∗0,t(s) = β0,t+3(s)− β0,t−5(s)

β̃1(s) = β1 + β1(s).
(2.10)

Second, we assume the intercept random effects have a multiplicative form in space

and time. We write β∗0,t(s) = β0(s)β0,t. With say M locations and T time points,

we reduce from MT to (M + T ) latent variables, with evident computational

savings. As we clarify below, this will not imply space-time separability for the

dependence structure of the ∆’s. Altogether, we introduce three independent zero-

mean Gaussian processes, β0,t, β0(s), and β1(s). Of course, it would be possible

to introduce association between intercept and slope using, say the method of

coregionalization (Wackernagel, 2003; Gelfand et al., 2004) briefly described in

Chapter 1. However, we do not pursue this further here.

The independence between β0(s) and β0,t implies that β∗0,t(s) emerges as a zero-

mean (nonGaussian) process with a separable covariance structure which we write

as

Cov[β∗0,t(s), β∗0,t′(s
′)] = σ2ρ(s)(s− s′;φ0)ρ

(t)(t− t′;ϕ) (2.11)

where ρ(s) is a valid two-dimensional spatial correlation function and ρ(t) is a valid

one-dimensional temporal correlation. Furthermore, the local spatial adjustment
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Figure 2.3: Monitoring data differences ∆Z
t (s) (solid line) and Eta-CMAQ data dif-

ferences ∆x
t (s) (dashed line) from 4 randomly chosen sites for one-week

period.

β1(s) in (2.10) is, again, a zero-mean Gaussian process with covariance structure

assumed to be of the form

Cov[β1(s), β1(s
′)] = ξ2ρ(s)(s− s′;φ1) (2.12)

We acknowledge the simplification associated with the separable specification for

β∗0,t(s) but note that the resulting process for the ∆Zs does not have a separable

covariance function. Indeed, we have

Cov[∆Z
t (s),∆Z

t′ (s
′)] =σ2ρ(s)(s− s′;φ0)ρ

(t)(t− t′;ϕ)+

+ ∆x
t (s)∆x

t′(s
′)ξ2ρ(s)(s− s′;φ1)

(2.13)

which is nonseparable and, in fact, nonstationary. We take ρ(s) in (2.11) and

(2.12) to be exponential correlation functions, i.e. ρ(s)(s−s′;φ) = exp(−φ ‖s− s′‖)
while ρ(t) is the correlation function of an AR(1) model, i.e. ρ(t)(t − t′;ϕ) =

ϕ|t−t
′|/(1− ϕ2).

Figure 2.4 gives a graphical representation for the differencing leading to the

proposed model. In the figure we can also see the future ∆’s necessary for the

current 8-hour average forecasting (prediction of these ∆’s is discussed in Section

5). So, first differences enable useful simplification of the downscaler: a space-

time process for the intercepts and a purely spatial process for the slopes. With

a smaller number of parameters and a straightforward dependence structure, we
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. . . YT−1 YT YT+1 YT+2 YT+3

. . . ZT−4 ZT−3 ZT−2 ZT−1 ZT ZT,D

. . . ∆Z
T−4 ∆Z

T−3 ∆Z
T−2 ∆Z

T−1 ∆Z
T

. . . ∆x
T−4 ∆x

T−3 ∆x
T−2 ∆x

T−1 ∆x
T

. . . XT−4 XT−3 XT−2 XT−1 XT

. . . WT−1 WT WT+1 WT+2 WT+3

Figure 2.4: Graphical representation of model (2.9)-(2.10) at the current hour T (im-

plicitly, at observed locations). �: observed variables. ©: unobserved

variables. We model the variables inside the dashed box and we predict

the quantities inside the solid box. ZT,D represents the interpolated sur-

face.
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reduce the computing time needed for fitting the model and facilitate forecasting

the current 8-hour average ozone concentration.

Lastly, we might consider an additive form in space and time for β∗0,t(s). The

implied simplification in (2.10) is that the spatial effect cancels out and β∗0,t(s)

becomes purely temporal. So, this corresponds to setting β0(s) = 1 in our above

modeling and becomes a reduced model which we can compare with our full spec-

ification.

2.3.3 Model fitting

It is well-known that it is not possible to consistently estimate the decay and

variance parameter in a spatial model with a covariance function belonging to the

Matérn family (Zhang, 2004) as the exponential covariance functions. Moreover,

the spatial interpolation is sensitive to the product σ2 φ but not to either one

individually (Stein, 1999). For these reasons, along with our ongoing objective of

rapid computation for model fitting, we choose optimal values of φ and ϕ offline,

using a validation mean square error criterion (see Section 2.5) and then infer about

the variances conditional on these values.

Denote the remaining unknown parameters by θ = (β1, τ
2, σ2, ξ2). For the

parameter β1 we assume a normal prior distribution N(0, g2) with g2 taken to be

large. For the variance parameters σ2, ξ2 and τ 2 we specify independent proper

inverse gamma prior distributions IG(a, b); in our implementation we take a = 2

and b = 1, i.e., a rather vague prior distribution with mean 1 and infinite variance.

2.3.4 Posterior details

For an observed set of locations s1, s2, . . . , sn and hours t = 1, . . . , (T − 3), given

{β0,t}, {β0(si)}, {β1(si)} and θ, the ∆Z
t (si) are conditionally independent. Hence,

the likelihood is

L(θ,B
(t)
0 ,B

(s)
0 ,B

(s)
1 ; ∆Z)

∝ (τ 2)
(T−3)n

2 exp

{
− 1

2τ 2

T−3∑
t=1

n∑
i=1

(
∆Z
t (si)− β0,tβ0(si)− β1∆x

t (si)− β1(si)∆x
t (si)

)2}
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where ∆Z denotes all the data, B
(t)
0 =

(
β0,1, . . . , β0,T−3

)′
, B

(s)
0 =

(
β0(s1), . . . , β0(sn)

)′
and B

(s)
1 =

(
β1(s1), . . . , β1(sn)

)′
. The joint posterior distribution is given by

π(θ,B
(t)
0 ,B

(s)
0 ,B

(s)
1

∣∣∆Z ) ∝ L(θ,B
(t)
0 ,B

(s)
0 ,B

(s)
1 ; ∆Z)×

× π(β1)× π(τ 2)× π(σ2)× π(ξ2)×

× π(B
(t)
0 )× π(B

(s)
0 )× π(B

(s)
1 )

where π(β1), π(τ 2), π(σ2) and π(ξ2) denote the prior distributions described above.

This model is fitted using a Gibbs sampler. The full conditional distributions are

developed in Appendix A.

2.4 Prediction details

Once the model is fitted, we turn to the primary goal of forecasting 8-hour average

ozone concentration at the current hour T . According to the definition of ZT (s) in

(2.3), we will always need to predict three hours into the future in order to forecast

current 8-hour average concentration. Equivalently, monitoring data differences

are available up to ∆Z
T−3(s). So, we need to predict ∆Z

T−2(s), ∆Z
T−1(s) and ∆Z

T (s)

in order to forecast ZT (s), that is,

ZT (s) = ZT−1(s) + ∆Z
T (s)/8

= ZT−2(s) + ∆Z
T−1(s)/8 + ∆Z

T (s)/8

= ZT−3(s) + ∆Z
T−2(s)/8 + ∆Z

T−1(s)/8 + ∆Z
T (s)/8.

(2.14)

Returning to the graphical representation of the model in Figure 2.4, we see how

the available information is used to obtain the forecasts we require. As noted in

Section 2.2, the Eta-CMAQ forecasts are available 48 hours into the future, so we

have the necessary ingredient to make these predictions using the model in (2.9)-

(2.10). Predictions at new site s′ and hours of interest T + l, (l = −2,−1, 0) are

based upon the predictive distribution of ∆Z
T+l(s

′). Under our model (2.9)-(2.10),

∆Z
T+l(s

′) is conditionally independent of the data ∆Z up to time T , given θ, β0,T+l,

β0(s
′) and β1(s

′) and its distribution is

∆Z
T+l(s

′) ∼ N

(
β∗0,T+l(s

′) + β̃1(s
′)∆x

T+l(s
′), τ 2

)
. (2.15)

Again, the distribution in (2.15) highlights the contribution of the Eta-CMAQ

output ∆x
T+l(s

′) which, as we have noted, is available for these three future hours.
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The posterior predictive distribution of ∆Z
T+l(s

′) is given by

π
(

∆Z
T+l(s

′) |∆Z
)

=

∫
π
(

∆Z
T+l(s

′) | β0,T+l, β0(s′), β1, β1(s′), τ 2
)
×

π
(
β0,T+l | B(t)

0 , ϕ
)
×

π
(
β0(s

′) | B(s)
0 , σ2, φ

)
×

π
(
β1(s

′) | B(s)
1 , ξ2, φ

)
×

π
(
θ,B

(t)
0 ,B

(s)
0 ,B

(s)
1 |∆Z

)
dβ0,T+l dβ0(s

′) dβ1(s
′) dB

(t)
0 dB

(s)
0 dB

(s)
1 dθ.

(2.16)

The predictive distribution in (2.16) is sampled by composition. In particular, we

need to generate draws for β0,T+l, β0(s
′) and β1(s

′), conditional on the posterior

samples at the observed locations and hours, in order to obtain draws for ∆Z
T+l(s

′).

Given the AR(1) model for B
(t)
0 , we have

β0,T+l | B(t)
0 , ϕ ∼ N

(
ϕβ0,(T+l−1), 1

)
For the spatially varying intercept, the joint distribution of B

(s)
0 and β0(s

′) is

a multivariate normal from which the conditional distribution is the univariate

normal

β0(s
′) | B(s)

0 , σ2, φ ∼ N
( n∑
i=1

bi(s
′)β0(si), σ

2C(s′)
)

where

bi(s
′) =

n∑
j=1

ρ(s)(s′ − sj;φ)
(
H−1(φ)

)
ij

and

C(s′) = 1−
n∑
j=1

n∑
i=1

ρ(s)(s′ − si;φ)
(
H−1(φ)

)
ij
ρ(s)(sj − s′;φ)

Similarly, we generate the random variable β1(s
′) conditional on the posterior sam-

ples at the observed locations. For this, we have

β1(s
′) | B(s)

1 , ξ2, φ ∼ N
( n∑
i=1

bi(s
′)β1(si), ξ

2C(s′)
)

where bi(s
′) and C(s′) are defined as above. The conditional means and variances

are computationally expensive to compute. However, by fixing the decay parame-

ters φ and ϕ, the quantities bi and C(s′) need only be calculated once and stored;

no updating is required in the MCMC, facilitating real-time forecasting.



30 2. Spatio-temporal modeling for real-time ozone forecasting

2.4.1 Forecast map

Recall that our goal is to provide, in a real-time environment, hourly spatial in-

terpolation maps of 8-hour average ozone concentration. To obtain these maps,

we need spatial predictions at each Eta-CMAQ grid cell centroid, such as what

the EPA AIRnow system supplies, roughly 54, 000 cells. Given the limited time

available to produce plausible predictions at such a large number of grid cell points,

formal Bayesian kriging (as in say, Banerjee et al. (2004)) will not offer a feasible

approach. So, at this last stage, we introduce approximation. Again, this last stage

is only for the map making. There will be sufficient time for the foregoing model

fitting.

The strategy is to use equation (2.14) to obtain predictions at the n monitoring

sites. Then, we interpolate these predictions to the Eta-CMAQ grid cell centroids

by ordinary kriging, using a fast, available package. In this regard, we can adopt

one of the following approaches. The first method is to apply the kriging interpo-

lation both to ZT−3(si) and the posterior predictive samples of ∆Z
T−2(si), ∆Z

T−1(si)

and ∆Z
T (si), with i = 1, . . . , n. Then, the posterior predictive distribution of ZT (s)

at the Eta-CMAQ centroids can be provided by the sum in (2.14). This approach,

however, will be slow and it will introduce large uncertainty to the predictions.

Thus, we first sum the last available observation ZT−3(si) and the posterior pre-

dictive samples of ∆Z
T−2(si), ∆Z

T−1(si) and ∆Z
T (si). Then, we obtain the posterior

predictive distribution of ZT (s) at the Eta-CMAQ centroids by kriging. We get the

predicted surface of 8-hour average ozone concentration as an average of the pos-

terior predictive distribution of the kriged ZT (s). A posterior standard deviation

map gives a measure of the uncertainty associated with our forecasts.

2.5 Analyses

We illustrate our strategy by modeling and forecasting ozone level for a large con-

terminous subregion of U.S. (Figure 1). In particular, we model data for a running

window of 24 hours, starting at any given hour. We have investigated longer win-

dows, such as 48-hour and 72-hours. However, the higher computational burden

associated to more distant past data is not justified in terms of any improvement

in the predictions.

About 5% of values are missing in the monitoring data set. We decided to han-

dle the missingness by removing monitoring sites with at least one missing value
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Figure 2.5: Percentage of monitoring sites available to fit the model.

in each selected 24-hour window. This choice reflects the structure of the missing

values in the data set. As the window changes in time, so do the locations of the

missing data. However, in general, missing values occur at monitoring sites for

several consecutive hours. This discourages attempts to use ‘cheap’ imputation;

alternatively, a fully model-based imputation would be too computationally ex-

pensive. Figure 2.5 shows the percentage of monitoring sites available to fit the

model with respect to 24-hour, 48-hour and 72-hour windows. The 24-hour window

enable us to save more than 93% percentage of monitoring sites. So, in addition

to being computationally faster, the 24 hour window gains roughly 7% more sites

than, say the 48 hour window.

First, we select the decay parameters using the validation criterion described

below, recalling that we have set aside data from 70 monitoring stations (Figure

2.1). For convenience, we set φ0 = φ1 = φ, imagining that the spatial range for

the slope process might agree with that of the intercept process (this simplification

is not critical and is really just illustrative). For φ and ϕ, let ∆̂Z
t (s′j) denote

the predicted value at validation site s′j for each j = 1, . . . ,m = 70 and hours

t = 1, . . . , (T − 3) = 24.

We employ the Validation Mean Square Error (VMSE)

VMSE =
1

nv

m∑
j=1

(T−3)∑
t=1

(
∆Z
t (s′j)− ∆̂Z

t (s′j)
)2
I
(

∆Z
t (s′j)

)
(2.17)

where nv =
∑m

j=1

∑(T−3)
t=1 I

(
∆Z
t (s′j)

)
is the total number of available observations

at the 70 validation sites for the 24 hours. We searched for the optimal value of
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φ among the values, 1.5, 0.5 and 0.25 corresponding to spatial ranges of approx-

imately 185, 560 and 1125 kilometers. For the temporal decay parameter ϕ, we

searched for the optimal value in a grid formed by values of 0.75, 0.85 and 0.95.

For each selected 24-hour window, we compute the VMSE in (2.17) and we

choose the combination of φ and ϕ which leads to the smallest VMSE. For instance,

Table 2.1 shows the VMSE computed on the predictions at the validation sites for

a given 24-hour window for each combination of φ and ϕ. In this case, we choose

the values 0.25 and 0.95 as estimates of the parameters φ and ϕ, respectively. We

experimented with many other values of φ and ϕ learning that the VMSE is not

very sensitive to choices close to these optimal values. In fact, even a finer grid

of values of φ and ϕ yields to results which are essentially equivalent to those

presented in Table 2.1.

Table 2.1: VMSE for each combination of φ and ϕ when we model data starting at

10AM on August 7th.

ϕ

0.75 0.85 0.95

φ

1.50 1.77075 1.77068 1.77062

0.50 1.71869 1.71867 1.71866

0.25 1.71792 1.71790 1.71789

We fit the model in (2.9)-(2.10) on 24-hour running windows starting at each

hour from 8AM to 6PM of August 7th in order to forecast current 8-hour aver-

age ozone concentration from 10AM to 8PM on August 8th; this particular tem-

poral window is characterized by a high level of variability in ozone concentra-

tions. For each selected window, we predict monitoring data differences at the n

available monitoring sites for the three future hours (corresponding to ∆Z
T−2(si),

∆Z
T−1(si) and ∆Z

T (si)) and we forecast the current 8-hour average ozone concen-

trations (ZT (si), for i = 1, . . . , n). Then, these forecasts are interpolated to the

Eta-CMAQ centroids, as we described in Section 2.4.1. For example, starting at

8AM of August 7th, we model 24 hourly monitoring data differences from 8AM

on August 7th to 7AM on August 8th using data from all available monitoring

sites. Predictions of monitoring data differences are computed at the monitoring

sites for 8AM, 9AM and 10AM on August 8th and forecasts of the current 8-hour

average ozone concentrations at the Eta-CMAQ centroids, associated with 10AM

on August 8th, are obtained.
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Table 2.2: Posterior parameter estimates under full model when we model data starting

at 10AM on August 7th; 95% credible interval in the brackets.

β1 τ2 σ2 ξ2

0.634 (0.512 - 0.776) 1.470 (1.433 - 1.506) 0.499 (0.364 - 0.686) 0.453 (0.369 - 0.564)

2.5.1 Results

An example of parameter estimates is shown in Table 2.2 along with Figures 2.6 and

2.7 for the modeling of the data from 10AM of August 7th to 9AM of August 8th.

The significant overall slope β1 shows the expected positive association between

Eta-CMAQ data differences and monitoring data differences. Mean spatial effects

β0(s) and β1(s) are shown in Figure 2.6. Figure 2.7 shows the 95% credible intervals

of the temporal effect. We see the anticipated higher variability for the three

hours into the future. The diurnal pattern which characterizes the ozone levels is

well reproduced on the first differences scale. Overall, the multiplicative form for

β∗0,t(s) yields spatio-temporal intercepts that provide an hourly scaling of β0(s).

Notably, we observed similar parameters estimates for all other starting hours. We

illustrate the current 8-hour average map prediction at 12PM on August 8th in

Figure 2.8 (left panel). The right panel shows the standard deviation map. For

instance, the figure reveals that the highest ozone concentrations characterize the

States of Delaware, Maryland, Virginia and North Carolina while the blue area

over Florida supports that Florida’s air quality can be considered fairly good, as

we expected. Therefore, accurate, instantaneous and high resolution maps as in

Figure 2.8 represent a useful tool to provide the public and the experts with air

pollution levels that may lead to adverse health effects.

As a concluding exercise, we compare the out-of-sample predictive performance

of the model (2.9)-(2.10) and the simpler version obtained by fixing the pure spa-

tial component in the intercept β0(s) = 1. We evaluate Bayesian predictions by

computing the mean squared error (MSE), mean absolute error (MAE), empirical

coverage and average length of the 95% credible interval on 70× 11 = 770 out-of-

sample forecasts. Table 2.3 reports results for these summary statistics for the two

models, revealing little difference except for somewhat shorter predictive intervals

for the reduced model. This may be an artifact of the validation sites or may reflect

possible overfitting for the full model. The empirical coverages agree and are a bit

below nominal, suggesting that the intervals are bit short. This is likely be due to

the simplifications we make in the model for the differences. Figure 2.9 provide
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Figure 2.6: Mean spatial effects β0(s) (left panel) and β1(s) (right panel) when we

model data starting at 10AM on August 7th.
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Figure 2.8: Current 8-hour average ozone forecast map (left panel) and standard devi-

ation map (right panel) at 12PM on August 8th.

Table 2.3: Mean square error (MSE), mean absolute error (MAE), empirical cover-

age and average length of 95% predictive intervals (PI) for full model with

β0(s) 6= 1 and reduced model with β0(s) = 1.

Empirical coverage Average length

MSE MAE of 95% PI of 95% PI

β0(s) 6= 1 24.97 3.80 85.7% 15.70

β0(s) = 1 24.66 3.79 85.5% 13.67
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Figure 2.9: Validation plots for out-of-sample predictions using the full model (left

panel) and the reduced model (right panel). The 45 degree reference line

is superimposed.

detailed validation plots for the out-of-sample predictions obtained from both the

full model and the reduced one; again, little differences appeared between the two

models.

We can offer comparison with AIRNow predictions for the same time period.

We have to consider this comparison with care for the following reasons. AIRNow

makes its forecasts at each monitoring station, treating the stations as independent,

building a historical regression at each station, and makes a simple local forecast.

Then, AIRNow uses a kriging routine to predict to the continental scale. It does

not use any computer model output. In particular, for any specified hour, AIRNow

uses the subset of monitoring stations that reported for that hour, before kriging;

the set of sites employed varies by the hour. So, we can consider two comparisons.

Starting with our 717 monitoring stations, holding out 70 of them, leaves us with

647 fitting sites. We make hourly predictions for a subset of these sites as clarified

above. So does AIRNow but for a different subset. So, hour by hour, if we consider

the intersection of these two subsets, and for the intersection, take our predictions

and those of AIRNow, we are able to make a fair, pre-interpolation comparison

of forecasts. These results are shown in the first two columns of Table 2.4 and

reveal a roughly 30% improvement in prediction at fitted sites. Interestingly, if we

then interpolate hour by hour to the 70 hold-out sites, using a commonly employed

kriging R-package ‘fields’ (http://www.image.ucar.edu/Software/Fields) we obtain
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the results in the last two columns of Table 2.4. We see that the kriging procedure

introduces smoothing such that it reduces the benefit of our modeling approach in

terms of interpolated predictive performance. Still we do improve and, in addition,

we do have a measure of uncertainty through the predictive variance. Indeed,

the results from Table 2.3 show that MSE and MAE for the Bayesian forecast

validation at the holdout sites are indistinguishable from the pre-interpolation

forecast validation results in Table 2.4 clarifying the improvement we would expect

to see were we able to implement fully model based Bayesian kriging in real-time.

Finally, fitting the faster model of Sahu et al. (2009a) to our 8-hour average

data inputs, we obtained2 MSE = 50.64 and MAE = 5.61, somewhat larger than

what we obtained for our models in Table 2.4.

Table 2.4: Mean square error (MSE) and mean absolute error (MAE) for full model,

reduced model and AIRNow forecasts.

Pre-Interpolation Post-Interpolation

MSE MAE MSE MAE

β0(s) 6= 1 25.46 3.91 42.35 4.96

β0(s) = 1 24.43 3.87 41.95 4.95

AIRNow 36.39 4.73 45.72 5.35

2.6 Real-time computing

Regarding the feasibility of our method for real-time use, in terms of offline fit-

ting time and time per hourly update, we note the following. The fitting time

is evaluated per iteration of Markov Chain Monte Carlo (MCMC) on an Intel(R)

Core(TM)2 Duo CPU E8600 (3.33 GHz, 8 GB RAM). The MCMC is well-behaved

and the convergence is rapid. The computing time necessary to fit model (3.2)

with β0(s) = 1 is about 1.1 seconds per iteration. The hourly update involves the

forecasts of current 8-hour ozone concentrations. Typically, only three seconds are

required to obtain each posterior predictive sample of ZT (s) at the Eta-CMAQ

centroids, according to the strategy described in Section 2.4. The code is written

2These summary statistics are based on 50× 11 = 550 forecasts. The corresponding statistics

computed over our forecasts for the same hour-site combinations are: MSE = 42.31 and MAE=

4.91 for the full model and MSE= 42.08 and MAE= 5.01 for the reduced model.
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in R and we can assert that, for the region we have investigated, our approach does

work in real-time.

Moving to national scale where there are about 1400 monitoring sites, the

code will be written with C++, which would run possibly an order of magnitude

faster compared to R code. We also have been using a single machine; a national

undertaking would be expected to employ a better hardware environment, at the

least, to run on a faster, multi-processor machine. Alternatively, it may prove more

attractive to consider regional models and follow, for each region, the same path

as we have developed above. In this way we can capture local effects and directly

expedite computation by using parallelization.

2.7 Summary

In this chapter, we have addressed a specific applied challenge, real-time forecast-

ing of current 8-hour average ozone levels on the scale of the conterminous U.S..

We have formulated a downscaler model that works with differences to expedite

computation and have shown that it outperforms the current forecasting system.

One added advantage of our proposed real-time forecasting model is the potential

archival and access to current ozone spatial information. This would allow imme-

diate access to up-to-date ozone patterns and solves the problem of waiting several

years for retrospective numerical atmospheric model output to become available to

develop predictive ozone surfaces.

Future work will focus on introducing real-time temperature data, as described

in Chapter 3. We will also consider improved next day ozone forecasts. We are also

interested in current and next day particulate matter forecasting where new chal-

lenges arise because particulate matter is not necessarily collected on a continuous,

daily basis at the monitoring sites.

Finally, future efforts will find us looking at the possibility of considering the

Partial Differential Equations (SPDE) approach proposed by Lindgren et al. (2011)

in order to make use of the Integrated Nested Laplace Approximation (INLA)

algorithm (Rue et al., 2009) as an alternative to MCMC methods adopted in this

chapter.



Chapter 3

Ozone real-time forecasting

downscaling temperature

Since one of the main objective of this work is to improve the assessment of ozone

exposure within the real-time environment, we introduced the real-time downscaler

in Chapter 2, fusing the ozone station data and the output from the air quality

Eta-CMAQ model. An unexpected difficulty is due to the fact that the air quality

computer model was not longer run by EPA. Since the end of 2012 the Eta-CMAQ

model has been dismissed and its output was not available anymore1. The new

circumstances require to replace the Eta-CMAQ output in the downscaler by a new

ozone predictor that enables us to yield accurate real-time ozone forecasting. Thus,

we now look for another covariate strongly correlated with ozone concentrations

as well as available in real-time for current and future time periods.

Variations in weather conditions play an important role in producing ozone con-

centrations, as we noted in Section 2.1. In particular, ozone is strongly correlated

with temperature (Cox and Chu, 1996; Bloomfield et al., 1996; Jacob and Winner,

2009) since the temperature influences directly the kinetics of reactions determining

ozone (Cocchi and Trivisano, 2013). In general, increasing temperature is usually

associated with increasing ground-level ozone levels. The ozone-temperature re-

lationship has been largely investigated in the literature. Massart and Kvalheim

(1998) studied the importance of several meteorological variables (such as wind

speed, wind direction, air stability, temperature and light intensity) for forecasting

the next day’s ozone level for the region of Grenland (southern Norway); their

1In practice, Eta-CMAQ output was no longer available for empirical studies since the end of

2011.

39
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main result was that the temperature produced the best ozone predictions. In

Thompson et al. (2001) several statistical methods for meteorological adjustment

of ground level ozone are discussed; temperature is included as a covariate in most

models reviewed by the authors. Hence, temperature can be used as a surrogate

for the meteorological factors influencing ozone formation (Camalier et al., 2007;

Bloomer et al., 2009).

To identify the most suitable source of temperature data in our context, we

recall that an important feature of the new covariate is its availability in real-time

for current and future hours. Again, predictions from numerical models can usu-

ally have very high temporal resolution for current, past and future time periods.

Moreover, we look for a data source which provides temperature at high spatial

resolution covering the conterminous U.S., since our goal is to produce real-time

ozone forecasting at the national scale.

The U.S. National Oceanic and Atmospheric Administration (NOAA) devel-

oped several weather forecast models providing predictions of many meteorological

variables (such as temperature, relative humidity, precipitation, sea-level pressure)

at different temporal and spatial resolution. The NOAA’s National Climatic Data

Center (NCDC) provides near-real-time easy access to these weather model forecast

data in addition to historical model data at the web site: http://www.ncdc.noaa.gov/.

Among the NOAA’s numerical models, weather short-term predictions for the con-

terminous U.S. are produced by the Rapid Update Cycle (RUC) model (until May,

2012) and the Rapid Refresh (RAP) model (from May, 2012).

Recall that in the univariate downscaler the response and its predictor are the

same variable expressed at different spatial resolution, i.e. a pollutant at point level

and its prediction from a numerical model output at grid cell spatial resolution. In

this chapter we modify our earlier downscaler for real-time ozone forecasting such

that the covariate differs from the response variable. We combine ozone data from

real-time monitoring network with temperature output from a weather computer

model via a regression model having space-time varying coefficients along with first

differences. Model validation for the eastern U.S. shows improved predictions of

current 8-hour average ozone levels relative to those obtained using the air quality

model output as a predictor and presented in Chapter 2.

The chapter is organized as follows. In Section 3.1 we describe the weather nu-

merical models we use for ozone prediction. Modeling developments are presented

in Section 3.2. Section 3.3 provides the analyses and results considering both RUC

and RAP output. In Section 3.4 we briefly discuss short-term ozone predictions
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obtained by Bruno and Paci (2013) for the Emilia-Romagna region. Concluding

remarks are summarized in Section 3.5.

3.1 RUC and RAP models

The RUC model (Benjamin et al., 2004) is a regional short-term weather fore-

cast model of the Continental United States (CONUS) developed by the National

Centers for Environmental Prediction (NCEP) to serve users needing frequently

updated short-term weather forecasts. When it was first implemented in 1994,

the model was run every three hours making forecasts out to 12 hours. By 2002,

the RUC was run every hour, on the hour, producing 12-hour forecasts at 13 km

spatial resolution. The output from the RUC model is available, for free, at the

website: http://ruc.noaa.gov/.

Starting on May 1, 2012, the NCEP replaced the RUC model by the RAP

numerical weather model (http://rapidrefresh.noaa.gov/). The RAP model is the

next-generation version of the 1-hour cycle system; multiple data sources go into the

RAP forecasts such as commercial aircraft weather data, balloon data, radar data,

surface observations, and satellite data. The RAP model shows improvement over

RUC forecasts for wind, relative humidity, temperature, and heights at almost all

levels and forecast durations, as claimed by the NCEP. RAP forecasts are generated

every hour with forecast lengths going out 18 hours at 13 km spatial resolution.

We consider surface temperature forecasts (2 meter above the ground, in °C)

from the weather numerical model for the conterminous U.S.. As an illustration,

Figure 3.1 shows the temperature predictions from RUC model at 10AM on August

7th, 2011 in the eastern U.S..

Since there is no overlap of RUC and RAP output in a time period, we first

analyze ozone and RUC data during August 2011; for this period we will also have

ozone estimates from Eta-CMAQ model. Then, we will consider ozone and RAP

output corresponding to August 2012 when Eta-CMAQ output was not available

anymore.

3.2 Downscaler using temperature

Current 8-hour average ozone level Zt(s) is defined, according to equation (2.3), as

the average of the previous four hours, the current hour and the next three hours in
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5 10 15 20 25 30 35

Figure 3.1: Temperature forecasts from RUC model in the eastern U.S. at 10AM on

August 7th, 2011.
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the future. In Chapter 2, we developed a space-time data assimilation strategy to

enable use of both monitoring data and Eta-CMAQ output to provide the forecasts

of current 8-hour average ozone level in real-time. We also showed the benefit of

using the monitoring data differences ∆Z
t (s) denoted by ∆Z

t (s) = 8
(
Zt(s)−Zt−1(s)

)
,

i.e. (2.5) or equivalently, by ∆Z
t (s) = Yt+3(s)− Yt−5(s), i.e. (2.6).

The model we proposed in Chapter 2 (and, in general, any downscaler) combines

the observations of the pollutant with its predictions from the air quality numerical

model. However, we already mentioned the dismission of the Eta-CMAQ model

and the need to replace it by a new ozone predictor available in real-time. In

this work, we generalized the downscaler model to include discrepancies between

the response variable and the covariate. We introduce a data fusion model based

on first differences of ozone real-time monitoring data and temperature estimates

from a weather numerical model. In particular, we replace the Eta-CMAQ output

in model (2.9) by the RUC (RAP) output, so we will regress the monitoring data

differences on the change in RUC (RAP) output.

Similarly to (2.8), for each site s belonging to grid cell B, we define the RUC

(RAP) data differences by

R∗t (s) = Rt+3(B)−Rt−5(B) (3.1)

where Rt(B) denotes the temperature forecasts from RUC (RAP) model at hour

t over grid cell B. Thus, the definition of variable R∗t (s) guarantees the temporal

alignment between the weather numerical model output and ozone monitoring data

differences.

Figure 3.2 shows the ozone monitoring data differences ∆Z
t (s) for six randomly

chosen sites and the RUC data differences R∗t (s) for the corresponding grid cells,

during the period August 6-9, 2011. The plots reveal good agreement between

ozone monitoring data differences and RUC data differences; in fact, for the same

period, the overall correlation is 0.78. Figure 3.3 shows, instead, the ozone moni-

toring data differences for six randomly chosen sites and the RAP data differences

for the corresponding grid cells, during for the period August 1-2, 2012. Again,

ozone monitoring data differences and RAP data differences show similar behav-

ior and, for this period, the overall correlation between is 0.84. Therefore, the

explanatory analyses suggest that R∗t (s) differences can be good predictors of the

ozone monitoring data differences.

Similarly to the developments in Section 2.3, we address the spatial misalign-

ment between ozone monitoring data differences and RUC (RAP) differences by
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Figure 3.2: Monitoring data differences (solid line) and corresponding RUC data dif-

ferences (dotted line) from 6 randomly chosen sites during August 6-9,

2011.
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Figure 3.3: Monitoring data differences (solid line) and corresponding RAP data dif-

ferences (dotted line) from 6 randomly chosen sites during August 1-2,

2012.
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employing the downscaling approach. For each s ∈ B, model (2.9) is modified as

follows:

∆Z
t (s) = β∗0,t(s) + β̃1(s)R∗t (s) + ∆ε

t(s) (3.2)

where β∗0,t(s), β̃1(s) and ∆ε
t(s) are defined as in Chapter 2. Again, we assume

that the slope random effects are not time dependent and the intercept random

effects have a multiplicative form in space and time, that is β∗0,t(s) = β0(s)β0,t.

The spatio-temporal covariance function of the data process is now adapted from

(2.13) as

Cov[∆Z
t (s),∆Z

t′ (s
′)] = σ2ρ(s)(s− s′;φ0)ρ

(t)(t− t′;ϕ) +R∗t (s)R∗t′(s
′)ξ2ρ(s)(s− s′;φ1)

which is still nonseparable and nonstationary.

Fitting details associated to model (3.2) are equivalent to those described in

Section 2.3.3. Again, we use non informative prior distributions for the unknown

parameters and we fit the model using a Gibbs sampler.

Predictions of the current 8-hour average ozone level at a new site s′ and hours

T + l, (l = −2,−1, 0) are obtained via the conditional posterior predictive distri-

bution

∆Z
T+l(s

′) ∼ N

(
β∗0,T+l(s

′) + β̃1(s
′)R∗T+l(s

′), τ 2
)
.

The predictive distribution is sampled by composition as described in Section 2.4.

Such forecasting is still feasible since the RUC (RAP) output is available up to

12 (18) hours in the future. Finally, the forecast map is produced according to

the strategy described in Section 2.4.1; again, we use equation (2.14) to obtain

predictions at the n monitoring sites. Then, we interpolate these predictions to the

Eta-CMAQ grid cell centroids by ordinary kriging, using a fast, available package.

We get the predicted surface of current 8-hour average ozone concentration as an

average of the posterior predictive distribution of the kriged ZT (s). The posterior

standard deviation map gives a measure of the uncertainty associated with our

forecasts.

In the next section, we present the results obtained by fitting model (3.2) where

we fix the pure spatial component in the intercept at β0(s) = 1 (reduced model).

In fact, Table 2.3 revealed little differences between the full model and the reduced

one. However, the computing time necessary to fit the reduced model is smaller

(roughly the half) than the fitting time needed for the full model. Hence, the

simpler version of our model appears more suitable to use within the real-time

environment and so we investigate the predictive performance of this model.
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3.3 Predictive performance

Recall that there is no overlap of RUC and RAP output in a time period. Hence,

we first assess the predictive performance of our new strategy using ozone historical

data from the large subregion described in Section 2.2.1 with n = 717 real-time

ozone stations during August 2011. Moreover, ozone estimates from Eta-CMAQ

are available as well as AIRNow predictions. For the same period, temperature

data arises as output from the RUC model. The weather forecast data are averages

over grid cells, i.e. 17,773 grid cells spanning the study region. So, in Subsection

3.3.1 we can offer a comparison with predictions obtained in the previous chapter.

In Subsection 3.3.2, we illustrate our strategy by modeling current 8-hour ozone

level collected from n = 696 real-time monitoring stations operating in the eastern

U.S. during August 2012. In this case, temperature forecasts are provided by the

RAP model at the 17,773 grid cells spanning the study region. For this period, Eta-

CMAQ output is not available but we can still present a comparison between ozone

forecasts obtained from our model and those provided by the AIRNow system.

We use the procedure described in Section 2.5 to handle the missingness in

data sets. Thus, we remove monitoring sites with at least one missing value in

each selected 24-hour window.

3.3.1 Results using RUC output

Equivalently to what is done in Section 2.5, we fit model (3.2) on 24-hour running

windows starting at each hour from 8AM to 6PM on August 7th, 2011 in order

to forecast current 8-hour average ozone level at 70 validation sites from 10AM to

8PM on August 8th, 2011.

Again, we evaluate Bayesian predictions by computing the mean squared error

(MSE), mean absolute error (MAE), empirical coverage and average length of

the 95% credible interval on 70 × 11 = 770 out-of-sample forecasts. Table 3.1

reports results for these summary statistics for model (2.9) using Eta-CMAQ data

differences and model (3.2) using RUC data differences. We note that the proposed

strategy yields to increased accuracy in ozone predictions relative to the results in

Section 2.5. This result might be surprising if we recall that the Eta-CMAQ model

is essentially devoted to estimate air pollution concentrations and its output has

a finer spatial resolution with respect to temperature data. However, the output

from the weather computer model is less smooth than the air quality model output

and this feature enables us to compute more accurate ozone forecasts.
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Figure 3.4: Validation plot for out-of-sample predictions when model (3.2) is fitted

using RUC data differences. The 45 degree reference line is superimposed.

Figure 3.4 provides a validation plot for the out-of-sample predictions obtained

from model (3.2) fitted using RUC data differences. This plot can be compared

with Figure 2.9 (right panel) revealing that forecasts from model (3.2) are closer

to the observations than those obtained from model (2.9) using Eta-CMAQ data

differences.

Table 3.1: Mean square error (MSE), mean absolute error (MAE), empirical coverage

and average length of 95% predictive intervals (PI) for model (2.9) and model

(3.2) with RUC data differences.

Empirical coverage Average length

MSE MAE of 95% PI of 95% PI

Eta-CMAQ 24.66 3.79 85.5% 13.67

RUC 21.69 3.60 84.8% 13.53

Figures 3.5 and 3.6 show the forecast maps of current 8-hour average ozone

level at 12PM on August 8th, 2011 (left panel) and the standard deviation maps

(right panel) resulting from the reduced version of model (2.9) using Eta-CMAQ

output and model (3.2) using RUC output, respectively. Less uncertainty is clearly

associated to the ozone predictions obtained from model (3.2) using the RUC data

differences.
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Table 3.2: Mean square error (MSE) and mean absolute error (MAE) for model (2.9),

model (3.2) using RUC data differences and AIRNow forecasts.

Pre-Interpolation Post-Interpolation

MSE MAE MSE MAE

Eta-CMAQ 24.43 3.87 41.95 4.95

RUC 17.63 3.26 37.90 4.80

AIRNow 36.39 4.73 45.72 5.35

We can offer a comparison among the predictions obtained from model (2.9)

with Eta-CMAQ data differences, model (3.2) fitted using the RUC data differ-

ences and the forecasts provided by the AIRNow system. Table 3.2 shows this

comparison in terms of MSE and MAE computed on pre-interpolation predictions

(at monitoring sites) and post-interpolation forecasts (at the 70 hold-out sites).

The table reveals a reduction in MSE and MAE that results in using the proposed

strategy with RUC data differences rather than the other two approaches. We

achieve roughly 30% and 50% improvement in prediction at fitted sites upon the

AIRNow system and model (2.9) with Eta-CMAQ data differences, respectively.

The improvement in terms of interpolated predictive performance is sligthly re-

duced because of the smoothing introduced by the the kriging procedure, but the

benefit of our modeling approach developed using the RUC data differences can

still be appreciated.

3.3.2 Results using RAP output

In this subsection, we present the results obtained fitting model (3.2) on 24-hour

running windows starting at each hour from 12AM to 4PM of August 1st, 2012

and forecasting current 8-hour average ozone level from 2AM to 6PM on August

2nd, 2012. In this case, model fitting and ozone forecasting are evaluated for 17

consecutive windows.

Figures 3.7 shows the current 8-hour average ozone forecast map prediction at

12PM on August 2nd, 2012 (left panel) and the standard deviation map (right

panel) resulting from model (3.2). Figure 3.8 provides the scatter plot of the

predicted current 8-hour average ozone levels versus the observed values, showing

that model (3.2) produces accurate current 8-hour average ozone forecasts.

The MSE, MAE, empirical coverage and average length of the 95% credible
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Figure 3.5: Current 8-hour average ozone forecast map (left panel) and standard devi-

ation map (right panel) at 12PM on August 8th, 2011 obtained from model

(2.9) using Eta-CMAQ data differences.
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Figure 3.6: Current 8-hour average ozone forecast map (left panel) and standard devi-

ation map (right panel) at 12PM on August 8th, 2011 obtained from model

(3.2) using RUC data differences.
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Figure 3.7: Current 8-hour average ozone prediction map (left panel) and standard

deviation map (right panel) at 12PM on August 2nd, 2012 obtained from

model (3.2) using RAP data differences.
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Figure 3.8: Validation plots for out-of-sample predictions when model (3.2) is fitted

using RAP data differences. The 45 degree reference line is superimposed.
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interval on 70× 17 = 1190 out-of-sample forecasts are 36.36, 4.82, 80% and 16.10,

respectively. Table 3.3 offers a comparison of our predictions with those provided

by AIRNow system at the fitting sites (pre-interpolation) and at the 70 hold-out

sites (post-interpolation). Again, we appreciate the improvement of our modeling

approach using RAP data differences in terms of both pre-interpolated (roughly

33%) and post-interpolated (about 18%) predictive performance relative to the

current system.

Table 3.3: Mean square error (MSE) and mean absolute error (MAE) for model (3.2)

using RAP data differences and AIRNow forecasts.

Pre-Interpolation Post-Interpolation

MSE MAE MSE MAE

RAP 29.17 4.24 74.69 6.80

AIRNow 43.82 5.31 90.84 7.53

3.4 Short-term ozone predictions in Emilia-Romagna

Model validation for the eastern U.S. in the previous subsections shows improved

ozone predictions when we replace ozone estimates from Eta-CMAQ in the down-

scaler by temperature forecasts produced by weather numerical RUC (RAP) model.

Recently, Bruno and Paci (2013) arrived at similar results studying hourly ozone

concentrations in the Emilia-Romagna region (in Italy). The authors proposed a

hierarchical spatio-temporal model to exploit different sources of information in

order to provide short-term air pollution forecasting in the region. They employed

the downscaling approach to combine hourly ozone monitoring data with two alter-

native numerical model output: ozone estimates from Chimere chemistry-transport

model and temperature forecasts from weather forecast Cosmo model. The two

systems are currently in use at the regional protection agency of Emilia-Romagna

(ARPA-ER) to provide the public with air quality information and weather fore-

casts, respectively. Also, the orography of the region has been taken into account

since the ozone level changes according to the elevation.

Bruno and Paci (2013) showed how the model fitted using temperature predic-

tions from the weather numerical model outperforms the one fitted using the air

quality model output. They also noted that the inclusion of the elevation of the
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sites in the model improved the ozone forecasting in their study region.

3.5 Summary

In this chapter we have proposed an extension of the real-time downscaler of Chap-

ter 2, here based on real-time temperature data provided as output of a weather

numerical model. We have shown how we can substantially improve the current

8-hour ozone forecasting upon the earlier model based on the air quality computer

model output. Moreover, less uncertainty is associated with our new predictions.

Our real-time downscaler with temperature is feasible for real-time use and one

added advantage of the strategy is its easy and cheap implementation allowed by

the free access to the RUC (RAP) output at the NOAA’s web site. In fact, the hy-

brid strategy here proposed is currently being implemented by EPA to provide the

public and experts with real-time current 8-hour average ozone predictions. The

pseudo algorithm describing each step of the implemented procedure is deferred to

Appendix B.

Future work will provide improved real-time regional forecasts at finer resolu-

tion than the national ones, say for urban areas of interest, obtained concurrently

with the national forecasts.





Chapter 4

Data fusion modeling for map

uncertainty

Numerical models are deterministic models developed by several environmental

agencies to simulate and predict complex systems, as we illustrated in Chapter

1. Computer model outputs are usually provided as averages over grid cells and,

using a large number of grid cells, they can cover large spatial domains and may

also have very high temporal resolution. However, numerical model estimates

can be biased with unknown calibration. Furthermore, they do not provide any

measure of uncertainty associated to their output, since they are derived under a

deterministic system. For instance, in Chapter 2 we discussed one of them, the

Eta-CMAQ model which has been designed by the EPA to provide air quality

information over the conterminous U.S., while in Chapter 3 we described the RUC

(RAP) model developed by the NCEP to produce short-term weather forecasts

over the CONUS.

In this chapter, we move our attention from calibration and prediction im-

provement of computer model output to uncertainty quantification. In particular,

Section 4.1 presents an overview of statistical methods proposed in the literature

for quantifying uncertainty in numerical model output. We also highlight our con-

tribution on this topic. Modeling developments are presented in Section 4.2. In

Section 4.3 we first clarify what we mean by uncertainty and then we propose two

alternative approaches to model it. Fitting details are discussed in Section 4.4,

with computation details deferred to Appendix C. Section 4.5 offers some simula-

tion results, while in Section 4.6 we apply our model to attach uncertainty to RUC

model output. A brief summary of this chapter is given in Section 4.7.

55
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4.1 Views of uncertainty in numerical models

Large sources of uncertainty in constructing and employing numerical models do

exist. In many applications, these sources can be classified into four basic types:

input uncertainty, function uncertainty, model discrepancy and observational error

(Cumming and Goldstein, 2010). All of these uncertainty sources can be taken into

account by the Bayesian approach and so a wide range of methods have been de-

veloped using Bayesian statistics to deal with the uncertainty analysis for complex

computer models (Sacks et al., 1989; Craig et al., 1998; O’Hagan, 2006).

Numerical models are often implemented as computer codes and depend on a

number of inputs and initial conditions which determine the nature of the out-

put. These inputs represent unknown parameters and the uncertainty about them

propagates through the numerical model, inducing uncertainty in the output. The

problem concerning how input uncertainty propagates through to the model so-

lution, is usually referred in engineering and applied mathematics literature as to

forward problem. Instead, a general statistical framework has been presented by

Givens et al. (1993) and Raftery et al. (1995) for mapping from a set of input

parameters to a set of model outputs, the so-called Bayesian synthesis. The ap-

proach consists of establishing a joint probability distribution on the model inputs

and outputs and then restricting this to a subspace defined by the model in order

to obtain the joint posterior distribution, from which inferences are drawn. Also,

statistical methods have been proposed to handle the sensitivity analysis which is

concerned with understanding how the model output is influenced by changes in

the model inputs (e.g. Draper et al., 1999; Oakley and O’Hagan, 2004).

Parameter uncertainty is a form of epistemic uncertainty, deriving from our

lack of knowledge about the real system. A second form of epistemic uncertainty

is structural uncertainty which is introduced by scientific choices of model design

and development. Although numerical models are deterministic, i.e. no random

components are considered along model development, their predictions are sub-

ject to error because any model is a simplification of reality. So, even in case of no

parameter uncertainty, model output cannot ever equal the “true” value of the pro-

cess of interest and this discrepancy is the well-known model inadequacy (Kennedy

and O’Hagan, 2001). Model discrepancy can be evaluated by comparing model

output with observations. Customarily, researchers make use of observations from

the process to deal with the calibration question and, in this case, they should take

into account also the observational error.
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Structural uncertainty can be also quantified by analyzing multi-model ensem-

bles. In this case, the output consists of different versions of a numerical model, i.e.

a model is run several times with different initial conditions and/or model physics.

Statistical approaches for quantifying uncertainty with ensembles have recently re-

ceived considerable attention (see e.g. Gneiting et al. 2005; Raftery et al. 2005;

Berrocal et al. 2007; Sloughter et al. 2007, 2010; Kleiber et al. 2011; Sloughter

et al. 2013). Raftery, Gneiting and co-authors developed a statistical approach

for post-processing ensembles based on Bayesian model averaging (BMA), which

is a standard method for combining predictive distributions from different sources.

Bayesian hierarchical approaches are also proposed by Smith et al. (2009), Tebaldi

and Smith (2010) and Di Narzo and Cocchi (2010) to tackle ensemble weather

forecasting and uncertainty assessment.

Despite uncertainty quantification is a pressing research issue, not much has

been said about statistical methods for attaching uncertainty to model output

when we do not have information about how such deterministic predictions are

created. Indeed, our proposal builds upon the notion of uncertainty introduced by

Ghosh et al. (2012) when numerical models are unavailable, rather only determin-

istic outputs at some spatial resolution are provided. In other words, we do not

know how the deterministic surfaces have been developed, instead they come from

some “black box” which we know nothing about. Ghosh et al. (2012) proposed

a general Bayesian approach to associate uncertainties with deterministic interpo-

lated surfaces, using some external validation data collected independently over

the same spatial domain as the deterministic map. Although numerical models

produce deterministic surfaces, we highlighted above that the output will not ever

be the “true” value of the process. In this framework, given the truth and the

model output, the associated error is not stochastic. But, under suitable stochas-

tic modeling, this error can be reinterpreted as a random unknown which we can

infer about using a Bayesian specification within the data fusion setting. Making

inference about the uncertainty might sound odd in usual statistical speaking, but,

again, here we want to attach some uncertainty measure to deterministic output

and so inference about such model-based uncertainty is needed.

Uncertainty maps associated with numerical model output provide useful in-

formation to guide environmental agencies in thinning and improving computer

models. Furthermore, when we use the model output as predictor of some envi-

ronmental variable (see for instance the downscaler in the previous chapters) we

might be interested to evaluate how these uncertainties propagate from the model
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output to the response forecasting. In this contest, spatial and spatio-temporal

errors-in-variables models has been proposted, among others, by Van de Kassteele

and Stein (2006) and Cameletti et al. (2011).

The contribution of this chapter is to develop a Bayesian hierarchical model to

provide spatially smoothed uncertainty associated with numerical model output,

regardless of how it was created. We can learn about such uncertainty through

stochastic data fusion modeling using some external validating data. We also

take into account the change of support problem, which arises from the spatial

misalignment between the numerical model output and the validation data. Sta-

tistical methods for blending observed data with model output has been deeply

discussed in the previous chapters, showing the benefit of data fusion modeling to

improve the forecasting. Conversely, our objective here is not the calibration of

numerical model predictions rather we are interested in spatially smoothed uncer-

tainties associated with the output. To attach such varying uncertainty across grid

cells we offer a fully model-based approach that can be used to assign uncertainty

to any deterministic surface. Here, we apply our Bayesian model to obtain the

uncertainty map associated with temperature output provided by RUC weather

model over the northeastern U.S.. The validation data set consists of temperature

measurements collected at monitoring stations operating in the same study region.

4.2 Data fusion model

Let R(Ai) denote the numerical model output (e.g. temperature predictions from

RUC model) over grid cell Ai, (i = 1, . . . , I). As usual, we interpret R(Ai) as

an average value over cell Ai, i.e. |Ai|−1
∫
Ai
R(s)ds, see (1.1). First, we specify a

measurement error model (MEM)1 for the numerical model output R(Ai) relative

to the truth, that is:

R(Ai) = R̃(Ai) + εr(Ai) (4.1)

where R̃(Ai) is the underlying process which represents the ‘true’ average value for

Ai and we assume εr(Ai) ∼ N
(
0, σ2

r(Ai)
)

independently ∀i = 1, . . . , I. The true av-

erage value R̃(Ai) arises from a Gaussian Markov Random Field (GMRF) equipped

with a conditionally autoregressive structure (CAR) (Besag, 1974; Banerjee et al.,

1The measurement error model is also known as error-in-variables model; see for instance

Fuller (1987) and references therein.
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2004) that is:

R̃(Ai) |
{
R̃(Ai′) : i′ 6= i

}
∼ N

(∑
i′∼i

R̃(Ai′)

wi
,
τ 2

wi

)
(4.2)

where i′ ∼ i identifies the cell Ai′ adjacent to cell Ai and wi is the number of

neighbors of cell Ai.

Let V (sj) be the temperature at location sj, (j = 1, . . . , n) gathered from

independent station data over the same region as the output, and Ṽ (sj) denotes

the true value at sj. For the validation data, we assume a spatial model given by:

V (sj) = Ṽ (sj) + εv(sj) (4.3)

where ε′v = (εv(s1), . . . , εv(sn)) is a zero-mean Gaussian process equipped with a

spatial exponential correlation function, i.e. εv ∼ N
(
0, σ2

v H(φ)
)
.

Finally, we address the change of support problem between the station data

and the numerical model output by assuming a further measurement error model

for Ṽ (sj). We avoid the integration problem associated with scaling from point to

grid level by employing the downscaling approach which associates to each site sj

the grid cell Ai that contains sj. Then, for each j = 1, . . . , n belonging to grid cell

Ai we have:

Ṽ (sj) = R̃(Ai) + εṽ(sj) (4.4)

where εṽ(sj) are independent N(0, σ2
ṽ).

Figure 4.1 shows a graphical representation of the model described above. In

order to illustrate how we can learn about the uncertainty through such stochastic

modeling, we clarify in the next section what we mean by uncertainty when dealing

with a deterministic output without information about how it was created.

4.3 Defining and modeling uncertainty

Recall that our primary goal is to provide a measure of uncertainty associated with

numerical model output over grid cells. To clarify what we mean by uncertainty, we

might concentrate about the “true” error, say R(Ai)− R̃true(Ai), where R̃true(Ai)

is the true average value for the numerical model output over cell Ai. When this

error is small for a grid cell, it implies small uncertainty associated to the numerical

model prediction. Conversely, if the error is large then we would imagine high

uncertainty for such cell.
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Figure 4.1: Graphical representation of model (4.1) - (4.4) under prior (4.7).

To inform about the true error, we might compute the observed residuals

R(Ai)− V (sj), i.e. compare the numerical model output with the validation data

for each grid cell that contains a site. Then, high “disagreement” between R(Ai)

and V (sj) for sj ∈ Ai suggests high uncertainty in Ai. Conversely, we expect small

uncertainty at grid cells where the disagreement between the numerical model out-

put and the observed temperature is low. However, two main issues arise when we

look at the observed residuals: first, the comparison between the average R(Ai)

with the point-level measurement V (sj) is unfair because of the different spatial

support of the two data sources, i.e COSP thoroughly discussed in Chapter 1. Sec-

ond, the observed residuals are available only for grid cells where sites lie, while

our goal is to attach uncertainty to every grid cell. To accomplish that, we consider

instead the so-called realized residuals (Zellner, 1975; Chaloner and Brant, 1988;

Chaloner, 1994), that is εr(Ai) = R(Ai)− R̃(Ai) from (4.1). To further clarify, the

true error for R(Ai) is not known and, as usual within the Bayesian framework, we

model unknowns as random and look at their posterior distributions for inference.

In fact, under the specification above, we take R̃(Ai) as the model for the truth

and we look at the posterior distribution of the realized residuals,
[
εr(Ai)|Data

]
.

The posterior variance var (εr(Ai) | Data) provides the desired uncertainty, varying

across grid cells.

We can obtain our local uncertainties by composition sampling, i.e. drawing

posterior samples of εr(Ai) and then compute their variance. Alternatively, we can

obtain local uncertainties as the posterior means E
(
σ2
r(Ai) | Data

)
. Indeed, under
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model (4.1) - (4.4), we have

var (εr(Ai) | Data) =E
[
var

(
εr(Ai) | R̃(Ai), σ

2
r(Ai), Data

)]
+ var

[
E
(
εr(Ai) | R̃(Ai), σ

2
r(Ai), Data

)] (4.5)

The second term in (4.5) is clearly 0 and the first reduces to E
(
σ2
r(Ai) | Data

)
. So,

the Rao-Blackwellized estimates can be directly obtained by computing the mean

of the posterior sampled draws of σ2
r(Ai).

Since we are interested in the posterior distribution of σ2
r(Ai), the specification

of its prior distribution represents a crucial step. The prior modeling of the σ2
r ’s is

covered in the next two subsections.

4.3.1 Modeling via hierarchical approach

A naive way to model, through a prior, the variances of interest would be to

assume that all σ2
r(Ai) are independently and identically distributed according to

an inverse gamma IG(a, b). Notice that the estimates can be sensitive to different

choices of the scale parameter b, but we do not have any knowledge about the

size of the uncertainties. Moreover, if a and b are fixed in advance, under the

independence assumption, the information we might have about the set of variances{
σ2
r(Ai′), i

′ 6= i
}

is not of help to estimate σ2
r(Ai). In other words, a form of

borrowing strength across grid cells has to enter in our specification. So, we add

a further level to the hierarchy of our Bayesian model so that all variances σ2
r(Ai)

are samples from the same prior distribution, that is

σ2
r(Ai) ∼ IG(a, b∗) (4.6)

with the scale parameter b∗ to estimate, while a remains fixed. This extra layer

has the effect of smoothing out the estimates of σ2
r(Ai), and substantially reducing

the sensitivity as well.

4.3.2 Modeling via spatial smoothing

As described in the beginning of this section, we look at the posterior variance of

the realized residuals εr(Ai) to obtain the desired local uncertainties, attaching high

uncertainty to grid cells for which we suppose large differences between the model

output and the true value. In addition, for a large realized residual at grid cell Ai,

we expect a similar behavior in its neighborhood, i.e. we envision that changes in
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variance occur smoothly over space. In other words, we figure out some spatial

smoothness for the uncertainty associated with the numerical model output, based

on the neighborhood structure of the grid cells. We formalize this belief assuming

a CAR process for the logarithm2 of the latent variances σ2
r(Ai) that is,

log
(
σ2
r(Ai)

)
|
{

log
(
σ2
r(Ai′)

)
: i′ 6= i

}
∼ N

(∑
i′∼i

log
(
σ2
r(Ai′)

)
wi

,
τ 2∗
wi

)
(4.7)

where, following the notation in Section 4.2, i′ ∼ i identifies the cell Ai′ adjacent

to cell Ai and wi is the number of neighbors of Ai. The logCAR prior model in

(4.7) is analogous to the spatial stochastic volatility approach developed by Yan

(2007) and revised by Reich and Hodges (2008) to capture spatial clustering in

heteroscedasticity. Model (4.7) enables us to explicitly impose a spatially vary-

ing structure on the variances, allowing for the borrowing of strength across grid

cells and inducing local spatial smoothing to uncertainty estimates towards their

neighboring grid cells.

4.3.3 Comparing uncertainty assignments

The comparison of alternative models is traditionally performed with attention

to uncertainty reduction, which is not really our objective. To further clarify, we

consider the “true” error introduced at the beginning of this section, i.e. R(Ai)−
R̃true(Ai), where R̃true(Ai) is the “true” average value for Ai. Again, with the

specification above we take R̃(Ai) as the model for the truth and we look at the

posterior variances of the realized residuals to obtain our local uncertainties. A

general balanced criterion needs to account for the trade-off between uncertainty

and bias in R̃(Ai) that is

R(Ai)− R̃true(Ai) =
(
R(Ai)− R̃(Ai)

)
+
(
R̃(Ai)− R̃true(Ai)

)
.

(4.8)

Therefore, we compare models considering both the posterior variance arising from

the first term in (4.8) and the squared bias associated with the second term. As

pointed out by Ghosh et al. (2012), to inform about bias with available data, we

can only compare R̃(Ai) with validation data V (sj), for each sj ∈ Ai. Then, the

balanced loss idea yields to the criterion

1

I

I∑
i=1

var
[
εr(Ai) | data

]
+
c

n

n∑
j=1

E
[(
R̃(Ai)− V (sj)

)2| data] (4.9)

2The logarithm ensures the positivity of the variances.
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where c indicates the relative regret for the two losses (Gelfand and Ghosh, 1998).

This induces to choose the model leading the smallest value of (4.9).

4.4 Fitting details

Since it is not possible to consistently estimate the decay and variance parameter

in a spatial model with a covariance function belonging to the Matérn family

(Zhang, 2004) as the exponential covariance function we employed, we fix the decay

parameter and we put a prior distribution on σ2
ṽ . On the variance parameters σ2

v

and σ2
ṽ we place conjugate inverse gamma priors IG(aσ, bσ) where we take aσ and

bσ so that
bσ

aσ − 1
=
MSE

2
and

b2σ
(aσ − 1)2(aσ − 2)

= 102

where MSE is the mean square error arising from a simple linear regression of V (sj)

on R(Ai) for each sj ∈ Ai. The prior distributions for τ 2 and τ 2∗ are specified as

independent proper inverse gamma distributions IG(aτ , bτ ). Recently, Sørbye and

Rue (2013) proposed a general approach for choosing the prior distribution for the

precision parameter of intrinsic GMRF, according to the specific type of GMRF

used. The authors suggested to select this prior by mapping the precision param-

eter to the marginal standard deviation of the model, under linear constraints. In

their applications, they showed that there were no significant differences in the

estimated spatial effects using the default and the scaled priors for the precision

parameter of a CAR process and their results were not sensitive to tuning of the

prior. Due to the insensitivity to different choices of aτ and bτ , in our implemen-

tation we take aτ = 2 and bτ = 1, implying that these variance components have

prior mean 1 and infinite variance.

Finally, a prior distribution for the parameter b∗ in (4.6) is needed. We assume

that this parameter is sampled from a uninformative gamma prior Ga(c, d), with

c = d = 0.01.

Define R =
(
R(A1), . . . , R(AI)

)′
and V =

(
V (s1), . . . , V (sn)

)′
; then the full

distributional specification of model (4.1) - (4.4) using the logCAR prior model is

given by: [
R | R̃,σ2

r

] [
V | Ṽ, σ2

v

] [
Ṽ | R̃, σ2

ṽ , φ
] [

R̃ | τ 2
] [
σ2
r | τ 2∗

]
(4.10)

where R̃ =
(
R̃(A1), . . . , R̃(AI)

)′
, Ṽ =

(
Ṽ (s1), . . . , Ṽ (sn)

)′
and

σ2
r =

(
σ2
r(A1), . . . , σ

2
r(AI)

)′
. Along with the prior distributions for all the unknown
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parameters, the Bayesian hierarchical model is completely specified. The model is

fitted using Markov Chain Monte Carlo (MCMC) algorithm; details are deferred

to Appendix C.

4.5 Simulation study

In this section, we perform simulation examples to illustrate the performance of

the two approaches described in Sections 4.3.1 and 4.3.2. Since our attached un-

certainty is model-based, it is not trivial to evaluate the modeling performance, as

we discussed in the previous section on comparing uncertainty assignments. Via

the simulation study we gain knowledge about the truth and so about the true

errors for assessing map uncertainty.

The simulation design is built from several sampling/fitting combinations allow-

ing the investigation of different features. Simulation experiments are performed

through the following steps:

1. We consider a unit square uniformly divided into 900 grid cells.

2. Using the centroids of the grid cells, we generate R̃(Ai) (i = 1, . . . , I = 900)

from the CAR model3 of expression (4.2) where τ 2 = 1.

3. We generate R(Ai) using relation (4.1). We consider different choices for

variances of interest σ2
r(Ai):

3.1. σ2
r(Ai) = 1, ∀Ai;

3.2. σ2
r(Ai) ∼ IG(a, b∗), with b∗ = 0.5;

3.3. σ2
r(Ai) ∼ logCAR(τ 2∗ ), with τ 2∗ = 0.5.

4. Then, two different sets of 200 locations are randomly generated within the

unit square (hereafter, “Coords1” and “Coords 2”).

5. For each location sj, (j = 1, . . . , n = 200) belonging to a grid cell Ai, we

generate Ṽ (sj) using relation (4.4) with σ2
ṽ = 1 and fixed value of decay

parameter φ. In particular, we set φ = 2.8 or φ = 11.25 corresponding,

respectively, to spatial ranges of roughly 80% and 20% of the maximum

distance over the region. We also consider the addition of some bias to (4.4)

in a portion of the region (top right) when we do the sampling.

3The CAR model is not proper, so we add a small constant to make the precision matrix

non-singular.
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Table 4.1: Sampling/fitting simulation design.

Scenario
Sampling Fittinga

σ2
r(Ai) Bias to (4.4) φ Validation data φ̂

(a) 1, ∀(Ai) NO 2.8 “Coords 1” 2.8

(b) 1, ∀(Ai) YES 2.8 “Coords 1” 2.8

(c) 1, ∀(Ai) NO 11.25 “Coords 1” 11.25

(d) 1, ∀(Ai) YES 11.25 “Coords 1” 11.25

(e) 1, ∀(Ai) NO 2.8 “Coords 1” 11.25

(f) 1, ∀(Ai) NO 2.8 “Coords 2” 2.8

(g) from IG(a, 0.5) NO 2.8 “Coords 1” 2.8

(h) from logCAR(0.5) NO 2.8 “Coords 1” 2.8

a In fitting, we consider both priors (4.6) and (4.7).

6. Finally, the validation data V (sj) are generated from equation (4.3) where

σ2
v = 1.

Given the sampling scheme described in the previous steps, we fit model (4.1) -

(4.4) under both prior models (4.6) and (4.7). Moreover, we allow for the case

when we fit the model setting the spatial decay parameter φ far away from its true

value. From all possible sampling/fitting combinations, we consider the scenarios

listed in Table 4.1.

We provide, as examples, the sampling design for scenarios (g) and (h) in

Figures 4.3 and 4.4. In such figures, the simulated local uncertainties (standard

deviations) are shown in the left panel. In the middle panel we have the true errors,

i.e. the differences between the simulated R(Ai) and the simulated R̃true(Ai). The

right panel shows the observed residuals, i.e. R(Ai) − V (sj), for each sj ∈ Ai for

scenario (g). True errors appear higher at grid cells where the simulated uncertain-

ties are higher, coherently with the idea of uncertainty described in Section 4.3.

It is not straightforward to argue similar behavior looking the observed residuals

compared to local uncertainties rather it is worth to look at the true errors that

we stress can be calculated only a situation like simulation study, where the data

generator process is known.

Posterior summaries of model parameters for all scenarios are given in Table
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4.2. The table reveals slight differences between the two approaches with respect

to parameter recovery across different scenarios, showing that we can however

recover the true values of these parameters. Figures 4.5 - 4.12 show the 900 local

predicted uncertainties associated with the simulated gridded maps under both the

hierarchical approach, (4.6) (left panels) and logCAR model, (4.7) (right panels).

In such figures, posterior uncertainty maps resulting from the logCAR prior are

smoother relative to those obtained from the hierarchical approach, as we expected.

Moreover, the estimated uncertainties obtained using model (4.7) are closer to their

true values than the posterior uncertainties obtained using the inverse gamma prior

in (4.6).

When we look at the whole set of left and right panels respectively, we note

slight differences between the posterior uncertainty maps across the scenarios for

both approaches. In particular, the comparison between Figure 4.5 and Figure 4.6

shows what happens when we add some bias to (4.4) in a portion of the region when

we do the sampling and we fit a measurement error model which ignores this aspect.

The comparison reveals little difference except for somewhat higher estimated un-

certainties under scenario (b). We reach the same conclusion by comparing Figure

4.7 and Figure 4.8 corresponding to scenarios (c) and (d), respectively. Comparing

the results under scenario (a) and scenario (c), we can learn about the smoothness

imparted to σ2
r ’s as we change the spatial decay parameter φ. From Figure 4.5 and

4.7 it is hard to measure the amount of smoothing since only slight differences are

revealed by the figures.

The comparison between Figure 4.9 and 4.5 shows that the posterior variances

are not very sensitive to the case when we fit the model setting the spatial decay

parameter φ far away from its true value, even if we note that we cannot longer

recover the true value of parameter σ2
ṽ under scenario (e).

Comparing the results under scenario (a) and scenario (f), we can evaluate

the effect of the locations of the validation data on the estimated uncertainty.

In fact, we assume that the external observed data are independently gathered

from the gridded data over the same region. Our stochastic modeling does not

attach higher uncertainty to numerical model output corresponding to grid cells

that contain sites. Accordingly, Figure 4.5 and Figure 4.10 show that the posterior

local uncertainties seem not to be affected by the location of the validation sites.

Finally, Figure 4.11 and 4.12 allow to investigate the performance of our mod-

eling in recovering the true uncertainties also when we do the sampling under

further schemes. Recall that the true values of the σ2
r ’s under scenario (g) and (h)



4.6 Attaching uncertainty to RUC output 67

are plotted in left panels of Figure 4.3 and Figure 4.4, respectively. The logCAR

prior model performs pretty well, leading to smoothed uncertainties quite close to

their true values. Instead, the hierarchical approach seems to fail in recovering the

true local uncertainties when we do the sampling under scenario (h).

Table 4.3 shows the comparison between the two alternative approaches via

criterion (4.9) for all scenarios (here, c = 1). In the simulation study, the true

average R̃true(Ai) is available and it replaces V (sj) in the criterion. Again, the

table reveals little differences between the two approaches for modeling, a priori, the

variances of interest. In general, the logCAR prior model yields to smaller values

of criterion (4.9), suggesting slight improved performance upon the hierarchical

approach.

4.6 Attaching uncertainty to RUC output

We finally turn to our objective to give a measure of uncertainty associated with

numerical model output. Here, we illustrate the data fusion model of Section 4.2

to quantify the uncertainty associated with RUC model output. From Section

3.1, we recall that RUC model produces weather short-term predictions for the

conterminous U.S. over grid cells of size 13 × 13 kilometers. As an example, we

consider daily temperature forecasts on August 7th, 2011 obtained as average of 24

hourly temperature forecasts (◦F) provided by RUC model from 00:00 to 23:00 on

August 7th over the northeastern United States, see Figure 4.2. There are 3,862

RUC grid cells spanning our study region. Moreover, land-based station data over

U.S. is provided by the NOAA’s National Climatic Data Center (NCDC). Here,

we consider 24-hour averages of hourly temperature collected from 163 stations

operating in the study region for the same period (Figure 4.2).

We fit model (4.1) - (4.4) under both prior models (4.6) and (4.7). Regarding

the spatial decay parameter φ, explanatory analysis suggested to fix the param-

eter at roughly 60% of the maximum distance over the study region. Posterior

summaries of the unknown parameters are presented in Table 4.4. The poste-

rior means of true temperature R̃’s with variances specification (4.6) and (4.7) are

shown in Figure 4.13 in left and right panel, respectively. The comparison of the

two panels reveals little differences between posterior means of the R̃’s under the

two approaches except for somewhat smoother estimates under prior (4.7). Figure

4.14 shows the estimated uncertainty maps associated with RUC output under

prior (4.6) and (4.7) in left and right panel, respectively. The uncertainty map
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Table 4.2: True values, posterior mean and 95% credible intervals of model parameters

under all scenarios.

Scenario Parameters True value IG(a, b∗) logCAR(τ2∗ )

(a)

σ2
v 1 1.099 (0.474, 2.086) 1.157 (0.502, 2.233)

σ2
ṽ 1 0.716 (0.471, 0.991) 0.762 (0.513, 1.040)

τ2 1 1.314 (0.746, 2.074) 0.959 (0.549, 1.474)

b∗ 1.327 (1.088, 1.564)

τ2∗ 0.216 (0.117, 0.376)

(b)

σ2
v 1 1.231 (0.555, 2.289) 1.297 (0.586, 2.426)

σ2
ṽ 1 0.692 (0.448, 0.970) 0.741 (0.493, 1.018)

τ2 1 1.292 (0.733, 2.041) 0.893 (0.511, 1.364)

b∗ 1.332 (1.095, 1.570)

τ2∗ 0.221 (0.106, 0.391)

(c)

σ2
v 1 1.075 (0.482, 1.829) 1.134 (0.520, 1.921)

σ2
ṽ 1 0.678 (0.317, 1.128) 0.713 (0.335, 1.163)

τ2 1 1.385 (0.766, 2.205) 0.964 (0.532, 1.514)

b∗ 1.308 (1.062, 1.551)

τ2∗ 0.222 (0.101, 0.416)

(d)

σ2
v 1 1.233 (0.626, 1.975) 1.301 (0.666, 2.084)

σ2
ṽ 1 0.610 (0.279, 1.039) 0.643 (0.292, 1.075)

τ2 1 1.366 (0.754, 2.179) 0.941 (0.527, 1.474)

b∗ 1.312 (1.066, 1.556)

τ2∗ 0.211 (0.096, 0.402)

(e)

σ2
v 1 1.112 (0.672, 1.653) 1.184 (0.717, 1.758)

σ2
ṽ 1 0.418 (0.204, 0.709) 0.444 (0.214, 0.736)

τ2 1 1.327 (0.743, 2.102) 0.926 (0.519, 1.428)

b∗ 1.321 (1.080, 1.561)

τ2∗ 0.218 (0.100, 0.439)

(f)

σ2
v 1 0.860 (0.377, 1.638) 0.848 (0.369, 1.660)

σ2
ṽ 1 0.925 (0.670, 1.220) 0.945 (0.694, 1.235)

τ2 1 1.159 (0.639, 1.878) 0.895 (0.479, 1.388)

b∗ 1.378 (1.145, 1.609)

τ2∗ 0.21 (0.104, 0.365)

(g)

σ2
v 1 1.177 (0.509, 2.239) 1.213 (0.525, 2.338)

σ2
ṽ 1 0.754 (0.505, 1.033) 0.770 (0.518, 1.046)

τ2 1 0.989 (0.652, 1.411) 0.865 (0.558, 1.257)

b∗ 0.5 0.547 (0.437, 0.660)

τ2∗ 1.361 (0.505, 2.516)

(h)

σ2
v 1 1.094 (0.476, 2.090) 1.092 (0.470, 2.144)

σ2
ṽ 1 0.859 (0.603, 1.151) 0.876 (0.615, 1.162)

τ2 1 1.053 (0.734, 1.446) 0.822 (0.587, 1.108)

b∗ 0.244 (0.168, 0.317)

τ2∗ 0.5 0.322 (0.136, 0.634)
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Table 4.3: Criteria (4.9) for different scenarios under the two alternative prior models.

Scenario IG(a, b∗) logCAR(τ2∗ )

(a) 1.226 + 0.162 = 1.389 1.072 + 0.158 = 1.230

(b) 1.231 + 0.163 = 1.394 1.101 + 0.159 = 1.261

(c) 1.210 + 0.164 = 1.374 1.079 + 0.159 = 1.238

(d) 1.214 + 0.164 = 1.378 1.084 + 0.159 = 1.244

(e) 1.222 + 0.161 = 1.383 1.085 + 0.157 = 1.242

(f) 1.266 + 0.151 = 1.417 1.010 + 0.152 = 1.252

(g) 0.531 + 0.116 = 0.647 0.510 + 0.120 = 0.630

(h) 0.231 + 0.010 = 0.331 0.240 + 0.098 = 0.338

resulting from the logCAR prior model on σ2
r ’s reveals the spatial variation, as we

expected. It also worth noting from Figure 4.13 and 4.14 that the estimated R̃’s

and the attached uncertainties have different spatial patterns. In fact, high values

in R̃(Ai) does not necessarily imply high uncertainty, rather high uncertainty is

linked to large realized residuals. Moreover, we have no reason to believe that the

uncertainty should be proportional in some way to true temperature neither that

larger variances should be associated with larger responses.

Regarding the comparison between the two alternative approaches we note the

following: when we set c = 1, criterion (4.9) under inverse gamma prior is 2.41 while

under the logCAR prior the criterion results to be 2.43. However, when c increases,

i.e increasing weight of the second term in (4.9), we see slight improvement of

approach (4.7) upon the approach (4.6), e.g. for c = 3 we have 7.23 and 7.14 for

prior (4.6) and (4.7), respectively.

4.7 Summary

In this chapter we have developed a hierarchical model to fuse a deterministic

output and some validation data in order to quantify the uncertainty associated

with the model output. We have allowed for spatially smoothed error variances

via a logCAR prior model (4.7) and we have compared this approach against the

simpler hierarchical approach (4.6).
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Figure 4.2: Temperature stations (black dots) and daily RUC output on August 7th,

2011 over Northeastern US.

Future work will find us dealing with the calibration issue jointly to the un-

certainty assessment of numerical models output. Extension can also concern

joint forecast maps, e.g. temperature and precipitation and attaching uncertainty

through joint stochastic modeling. Regarding the attached uncertainty to RUC

output, we are also interested in seasonal uncertainties, say winter or summer un-

certainty maps. Finally, we recall that the RAP weather forecast model took the

place of the RUC model on May 1, 2012. Therefore, we are interested to compare

uncertainty maps associated with RUC output against those attached to RAP

predictions.
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Table 4.4: Posterior summary of model parameters.

Parameters IG(a, b∗) logCAR(τ2∗ )

σ2
v 0.931 (0.285, 2.240) 0.902 (0.283, 2.118)

σ2
ṽ 1.719 (1.235, 2.277) 1.701 (1.231, 2.242)

τ2 0.791 (0.757, 0.826) 0.728 (0.694, 0.764)

b∗ 0.0004 (0.0001, 0.0010)

τ2∗ 10.868 (7.428, 14.91)

0.5 1.0 1.5 2.0 −3 −2 −1 0 1 2 3 −6 −4 −2 0 2 4 6

Figure 4.3: Simulated standard deviations (left panel), true errors (middle panel) and

observed residuals (right panel) for scenario (g).

0.3 0.4 0.5 0.6 0.7 0.8 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −4 −2 0 2 4

Figure 4.4: Simulated standard deviations (left panel), true errors (middle panel) and

observed residuals (right panel) for scenario (h).
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Figure 4.5: Estimated uncertainty under prior (4.6) in the right panel and under prior

(4.7) in the left panel for scenario (a). Black dots represent validation sites

(“Coords 1”).
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Figure 4.6: Estimated uncertainty under prior (4.6) in the left panel and under prior

(4.7) in the right panel for scenario (b).
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Figure 4.7: Estimated uncertainty under prior (4.6) in the left panel and under prior

(4.7) in the right panel for scenario (c).
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Figure 4.8: Estimated uncertainty under prior (4.6) in the left panel and under prior

(4.7) in the right panel for scenario (d).
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1.0 1.5 2.0 2.5 3.0 0.95 1.00 1.05 1.10 1.15 1.20 1.25

Figure 4.9: Estimated uncertainty under prior (4.6) in the left panel and under prior

(4.7) in the right panel for scenario (e).
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Figure 4.10: Estimated uncertainty under prior (4.6) in the left panel and under prior

(4.7) in the right panel for scenario (f). Black dots represent validation

sites (“Coords 2”).
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Figure 4.11: Estimated uncertainty under prior (4.6) in the left panel and under prior

(4.7) in the right panel for scenario (g).
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Figure 4.12: Estimated uncertainty under prior (4.6) in the left panel and under prior

(4.7) in the right panel for scenario (h).
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Figure 4.13: Posterior means of R̃(Ai) under priors (4.6) and (4.7) in left and right

panel, respectively.
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Figure 4.14: Estimated standard deviations under priors (4.6) and (4.7) in left and

right panel, respectively.



Chapter 5

Conclusions

In this dissertation, we have proposed and discussed Bayesian modeling to combine

monitoring data and numerical model output. Such data fusion has been motivated

by different goals, mainly real-time forecasting and uncertainty quantification for

numerical model output. We also have addressed the change of support problem

encountered in blending observed data with model output via the downscaling

approach.

In the first part of this thesis, we have addressed a specific applied challenge,

that is real-time forecasting of current 8-hour average ozone levels over the con-

terminous U.S.. We have combined ozone monitoring data with ozone predictions

from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour

average ozone level defined as the average of the previous four hours, current hour,

and predictions for the next three hours. We have proposed a Bayesian downscaler

model based on first differences with a flexible coefficient structure and an efficient

computational strategy such that it is feasible for real-time implementation. We

have used historical data from a large subregion of U.S. to show that our approach

enables significant improvement in the accuracy of ozone forecasting relative to the

predictions provided by the current forecasting system.

Furthermore, we have considered the introduction of temperature data into our

downscaler for real-time forecasting. In particular, ozone monitoring data has been

fused with real-time temperature data arising as output from a weather forecast

model. Again, we have exploited first differences to expedite computation. Model

validation for the eastern United States showed consequential improvement of our

fully inferential approach compared with the existing implementations and the

previous downscaler. One added advantage of our method is its easy and cheap
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implementation allowed by free access to the RUC (RAP) output at the NOAA’s

web site. Hence, our strategy is currently being implemented by EPA to provide

the public and experts with real-time current 8-hour average ozone predictions.

In the last part of this work, we have developed a data fusion model to quantify

the uncertainty associated with numerical model output, regardless of how it was

created. In fact, as many authors have noted, to be fully helpful an inference or

prediction must also have an uncertainty assessment attached to it. However, com-

puter models do not usually provide any uncertainty measure associated with their

predictions, since they are deterministic models. We have proposed a Bayesian

hierarchical model to provide spatially smoothed uncertainty associated with nu-

merical model output, showing that we can learn about such uncertainty through

suitable stochastic data fusion modeling using some external validation data. Our

model has been successfully applied to attach uncertainty to temperature output

over the northeastern United States.

Model developments presented in this thesis enable accurate forecasting along

with appropriate uncertainty quantification and so they might be helpful to advance

the knowledge about several environmental phenomena. For instance, accurate

and instantaneous forecasting of ozone exposure can better inform the public and

environmental decision-makers about air pollution levels that may lead to harmful

health effects. Similarly, a suitable uncertainty assessment may provide useful

information to guide environmental agencies in thinning and improving computer

models.

Finally, it is worth to give a general overview of this dissertation. In fact, we

can envision a link between the first part of this work concerning forecasting and

last part focusing on uncertainty assessment for deterministic maps. We recall

that the downscaler for real-time forecasting proposed in Chapters 2 and 3 takes

directly the model output as covariate. However, we have shown that the model

output is affected by uncertainty and it might be relevant to take into account

such uncertainty within the downscaler. In other words, we can be interested to

quantify the uncertainty associated with the model output and then look at the

effect of such uncertainty on the ozone forecasting.



Appendix A

Full conditional distributions

Here, we derive the full conditional distributions under model (2.9) - (2.10). The

full conditional distributions for the inverse of the variance parameters τ 2, σ2 and

ξ2 are:

1

τ 2
|rest ∼ Ga

(
a+

(T − 3)n

2
,

b+
1

2

T−3∑
t=1

n∑
i=1

(
∆Z
t (si)− β0(si)β0,t − β1∆x

t (si)− β1(si)∆x
t (si)

)2)
1

σ2
|rest ∼ Ga

(
a+

n

2
, b+

1

2
B
′(s)
0 H−1(φ)B

(s)
0

)
1

ξ2
|rest ∼ Ga

(
a+

n

2
, b+

1

2
B
′(s)
1 H−1(φ)B

(s)
1

)

The full conditional distribution for the global slope parameter β1 is: β1 |rest ∼
N(vg, v) where

v−1 =
1

τ 2

T−3∑
t=1

n∑
i=1

(∆x
t (si))

2 +
1

g2

g =
1

τ 2

T−3∑
t=1

n∑
i=1

∆x
t (si)

(
∆Z
t (si)− β0(si)β0,t − β1(si)∆x

t (si)

)

Let ∆Z
t =

(
∆Z
t (s1), . . . ,∆

Z
t (sn)

)′
and ∆Z(si) =

(
∆Z

1 (si), . . . ,∆
Z
T−3(si)

)′
the vectors

that collect spatial series and temporal series, respectively. The full conditional

distribution for the intercept spatial effect is a normal distribution B
(s)
0 |rest ∼
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N(V d, V ) where

V −1 =
1

τ 2

T−3∑
t=1

(
β0,t
)2

+
1

σ2
H−1(φ)
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1

τ 2
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(
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t − β1∆x
t −Dx

t B
(s)
1

)
and the matrix Dx

t is diagonal with
(
Dx
t

)
ii′

= ∆t(si). For the slope spatial effect

we have1 B
(s)
1 |rest ∼ N(V d, V ) where

V −1 =
1

τ 2
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t=1

(
Dx
t
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1
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1
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t

(
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t − β0,tB
(s)
0 − β1∆x

t
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Finally, the full conditional distribution for the temporal effect is a normal distri-

bution B
(t)
0 |rest ∼ N(V d, V ) where

V −1 =
1

τ 2

n∑
i=1

(
β0(si)

)2
+K−1(ϕ)

d =
1

τ 2

n∑
i=1

β0(si)
(
∆(si)

Z − β1∆(si)
x − β1(si)∆(si)

x
)

1We re-use the same symbols for notation simplicity.



Appendix B

Pseudo algorithm

Suppose that today is August 2nd, 2012 and the current hour, T , is 07:00 (UTC).

We would forecast the current 8-hour average ozone level ZT (s) at 7AM on August

2nd, corresponding to the average of hourly ozone data from 3AM to 10AM.

Suppose we have already collect historical data up to 6AM on August 2nd. Then,

at the current hour T , we would need to implement the following steps:

1. Download the RAP output from the ftp:

ftp://ftpprd.ncep.noaa.gov/../../pub/data/nccf/com/rap/prod/.

Usually, the RAP file are specified as

rap.yyyymmdd/rap.thhz.awp130bgrfff.grib2

where yyyymmdd is the date, hh is the model cycle runtime, 130 is the spatial

resolution (13-km) and ff is the forecast hour.

For instance, rap.20120801/rap.t00z.awp130bgrf01.grib2 is the 1-hour ahead

RAP output from model which is run at 00:00 on August 1st.

In principle, at 7AM, we would need the following files:

- rap.20120802/rap.t07z.awp130bgrf00.grib2 (corresponding to 7AM)

- rap.20120802/rap.t07z.awp130bgrf01.grib2 (corresponding to 8AM)

- rap.20120802/rap.t07z.awp130bgrf02.grib2 (corresponding to 9AM)

- rap.20120802/rap.t07z.awp130bgrf03.grib2 (corresponding to 10AM)

However, the RAP files could be delayed of some hours. In this case, we can

download the last available hour plus the k -step ahead forecasts correspond-

ing to the data we need. In general for hh= T − k, we download the file
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corresponding to ff= 0 : 3 + k.

In this example, we need the RAP output (hourly) from 12AM on August

1st to 7AM on August 2nd, plus 1-hour, 2-hour and 3-hour ahead forecasts

corresponding to 8AM, 9AM and 10AM on August 2nd.

2. Extract the variable “temperature 2-m above ground” and the coordinates

from the files downloaded. Let Rt(B) denotes the hourly temperature RAP

output over the grid cell B.

3. Given the 8-hour average ozone data, remove each site with at least one

missing values in the 24-hour window.

4. Associate to each site s the grid cell B that contains s (s ∈ B).

5. Compute the ozone monitoring data differences in (2.5) and the RAP data

differences as in (3.1) and consider model (3.2).

6. Set aside data from m randomly chosen sites (about 10% or less) to estimate

the decay parameters φ and ϕ.

7. Given a set of values for φ and ϕ, fit model (3.2) via a Gibbs sampling for

each combination of the two decay parameters (parallel computation).

8. Predict ∆Z
t (s′j) for each t = 1, . . . , 24 and j = 1, . . . ,m (at the hold-out sites).

9. Compute the VMSE in (2.17) and choose the combination of φ and ϕ which

leads to the smallest VMSE.

10. Predict ∆Z
T−2(si), ∆Z

T−1(si) and ∆Z
T (si) for each i = 1, . . . , n (at the monitor-

ing sites) and sum each predictive posterior draw to ZT (si).

11. Obtain the ZT (s) at the Eta-CMAQ centroids via an ordinary kriging using

a fast available package.

12. Get the predicted surface of the current 8-hour average ozone level as average

of the posterior predictive distribution of the kriged ZT (s).



Appendix C

MCMC details

We partition R̃ =
(
R̃(1), R̃(2)

)
, where R̃(1) corresponds to the numerical model

output for the n grid cells where monitoring stations are, while R̃(2) is the vector

containing the numerical model output at (I − n) grid cells where no observations

are made.

The full conditional distributions for the inverse of the variance parameters σ2
v ,

σ2
ṽ , τ

2 and τ 2∗ are:

1

σ2
v
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(
aσ +

n

2
, bσ +

1

2

(
V − Ṽ

)′
H−1(φ)

(
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))
1
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(
aσ +

n

2
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1

2

(
Ṽ − R̃(1)

)′(
Ṽ − R̃(1)

))
1

τ 2
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(
aτ +

I

2
, bτ +

1

2
R̃′
(
Dw −W

)
R̃

)
1

τ 2∗
|rest ∼ Ga

(
aτ +

I

2
, bτ +

1

2

(
log(σ2

r)
)′(
Dw −W

)(
log(σ2

r)
))

where σ2
r =

(
σ2
r(A1), . . . , σ

2
r(AI)

)′
, Dw = diag(wi) and W is the proximity matrix1.

The posterior conditional distribution for Ṽ is a multivariate normal distribu-

tion N(Dṽdṽ, Dṽ), where

D−1ṽ =
1

σ2
v

H−1(φ) +
1

σ2
ṽ

In

dṽ =
1

σ2
v

H−1(φ)V +
1

σ2
ṽ

R̃(1)

We sample the elements of R̃ using univariate sampling scheme as following.

If R̃(Ai) ∈ R̃(1), the full conditional distribution for R̃(Ai) is normal distribution

1Adjacent cells according to the rook’s neighborhood structure.
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N(Dr1dr1, Dr1), where

D−1r1 =
1

σ2
r(Ai)

+
1

σ2
ṽ

+
wi
τ 2

dr1 =
R(Ai)

σ2
r(Ai)

+
Ṽ (Ai)

σ2
ṽ

+
1

τ 2

∑
i′∼i

R̃(Ai′)

If R̃(Ai) ∈ R̃(2), the full conditional distribution for R̃(Ai) is normal distribution

N(Dr2dr2, Dr2), where

D−1r2 =
1

σ2
r(Ai)

+
wi
τ 2

dr2 =
R(Ai)

σ2
r(Ai)

+
1

τ 2

∑
i′∼i

R̃(Ai′)

Given the common inverse gamma prior IG(a, b∗), the full conditional distri-

bution for each σ2
r(Ai) is:

1

σ2
r(Ai)

|rest ∼ Ga

(
a+

1

2
, b∗ +

1

2

(
R(Ai)− R̃(Ai)

)2)
(C.1)

The Gamma distribution falls in the conjugate class of prior densities for b∗,

then it is straightforward to show that its full conditional distribution is

b∗ |rest ∼ Ga

(
c+ aI, d+

1∑I
i=1 σ

2
r(Ai)

)
Finally, using the logCAR prior model for σ2

r(Ai), the full conditionals cannot

be obtained in closed form; so we use a random walk Metropolis proposal steps for

individual grid cell to generate samples from its posterior.
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