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Numerous inflammatory diseases and autoimmune disorders by therapeutic peptides

have received substantial consideration; however, the exploration of anti-inflammatory

peptides via biological experiments is often a time-consuming and expensive task. The

development of novel in silico predictors is desired to classify potential anti-inflammatory

peptides prior to in vitro investigation. Herein, an accurate predictor, called PreAIP

(Predictor of Anti-Inflammatory Peptides) was developed by integrating multiple

complementary features. We systematically investigated different types of features

including primary sequence, evolutionary and structural information through a random

forest classifier. The final PreAIP model achieved an AUC value of 0.833 in the training

dataset via 10-fold cross-validation test, which was better than that of existing models.

Moreover, we assessed the performance of the PreAIP with an AUC value of 0.840 on

a test dataset to demonstrate that the proposed method outperformed the two existing

methods. These results indicated that the PreAIP is an accurate predictor for identifying

AIPs and contributes to the development of AIPs therapeutics and biomedical research.

The curated datasets and the PreAIP are freely available at http://kurata14.bio.kyutech.

ac.jp/PreAIP/.

Keywords: inflammatory disease, anti-inflammatory peptides prediction, feature encoding, feature selection,

random forest

INTRODUCTION

Inflammation responses occur under the normal conditions when tissues are damaged by
bacteria, toxins, trauma, heat, or any other reason (Ferrero-Miliani et al., 2007). These responses
cause chronic autoimmune and inflammation disorders, including neurodegenerative disease,
asthma, psoriasis, cancer, rheumatoid arthritis, diabetes, and multiple sclerosis (Zouki et al., 2000;
Steinman et al., 2012; Tabas and Glass, 2013; Patterson et al., 2014; Hernández-Flórez and Valor,
2016). Numerous inflammation mechanisms are crucial for the upkeep of the state of tolerance
(Miele et al., 1988; Corrigan et al., 2015). Numerous endogenous peptides recognized through
inflammatory reactions function as anti-inflammatory agents can be employed by new therapies
for autoimmune and inflammatory illnesses (Gonzalez-Rey et al., 2007; Delgado and Ganea, 2008).
The immunotherapeutic aptitude of these anti-inflammatory peptides (AIPs) has various clinical
applications such as generation of regulatory T cells and inhibition of antigen-specific T(H)1-driven
responses (Delgado and Ganea, 2008). Moreover, certain synthetic AIPs act as effective
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therapeutic agents for autoimmune and inflammatory disorders
(Zhao et al., 2016). For instance, chronic adenoidal direction
of human amyloid-β peptide causes an Alzheimer’s disease.
Mice models result in compact deposition of amyloid-β
peptides, which is a pathological marker of Alzheimer’s disease,
astrocytosis, microgliosis, and neuritic dystrophy in the brain
(Boismenu et al., 2002; Gonzalez et al., 2005; Kempuraj et al.,
2017). The present therapy for autoimmune and inflammatory
disorders involves the use of non-specific anti-inflammatory
drugs and other immunosuppressants, which are frequently
related to different side effects, such as initiation of a higher
possibility of infectious diseases and ineffectiveness alongside
inflammatory disorders (Tabas and Glass, 2013).

Notwithstanding the increasing number of experimentally
examined AIPs in vivo, the molecular mechanism of AIP
specificity remains largely unknown. On the other hand, large-
scale experimental analysis of AIPs is time-consuming, laborious,
and expensive. An alternative, computational approach that
provides an accurate and reliable prediction of AIPs is required
to complement the experimental efforts and to access the prompt
identification of potential AIPs prior to their synthesis. To date,
two in silicomethods have been proposed to predict AIPs (Gupta
et al., 2017; Manavalan et al., 2018). In 2017 Gupta et al.
employed hybrid features with a support vector machine (SVM)
classifier to develop the AntiInflam predictor (Gupta et al., 2017).
Manavalan et al. developed the AlPpred predictor by using the
primary sequence encoding features with a random forest (RF)
classifier (Manavalan et al., 2018). These two methods used the
primary sequence feature information without considering any
evolutionary or structural features.

Nonetheless, the performance of the abovementioned existing
predictors is not sufficient and remains to be improved.
In this study, we have developed an accurate predictor
named PreAIP (Predictor of Anti-Inflammatory Peptides) by
integrating multiple complementary. We investigated different
types sequence features including the primary sequence,
evolutionary, and structural through a RF classifier. The PreAIP
achieved higher performance on both the training and test
datasets than the existing methods. In addition, we obtained
valuable insights into the essential sequence patterns of AIPs.

MATERIALS AND METHODS

Dataset Collection
To construct the PreAIP, we collected training and test datasets
from a recently published article of the AIPpred (Manavalan
et al., 2018) and the IEDB database (Vita et al., 2019). A peptide
was considered as anti-inflammatory (positive sample) if the anti-
inflammatory cytokines of peptides induce any one of IL-10, IL-4,
IL-13, IL-22, TGFb, and IFN-a/b in T-cell analyses of mouse and
human (Marie et al., 1996; Jin et al., 2014). Meanwhile, the linear
peptides for anti-inflammatory cytokines were considered non-
AIPs (i.e., negative samples). To solve the overfitting problem of
the prediction model, CD-HIT was employed with a sequence
identity threshold of 0.8 (Huang et al., 2010). After eliminating
redundant peptides, the same training and test samples were
retrieved from the AIPpred predictor (Manavalan et al., 2018).

More reliable performance would be achieved by using a more
stringent criterion of 0.3 or 0.4, as executed in (Hasan et al., 2016,
2017a). However, this study did not use such a stringent criterion,
because the length of the currently available AIPs is between 4
and 25. If we apply a stringent criterion of <0.8, the number of
the available AIPs is greatly reduced so that we cannot retrieve the
datasets employed by the previous predictor (Manavalan et al.,
2018). The collected training dataset results in 1,258 positive and
1,887 negative samples, and the test dataset contains 420 positive
and 629 negative samples. All of curated datasets are included in
our web server.

Computational Framework
An overall computational framework of the proposed PreAIP
is shown in Figure 1. After collecting the positive and negative
AIPs from the AIPpred server (Manavalan et al., 2018), their
sequence datasets were transformed into the primary sequence,
evolutionary and structural features.We considered polypeptides
with 1 to 25 natural amino acids. When the peptide contains less
than 25 residues, our scheme provides gaps (-) to the missing
residues to compensate a peptide length of 25. To encode the
primary sequence features, we employed two encoding methods
of the composition of k-spaced amino acid pairs (KSAAP)
and AAindex properties. An evolutionary feature was encoded
by using the position specific encoding matrix, i.e., profile-
based composition k-space of amino acid pair (pKSAAP). The
structural feature (SF) was encoded by using SPIDER2 (Yang
et al., 2017) and PEP2D (http://crdd.osdd.net/raghava/pep2d/)
bioinformatics tools. The resulting five types of descriptors were
independently put into RF models to produce five consecutive,
independent RF prediction scores. Those RF scores were linearly
combined using the weight coefficients to obtain the final
prediction score. A web server was developed to implement
the PreAIP.

Feature Encoding
The PreAIP was constructed based on a binary classification
problem (positive AIPs and negative-AIPs) through RF
algorithms. The extraction of a set of relevant features is a
crucial step to present a classifier. To keep the generated feature
vectors, a high-quality peptide encoding method is necessary.
As a substitute of the simple binary representation, we adopted
five types of complicated feature encoding methods: AAindex,
KSAAP, SPIDER2, PEP2D, and pKSAAP, which are briefly
described in the following subsections.

Amino Acid Index Properties
Numerical physicochemical properties of amino acids exist in
the AAindex database (version 9.1) (Kawashima et al., 2008).
After assessing different types of AAindex indices, we selected 8
types of high indices (HI) and ordered them from HI1 to HI8
(Table S1). In a peptide sequence with length L, a (L× 20) feature
vector was generated through the AAindex encoding.

KSAAP Encoding
The KSAAP encoding descriptor is widely used in bioinformatics
research (Carugo, 2013; Hasan et al., 2018a,b). The procedure of
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FIGURE 1 | Computational framework of PreAIP.

KSAAP is briefly described as follows. Peptide sequences contain
(20× 20) types of amino acid pairs (i.e., AA, AC, AD, . . . , YY)400
for every single k, where k denotes the space between two amino
acids. The optimal kmax was set to 0–4 to generate (20 × 20 ×
5) = 2,000 dimensional feature vectors for each corresponding
peptide sequence. Details of the KSAAP encoding method are
described elsewhere (Hasan et al., 2015).

Structural Features
Protein-Based SF

The protein-based SF features are generated by the SPIDER2
software that is widely used in bioinformatics research (Yang
et al., 2017; López et al., 2018). Three types of features were
generated by SPIDER2: accessible surface area (ASA), backbone
torsion angles (BTA), and secondary structure (SS). The BTA
generated 4-type feature vectors of phi, psi, theta and tau. The SS
generated 3-type feature vectors of helix, strand and coil. Totally,
8-type feature vectors were generated SPIDER2. For each peptide
sequence, (L × 8) dimensional feature vectors were generated,
where L was the length of a given AIP.

Peptide-Based SF

We employed PEP2D to generate a peptide structure prediction
feature (http://crdd.osdd.net/raghava/pep2d/). The PEP2D
generated three types of probability scores: Helix Prob, Sheet
Prob, and Coil Prob. For each peptide sequence, (L × 3)
dimensional feature vectors were generated, where L was the
length of a given AIP.

pKSAAP Encoding
In protein or peptide sequence analysis, the PSSM provides useful
evolutionary information. This matrix measures the replacement
probability of each residue in a protein with all the residues

of the genomic code. The PSSM profile was created by using
PSI-BLAST (version of 2.2.26+) against the whole Swiss-Prot
NR90 database (version of December 2010) with two default
parameters, an e-value cutoff of 1.0 × 10−4 and an iteration
number of 3 (Hasan et al., 2015). Then, we extracted the feature
vectors using the given peptide sequences. After generating the
PSSM profile, we generated possible k-space pair composition
from the PSSM, i.e., pKSAAP, in the samemanner as the previous
study of protein pupylation site prediction (Hasan et al., 2015).
When an optimal k-space was between 0 and 4, a (5× 20× 20=
2,000) dimensional feature vector was generated.

Moreover, we utilized a similarity-search-based tool of BLAST
(version of ncbi-blast-2.2.25+) (Altschul et al., 1997; Bhasin and
Raghava, 2004) to investigate whether a query peptide belongs
to AIPs or not. The BLASTP with an e-value of 1.0 × 10−2

was used for the whole Swiss-Prot NR90 database (version of
December 2010).

Feature Selection
To find the top ranking features for predicting AIPs, a well-
established, supervised method for feature dimensionality
reduction, Information Gain (IG) (Azhagusundari and
Thanamani, 2013; Huang, 2015; Manavalan et al., 2018),
was used through a WEKA package (Frank et al., 2004). A large
value of the IG indicates that the corresponding residues have a
great impact on prediction performance. The IG processes the
decrease in entropy when given information is used to group
values of an alternative (class) feature. The entropy of feature U
is defined as

H (U) = −
∑

i
P(ui)log2 (P (ui)) (1)
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where ui is a set of values of U and P (ui) is the prior probability
of ui. Conditional entropy H(U/V), given another feature V, is
defined as

H (U|V) = −
∑

j
P

(

vj
)

∑

i
P

(

ui|vj
)

log2(P(ui|vj)) (2)

where P (ui | vj) is the posterior probability of U given by the
value vjofV. The IG is defined as the decreased entropy calculated
by subtracting the conditional entropy of U given by V from the
entropy of U, as follows.

IG (U|V) = H (U) −H(U|V) (3)

Random Forest
The RF is a supervised machine learning algorithm (Breiman,
2001) and is widely used for various biological problems
(Manavalan et al., 2017, 2018; Bhadra et al., 2018; Hasan and
Kurata, 2018). In brief, the following steps are carried to construct
n trees of the RF model. Initially, to obtain a new dataset, N
samples are obtained from the training set by random selection
with replacement procedures. To get n different datasets this
procedure is repeated n times and n decision trees are built
based on the n datasets. In this assembling process, for K input
features, k (k << K) features are selected randomly, where k is
the constant during construction of the RF. To split the node,
a gini impurity criterion is used from the given features. To
grow completely, each decision tree is grown without pruning.
Afterward getting n decision trees, the class with the most
votes is the final prediction (Breiman, 2001). An R package was
implemented to train the proposed model (https://cran.r-project.
org/web/packages/randomForest/). We set n to 1000 through the
10-fold cross-validation (CV) test, which is large enough to gain
stable prediction.

Other Machine Learning Algorithms
The performance of the RF was characterized in comparison
to three commonly used machine learning algorithms: Naive
Bayes (NB) (Lowd, 2005), SVM (Hearst, 1998), and artificial
neural network (ANN) (Michalski et al., 2013). We used the
NB and ANN algorithms of the WEKA software (Frank et al.,
2004) and the SVM algorithm with a kernel radial basis function
(RBF) of the LIBSVM package (https://www.csie.ntu.edu.tw/~
cjlin/libsvm/). In the NB algorithm, we set batch size to 1,000
through the 10-fold CV via the WEKA software. For the ANN
algorithm, we considered “MultilayerPerceptron –L 0.3 –M 0.2
–N 500 –V 0 S 0 –E 20 –H a” via the WEKA software. To
optimize the parameters of the SVM model, the cost and gamma
functions were set to 8 and 0.03125 for KSAAP, respectively, via
the LIBSVM package. Similarly, the cost and gamma functions
were set to 2 and 0.0123 for AAindex, 32 and 0.0625 for pKSAAP,
16 and 0.125 for SPIDER2, and 8 and 0.015625 for PEP2D.

Combined Method
To make an efficient and robust prediction model, optimization
of incorporative feature methods is generally essential. We

linearly combined the RF scores of the five encoding methods:
AAindex, KSAAP, SPIDER2, PEP2D, and pKSAAP, using the
following formula (Hasan et al., 2017b):

Combined = w1 × SPIDER2+ w2 × PEP2D+ w3 × KSAAP

+ w4 × AAindex+ w5 × pKSAAP (4)

where w1, w2, w3, w4, and w5 are the weight coefficients
indicating the strength of the five descriptors; the sum of w1,
w2, w3, w4, and w5 is 1. We adjusted each weight from 0 to 1
with an interval of 0.05. When w1, w2, w3, w4, and w5 were 0.00,
0.00, 0.15, 0.25, and 0.6, respectively, the AUC value on the CV of
training dataset was maximal. Therefore, the linear combination
of the three successive RF models of KSAAP, AAindex, and
pKSAAP was actually “Combined.”

Performance Assessment
To investigate the performance of the PreAIP, the threshold-
dependent and threshold-independent indices were measured.
Using the threshold-dependent indices, four widely used
statistical measures denoted as accuracy (Ac) specificity (Sp),
sensitivity (Sn), and Matthews correlation coefficient (MCC),
respectively, were considered. The four outcomes are presented
in the following formulas,

Ac =
TP+ TN

TP+ FP+ TN+ FN
(5)

Sn =
TP

TP+ FN
(6)

Sp =
TN

TN+ FP
(7)

MCC=
(TP× TN)− (FP× FN)

√
(TN+ FN)× (TP+ FP)× (TN+ FP)× (TP+ FN)

(8)

where TP exemplifies the number of correctly predicted positive
samples; TN the number of correctly predicted negative samples;
FP the number of incorrectly predicted positive samples, and
FN the number of incorrectly predicted negative samples.
Furthermore, we used the receiver operating characteristics
(ROC) curve (Sn vs. 1-Sp plot) to evaluate the area under
the ROC curve (AUC) of the threshold-independent parameter
(Centor, 1991; Gribskov and Robinson, 1996).

Since the balance between the correctly predicted AIPs and
non-AIPs is critically responsible for accurate prediction, Sp
and Sn are intuitive, intelligible measures. Typically, high Sp
decreases Sn. In this study, the prediction performance of the
PreAIP for the training dataset was evaluated with a stepwise
change in Sp. We calculated Sn, Ac, and MCC at high (0.903),
moderate (0.801) and low (0.709) levels of Sp. These three levels
of Sp were given by setting the high (0.468), moderate (0.388),
and low (0.342) thresholds of the RF score. In the same manner,
we measured the performance of the individual encoding scheme
of KSAAP, AAindex, SPIDER2, PEP2D, and pKSAAP at each
level of Sp. When the same threshold values of the RF score
were applied to prediction of the test dataset, the high, moderate

Frontiers in Genetics | www.frontiersin.org 4 March 2019 | Volume 10 | Article 129

https://cran.r-project.org/web/packages/randomForest/
https://cran.r-project.org/web/packages/randomForest/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Khatun et al. Computational Prediction of Anti-inflammatory Peptides

and low levels of Sp were calculated as 0.871, 0.747, and 0.636,
respectively.

To assess the performance of the PreAIP using the measures
of Ac, Sp, Sn, MCC, and AUC, a 10-fold CV test was used. For the
10-fold CV, original training samples were randomly and equally
picked up into 10 subclasses. Among 10 subclasses, one subclass
was singled out as the test sample, and the remaining 9 subclasses
were considered as the training sample. Then we computed
all performance measures for each predictor. We repeated this
procedure 10 times by changing the training and test samples.
Eventually, we calculated the average value of each performance
measure for each predictor.

RESULTS AND DISCUSSION

Sequence Preference Analysis of AIPs
To investigate the amino acid preference of positive and negative
AIPs, we performed sequence compositional preference analysis
using the amino acids from the 1 to 15 N-terminal residues of
training sets. The length of the AIPs ranged between 4 and 25
amino acid residues in this study. The average length of AIPs was
15 amino acids. Since Ialenti et al. suggested that the AIP activity
is located in the N-terminal region of the molecule (Ialenti et al.,
2001), we investigated the 1 to 15 N-terminal amino acids by
the sequence compositional preference analysis. A non-existing
residue was coded by “O” to fill the corresponding position of
the AIPs.

At first, we submitted the 1 to 15 N-terminal amino acids
of positive and negative AIPs to the sample logo online server
(http://www.twosamplelogo.org/) to generate the sequence logo
representations (Figure 2). The height for each amino acid was
in proportion to the percentage of positive (over-represented)
or negative (under-represented) peptides. The logos were scaled
according to their statistical significance threshold of p < 0.05
by Welch’s t-test. Leucine (L) at positions 5, 7, 10, 11, and 15,
cysteine (C) at position 7 and 10, isoleucine (I) at positions 2
and 7, arginine (R) at position 5, phenylalanine (F) at position 8,
and lysine (K) at position 15 were significantly overrepresented
compared with other amino acids, while aspartic acid (D) at
positions 4, 5, 10, 13, and 15, threonine (T) at positions 3 and 7,
valine (V) at position15 were significantly underrepresented. In
addition, tyrosine (Y) at positions 4 and 5 was overrepresented,
while Y at positions 5 and 10 underrepresented. These results
suggested that positive and negative AIPs are significantly
different.

Secondly, we examined the evolutionary conservation features
of the PreAIP using the average PSSM value (APV) for each
amino acid within 1 to15 N-terminal amino acids of AIPs.
The evolutionary conservation information of APV of both the
positive and negative AIPs is illustrated in Figure 3. Some of
amino acid positions of positive and negative AIPs showed
significantly different scores. Furthermore, a nonparametric
Kruskal–Wallis (KW) test was used to examine whether positive
and negative AIPs were significantly dissimilar. The p-values
were calculated and corrected by the Bonferroni test (Table S2).

Thirdly, we examined the AAindex encoding features of
PreAIP. Eight types of informative amino acid indices were

FIGURE 2 | Sequence logo representation of positive and negative AIPs. The

upper portion (enriched) is represented by positive AIPs, while lower portion

(depleted) negative AIPs. The statistically significant local sequence within the

N-terminal 15-residues of AIPs was plotted with p < 0.05 by Welch’s t-test.

FIGURE 3 | Comparison of evolutionary information of positive and negative

AIPs. Blue lines represent the positive AIP, while orange lines the negative

AIPs. “*” represents that the APV is statistically different between both the

AIPs, with p < 0.05 by the KW test.

used and named HI1 to HI8 as the input feature vectors from
the AAindex database. We examined these HI amino acid
properties of both the positive and negative AIPs. As illustrated
in Figure 4, the average values of the eight indices were renamed
as AVHI1 to AVHI8. These indices represented the amino acid
compositions of intracellular proteins. Some of the AIPs had
distinct amino acid compositions in the eight high-quality amino
acid indices between two samples of AIPs (Figure 4). The KW
test was used to examine whether two samples of AIPs were
significantly dissimilar with respect to the eight HI properties.
The p-values were calculated and corrected by the Bonferroni test
(Table S3). Significantly different AAindex values with p-value
<0.05 appeared at some positions of AIPs, as marked with “∗”
in Figure 4.

Finally, we examined the difference in 8 types of SFs by
SPIDER2 between the positive and negative AIPs, as shown in
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FIGURE 4 | Comparison of eight high-quality amino acid indices between two samples of AIPs. The eight high-quality amino acid indices from HI1 to HI8 are placed

at the centers of eight amino acid index clusters, which indicate high residue propensities of AAindex. The row represents the N-terminal peptide, while the blue lines

signify the positive AIP and the orange lines the negative AIPs. “*” represents that the amino acid indices are statistically different between both the samples with p <

0.05 by the KW test.

Figure 5. We calculated the average value of 8 types of SFs for
SPIDER2: ASA, phi, psi, theta, tau, coil, stand, and helix of
both the positive and negative AIPs. The average features were
represented as AVAS, AVPhi, AVPsi, AVThe, AVTau, AVCoil,
AVSta, and AVHel (Figure 5). We plotted these average values
of SFs with respect to the 1–15 N-terminal AIPs. Distinguished
differences were observed between the positive and negative
samples of AIPs. The KW test was employed to examine
whether two sample of AIPs were significantly dissimilar among
the eight SFs. The p-values were calculated and corrected by
the Bonferroni test (Table S4). Significantly different SFs were
perceived at some positions of AIPs, with a p-value <0.05, as
indicated with “∗” in Figure 5.

The above analysis of residue preference between the positive
and negative AIPs suggested that the combination of the primary

sequence, evolutionary, and structural amino acid occurrences
achieves a precise prediction.

Overall Prediction Performance of PreAIP
The selected five descriptors (AAindex, KSAAP, SPIDER2,
PEP2D, and pKSAAP) were separately used for prediction of
AIPs. Optimization of multiple encoded features is generally
essential in the training model to reduce dimensionality while
retaining the significant feature. To achieve this, we performed
multiple rounds of experiments to select appropriate feature
vectors using the IG feature selection via 10-fold CV test on
training set; however, it turned out that the IG feature selection
did not improve prediction performance. Thus, the IG feature
was used to collect significant features and for interpreting a
superiority of KSAAP encoding.
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FIGURE 5 | Comparison of 8 types of the SFs by SPIDER2 between positive and negative AIPs. The row represents the N-terminal peptide, while the blue lines signify

the positive AIPs and the orange lines the negative AIPs. “*” represents that the SFs are statistically different between both the samples with p < 0.05 by the KW test.

We accessed the performances of the training model of five
successive encoding methods of AAindex, KSAAP, SPIDER2,
PEP2D, and pKSAAP through a 10-fold CV test using the RF
classifier. The prediction results by each of five encoding features
and the “Combined features” are shown in Figure 6A. The
AUCs of AAindex, KSAAP, SPIDER2, PEP2D, and pKSAAPwere
0.774, 0.813, 0.739, 0.734, and 0.789, respectively. The KSAAP
performed best for the 5 single encoding approaches in terms of
Sn, MCC and AUC (Table 1). The “Combined features” (PreAIP)
showed better performance with an AUC of 0.833 than any other
single feature. It is noted that “Combined features” means a
linear combination of the RF scores (Materials and Methods).
Moreover, the PreAIP presented the highest AUC value (0.840)

in the test dataset (Figure 6B). The performance of PreAIP was
effective and reasonable for all the tested cases (Figure 6) and was
best in the AIP prediction.

To present the known AIPs in the training dataset, we used
BLAST to search the (weak) homologs, and ranked them to
obtain the best hit e-value (Bhasin and Raghava, 2004). Total
256 positive and 397 negative hits were found out of 1,258
positive and 1,887 negative samples by BLASTP with an e-
value of 1.0 × 10−2. The reduced numbers of the samples may
be due to the peptide length of 5–25. Then, we measured the
BLAST performances through 10-fold CV test. The prediction
performances of Sp, Sn, Ac, MCC, and AUC were 0.752, 0.269,
0.563, 0.159, and 0.632, respectively, which were lower than those
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FIGURE 6 | ROC curves of the various prediction models. (A) 10-fold CV test on a training dataset and (B) test dataset. The PreAIP combined the KSAAP, pKSAAP,

and AAindex methods. High AUC values show accurate performance.

TABLE 1 | AUC values for prediction performance of the training dataset by

10-fold CV test.

Methods Sp Sn Ac MCC AUC p-value

pKSAAP 0.798 0.647 0.738 0.450 0.789 0.017

AAindex 0.795 0.644 0.735 0.448 0.774 0.012

SPIDER2 0.765 0.434 0.633 0.235 0.739 0.004

PEP2D 0.769 0.411 0.629 0.219 0.734 0.004

KSAAP 0.805 0.656 0.745 0.463 0.813 0.118

PreAIP* 0.806 0.709 0.767 0.508 0.833

*PreAIP is the linear combination of the RF scores estimated by SPIDER2, PEP2D, KSAAP,

AAindex, and pKSAAP encoding schemes and their weight coefficients are 0.00, 0.00,

0.15, 0.25, and 0.6, respectively. A p-value was computed based on the final model of

AUC values by using a Wilcoxson matched-pair signed test.

by the other sequence encoding-based models. Therefore, we did
not consider BLAST for final prediction.

In addition, we found that KSAAP performed best for all the
five single encoding methods. To investigate the most significant
residue of the KSAAP method, the top 20 amino acid pairs
of AIPs were examined through the IG feature selection. The
top 20 significant residue pair scores and their corresponding
positions are listed in Table S5. These significant features are
also presented using a radar diagram (Figure 7A). For example,
the feature sequence motif “L×L,” which is represented by 1-
spaced residue pair of “LL,” is the most important residue pair,
where “×” stands for any amino acid. The feature “L×××L”
represented the second enriched motif surrounding positive
samples of AIPs. Similarly, the feature “LL,” which represents a
0-spaced residue pair of “LL,” is important and enriched in the
negative samples AIPs. Similarly, to keep other k-space amino
acid pairs from KSAAP, the same exemplification was employed.
Residue preference analysis demonstrated that “L,” “Y,” “C,” “D,”
and “I” residues frequently appear for AIPs (Figures 2, 7A).
These residues are expected to play a key role in the recognition
of AIPs. To characterize the top 20 KSAAP-specific features, we
compared the numbers of positive and negative AIPs. Figure 7B
showed the top 20 average value of feature scores (AVFS) by

the IG. The average of top 20 features was significantly different
between two samples of AIPs with p < 0.05, suggesting the
effectiveness of the KSAAP encoding. The significant residue
pair scores are listed in Table S5, which provides some insights
into the sequence patterns of the AIPs. They deserve further
experimental validation.

Comparison of PreAIP With Existing
Predictors Using Test Dataset
We evaluated the performances of PreAIP along with that of
existing predictors on the test dataset. We submitted the test
set to the AIPpred (Manavalan et al., 2018) and AntiInflam
(Gupta et al., 2017) servers to assess the performance. It is noted
that AntiInflam server provides different thresholds values. We
used two threshold values of −0.3 and 0.5 and renamed as less
accurate (LA) and more accurate (MA) models (Gupta et al.,
2017), respectively. The AIPpred represents the state-of-the-art
predictor available. The average performances of the LA, MA,
AIPpred, and PreAIP are illustrated in the Table 2. The LA
showed the highest Sp (0.892) with the lowest Sn (0.258), MCC
(0.197), and AUC (0.647) for all the predictors. The PreAIP with
the high threshold presented much higher Sn (0.618) Ac (0.770),
MCC (0.512), and AUC (0.840) than LA, while it provided Sp
(0.871) comparable to LA. The PreAIP with the low threshold
showed the highest Sn (0.863), while keeping Sp, Ac, MCC, and
AUC at a high level. While the AIPpred presented considerably
high values to all the measures of Sp, Sn, Ac, MCC, and AUC, the
PreAIP with the moderate threshold outperformed the AIPpred,
presenting well-balanced, high prediction performances. The
PreAIP performance improvement was found distinct on
the test dataset by the Wilcoxson matched-pair signed test,
demonstrating its ability to predict unseen peptides.

Comparison of PreAIP With AIPpred Using
Training Dataset
We compared the performance of the proposed PreAIP with the
AIPpred using the same training dataset. In this study, the same
dataset as the AIPpred set was used to make a fair comparison
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FIGURE 7 | Top 20 amino acid pairs selected by the IG feature of the KSAAP method. (A) The radar diagram is represented by the composition of each amino acid

pair whose length is proportional to the composition of KSAAP features. (B) Box plot shows the top 20 average value of feature scores (AVFS) by the IG. Red color

denotes the positive AIPs, while gray color denotes the negative AIPs. The p-value is computed by two-sample t-test.

TABLE 2 | Performance comparison with exiting predictors using test dataset.

Predictor Threshold Sp Sn Ac MCC AUC p-value

AntiInflam (LA) −0.3 0.892 0.258 0.638 0.197 0.647 <0.001

AntiInflam (MA) 0.5 0.417 0.786 0.565 0.210 0.706 <0.001

AIPpred Server 0.746 0.741 0.744 0.479 0.813 0.039

PreAIP High 0.871 0.618 0.770 0.512 0.840

Moderate 0.747 0.784 0.762 0.522 0.840

Low 0.636 0.863 0.727 0.492 0.840

A p-value was computed based on AUC values by using aWilcoxsonmatched-pair signed

test and p < 0.05 indicates a statistically significant difference between the proposed

PreAIP and each selected method. The performances of AntiInflam LA and MA methods

were computed using default threshold (server) values of −0.3 and 0.5, respectively. The
AIPpred threshold was the same as given by its server.

for prediction performance of AIPs. As shown in Table 3, the
PreAIP achieved a better performance than the AIPpred in terms
of Ac, Sp, Sn, MCC, and AUC. The AUC value was nearly 3%
higher than the AIPpred predictor. The PreAIP performance
(AUC) improvement over the AIPpred was demonstrated on the
training set by the Wilcoxson matched-pair signed test (Table 3).

Comparison of Different Machine Learning
Algorithms
The performance of the RF was compared to the three widely
used machine learning algorithms, NB, SVM, and ANN by using
the same training datasets and features, as shown in Table 4.
The AUC values of the prediction by the five algorithms were
calculated by a 10-fold CV test, while using the SPIDER2, PEP2D,
AAindex, KSAAP, and pKSAAP encodings and their combined
method. The RF provided higher AUC than any other algorithms
for all the encoding methods and their combined method.

TABLE 3 | Performance comparison of PreAIP with AIPpred using training

dataset.

MethodsThreshold Sp Sn Ac MCC AUC p-value

AIPpred Default

given in the

server

0.711 0.758 0.730 0.460 0.801 0.034

PreAIP High 0.903 0.632 0.795 0.566 0.833

Moderate 0.801 0.719 0.768 0.520 0.833

Low 0.709 0.784 0.739 0.484 0.833

A p-value was computed based on AUC values by using aWilcoxsonmatched-pair signed

test and p < 0.05 indicates a statistically significant difference between the proposed

PreAIP and AIPpred.

The Effect of Peptide Redundancy on the
Predictive Model
The peptide redundancy may lead to the overestimation on the
predictive performance. Therefore, we performed the CD-HIT
with 60% identity cutoff at the peptide level (Huang et al., 2010).
After removing the 60% sequence redundancy, we re-assembled a
training dataset that contained 1,098 positive and 1,226 negative
samples, and the test dataset that contained 308 positive and
275 negative samples. While the overall performance (AUC =
0.821) of the PreAIP by the 10-fold CV test decreased slightly
(Table S6), the PreAIP could still achieve the best performance
on the independent testing dataset (Figure S1). The PreAIP
achieved 6 and 8% higher AUC values than the AntiInflam
and the AIPpred, respectively, demonstrating that the PreAIP
with the 60% peptide redundancy removal provides a stable or
competitive performance compared with the other predictors, as
well as the 80% peptide redundancy removal.
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TABLE 4 | AUC values of AIP prediction by different machine learning algorithms

based on a 10-fold CV test.

Algorithms SPIDER2 PEP2D AAindex KSAAP pKSAAP Combined

RF 0.739 0.734 0.774 0.813 0.789 0.833

NB 0.659 0.655 0.707 0.729 0.717 0.736

SVM 0.698 0.677 0.738 0.766 0.749 0.779

ANN 0.662 0.649 0.716 0.741 0.736 0.753

“Combined” indicates that the performance of the optimized combined features. The

combined score of RF was given as the sum of the five SPIDER2, PEP2D, AAindex,

KSAAP, and pKSAAP features with weight values of 0.00, 0.00, 0.15, 0.25, and 0.6

respectively. In the same way, the weight values of NB, SVM, and ANN were given as

(0.00, 0.00, 0.10, 0.35, and 0.55), (0.00, 0.00, 0.22, 0.45, and 0.33), and (0.00, 0.00,

0.18, 0.5, and 0.32), respectively.

Advantages of PreAIP
In theoretical viewpoints, comparison of the proposed PreAIP
with existing predictors is summarized: (1) The PreAIP
investigated the primary sequence, physicochemical properties,
structural, and evolutionary features, although the AIPpred and
AntiInflam predictors used only primary sequence encoding
method. For instance, in AntiInflam method (Gupta et al.,
2017), studied hybrid features based on primary sequence
encoding schemes such as amino acid composition (AAC),
dipeptide composition (DPC), and tripeptide composition with
SVM algorithm. The AIPpred (Manavalan et al., 2018) studied
individual composition (AAC, AAindex, DPC, and chain-
transition-composition) through multiple machine learning
algorithms. (2) Since existing prediction tools did not control the
Sp level, users cannot understand which AIP is highly positive
or negative from their servers. On the other hand, the PreAIP
controlled Sp at high, moderate and low levels by changing the
threshold of the RF scores, based on 10-fold CV test results.
A limitation of the PreAIP is that the employed dataset is still
small, but we believe that the dataset will grow to enable intensive
identification of AIPs. In addition, the calculation speed remains
to be improved. The processing time of the PreAIP was <3min
for one peptide sequence, where the generation of PSSM profiles
requires a long time.

Server of PreAIP
A web server of the PreAIP has been developed and publically
accessible at http://kurata14.bio.kyutech.ac.jp/PreAIP/. The web
application was implemented by programming languages of Java
scripts, Perl, R, CGI scripts, PHP, and HTML. After submitting
a query sequence to the server, it generates consecutive feature
vectors. Then, the server optimizes the performances through

RFs. After completing the submission job, the server returns the
result in the output webpage which consists of the job ID and
probability scores of the predicted AIPs in a tabular form. A user
gets a job ID like “2018032900067” and can save this ID for a
future query. The server stores this job ID for one month. The
input peptide sequence must be in the FASTA format. Each of
the 20 types of standard amino acids must be written as one
uppercase letter. See the test example on the server. The length of
AIP sequence was limited from 1 to 25. If users submit 200 amino
acids, the PreAIP takes first 1–25 residues to analyze. When the
peptide contains less than 25 residues, the PreAIP provides gaps
(–) to the missing residues to compensate a peptide length of 25.

CONCLUSIONS

We have designed an accurate and efficient computational
predictor for identifying potential AIPs. It outperforms the
existing methods and is effective in understanding some
mechanisms of AIP identification. An IG-based feature selection
method was carried out to suggest sequence motifs of AIPs from
KSAAP encoding. A user-friendly web-server was developed and
freely available for academic users.
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