
Intelligent Data Analysis 14 (2010) 299–331 299
DOI 10.3233/IDA-2010-0423
IOS Press

Ensemble missing data techniques for
software effort prediction

Bhekisipho Twalaa,∗ and Michelle Cartwrightb
aDepartment of Electrical and Electronic Engineering Science, University of Johannesburg, P.O. Box
524, Auckland Park, Johannesburg 2006, South Africa
bBrunel Software Engineering Research Centre, School of Information Systems, Computing and
Mathematics, Brunel University, Uxbridge, UK

Abstract. Constructing an accurate effort prediction model is a challenge in software engineering. The development and
validation of models that are used for prediction tasks require good quality data. Unfortunately, software engineering datasets tend
to suffer from the incompleteness which could result to inaccurate decision making and project management and implementation.
Recently, the use of machine learning algorithms has proven to be of great practical value in solving a variety of software
engineering problems including software prediction, including the use of ensemble (combining) classifiers. Research indicates
that ensemble individual classifiers lead to a significant improvement in classification performance by having them vote for the
most popular class. This paper proposes a method for improving software effort prediction accuracy produced by a decision
tree learning algorithm and by generating the ensemble using two imputation methods as elements. Benchmarking results on
ten industrial datasets show that the proposed ensemble strategy has the potential to improve prediction accuracy compared to
an individual imputation method, especially if multiple imputation is a component of the ensemble.

Keywords: Machine learning, supervised learning, decision tree, software prediction, incomplete data, imputation, missing data
techniques, ensemble

Abbreviations

CART: Classification and Regression Trees
CCCS: Command, Control and Communications System
CMI: Class Mean Imputation
DA: Data Augmentation
DSI: Defence Security Institute
DT: Decision Tree
DTSI: Decision Tree Single Imputation
EM: Expectation-Maximization
EMSI: Expectation-maximization Single Imputation
FC: Fractioning of Cases
FIML: Full Information Maximum Likelihood
HDSI: Hot-Deck Single Imputation
ISBSG: International Software Benchmarking Standards Group

∗Corresponding author: Bhekisipho Twala, Department of Electrical and Electronic Engineering Science, University of
Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa. Tel.: +27 11 559 4404; Fax: +27 11 559 2357;
E-mail: btwala@uj.ac.za.

1088-467X/10/$27.50 2010 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/20119804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

300 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

IM: Informatively Missing
k-NN: k-Nearest Neighbour
k-NNSI: k-Nearest Neighbour Single Imputation
LD: Listwise Deletion
MAR: Missing at Random
MCAR: Missing Completely at Random
MDT: Missing Data Technique
MI: Multiple Imputation
MIA: Missingness Incorporated in Attributes
ML: Machine Learning
MMSI: Mean or Mode Single Imputation
RBSI: Regression-Based Single Imputation
RPART: Recursive Partitioning and Regression Trees
SE: Software Engineering
SL: Supervised Learning
SMI: Sample Mean Imputation
SRPI: Similar Response Pattern Imputation
SVS: Surrogate Variable Splitting

1. Introduction

Software engineering (SE) researchers and practitioners remain concerned with prediction accuracy
when building prediction systems. Lack of adequate tools to evaluate and estimate the cost for a software
project is one of the main challenges in SE. We use datasets of past projects to build and validate
estimation or prediction systems of software development effort, for example, which allows us to make
management decisions, such as resource allocation. Or we may use datasets of measurements describing
software systems to validate metrics predicting quality attributes.

Various ML techniques have been used in SE to predict software cost [5], software (project) devel-
opment effort [6,26,61], software quality [17], and software defects [18,45]. Reviews of the use of ML
in SE [37,38] report that ML in SE is a mature technique based on widely-available tools using well
understood algorithms. The decision tree (DT) classifier is an example of a ML algorithm that can
be used for predicting continuous attributes (regression) or categorical attributes (classification). Thus,
software prediction can be cast as a supervised learning (SL) problem, i.e., the process of learning to
separate samples from different classes by finding common features between samples of known classes.
An important advantage of ML over statistical analysis as a modelling technique lies in the fact that the
interpretation of, say, decision rules is more straightforward and intelligible to human beings than, say,
principal component analysis (a statistical tool for finding patterns in data of high dimension). In recent
years, there has been an explosion of papers in the ML and statistics communities discussing how to
combine models or model predictions.

Most techniques for predicting attributes of a software system or project data require past data from
which models will be constructed and validated. An important and common issue faced by researchers
who use industrial and research datasets is incompleteness of data. Even if part of a well thought out
measurement programme, industrial datasets can be incomplete, for a number of reasons. These include
inaccurate or non reporting of information (without a direct benefit, a project manager or developer
might see data collection as an overhead they can ill afford, for example), or, where data from a number

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 301

of different types of projects or from a number of companies are combined, certain fields may be blank
because they are not collectable for all projects. Often data is collected either with no specific purpose
in mind (i.e. it is collected because it might be useful in future) or the analysis being carried out has a
different goal than that for which the data was originally collected. In research datasets, e.g. experiments
on human subjects to assess the effectiveness of a new SE technique, say, dropout or failure to follow
instructions may lead to missing values. The relevance of this issue is strictly proportional to the
dimensionality of the collected data. SE researchers have become increasingly aware of the problems
and biases which can be caused by missing or incomplete data. Moreover, many SE datasets tend to
be small with many different attributes – software project datasets grow slowly, for example – and the
numbers of available human subjects limit the size of many experimental datasets. Thus, we can ill
afford to reduce our sample size further.

Many works in both the ML and statistical pattern recognition communities have shown that combining
(ensemble) individual classifiers is an effective technique for improving classification accuracy. An
ensemble is generated by training multiple learners for the same task and then combining their predictions.
There are different ways in which ensembles can be generated, and the resulting output combined to
classify new instances. The popular approaches to creating ensembles include changing the instances
used for training through techniques such as bagging [1,4], boosting [19], changing the features used in
training [21], and introducing randomness in the classifier itself [13]. The interpretability of classifiers
can produce useful information for experts responsible for making reliable classification decisions,
making DTs an attractive scheme.

There are various reasons why DTs and not other SL algorithms were utilized to investigate the
problem considered in this paper. Despite being one of the well known algorithms from the ML and
statistical pattern recognition communities, DTs are non-parametric and are relatively fast to construct;
classification is very fast too. They work for almost all classification problems and can achieve good
performance on many tasks. However, one property that sets DTs apart from all other ML methods
is their invariance to monotone transformations of the predictor variables. For example, replacing any
subset of the predictor variables {xj} by (possible different) arbitrary strictly monotone functions of
them {xj ← mj(xj)}, gives rise to the same tree model. Thus, there is no issue of having to experiment
with different possible transformations mj(xj) for each individual predictor xj to try to find the best
ones. This invariance provides immunity to the presence of extreme values (“outliers”) in the predictor
variable space. In addition, DTs incorporate a pruning scheme that partially addresses the outlier (noise)
removal problem. DTs also make good candidates for combining because they are structurally unstable
classifiers and produce diversity in classifier decision boundaries. DTs have also been one of the tools
of choice for building classification models in the SE field [29,30,46–48,58,64–66,70–72]. We assume
that the readers are familiar with DT learning [4,49]. However, a brief introduction on DTs is given in
Section 3.

To the best of our knowledge, our research group was the first to present the effect of ensemble missing
data techniques (MDTs) on predictive accuracy in the SE field [70,72]. In this paper, we expand on the
preliminary work by first assessing the robustness of eight MDTs on the predictive accuracy of resulting
DTs. We then propose three ensemble methods with each ensemble having two MDTs as elements. The
proposed method utilizes probability patterns of classification results.

The following section briefly discusses missing data patterns and mechanisms that lead to the introduc-
tion of missing values in datasets. Section 3 gives a brief introduction on DTs, followed by a presentation
of techniques that have been used to handle incomplete data when using DTs. The proposed ensemble
procedure is also described. Section 5 reviews some related work to the problem of incomplete data in

302 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

the SE area. Section 6 empirically explores the robustness and accuracy of eight MDTs to ten industrial
datasets. This section also presents empirical results from the application of the proposed ensemble
procedure with current MDTs. We close with conclusions and directions for future research.

2. Patterns and mechanisms of missing data

The two other crucial tasks when dealing with incomplete data are to investigate the pattern of missing
data and the mechanism underlying the missingness. This is to get an idea of the process that could have
generated the missing data, and to produce sound estimates of the parameters of interest, despite the fact
that the data are incomplete.

The pattern simply defines which values in the data set are observed and which are missing. The
three most common patterns of non-response in data are univariate, monotonic and arbitrary. When
missing values are confined to a single variable we have a univariate pattern; monotonic pattern occurs
if a subject, say Yj , is missing then the other variables, say Yj+1,. . . Yp, are missing as well or when
the data matrix can be divided into observed and missing parts with a “staircase” line dividing them;
arbitrary patterns occur when any set of variables may be missing for any unit.

The law generating the missing values seems to be the most important task since it facilitates how the
missing values could be estimated more efficiently. If data are missing completely at random (MCAR)
or missing at random (MAR), we say that missingness is ignorable. In other words, the analyst can
ignore the missing data mechanism provided the values are MCAR or MAR. For example, suppose that
you are modelling software defects as a function of development time. If missingness is not related to
the missing values of defect rate itself and also not related on the values of development time, such data
is considered to be MCAR. For example, there may be no particular reason why some project managers
told you their defect rates and others did not.

Secondly, software defects may not be identified or detected due to a given specific development time.
Such data are considered to be MAR. MAR essentially says that the cause of missing data (software
defects) may be dependent on the observed data (development time) but must be independent of the
missing value that would have been observed. It is a less restrictive model than MCAR, which says that
the missing data cannot be dependent on either the observed or the missing data. MAR is also a more
realistic assumption for data to meet, but not always tenable. The more relevant and related attributes
one can include in statistical models, the more likely it is that the MAR assumption will be met.

Finally, for data that is informatively missing (IM) or not missing at random (NMAR) then the
mechanism is not only non-random and not predictable from the other variables in the dataset but cannot
be ignored, i.e., we have non ignorable missingness [36,55]. In contrast to the MAR condition outlined
above, IM arise when the probability that defect rate is missing depends on the unobserved value of
defect rate itself. For example, software project managers may be less likely to reveal projects with high
defect rates. Since the pattern of IM data is not random, it is not amenable to common MDTs and there
are no statistical means to alleviate the problem.

MCAR is the most restrictive of the three conditions and in practice it is usually difficult to meet the
MCAR assumption. Generally you can test whether MCAR conditions can be met by comparing the
distribution of the observed data between the respondents and non-respondents. In other words, data
can provide evidence against MCAR. However, data cannot generally distinguish between MAR and
IM without distributional assumptions, unless the mechanisms is well understood. For example, right
censoring (or suspensions) is IM but is in some sense known. An item or unit, which is removed from a
reliability test prior to failure or a unit which is in the field and is still operating at the time the reliability
of these units is to be determined is called a suspended item or right censored instance.

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 303

Table 1
Attribute variables and values

Attribute Possible values
Adjusted function points (ADJFPs) continuous
Duration in months (DUR) continuous
Experience of project manager in years (EXPPM) continuous
Number of transactions (TRANS) continuous
Skill level of development team (SKILL) beginner, intermediate, advanced

3. Decision trees

DT induction is one of the simplest and yet most successful forms of SL algorithm. It has been
extensively pursued and studied in many areas such as statistics [4] and machine learning [49–51] for
the purposes of classification and prediction.

DT classifiers have four major objectives. According to Safavian and Landgrebe [53], these are: 1) to
classify correctly as much of the training sample as possible; 2) generalise beyond the training sample so
that unseen samples could be classified with as high accuracy as possible; 3) be easy to update as more
training samples become available (i.e., be incremental; 4) and have as simple a structure as possible.
Objective 1) is actually highly debatable and to some extent conflicts with objective 2). Also, not all tree
classifiers are concerned with objective 3).

DTs are non-parametric (no assumptions about the data are made) and a useful means of representing
the logic embodied in software routines. A DT takes as input a case or example described by a set of
attribute values, and outputs a Boolean or multi-valued “decision”. For the purpose of this paper, we
shall stick to the Boolean case (thus, binary DTs) for several reasons given below.

The power of the Boolean approach comes from its ability to split the instance space into subspaces
where each subspace is fitted with different models. Other distinctive advantages of Boolean expressions
are their time complexity and space complexity, i.e., as the input size as Boolean functions grow linearly,
computer time and storage requirements of algorithms to represent and manipulate DTs do not necessarily
grow exponentially (as is the case for traditional representation techniques). Thus, both the memory
space to store DT and the time of the learning and using phase are decreased [41]. Furthermore,
information-based attribute selection measures used in the induction of DTs are all biased in favour of
attributes that have many possible values [74].

The use of Boolean attributes is one strategy for handling multi-valued attributes and as a result
overcomes this problem, i.e., attributes with fewer levels and those with many levels are all selected on
a competitive basis.

Consider the following fictitious SE example, where the categorical attribute specifies whether a project
is likely to require low, medium or high software effort (EFFORT) based on attributes related to software
development. The attributes are summarized in Table 1.

The training data is used to build the model or classifier (a DT) and a corresponding hierarchical
partitioning shown in Figs 1 (a) and 1 (b), respectively. The DT has classes low, medium and high. This
is a classifier in the form of a tree, a structure that is either: a leaf (rectangular box), indicating a class,
or a decision node (ovals) that specifies some test to be carried out on a single attribute value, with one
branch and sub-tree for each possible outcome of the test. Notice that Test 1, Test 2 and Test 3 are tests
on the real-valued attributes. Only test 4 uses the nominal attribute. Further note that the attribute DUR
has been not utilised in the DT even though we have it as one of the continuous attributes in the training
data. It is also easy to see that as the depth of the tree increases, the resulting partitioning becomes more
and more complex.

304 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

(a)

(b)

Fig. 1. (a) Example of a binary axis-parallel decision tree for a four-dimensional feature space and 3 classes for deciding
the likely level of effort for a project. Ovals represent internal nodes; rectangles represent leaf nodes or terminal nodes. (b)
Hierarchical partitioning of the two-dimensional feature space induced by the decision tree of Fig. 1(a)

The prediction problem is handled by partitioning classifiers. These classifiers split the space of
possible observations into partitions. For example, when a project manager needs to make a decision
whether a project is likely to require low, medium of high effort based on several software development
factors, a classification tree can help identify which factors to consider and how each factor has historically
been associated with different outcomes of the decision.

4. Decision trees and missing data

Several methods have been proposed in the literature to treat missing attribute values (incomplete data)
when using DTs. Missing values can cause problems at two points when using DTs; 1) when deciding on
a splitting point (when growing the tree), and 2) when deciding into which daughter node each instance
goes (when classifying an unknown instance). Methods for taking advantage of unlabelled classes can

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 305

Table 2
Missing data techniques

Techniques Section
Discarding data: 4.1

Listwise deletion 4.1
Imputation: 4.2

Single Imputation 4.2.1
mean or mode 4.2.1.1
k-nearest neighbour 4.2.1.2
decision tree* 4.2.1.3

Missing Incorporated in Attributes 4.2.2
Multiple Imputation 4.2.3
Supervised Learning Imputation 4.2.4

surrogate variable splitting 4.2.4.1
fractioning of cases 4.2.4.2

Ensembles 4.3

* Also a supervised learning algorithm.

also be developed, although we do not deal with them in this paper, i.e., we are assuming that the class
labels are not missing.

Specific DT techniques for handling incomplete data are now going to be discussed. These missing
data techniques (MDTs) are some of the widely recognized and they are divided into three categories:
ignoring and discarding data, imputation and SL or ML. The MDTs are briefly described in the following
sections and summarized in Table 2.

4.1. Ignoring and discarding data (Listwise deletion)

Incomplete data are often dealt with by using several general approaches, like, deleting the instances
with missing data which aim to modify up the data so that they can be analysed by methods designed
for complete data. Basically, listwise deletion (LD) means that any individual with missing data on
any variable is deleted from the analysis under consideration. This approach can drastically reduce the
sample size since it can sacrifice a large amount of data leading to a severe lack of statistical power [36].
It can even lead to complete case loss if many variables are involved. However, due to its simplicity and
ease of use, LD is the default in most statistical packages.

4.2. Imputation techniques

Imputation techniques fill in (impute) missing items with plausible values in the dataset, thus making
it possible to analyze the data as if it were complete. Two kinds of imputation strategies are discussed
in this paper: single imputation (SI) and multiple imputation (MI). SI refers to filling in a missing value
with a single replacement value while multiple values are simulated for MI. A brief description of each
imputation method is given below.

4.2.1. Single imputation
4.2.1.1. Mean or mode imputation

Some researchers have used arbitrary methods like mean imputation for addressing the missing value
problem, i.e., replacing the missing values of a variable by the mean of its observed values. Mean
substitution also assumes a MCAR mechanism. The strength of mean imputation is that it preserves
the data and it is easy to use. However, mean imputation can be misleading because it produces biased

306 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

and inconsistent estimates of both coefficients and standard errors). Little and Rubin [36] point out that
variance parameter estimates under mean imputation are generally negatively biased. Also, substitution
of the simple (grand) mean will reduce the variance of the variable and its correlation with other variables.
Somewhat better is substitution of the group or global mean (or mode in the case of nominal data) for a
grouping variable known to correlate as highly as possible with the variable which has missing values.
We shall now call this technique mean or mode single imputation (MMSI).

4.2.1.2. k-nearest neighbour imputation
We use the k-nearest neighbour (k-NN) approach to determine the imputed data, where nearest is

usually defined in terms of a distance function based on the auxiliary variable(s). In this method a pool
of complete instances is found for each incomplete instance and the imputed values for each missing
cell in each recipient is calculated from the values of the respective field in complete instances [10].
The strength of k-NN lies in its ability to predict both discrete attributes (the most frequent value among
the k nearest neighbours) and continuous attributes (the mean among the k nearest neighbours). Also,
k-NN can be easily adapted to work with any attribute as class, by just modifying which attributes will
be considered in the distance metric. This single imputation approach, which also assumes a MCAR
mechanisms, shall now be called k−NNSI.

4.2.1.3. Decision tree imputation
The unordered attribute DTs approach, which can also be considered a machine learning technique

as it uses a DT algorithm to impute missing values, is another strategy that has been used for handling
missing values in tree learning. This technique was suggested by Shapiro [60]. The method builds DTs
to determine the missing values of each attribute, and then fills the missing values of each attribute by
using its corresponding tree. Separate trees are built using a reduced training set for each attribute, i.e.,
restricting your analysis to only those instances that have known values. The original class is treated as
another attribute, while the value of the attribute becomes the “class” to be determined. The attributes
used to grow the respective trees are unordered. These trees are then used to determine the unknown
values of that particular attribute.

For this strategy, it is not clear what the probability generating the missingness is for both strategies.
However due to the fact that the dependencies between attributes is not considered, we shall assume that
the data is MCAR.

4.2.2. Missingness incorporated in attributes
This approach proposed by Twala [68] and followed up by Twala et al. [69] is closely related to the

technique of treating “missing” as a category in its own right, generalizing it for use with continuous as
well as categorical variables as described below:

Let Xn be an ordered or numeric attribute variable with unknown attribute values, the proposed
approach searches essentially over all possible values of xn for binary splits of the following form:

1. Split A: (Xn � xn or Xn = missing) versus (Xn > xn)
2. Split B: (Xn � xn) versus (Xn > xnor Xn = missing)
3. Split C: (Xn = missing) versus (Xn = not missing)

The idea is to find the best split from the candidate set of splits given above, with the goodness of split
measured by how much it decreases the impurity of the sub-samples.

If Xn is a nominal attribute variable (i.e., a variable that takes values in an unordered set), the search
is over all splits of the form:

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 307

1. Split A: (Xn ∈ Yn or Xn = missing) versus (Xn /∈ Yn)
2. Split B: (Xn ∈ Yn) versus (Xn /∈ Yn or Xn = missing)
3. Split C: (Xn = missing) versus (Xn = not missing)

where Yn is the splitting subset at node n.
So, if there were ∂ options for splitting a branch without missingness, there are 2∂+ 1 options to be

explored with missingness present.
This missingness incorporated in attributes (MIA) algorithm is very simple, natural and applicable to

any method of constructing DTs, regardless of that method’s detailed splitting/stopping/pruning rules. It
has a very close antecedent: the approach of handling unknown attribute values by treating all attributes
as categorical and adding missingness as a further category. The two approaches are superficially the
same but differ a little in their treatment of continuous attributes: rather than categorizing continuous
variables, missingness is directly incorporated in splits of continuous variables. The approach can be
expected to be particularly useful when missingness is not random but informative. Classifying a new
individual whose value of a branching attribute is missing is immediately provided, especially if the
attribute in the training set that was used to construct the DT had missing values.

4.2.3. Multiple imputation
MI is one of the most attractive methods for general purpose handling of missing data in multivariate

analysis. Rubin [52] described MI as a three-step process. First, sets of plausible values for missing
instances are created using an appropriate model that reflects the uncertainty due to the missing data.
Each of these sets of plausible values can be used to “fill-in” the missing values and create a “completed”
dataset. Second, each of these datasets can be analyzed using complete-data methods. Finally, the
results are combined. For example, replacing each missing value with a set of five plausible values or
imputations would result to building five DTs, and the predictions of the five trees would be averaged
into a single tree, i.e., the average tree is obtained by MI.

MI retains most of the advantages of single imputation and rectifies its major disadvantages as already
discussed. There are various ways to generate imputations. Schafer [55] has written a set of general
purpose programs for MI of continuous multivariate data (NORM), multivariate categorical data (CAT),
mixed categorical and continuous (MIX), and multivariate panel or clustered data (PNA). These programs
were initially created as functions operating within the statistical languages S and SPLUS [73]. NORM
includes and EM algorithm for maximum likelihood estimation of means, variance and covariances.
NORM also adds regression-prediction variability by a procedure known as data augmentation [55].

Although not absolutely necessary, it is almost always a good idea to run the expectation maximization
(EM) algorithm [12] before attempting to generate MIs. The parameter estimates from EM provide
convenient starting values for data augmentation (DA). Moreover, the convergence behaviour of EM
provides useful information on the likely convergence behaviour of DA. In brief, EM is an iterative
procedure where a complete dataset is created by filling-in (imputing) one or more plausible values for
the missing data by repeating the following steps: 1.) In the E-step, one reads in the data, one instance
at a time. As each case is read in, one adds to the calculation of the sufficient statistics (sums, sums of
squares, sums of cross products). If missing values are available for the instance, they contribute to these
sums directly. If a variable is missing for the instance, then the best guess is used in place of the missing
value. 2.) In the M-step, once all the sums have been collected, the covariance matrix can simply be
calculated. This two step process continues until the change in covariance matrix from one iteration to
the next becomes trivially small. This is the approach we follow in this paper.

Details of the EM algorithm for covariance matrices are given in [12,36,55]. EM requires that data
are MAR.

308 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

4.2.4. Supervised learning imputation
SL techniques are those that deal with missing values using ML algorithms. ML algorithms learn

a function from training data. The training data consist of pairs of input objects (vectors) and desired
output. The output of the function can be a continuous value (called regression) or can predict a class
label of the input object (called classification). ML techniques are generally more complex than statistical
techniques. This section will describe missing data imputation using two supervised machine learning
systems: surrogate variable splitting and fractioning of cases.

4.2.4.1. Surrogate variable splitting
One sophisticated but refined method worthy of note and study is the surrogate variable splitting (SVS),

which has been used for the classification and regression trees (CART) system [4]. CART handles missing
values in the database by substituting "surrogate splitters". Surrogate splitters are predictor variables that
are not as good at splitting a group as the primary splitter but which yield similar splitting results; they
mimic the splits produced by the primary splitter; the second does second best, and so on. The surrogate
splitter contains information that is typically similar to that which would be found in the primary splitter.
The surrogates are used for tree nodes when there are values missing. The surrogate splitter contains
information that is typically similar to what would be found in the primary splitter. Both values for
the dependent variable (response) and at least one of the independent variables (attributes) take part in
the modelling. The surrogate variable used is the one that has the highest correlation with the original
attribute (observed variable most similar to the missing variable or a variable other than the optimal one
that best predicts the optimal split). The surrogates are ranked. Any observation missing on the split
variable is then classified using the first surrogate variable, or if missing that, the second is used, and so
on. The CART system only handles missing values in the testing case but RPART handles them on both
the training and testing cases.

SVS makes no assumption about the law generating the missingness. However, due to the fact that it
uses the dependencies between attributes, we shall assume that the data is MAR.

4.2.4.2. Fractioning of cases
Quinlan [49] borrows the probabilistic complex approach by Cestnik et al. [8] by “fractioning” cases

or instances based on a priori probability of each value determined from the cases at that node that
have specified values. Quinlan starts by penalising the information gain measure by the proportion of
unknown cases and then splits these cases to both subnodes of the tree.

The learning phase requires that the relative frequencies from the training set be observed. Each
case of, say, class C with an unknown attribute value A is substituted. The next step is to distribute
the unknown examples according to the proportion of occurrences in the known instances, treating an
incomplete observation as if it falls down all subsequent nodes. The evaluation measure is weighted
with the fraction of known values to take into account that the information gained from that attribute will
not always be available (but only in those cases where the attribute value is known). During training,
instance counts used to calculate the evaluation heuristic include the fractional counts of instances with
missing values. Instances with multiple missing values can be fractioned multiple times into numerous
smaller and smaller “portions”.

For classification, Quinlan’s technique is to explore all branches below the node in question and then
take into account that some branches are more probable than others. Quinlan, once again, borrows
Cestnik et al.’s [8] strategy of summing the weights of the instance fragments classified in different ways
at the leaf nodes of the tree and then choosing the class with the highest probability or the most probable

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 309

1. Partition original dataset into n incomplete training datasets, ITR1, ITR2, , ITRn.

2. Construct n individual DT models (DT1, DT2, , DTn) with the different incomplete training

datasets ITR1, ITR2, , ITRn to obtain n individual DT classifiers (ensemble members) generated

by different imputation algorithms, thus different.

3. Select m de-correlated DT classifiers from n DTs using de-correlation maximization algorithm.

4. Using Eq. 3, obtain m DTs output values (misclassification error rates) of unknown instance.

5. Transform the output value to reliability degrees of positive class and negative class, given the

imbalance of some datasets

6. Fuse the multiple DTs into aggregate output in terms of majority voting. When there is a tie in the

predicted probabilities, choose the class with the highest probability or else use a random choice

when the probabilities between the two methods are equal.

Fig. 2. The ensemble imputation methods algorithm.

classification. Basically, when a test attribute has been selected, the cases with known values are divided
on the branches corresponding to these values. The cases with missing values are, in a way, passed
down all branches, but with a weight that corresponds to the relative frequency of the value assigned to
a branch. Both strategies for handling missing attribute values are used for the C4.5 system [49].

FC does not consider the dependencies of attributes to predict missing attribute values. Thus, we shall
assume that the data is MCAR.

4.3. Ensemble imputation methods

Our proposed method uses DTs as its component classifier. The main objective is to combine
predictions of this classifier. A motivation for ensemble is that a combination of outputs of many weak
MDTs produces a powerful ensemble MDTs with higher accuracy than a single MDT obtained from
the same sample. The proposed method makes use of all data available and utilises a systematic pattern
of classification results based on two methods for handling incomplete training and test data. The new
generalized algorithm is summarised in Fig. 2, with the overall six-stage scheme of the technique shown
in Fig. 3 and described in more detail in the following sections.

4.3.1. Partitioning original dataset
Due to the shortage in some data analysis problems, such approaches, such as bagging [2] have been

used for creating samples varying the data subsets selected. The bagging algorithm is very efficient in
constructing a reasonable size of training set due to the feature of its random sampling with replacement.
Therefore such a strategy (which we also use in this study) is a useful data preparation method for ML.

4.3.2. Creating diverse decision tree classifier
Diversity in ensemble of learnt models constitute one of the main current directions in ML and data

mining. It has been shown theoretically and experimentally that in order for an ensemble to be effective,
it should consist of high-accuracy base classifiers that should have high diversity in their predictions.
One technique, which proved to be effective for constructing an ensemble of accurate and diverse base
classifiers, is to use different training data, or so-called ensemble training data selection. Many ensemble

310 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

Input

Output

DTnDT2

DT fnDT f2DT f1

fm(x)fs(x)f1(x)

gm(x)g2(x)g1(x)

F(x)

DT1

Testing Data set
(TD)

Validation Data set
(VD)

Original Data set
(OD)

Incomplet e
Training Data set

(TRn)

Incomplet e
Training Data set

(TR2)

Incomplet e
Training Data set

(ITR1)

Incompelt e
Training Data set

(ITR)

.

Stag e 1

Stage 4

Stage 5

Stage 6

Stage 3

Stage 2

Fig. 3. The general formation process of missing data ensemble learning model.

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 311

training data selection strategies generate multiple classifiers by applying a single learning algorithm, to
different versions of a given dataset, Two different methods for manipulating the dataset are normally
used: random sampling with replacement (also called bootstrap sampling) in bagging and re-weighting
of the misclassified training instances in boosting. In our study, bagging is selected.

4.3.3. Decision tree learning
A brief description of DTs has already been given in Section 3 of the paper. Many variants of DT

algorithms have concentrated on DTs in which each node checks the value of a single attribute. This
class of DTs may be called axis – parallel because the tests at each node are equivalent to hyper-planes
that are parallel to axes in the attribute space, i.e., they correspond to partitioning the parameter space
with a set of hyper-planes that are parallel to all the features axes except for the one being tested and are
orthogonal to that one.

In axis – parallel decision methods, a tree is constructed in which at each node a single parameter is
compared to some constant. If the feature value is greater than the threshold, the right branch of the tree
is taken; if the value is smaller, the left branch is followed.

There are DTs that test a linear combination of the attributes at each internal node. They allow the
hyper-planes at each node of the tree to have any orientation in parameter space [42,43]. Mathematically,
this means that at each node a linear combination of some or all the parameters is computed (using a
set of feature weights specific to that node) and the sum is compared with a constant. The subsequent
branching until a leaf node is reached is just that used for axis parallel trees.

Since these tests are equivalent to an oblique orientation to the axes, we call this class of trees oblique
DTs. Note that oblique DTs produce polygonal (polyhedral) partitioning of the attribute space. Oblique
DTs are also considerably more difficult to construct than axis parallel trees because there are so many
more possible planes to consider at each node. As a result, the training process is slower. This is one the
major reasons why axis-parallel DTs are considered in our study.

4.3.4. Selecting appropriate ensemble members
After training, each individual DT grown by using different MDTs has generated its own result.

However, if there is a great number of individual members (i.e., MDTs, hence, in part, DTs), we need to
select a subset of representatives in order to improve ensemble efficiency. Furthermore, it does have to
follow the rule ‘the more the better’ rule as mentioned by some researchers. In this study, a de-correlation
maximization method [24,34] is used to select the appropriate number of DTs ensemble members. The
idea is that the correlations between the selected MDTs, thus, DT classifiers, should be as small as
possible. The de-correlation matrix can be summarized in the following steps:

1. Compute the variance-covariance matrix and the correlation matrix
2. For the ith DT classifier (i = 1, 2, . . ., p), calculate the plural-correlation coefficient i
3. For a pre-specified threshold θ, if i < θ, then the ithclassifier should be deleted from the p classifiers.

Conversely, if i > θ, then the ith classifier should be retained.
4. For the retained classifiers, perform Eqs (1–3) procedures iteratively until satisfactory results are

obtained.

4.3.5. Performance measure evaluation
In the previous phase the DT classifier outputs are used as performance evaluation measures (in terms

of misclassification error rates). It has often been argued that selecting and evaluating a classification
model based solely on its error rates is inappropriate. The argument is based on the issue of using

312 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

both the false positive (rejecting a null hypothesis when it is actually true) and false negative (failing to
reject a null hypothesis when it is in fact false) errors as performance measures whenever classification
models are used and compared. Furthermore, in the business world, decisions (of the classification type)
involve costs and expected profits. The classifier is then expected to help making the decisions that will
maximise profits. For example, predicting development effort of software systems involves two types of
errors: 1) predicting software effort as likely to be high when in fact it is low, and 2) predicting software
effort development as likely to be low when in fact it is high. Now, mere misclassification rate is simply
not good enough to predict software effort. To overcome this problem and further make allowances for
the inequality of mislabelled classes, variable misclassification costs are incorporated in our attribute
selection criterion via prior specification for all our experiments. This also solves the imbalanced data
problem. Details about how misclassification costs are used for both splitting and pruning rules are
presented in [4].

4.3.6. Integrating multiple classifiers into ensemble output
Depending upon the work in the previous stages, a set of appropriate number of ensemble members

can be identified. The subsequent task is to combine these selected members into an aggregated classifier
in an appropriate ensemble strategy. Common strategies to combine these single DT results and then
produce the final output are simple averaging; weighted averaging, ranking and majority voting. For
more information on these strategies, the reader is referred to [14], which are otherwise briefly discussed
below.

Simple averaging is one of the most frequently used combination methods. After training the members
of the ensemble, the final output can be obtained by averaging the sum of each output of the ensemble
members. Some experiments have shown that simple averaging is an effective approach [3].

Weighted averaging is where the final ensemble result is calculated based on individual ensemble
members’ performances and a weight attached to each individual member’s output. The gross weight
is 1 and each member of an ensemble is entitled to a portion of this gross weight according to their
performance or diversity.

Ranking is where members of the ensemble are called low level classifiers and they produce not only
a single result but a list of choices ranked according to their likelihood. Then the high level classifier
chooses from these set of classes using additional information that is not usually available to or well
represented in a single low level classifier.

Majority voting is the most popular combination method for classification problems because of its
easy implementation. Members of trees voting decide the value of each output dimension. It takes over
half the ensemble to agree a result for it to be accepted as the final output of the ensemble (regardless of
the diversity and accuracy of each tree generalization). Majority voting ignores the fact that some trees
that lie in a minority sometimes do produce correct results. However, this is the combination strategy
approach we follow in our study.

The following example demonstrates the mechanics of the proposed procedure as presented in Table 3.
Suppose that there are two methods used to handle incomplete data when growing decision trees,

resulting in two trees. Also, there are only two classes in the data: 1 and 2. Using the predicted
probabilities, there are four possible classification patterns from the training data such as (1, 1), (1, 2),
(2, 1) (2, 2). The first element in each pair denotes the class predictions by DT1and the second by DT2.
If the instance has predictions (1, 1) for both methods, it is simply assigned class 1 anyway. However, if
the instance has predictions (1, 2) it is assigned to the class with the higher overall probability which in
this case happens to be 2, and so on.

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 313

Table 3
An example pattern table

Predicted probabilities Predicted class Predicted class
(for each method) (for each method) (combining methods)

{(0.6, 0.4); (0.7, 0.3)} (1, 1) 1
{(0.6, 0.4); (0.3, 0.7)} (1, 2) 2
{(0.4, 0.6); (0.7, 0.3)} (2, 1) 1
{(0.4, 0.6); (0.3, 0.7)} (2, 2) 2

5. Related work

Several researchers have examined various techniques to solve the problem of incomplete data in SE.
One popular approach includes discarding instances with missing values and restricting the attention to
the completely observed instances, which is also known as listwise deletion (LD). This is the default
in commonly used statistical packages such s SPLUS [73]. Another common way uses imputation
(estimation) approaches that fill in a missing value with an efficient single replacement value, such as
the mean, mode, hot deck, and approaches that take advantage of multivariate regression and k-NN
models. Another technique for treating incomplete data is to model the distribution of incomplete data
and estimate the missing values based on certain parameters. Specific results are discussed below.

Lakshminarayan et al. [35] performed a simulation study comparing two ML methods for missing data
imputation using an industrial process maintenance dataset of 82 variables and 4383 instances. Their
results show that for the single imputation task, the SL algorithm C4.5, which utilizes the fractioning
of cases (FC) strategy, performed better than Autoclass [9], a strategy based on unsupervised Bayesian
probability. For the MI task, both methods performed comparably.

MI was used by El-Emam and Birk [16] to handle missing values in their empirical study that evaluated
the predictive validity of the capability measures of the ISO/IEC 15504 software development processes
(i.e., develop software design, implement software design, and integrate and test). The study was
conducted on 56 projects. For large organizations their results provided evidence of predictive validity
which was found to be strong while for small organizations the evidence was rather weak.

The pioneering work by Strike et al. [62] performed a comprehensive simulation study to evaluate
three MDTs in the context of software cost modelling. These techniques are LD, mean or mode single
imputation (MMSI) and eight different types of hot deck single imputation (HDSI). A dataset composed
of 206 software projects and 26 different companies was used. Their results show LD as not only having
a severe impact on regression estimates but yielding a small bias as well. However, the precision of LD
worsens with increases in missing data proportions. Their results further show that better performance
would be obtained from applying imputation techniques.

Another comparative study of LD, mean or mode single imputation (MMSI), similar response pattern
imputation (SRPI) and full information maximum likelihood (FIML) in the context of software cost
estimation was carried out by Myvreit et al. [44]. The simulation study was carried out using 176
projects. Their results show FIML performing well for data that is not MCAR. LD, MMSI and SRPI are
shown to yield biased results for data other than MCAR.

The performance of k−NNSI and sample mean imputation (SMI) was analyzed by Cartwright et
al. [7] using two industrial datasets; one dataset from a bank (21 completed projects) and the other from a
multinational company (17 projects). Their results show both methods yielding good results with kNNSI
providing a more robust and sensitive method for missing value estimation than SMI.

Song and Shepperd [63] evaluated kNNSI and class mean imputation (CMI) for different patterns and
mechanisms of missing data The dataset used for the study is the ISBSG database with 363 complete

314 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

instances. Their results show kNNSI slightly outperforming CMI with the missing data mechanisms
having no impact on either of the two imputation methods.

The k−NNSI method was evaluated using a likert dataset with 56 cases in the SE context by J önsson
and Wohlin [25]. Their results not only showed that imputing missing likert data using the k-nearest
neighbour method was feasible but also showed that the outcome of the imputation depends on the
number of complete cases more than the proportion of missing data. Their results further showed the
importance of choosing an appropriate k value when using such a technique.

The use of multinomial logistic regression imputation (MLRI) for handling missing categorical values
on a datataset on 166 projects of the ISBSG multi-organizational software database was proposed by
Sentas et al. [59]. Their proposed procedure was compared with LD, MMSI, Expectation-Maximization
single imputation (EMSI) and regression-based single imputation (RBSI). Their results showed LD and
MMSI as efficient when the percentage of missing values is small while RBSI and MLRI were shown
to outperform LD and MMSI as the amount of missing values increased. Overall, MLRI gave the best
results, especially for MCAR and IM data. For MAR data, MLRI compared favourably with RBSI.

Twala et al. [71] evaluates the impact of seven MDTs {LD, EMSI, 5-NNSI, MMSI, MI, FC and
surrogate variable splitting (SVS)} on eight industrial datasets by artificially simulating three different
proportions, two patterns and three mechanisms of missing data. Their results show MI achieving
the highest accuracy rates with other notably good performances by methods such as FC, EMSI and
kNNSI. The worst performance was by LD. Their results further show MCAR data as easier to deal with
compared with IM data. Twala [68] further found missing values as more damaging when they are in the
test sample than in the training sample. MIA was shown to be the most effective method when dealing
with incomplete data using DTs especially for IM data [69]. The superior performance of MI and the
severe impact of IM data on predictive accuracy is also observed in [67].

Despite the scarcity and small sizes of software data and the fact that the LD procedure involves an
efficiency cost due to the elimination of a large amount of valuable data, most SE researchers have
continued to use it due to its simplicity and ease of use. However, by sacrificing a large amount of data,
the sample size is severely reduced. There are other problems caused by using the LD technique. For
example, elimination of instances with missing information decreases the error degrees of freedom in
statistical tests such as the student t distribution. This decrease leads to reduced statistical power (i.e. the
ability of a statistical test to discover a relationship in a dataset) and larger standard errors. In extreme
cases this may mean that there is insufficient data to draw any useful conclusions from the study. Other
researchers have shown that randomly deleting 10% of the data from each attribute in a matrix of five
attributes can easily result in eliminating 59% of instances from analysis [27,33].

As for the SI techniques, the results are not so clear, especially for small amounts of missing data.
However, the performance of each technique differs with increases in the amount of missing data.
Several shortcomings of single imputation have been documented by Little and Rubin [36], Schafer and
Graham [57] and others. The obvious limitation is that it cannot reflect sampling variability under one
model for nonresponse or uncertainty about the correct model for nonresponse, i.e. it does not account
for the uncertainty about the prediction of the imputed values. The lack of sampling variability could
distort estimates, standard errors, and hypothesis tests, leading to statistically invalid inferences [36].

MI, which overcomes limitations of single imputation methods by creating an inference that validly
reflects uncertainty of prediction of the missing data, seem not to have been widely adopted by researchers.
This is despite the fact that MI has been shown to be flexible, and software for creating MIs is available
and some downloadable free of charge.1

1Methodology Centre, Penn State University, USA [40].

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 315

Table 4
Datasets used for the experiments*

Dataset Instances Attributes
Numerical Categorical Number of classes

(distribution)
Kemerer 18 4 2 1 (24.1%); 2 (75.9%)
Bank 18 2 7 1 (84.3%); 2 (15.7%)
Test equipment 16 17 4 1 (43.0%); 2 (57.0%)
DSI 26 5 0 1 (49.9%); 2 (50.1%)
Moser 32 1 1 1 (42.2%); 2 (57.8%)
Desharnais 77 3 6 1 (15.7%); 2 (84.3%)
Finnish 95 1 5 1 (57.0%); 2 (43.0%)
ISBSG version 7 166 2 7 1 (35.6%); 2 (64.4%)
CCCS 282 8 0 1 (48.2%); 2 (51.8%)
Company X 10434 4 18 1 (33.0%); 2 (29.2%); 3 (37.8%)

*after the removal of instances with missing attribute values.

6. Experimental set-up

6.1. Introduction

Incomplete data has been shown to have a negative impact in reducing ML performance in terms
of predictive accuracy while the use of an ensemble of classifiers strategy has been shown to improve
predictive accuracy by aggregating the predictions of many classifiers. In this regard, two sets of
experiments based on ten industrial datasets (see Table 4) are carried out. Of these datasets, a couple
were obtained from the Promise SE repository [54] and others, like ISBSG [23], from researchers at
various software companies. Nearly all the datasets used for the experiments have missing values. The
objective is to have control over of how different missing data patterns and mechanisms are simulated
on a complete dataset. Thus, all instances with missing values were initially removed using LD (which
assumes missing values are MCAR) before starting the experiment.

The response or class attribute (software effort) is continuous for all the datasets. However, in this
paper we are dealing with a classification-type of problem that predicts values of a categorical dependent
attribute from one or more continuous or categorical attribute values. Therefore, software effort was
made discrete into a set of three disjoint categories for all datasets. The rule induction technique [15,
49] was utilized for this task. The cut-points were determined in a way that was not blinded to the class
attribute, hence, achieving unbiased effect estimates. Monte Carlo simulations which take into account
both multiplicities and uncertainty in the choice of cut-points were also utilized for this task [22]. For
example, for the Company X dataset, the three categories used were: (low effort, when EFFORT <=
5000; medium effort, when 5000 < EFFORT <= 10000; high effort, when EFFORT > 10000).

5-fold cross validation was used for tree induction for the experiments. For each fold, four of the parts
of the instances in each category were placed in the training set, and the remaining one was placed in the
corresponding test as shown in Table 5.

Since the distribution of missing values among attributes (pattern) and the missing data mechanism
were two of the most important dimensions of this study, three suites of data were created corresponding
to MCAR, MAR and IM. In order to simulate missing values on attributes, the original datasets are run
using a random generator (for MCAR) and a quantile attribute-pair approach (for both MAR and IM,
respectively). Both of these procedures have the same percentage of missing values as their parameters.
These two approaches were also run to get datasets with four levels of proportion of missingness p, i.e.,

316 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

Table 5
Partitioning of dataset to training and test sets

Training set Test set

Fold 1 Part II + Part III + Part IV + Part V Part I
Fold 2 Part I + Part III + Part IV + Part V Part II
Fold 3 Part I + Part II + Part IV + Part V Part III
Fold 4 Part I + Part II + Part III + Part V Part IV
Fold 5 Part I + Part II + Part III + Part IV Part V

0%, 15%, 30% and 50% missing values. The experiment consists of having p% of data missing from
both the training and test sets.

6.2. Modelling of missing data mechanisms

The missing data mechanisms were constructed by generating a missing value template (1 = present,
0 = missing) for each attribute and multiplying that attribute by a missing value template vector. Our
assumption is that the instances are independent selections.

For each dataset, two suites were created. First, missing values were simulated on only half of the
attributes. Second, missing values were introduced on all the attribute variables. For both suites, the
missingness was evenly distributed across the attributes. This was the case for the three missing data
mechanisms, which from now on shall be called MCARhalf , MARhalf , IMhalf (for the first suite) and
MCARunifo, MARunifo, IMunifo (for the second suite). These procedures are described below.

For MCAR, each vector in the template (values of 1’s for non-missing and 0’s for missing) was
generated using a random number generator utilising the Bernoulli distribution. The missing value
template is then multiplied by the attribute of interest, thereby causing missing values to appear as zeros
in the modified data.

Simulating MAR values was more challenging. The idea is to condition the generation of missing
values based upon the distribution of the observed values. Attributes of a dataset are separated into
pairs, say, (Ax, AY), where AY is the attribute into which missing values are introduced and AX is
the attribute on the distribution of which the missing values of AY is conditioned, i.e., P(AY = miss|
Ax = observed). The pairing of attributes was based on how highly correlated to one another they were.
So, highly correlated attributes was paired against each other. Since we want to keep the percentage of
missing values at the same level overall, we had to alter the percentage of missing values of the individual
attributes. Thus, in the case of k% of missing values over the whole dataset, 2k% of missing values
were simulated on AY . For example, having 10% of missing values on two attributes is equivalent to
having 5% of missing values on each attribute. Thus, for each of the Ax attributes its 2k quantile was
estimated. Then all the instances were examined and whenever the AX attribute has a value lower than
the 2k quantile a missing value on AY is imputed with probability 0, and 1 otherwise. More formally,
P(AY = miss| Ax < 2k) = 0 or P(AY = miss| Ax >2k) = 1. This technique generates a missing value
template which is then multiplied with AY . Once again, the attribute chosen to have missing values
was the one highly correlated with the class variable. Here, the same levels of missing values are kept.
For multi-attributes, different pairs of attributes were used to generate the missingness. Each attribute
is paired with the one it is highly correlated to. For example, to generate missingness in half of the
attributes for a dataset with, say, 12 attributes (i.e. A1, . . . , A12), the pairs (A1, A2), (A3 ,A4) and (A5,
A6) could be utilised. We assume that A1 will be highly correlated with A2; A3 highly correlated with
A4, and so on. For the (A1, A2) pairing, A1 is used to generate a missing value template of zeros and

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 317

ones utilizing the quantile approach. The template is then used to “knock off” values (i.e., generating
missingness) in A2, and vice versa.

In contrast to the MAR situation outlined above where data missingness is explainable by other
measured variables in a study, IM data arise due to the data missingness mechanism being explainable,
and only explainable by the very variable(s) on which the data are missing. For conditions with data IM,
a procedure identical to MAR was implemented. However, for the former, the missing values template
was created using the same attribute variable for which values are deleted in different proportions.

For consistency, missing values were generated on the same attributes for each of the three missing
data mechanisms. This was done for each dataset. For split selection, the impurity approach was used.
For pruning, we use 5-fold cross validation cost complexity pruning and 1 Standard Error (1-SE) rule in
CART to determine the optimal value for the complexity parameter [4]. The same splitting and pruning
rules when growing the tree were carried out for each of the ten industrial datasets.

6.3. Performance evaluation

A classifier was built on the training data and the predicted accuracy is measured by the smoothed
classification error rate of the tree, and was estimated on the test data. Instead of summing terms that
are either zero or one as in the error-count estimator, the smoothed misclassification error rate uses a
continuum of values between zero and one in the terms that are summed. The resulting estimator has a
smaller variance than the error-count estimate. Also, the smoothed error rate can be very helpful when
there is a tie between two competing classes. This is the main reason why it was considered for our
experiments.

It was reasoned that the condition with no missing data should be used as a baseline and what should
be analysed is not the error rate itself but the increase or excess error induced by the combination of
conditions under consideration. Therefore, for each combination of method for handling incomplete
data, the number of attributes with missing values, proportion of missing values, and the error rate for
all data present was subtracted from each of the three different proportions of missingness. This would
be the justification for the use of differences in error rates analysed in some of the experimental results.

All statistical tests were conducted using the MINITAB statistical software program [39]. Analyses
of variance, using the generalized linear model procedure [32] were used to examine the main effects
and their respective interactions. This was done using a 4-way repeated measures design (where each
effect was tested against its interaction with datasets). The fixed effect factors were the: missing data
techniques; number of attributes with missing values (missing data patterns); missing data proportions;
and missing data mechanisms. A 1% level of significance was used because of the many number of
effects. Results were averaged across five folds of the cross-validation process before carrying out the
statistical analysis. The averaging was done as a reduction in error variance benefit.

Numerous measures are used for performance evaluation in ML. In predictive knowledge discovery,
the most frequently used measure is predictive accuracy. To measure the performance of MDTs and
the ensemble MDTs, the training set/test set methodology is employed. Unfortunately, an operational
definition of accurate prediction is hard to come by. However, predictive accuracy is mostly operationally
defined as the prediction with the minimum costs (the proportion of misclassified instances). The need
for minimizing costs, rather than the proportion of misclassified instances, arises when some predictions
that fail are more catastrophic than others, or when some predictions that fail occur more frequently
than others. Minimizing costs, however, does correspond to minimizing the proportion of misclassified
instances when priors are taken to be proportional to the class sizes and when misclassification costs are
taken to be equal for every class. This is the approach we follow in the paper.

318 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

Khoshgoftaar and Seliya [28] and Khoshgoftaar et al. [31] argue that in the context of the software
development, selecting and evaluating a classification model (like a DT) based solely on its error rates
is inappropriate. Their argument is based on the issue of using both the false positive (rejecting a null
hypothesis when it is actually true) and false negative (failing to reject a null hypothesis when it is
in fact false) errors as performance measures whenever classification models are used and compared.
Furthermore, in the business world, decisions (of the classification type) involve costs and expected
profits. The classifier is then expected to help making the decisions that will maximise profits. CART is
able to handle this problem in terms of taking into account misclassification costs when constructing the
DT.

6.4. Programs and codes for methods

No software or code was used for LD. Instead, all instances with missing values on that particular
attribute were manually excluded or dropped, and the analysis was applied only to the complete instances.

S-PLUS code was also developed for the MMSI approach. The code was developed in such a way that
it replaced the missing data for a given attribute by the mean (for a numerical or quantitative attribute)
or mode (for a nominal or qualitative attribute) of all known values of that attribute.

An index structure M-tree [11] was used as a representative of the k-NN approach for handling
missing attribute values in both the training and test samples. This technique can organize and search
datasets based on a generic metric space. In addition, it can drastically reduce the number of distance
computations in similarity queries. The missing values were estimated using 1, 3, 5, 11, 15, 21 nearest
neighbours. However, only results with 5-nearest neighbour will be showed in this work.

From the MIA method, an unknown (missing) value is considered an additional attribute value. Hence,
the number of values is increased by one of each attribute that depicts and unknown value in the training
or test set. S-PLUS code for this method was developed.

There are many implementations of MI. Schafer’s [55] set of algorithms (headed by the NORM
program) that use iterative Bayesian simulation to generate imputations was an excellent option. NORM
was used for datasets with only continuous attributes. A program called MIX written was used for mixed
categorical and continuous data. For strictly categorical data, CAT was used. All three programs are
available as S-PLUS routines.

For the SVS method, the RPART routine, which implements within S-PLUS many of the ideas found
in the CART book and programs of Breiman et al. [4] was used for both training and testing DTs.

The DTSI method uses a DT for estimating the missing values of an attribute and then uses the data
with filled values to construct a DT for estimating or filling in the missing values of other attributes. An
S-PLUS code to estimate missing attribute values using a DT for both incomplete training and test data
was developed.

The DT learner C4.5 was used as a representative of the FC or probabilistic technique for handling
missing attribute values. This technique is probabilistic in the sense that it constructs a model of the
missing values, which depends only on the prior distribution of the attribute values for each attribute
tested in a node of the tree. The main idea behind the technique is to assign probability distributions
at each node of the tree. These probabilities are estimated based on the observed frequencies of the
attribute values among the training instances at that particular node.

S-PLUS codes for all the ensembles were developed.

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 319

Fig. 4. Overall means for current methods.

6.5. Experiments

6.5.1. Experiment I
In order to empirically evaluate the performance of the eight MDTS on predictive accuracy, an

experiment on ten industrial datasets is (given in Table 2) is used. This experiment is carried out in
order to rank individual MDTs and also assess the impact of missing data (at various levels) on software
predictive accuracy.

6.5.1.1. Experimental results I
Experimental results on the effects of current methods for handling both incomplete training and test

data on predictive accuracy using DTs are described. The behaviour of these methods is explored for
different patterns, levels of missing values, and for the mechanism of missing data. The error rates of
each method of dealing with the introduced missing values are averaged over the ten datasets. Also,
all the error rates increases over the complete data case are formed by taking differences. From these
experiments the following results are observed.

Main effects
All the main effects were found to be significant at the 1% level of significance (F = 61.95, df = 7 for

MDTs; F = 19.36, df = 1 for number of attributes with missing values; F = 201.54, df = 2 for missing
data proportions, F = 112.80, df = 2 for missing data mechanism; p < 0.01 for each).

From Fig. 4, MIA is the overall best technique for handling incomplete data with an excess error
rate of 8.2%, closely followed by MI, FC and k-NNSI, with excess error rates of 9.6%, 9.9% and 10.8,
respectively. The worst technique is LD, which exhibits an error rate of 14.7%.

Tukey’s multiple comparison tests showed no significant differences between DTSI and MMSI (on the
one hand) and MIA and MI (on the other hand). However, significant differences are observed between
MI and the other single imputation strategies like DTSI, k-NNSI and MMSI. The two SL strategies (FC
and SVS) were found to be significantly different from each other. 5-NNSI and FC were found to be
not significantly different from each other. The significance level for all the comparison tests is 0.01.
All interaction effects we found to be insignificant at the 1% level of significance. Hence, they are not
discussed in the paper.

320 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

Fig. 5. Overall means for current techiniques and ensembles.

6.5.2. Experiment II
The main objective of this experiment is to compare the performance of the new ensemble method

with current approaches to deal with the problem of incomplete data, especially the top three MDTs
that exhibited higher accuracy rates in the previous experiment. These include MI, MIA and FC. Also,
we thought it would be interesting to test the effectiveness of the proposed approach with a statistical
imputation technique (MI), a new approach (MIA) and a SL technique (FC). From the combination of
three MDTs, three different ensembles methods are also proposed as given below:

i. MIAMI, a component of MIA and MI
ii. MIAFC, a component of MIA and FC; and

iii. MIFC, a component of MI and FC

The above three ensemble methods are also compared with each of the three MDTs, individually.

6.5.2.1. Experimental results II
Main effects
All the main effects were found to be significant at the 1% level of significance (F = 84.5, df = 5 for

existing and ensemble missing data methods; F = 26.3, df = 1 for number of attributes with missing
values; F = 73.8 df = 2 for missing data proportions, F = 36.4, df = 2 for missing data mechanism; p <
0.01 for each).

Figure 5 shows the average results of 180 experiments (3 MDTs plus 3 ensemble methods x 2
missing data patterns x 3 missing data proportions x 3 missing data mechanisms) which summarizes
imputation accuracy of each method. The accuracies of each method are averaged over the ten datasets.
Figure 5 further shows that the MIAMI ensemble has on average the best accuracy throughout the
entire spectrum missing data proportions, patterns, and mechanisms. Tukey’s multiple comparison tests
showed significant differences between MIAMI and the other individual MDTs at the 1% level.

Interaction effects
Only two two-way interactions effects were found to be statistically significant at the 1% level. These

are: the interaction between current and new MDTs, ensemble methods and missing data pattern (F =
8.45, df = 12; p < 0.01), and the interaction between current and new MDTs and ensemble methods and
missing data mechanisms (F = 13.8, df = 18; p < 0.01).

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 321

Fig. 6. Interaction between methods and missing data patterns.

Fig. 7. Interaction between missing data techiniques and missing data mechanisms.

The interaction effect between the ensemble and MDTs and the missing data patterns is shown in
Fig. 6. This figure shows all the methods performing better when the missing values are in all the
attributes compared with when they are only in half of the attributes.

In addition, the impact of missing data patterns appears to differ by the type of missing data method.
For example, MI exhibits one of the biggest increases in error rates (as the number of attributes with
missing values increases) compared with only a very small increase achieved by MIA. Figure 7 shows
all techniques achieving bigger error rates when dealing with IM data compared with either MCAR or
MAR data. From the three ensemble methods, the most affected is MIAFC, especially for IM data.
In addition, some techniques appear to be severely impacted by the different missing mechanisms than
others.

6.5.3. Results for individual Datasets: Current and New MDTs Vs. Ensemble Methods
The results that illustrate specific deviations from the overall results of the effectiveness of the new

ensemble methods against the current and new MDTs for constructing and classifying incomplete vectors
on different database characteristics, especially on datasets where the new method yielded superior
performance compared with MIA, MI and FC, are given below.

322 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

6.5.3.1. Results on a dataset with mainly nominal attributes and small sample size: test equipment
For the test equipment problem, the effects of missing values on classification accuracy for MCARhalf

data are summarised in Fig. 8A. MIAFC performs slightly better than MIAMI at the 30% level of
missing values. However, there are no clear differences in error rates between all the individual MDTs
and ensemble methods, especially at higher levels of missing values.

Once again, MIAFC outperforms MIAMI at the 30% level of missing values (Fig. 8B). However, the
difference in performances by all the methods is now noticeable.

Performances by all the different methods for handling MARhalf data follow a similar pattern to that
of MCARhalf data (Fig. 8C).

For MARall data, both MIAFC and MIAMI are the most effective methods as shown in Fig. 8D. The
poor performance of MIFC (especially at lower levels of missing values) is also observed.

The impact of IMhalf data on classification accuracy is shown in Fig. 8E. One again there appears to
be no significant differences between methods although the impact of missing data appears to be more
severe for this type of mechanism.

In this suite of IMallexperiments, the behaviour of the methods shown in Fig. 8F is not different from
the one observed in the MARall case. However, MIAMI slightly outperforms MIAFC at the 15% level
but its performance deteriorates as the proportion of missing data increases.

For this kind of dataset it appears that MIAFC handles small datasets with mainly numerical attributes
well, especially for MCAR or IM data. This seems to be the case when missing values are distributed
among all attributes. When missing values are only in half of the attributes,we observe good performances
by MIAMI even though the difference in performances by all the methods appears not to be significant.

6.5.3.2. Results on a dataset with purely numerical attributes: CCCS
As can be seen from Fig. 9A, the overall best performance for MCARall data is by MIAFC, with

MIAMI as a serious competitor.
The results for the MCARall suite suggest prominent increases in error rates in some cases compared

with MCARhalf (Fig. 9B). MIAMI and MIAFC yield the best performances with no clear ‘winner’
between the three ensemble methods at the 50% level.

In the MARhalf suite, the ensemble methods show slightly superior performances compared with
individual MDTs (Fig. 9C).

Figure 9D shows the performance of MIAMI as improving from being the second best method (in the
MCARhalf case) to being the best method at the 50% level of missing values for handling MARall data.

For the IMhalf suite, the results illustrated in Fig. 9E show a relatively superior performance by MIAMI
over MIAFC and MIAFC, especially at lower levels of missing values. At the 50% level, there are no
significant differences in performance between the ensembles and MIA.

In the IMall case (Fig. 9F), the behaviour by all the methods is similar to the one observed in IMhalf .
MIAMI performs as good as MIAFC at all levels of missing data with MIAFC struggling at the 50%
level.

MIAMI exhibits a very good performance for this dataset which contains purely numerical attributes.
This is the case when missing values are in all the attributes and for the MCAR and MAR situations.
Also, the performance of MIAMI seems to be better on average when missing values are distributed
among half of the attributes. However, the poor performance of MIAFC for handling MCARall and
MARall data compared to its superior performance for handling IMhalf is rather surprising while the
good performance of MIAMI is expected due to the slightly bigger size of the data.

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 323

Ensemble Imputation Methods

Fig. 8. Comparative results of current, new MDTs and ensemble methods for the test equipment data. A) MCARhalf , B)
MCARall, C) MARhalf , D) MARall, E) IMhalf , F) IMall.

324 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

Ensemble Imputation Methods

Fig. 9. Comparative results of current, new MDTs and ensemble methods for the CCCS data. A) MCARhalf , B) MCARall, C)
MARhalf , D) MARall, E) IMhalf , F) IMall.

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 325

6.5.3.3. Results on a dataset with mainly nominal attributes and bigger sample size: Company X
From Fig. 10A it appears that when both training and test data has missing values due to the MCAR half

mechanism, MIAMI achieves slightly better accuracy compared to the other methods. This is the case
at the 15% level of missing values. At higher levels of missing values, the difference in performances of
methods is not significant.

For MCARall data, the results show MIAMI achieving the best results at the 50% level while the
performance of MIAFC deteriorates with increases in missing data (Fig. 10B).

Error rates of methods for the Company X data problem for MARhalf data are presented in Fig. 10C. At
lower levels of missing values, the best overall performance is by MIAMI, closely followed by MIAFC.
At the 50% level, MIAFC rises from last to third position.

Results by methods for MARall data are displayed in Fig. 10D. Once again, MIAMI achieves higher
accuracy rates at all levels of missing values. The poor performance of MIAFC compared to individual
MDTs is also observed.

In this suite of IMhalf experiments, the results show each method performing best at each respective
level of missing values. MIAMI performs best at the 15 and 50% levels while MIAFC achieves the best
result with MIAMI at the 30% level. At the 50% level, MIAFC produces a much better performance
compared to its poor performance at lower levels of missing values (Fig. 10E).

In the IMall case, as shown in Fig. 10F, MIAMI exhibits the highest accuracy rates at all levels of
missing values, closely followed by MIAFC. The poor performance of MIAFC is also noticeable.

For this kind of dataset, it seems that MIAMI handles any form of missing data pattern and mechanism
better but with serious competition from MIAFC. MIFC seems not only to be ineffective as a method for
handling much bigger datasets but also ineffective for handling missing values when they are distributed
among half of the attributes (on the one hand) and when they are distributed in all the attributes (on the
other hand).

7. Discussion and conclusions

The major contribution of the paper is the development of an ensemble of techniques for imputation
of missing data algorithm in domain specific datasets for the prediction of software development effort.
The referred techniques are well known, but using the ensemble of them is an original contribution.
Furthermore, imputation methods are not of widespread use in SE, so showing the possibility of using
the techniques on software process data is another contribution of this paper for SE.

The empirical study is based on ten SE datasets, and the results suggest that the proposed technique
can be successfully applied. Based on preliminary evidence, it has been found that MIAMI (with MIA
and MI as its components) improves the prediction accuracy of the baseline imputation methods (MI,
MIA and FC). This improvement is achieved mainly in SE datasets with mostly nominal attributes and
whose values are either MAR or IM missing. Individually, MIA is effective for datasets with mostly
nominal attributes and whose values are IM while MI achieves higher accuracy rates for MAR data.
This is the case for both big and small datasets. The performance of MIAMI was also good for those SE
datasets with mostly categorical attributes, especially for the big datasets whose values were IM. MIAFC
is more effective for small datasets with mainly numerical attributes, especially when missing values are
distributed in all the attributes while MIFC struggles with any type of dataset and its respective attributes.

An important question is why does MIAMI outperforms other ensemble methods by such significant
margins, and in particular what differentiates it from, say MIAFC or MIFC? One reason could be the level
of “inertia” displayed by each system. All the ensemble algorithms display adaptive behaviour and look

326 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

Ensemble Imputation Methods

Fig. 10. Comparative results of current, new MDTs and ensemble methods for the CCCS data. A) MCARhalf , B) MCARall,
C) MARhalf , D) MARall, E) IMhalf , F) IMall.

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 327

to perturb the data at each iteration of the imputation algorithm. With fractioning of cases based on MI
methods or missing incorporated in attributes, once the weight associated with an observation becomes
trivial it may as well be excluded from further iterations of the algorithm because the weight is unlikely to
recover to a significant level. With missingness incorporated into attributes based on MI methods this is
not the case. An observation can flip between inclusion and exclusion at each iteration. Another reason
may be the performance of the individual imputation methods comprising each ensemble methods. MI
and MIA consistently dominated the other methods. One strength of MIA that is worth emphasis is the
ease with which it handles IM data while MI requires the data be MAR. However, even when the MAR
assumption is violated, MI performs better than several imputation methods. As Schafer [55] points out,
the richness of the observed data is related to the plausibility of the MAR assumption. In a multivariate
dataset, if the associations among the observed data are reasonably strong, then the observed data may
provide good information for constructing a model for imputing the missing data.

There are two other advantages of MI, and both involve correcting for the uncertainty of the imputations.
One advantage is in the parameter estimates, by essentially taking the mean of the parameter estimate
from each of the m imputations (where m is the number of imputations). The next advantage of MI is
the correction of standard errors for within and between imputation variance, which allows for better
estimates of confidence intervals and p-values. The strengths of MIA and MI (individually) could be the
reason why the combination (ensemble) of the two methods consistently dominates the other methods.

The poor performance of any ensemble with FC as a component could be attributed to the fact that not
only does the strategy fail to exploit or take into account the interrelationships among the attributes, the
mechanism generating the missing attribute values is unknown. Also, The FC approach works well when
most of the attributes are independent, because it depends only on their prior distribution of the attribute
values for each attribute being tested in a node of the tree. In other words, the different imputation
treatments differ in how they take advantage of statistical dependencies between attributes.

Our results also show the impact on the performance of methods is caused by the pattern and mechanism
of missing values, especially at lower levels of missingness. However, as the proportion of missing values
increases, the major determining factor on the performance of methods is how the missing values are
distributed among attributes. All methods yield lower accuracy rates when missing values are distributed
among all the attributes compared with when only one attribute has missing values. The performance of
MI and FC degrade faster as the number of attributes with missing values increases. This was the case
for all the datasets. Also, given that the classification performance of each method varies by mechanism
of missing data, it appears that the treatment of missing values not only heavily depends on the missing
data proportions but on the nature of the missing data pattern as well.

The worst performance achieved by methods is for IM data, followed by MCAR and MAR data,
respectively. This was a surprising result, which is in not in accordance with statistical theory which
considers MCAR as easier to deal with and IM data as very difficult to handle [36].

It was also observed that the impact of missing values depends not just upon a missing data technique,
missing data pattern or missing data mechanism but upon a combination of the three. Therefore, neither
can be considered in isolation.

From both experiments, there exists threats to the validity of the results. Potential threats include the
initial exclusion from the datasets of all the instances with missing values, which could have involuntarily
introduced biases, especially if those missing values contained improtant information and they were not
MCAR as we assumed. However, for two of the biggest datasets (Company X and Finnish) the
experimental results were carefully validated. For example, the experiments were conducted under the
supervision of a domain expert who had a deep understanding for each respective underlying dataset.

328 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

This was a time consumig exercise on ourselves and the experts. The experts were mainly involvedl in
the cleaning up of the datasets in terms of attribute and class noise and outliers. They were also able
to give us reaons why some attributes values were missing. For example, some project managers were
reluctant to show projects that had, say, high defect rates. This kind of nonresponse results in IM data
which otherwise we could not have known.

The averaging of results of the 10 domains/datasets (which is more like mixing datasets from different
companies into one dataset) is another potential issue. Some empirical studies in SE assume that domain-
and-process factors can be best accounted for within homogenous data, i.e., data produced by the same
company, with an almost stable process, in the same environment. Hence, in the case of our study, it
would be interesting to see if the results are consistent thorough the ten datasets although results for
individual datastes with certain attribute characterestics was looked at but not into great detail.

The issue of determining whether or not to apply the ensemble strategy to a given dataset must be
considered. For the work described here, the data were artificially corrupted, i.e. missing values were
artificially simulated on the attributes. Unfortunately, this type of information is rarely known for most
“real-world” applications. In some situations, it may be possible to use domain knowledge to determine
the mechanism generating the missing values. For situations where this knowledge is not available,
the conservative nature of the consensus ensemble dictates that the data will be missing randomly. In
addition, fundamentally there are three different classes of missingness mechanism which cover whatever
situation one might encounter in practice. Our approach is general since one can apply our results as
appropriately. For example, a relevant part of our paper could be taken if an empirical SE researcher
thinks he/she has MCAR data. In addition, it is possible to formally test for the MCAR assumption.
However, as much as MAR and IM are important, it is hard to test their assumptions, especially for IM
data, which requires one to test for missingness that was deliberately created when data was collected or
the data could be missing due to an unknown censoring mechanism.

This paper has looked at the performance of ensemble imputation methods in terms of smoothed
misclassification error rate. A natural extension would be to consider the impact of such ensemble
methods on other measures of performance, and in particular measures of group separation such as GINI
or the magnitude of relative error that is also commonly used to assess classifier performances in the
SE industry. MIAMI also deserves further investigation on a number of fronts. First, in terms of the
training parameters and the combination rules that can be employed. Second, empirical studies of the
application of MIAMI to datasets from other areas of data mining should be undertaken to assess its
performance across a more general field. Third, comparisons should be made between MIAMI and other
forms of imputation methods ensembles not investigated in this paper using non-tree-based methods.
For example, artificial neural networks and naı̈ve Bayes classifier.

We leave the above issues to be investigated in the future.
In sum, this paper provides the beginnings of a better understanding of the relative strengths and

weaknesses of ensemble imputation methods and using decision trees as their component classifier. It
is hoped that it will motivate future theoretical and empirical investigations into incomplete data and
software prediction, and perhaps reassure those who are uneasy regarding the use of imputed data in
software prediction.

Acknowledgements

The authors would like to thank the UK Engineering and Physical Sciences Research Council (under
grant GR/S55347) for funding this research and to the University of Johannesburg, South Africa for

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 329

additional financial support to finish the research. Further, the authors would like to thank Professor
David Hand and the anonymous revieweres for their invaluable comments on the paper and also for
the contribution from a third sofware organization who provided one of the biggest datasets for the
simulation study but has requested that its identity remains anonymous.

References

[1] E. Bauer and R. Kohavo, An empirical comparison of voting classification algorithms: Bagging, boosting and variants,
Machine Learning, 36 1/2 (1989), 105–139.

[2] L. Breiman, Bagging predictors, Machine Learning 26 (2) (1996), 123–140.
[3] L. Breiman, Bias, variance, and arcing classifiers, Technical Report 460, Statistics Department, University of California

at Berkeley, 1996b.
[4] L. Breiman, J. Friedman, R. Olshen and C. Stone, Classification and Regression Trees, Wadsworth, 1984.
[5] L. Briand, V. Basili and W. Thomas, A pattern recognition approach to software engineering data analysis, IEEE

Transactions on Software Engineering 18(11) (1992), 931–942.
[6] M. Cartwright and M.J. Shepperd, Building predictive models from object-oriented metrics. 8th European Software

Control and Metrics Conference, Berlin, 1997.
[7] M. Cartwright, M.J. Shepperd and Q. Song, Dealing with Missing Software Project Data, In Proceedings of the 9th

International Symposium on Software Metrics, 2003, 154–165.
[8] B. Cestnik, I. Kononenko and I. Bratko, Assistant 86: a knowledge-elicitation tool for sophisticated users. In I. Bratko

and N. Lavrac, editors, European Working Session on Learning – EWSL87, Sigma Press, Wilmslow, England, 1987.
[9] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor and D. Freeman, Bayesian Classification. In Proceedings of American

Association of Artificial Intelligence (AAAI), Morgan Kaufmann Publishers: San Meteo, CA, 1988, 607–611.
[10] J. Chen and J. Shao. Nearest Neighbour Imputation for Survey Data. Journal of Official Statistics 16(2) (2000), 113–131.
[11] P. Ciaccia, M. Patella and P. Zezula. M-tree: An Efficient Access Method for Similarity Search in Metric Spaces, In

VLDB ’97, 1997, 426–435.
[12] A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood estimation from incomplete data via the EM algorithm,

Journal of the Royal Statistical Society, Series B 39 (1977), 1–38.
[13] T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging,

boosting, and randomization, Machine Learning 40(2) (2000), 139–158.
[14] T.G. Dietterich, Ensemble Methods in Machine Learning, in: First International Workshop on Multiple Classifier Systems,

Lecture Notes in Computer Science, J. Kittler and F. Roli, eds, 2000, 1–15.
[15] J. Dougherty, R. Kohavi and M. Sahami, Supervised and Unsupervised Discretization of Continuous Features, In

Proceedings of the 12th International Conference on Machine Learning, Morgan Kauffmann, Los Altos, CA, 1995.
[16] K. El-Emam and A. Birk, Validating the ISO/IEC 15504 Measures of Software Development Process Capability, Journal

of Systems and Software 51(2) (2000), 119–149.
[17] M. Evett, T.M. Khoshgoftaar, P. Cheien and E. Allen, GP-based software quality prediction, In Proceedings of the 3rd

Annual Genetic Programming Conference, 1998, 60–65.
[18] N. Fenton and M. Neil, A critique of software defect prediction models, IEEE Transactions on Software Engineering

25(5) (1999), 675–689.
[19] Y. Freund and R. Schapire, Experiments with a new boosting algorithm, In Machine Learning: Proceedings of the 13th

International Conference, 1996, 148–156.
[20] J.W. Graham and S.M. Hofer, EMCOV.EXE user’s Guide (Unpublished Manuscript), University Park, PA: Pennsylvania

State University Department of Bahavioral Health, 1993.
[21] T.K. HO, Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and

Recognition, 1995, 278–282.
[22] N. Hollander, W. Sauerbrei and M. Schumacher, Confidence intervals for the effect of a prognostic factor after selection

of an optimal cutpoint, Statistics in Medicine 23 (2004), 1701–1713.
[23] ISBSG Data Disk, Release 7, June 2001.
[24] I. Jolliffe, Principal Component Analysis, Springer Verlag, 1986.
[25] P. Jönsson and C. Wohlin, An Evaluation of k-Nearest Neighbour Imputation Using Likert Data, In Proceedings of the

10th International Symposium on Software Metrics, 108–118, September 11–17, 2004.
[26] G.F. Kadoda, M. Cartwright and M. Shepperd, Issues on the Effective Use of CBR Technology for Software Project

Prediction, ICCBR (2001), 276–290.
[27] G. Kalton, Compensating for Missing Survey Data, Michigan, 1983.

330 B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction

[28] T.M. Khoshgoftaar and N. Seliya, Comparative assessment of software quality classification techniques: an empirical
case study, Empirical Software Engineering Journal 9(3) (2004), 229–257.

[29] T.M. Khoshgoftaar and N. SELIYA, Tree-based Software Quality Estimation Models for Fault Prediction, In the Pro-
ceedings of the 8th IEEE International Symposium on Software Metrics, 2002.

[30] T.M. Khoshgoftaar and E.B. Allen, Modelling Software Quality with Classification Trees, In Recent Advances in
Reliability and Quality Engineering, Hoang Pham Editor. World Scientific, Singapore, 1999.

[31] T.M. Khoshgoftaar, N. Seliya and A. Herzberg, Resource-oriented software quality classification models, Journal of
Systems and Software 76 (2004), 111–126.

[32] R.E. Kirk, Experimental Design (2nd Ed.), Monterey, CA: Brooks, Cole Publishing Company, 1982.
[33] J.O. Kim and J. Curry, The treatment of missing data in multivariate analysis, Sociological Methods and Research 6

(1977), 215–240.
[34] K.K. Lai, L. Yu, S.Y. Wang and L.G. Zhou, Credit risk analysis using a reliability-based neural network ensemble model,

Lecture Notes in Computer Science 4132 (2006), 682–690.
[35] K. Lakshminarayan, S.A. HARP and T. Samad, Imputation of Missing Data in Industrial Databases, Applied Intelligence

11 (1999), 259–275.
[36] R.J.A. Little and D.B. Rubin, Statistical Analysis with Missing Data, New York: Wiley, 1987.
[37] M. Mendonca amd N.L. Sunderhaft, Mining Software Engineering Data: A Survey. DACS-SOAR-99-3. A DACS

State-of-theArt Report. DoD Data and Analysis Center for Software, 1999.
[38] T. Menzies, Practical Machine Learning for Software Engineering and Knowledge Engineering. In Handbook of Software

Engineering and Knowledge Engineering, 2001. [Available from http://tim.menzies.com/pdf/00ml.pdf, January 2009].
[39] MINITAB. MINITAB Statistical Software for Windows 9.0, MINITAB, Inc., PA, USA, 2002.
[40] MULTIPLE IMPUTATION SOFTWARE. [Available from http://www.stat.psu.edu/jls/misoftwa.html or http://

methcenter.psu.edu/EMCOV.html; January 2009].
[41] O.J. Murphy and R.L. McCraw, Designing storage efficient decision trees, IEEE Transactions on Computing 40(3)

(1991), 315–319.
[42] S.K. Murthy and S. Salzberg, Lookahead and pathology in decision tree induction, Proceedings of the 14th International

Joint Conference on Artificial Intelligence, (1992), 309–347, Montreal, Canada: Morgan Kauffman.
[43] S. Murthy, S. Kasif and R. Biegel, OC1: Randomised induction of oblique decisions trees, In Proceedings of the 11th

National Conference on Artificial Intelligence, (1993), 322–327.
[44] I. Myrtveit, E. Stensrud and U. Olsson, Analyzing Data Sets with Missing Data: An Empirical Evaluation of Imputation

Methods and Likelihood-Based Methods, IEEE Transactions on Software Engineering 27(11) (2001), 1999–1013.
[45] D.E. Neumann, An Enhanced Neural Network Technique for Software Risk Analysis, IEEE Transactions on Software

Engineering, (2002), 904–912.
[46] E. Papatheocharous and A.S. Andreou, Classification and Prediction of Software Cost through Fuzzy Decision Trees,

Lecture Notes in Business Information Processing 24 (2009), 234–247.
[47] A.A. Porter and R.W. Selby, Empirically Guided Software Development Using Metric-Based Classification Trees, IEEE

Software 7(2) (1990), 46–54.
[48] A.A. Porter and R.W. Selby, Evaluating Techniques for Generating Metric-based Classification Trees, Journal of Systems

Software (1990), 209–218.
[49] J.R. Quinlan, C.4.5: Programs for Machine Learning. Los Altos, California: Morgan Kauffman Publishers, INC., 1993.
[50] J.R. Quinlan, Induction to Decision Trees, Machine Learning 1 (1986), 81–106.
[51] J.R. Quinlan, Induction over Large Databases: Technical Report HPP-79-14, Stanford University.
[52] D.B. Rubin, Multiple Imputation After 18+ Years, Journal of the American Statistical Association 91 (1996), 473–489.
[53] S.R. Safavian and D. Landgrebe, A survey of decision tree classifiers, IEEE Transactions on Systems, Man and Cybernetics

21 (1991), 660–674.
[54] S.J. Sayyad and T.J. Menzies, The PROMISE Repository of Software Engineering Databases. School of Informa-

tion Technology and Engineering, University of Ottawa, Canada, 2005 [Available from http://promise.site.uottawa.
ca/SERepository; January 2009].

[55] J.L. Schafer, Analysis of Incomplete Multivariate Data, Chapman and Hall, London, 1997.
[56] J.L. Schafer and M.K. Olsen, Multiple Imputation for multivariate missing data problems: a data analyst’s perspective,

Multivariate Behavioral Research 33(4) (1998), 545–571.
[57] J.L. Schafer and J.W. Graham, Missing data: Our view of the state of the art, Psychological Methods 7(2) (2002),

147–177.
[58] R.W. Selby and A.A. Porter, Learning from Examples: Generation and Evaluation of Decision Trees for Software

Resource Analysis, IEEE Trans on Soft Eng 14(12) (1988), 1743–1757.
[59] P. Sentas, A. Lefteris and I. Stamelos, Multiple Logistic Regression as Imputation method Applied on Software Effort

prediction, In Proceedings of the 10th International Symposium on Software Metrics, Chicago, 14–16 September 2004.
[60] A, Shapiro, Structured Induction in Expert Systems, Addison Wesley, London, 1987.

B. Twala and M. Cartwright / Ensemble missing data techniques for software effort prediction 331

[61] M.J. Sheppered and C. Schofiled, Estimating software project using analogies, IEEE Transaction on Software Engineering
23(12) (1997), 736–743.

[62] K. Strike, K.E. El-Emam and K.E., Madhavjim, Software Cost Estimation with Incomplete Data, IEEE Transaction on
Software Engineering 27(10) (2001), 890–908.

[63] Q. Song and M. Sheppered, A Short Note on Safest Default Missingness Mechanism Assumptions, Empirical Software
Engineering 10(2) (2005), 235–243.

[64] K. Srinivasan and D. Fisher, Machine Learning Approaches to Estimating Software Development Effort, IEEE Transaction
on Software Engineering 21(2) (1995), 126–137.

[65] J. Tian, Integrating Time Domain and Input Domain Analyses of Software Reliability Using Tree-Based Models, IEEE
Transactions on Software Engineering 21(12) (1995), 945–958.

[66] J. Tian and J. Palma, Analyzing and Improving Reliability: A Tree-based Approach, IEEE Software 15(2) (1998),
97–104.

[67] B. Twala, An Empirical Comparison of Techniques Handling Incomplete Data Using Decision Trees, Applied Artificial
Intelligence 23(5) (2009), 373–405.

[68] B. Twala, Effective Techniques for Handling Incomplete Data Using Decision Trees, Unpublished P.hD. Dissetation,
Open University, Milton Keynes, UK, 2005.

[69] B. Twala, M.C. Jones and D.J. Hand, Good methods for coping with missing data in decision trees, Pattern Recognition
Letters 29 (2008), 950–956.

[70] B. Twala, M. Cartwright and G. Liebchen, Classifying Incomplete Software Engineering Data Using Decision Trees:
An Improved Probabilistic Approach, In Proceedings of Software Engineering Applications, November 13–15, 2006,
Dallas, TX, USA.

[71] B. Twala, M.H. Cartwright and M. Shepperd, Comparison of Various Methods for Handling Incomplete Data in Software
Engineering Databases, In Proceedings of the 4th International Symposium on Empirical Software Engineering, Noosa
Heads, Australia, November 2005.

[72] B. Twala and M.H. Cartwright, Ensemble imputation methods for missing software engineering data, In: Proceedings of
11th IEEE International Software Metrics Symposium, 2005, 30–40.

[73] W.N. Venables and B.D. Ripley, Modern Applied Statistics with S-PLUS, New York: Springer, 1994.
[74] A.P. White and W.Z. Liu, Bias in information-based measures in decision tree induction, Machine Leaning 15 (1994),

321–329.

Copyright of Intelligent Data Analysis is the property of IOS Press and its content may not be copied or emailed

to multiple sites or posted to a listserv without the copyright holder's express written permission. However,

users may print, download, or email articles for individual use.

