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Motor neuron disease (MND) is a fatal progressive neurodegenerative disorder

characterized by the breakdown of the motor system. The clinical spectrum of MND

encompasses different phenotypes classified according to the relative involvement of the

upper or lower motor neurons (LMN) and the presence of genetic or cognitive alterations,

with clear prognostic implications. However, the pathophysiological differences of these

phenotypes remain largely unknown. Recently, magnetic resonance imaging (MRI) has

been recognized as a helpful in-vivo MND biomarker. An increasing number of studies is

applying advanced neuroimaging techniques in order to elucidate the pathophysiological

processes and to identify quantitative outcomes to be used in clinical trials. Diffusion

tensor imaging (DTI) is a non-invasive method to detect white matter alterations

involving the upper motor neuron and extra-motor white matter tracts. According to this

background, the aim of this review is to highlight the key role of MRI and especially DTI,

summarizing cross-sectional and longitudinal results of different approaches applied in

MND. Current literature suggests that DTI is a promising tool in order to define anatomical

“signatures” of the different phenotypes of MND and to track in vivo the progressive

spread of pathological proteins aggregates.

Keywords: amyotrophic lateral sclerosis, motor neuron disease, diffusion tensor imaging, fractional anisotropy,

network analysis, magnetic resonance imaging, structural connectomics

INTRODUCTION

Motor neuron disease (MND) is a group of fatal neurodegenerative diseases characterized by
progressive damage of the upper motor neurons (UMN) in the cortex and/or lower motor neurons
(LMN) in the brainstem and spinal cord. Depending on the relative involvement of UMN and
LMN, MND can be classified in a wide range of clinical phenotypes (including amyotrophic
lateral sclerosis [ALS], primary lateral sclerosis [PLS], and progressive muscular atrophy [PMA]),
characterized by different clinical presentation and progression rate. Advanced brain imaging
techniques, such as magnetic resonance imaging (MRI), have been developed over the last
decades in order to detect in vivo structural and functional brain abnormalities and to monitor
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neurodegeneration in the central nervous system of MND
patients. Although neurodegeneration primarily affects the gray
matter (GM), pathological alterations in the white matter (WM)
have also been reported (1), involving not only the corticospinal
tract (CST), but also non-motor regions (2).

The present review aims to discuss the current state of the art
of MRI within different phenotypes of MND, focusing on WM
microstructural alterations, underlining the role of MRI as a tool
to understand disease pathophysiology and to provide potential
biomarkers for diagnosis and prognostic stratification. Moreover,
we also highlight emerging techniques, such as graph analysis,
that will likely provide further insights in disease pathogenesis
and might help in monitoring disease progression.

DIFFUSION TENSOR IMAGING

Basic Principles
Diffusion tensor imaging (DTI) is the most common MRI
technique that allows to investigate WM microstructural
changes. DTI is based on the random diffusion of water
molecules in the fiber bundles, also known as Brownian motion
(3). DTI analysis relies on the concept that, in a spherical
volume, the diffusion of water has no preferential direction and
spreads equally in three different directions (λ1, λ2, and λ3).
Nevertheless, the movement of water molecules within the WM
is approximately elliptical, having the greatest movement along
axons (axial diffusivity [λ1]) caused by the restriction in the
minor axes (radial diffusivity [λ2 and λ3]) imposed by myelin.
In order to analyze the diffusion of water molecules, it is possible
to define four parameters: (1) fractional anisotropy (FA), which
describes how strongly directional is the movement of water
molecules within the tissue; (2) radial diffusivity (RD, which is
the average of λ2 and λ3); (3) axial diffusivity (AD, or λ1); (4)
mean diffusivity (MD, obtained by the average of diffusion in
the λ1, λ2, and λ3 axes). While the first three parameters (FA,
RD, and AD) describe the spatial variation of water movement,
MD reflects the average displacement of water molecules within
the volume of interest. Axonal integrity will preserve diffusion
parallel to the main fiber direction, resulting in higher FA
and lower MD, while damage to the WM will lead to lower
FA and higher MD (4). To date, there are several approaches
to analyze DTI metrics: regions of interest (ROI) approach,
whole-brain voxel-wise methods or tract-based spatial statistics
(TBSS). These techniques provide complementary information
and are characterized by relative strengths and limitations. The
ROI approach is based on the delineation of defined areas or
the reconstruction of WM tracts of interest in each subject’s
native space, in order to extract average DTI metrics to be
compared among subjects; although this procedure allows a
precise anatomical definition of WM structures and does not
involve the coregistration of multiple scan images, it masks local
alterations by averaging all voxels within the ROI, usually needs
an a priori hypothesis and might be influenced by inter-subject
anatomical variability (5). The most straightforward approach
to assess local DTI alterations is to coregister all subjects’ scans
and perform statistical tests among groups within each voxel
of the whole-brain WM mask; however, whole-brain voxel-wise

approaches are sensitive to registration errors (6). To reduce
the effects of local misregistrations, TBSS projects all voxels
of the DTI image onto the nearest location on a “skeleton”
delineating themainWM tracts (7). In addition to thesemethods,
graph theory is one of the most recent approaches to investigate
WM changes, building models of structural connectivity in
brain disorders based on nodes and edges (8). Current evidence
provided by each of these techniques for the study of MND is
summarized in the following paragraphs.

The weakness of DTI is the lack of specificity in voxels
presenting multiple fiber populations (termed “crossing fibers”)
(9). In order to overcome this problem, novel data acquisition
approaches have been proposed such as high angular resolution
diffusion imaging (HARDI), neurite orientation dispersion and
density imaging (NODDI) and diffusion spectrum imaging.
Although these approaches hold the promise to provide
further insights on the pathogenic mechanisms underlying WM
degeneration and are likely sensitive to even subtle alterations
in several neurodegenerative conditions (10), current evidence
in the context of MND is scarce and should be considered
preliminary (11, 12).

DTI Signatures in ALS
Several studies have consistently demonstrated decreased FA
and increased MD, RD, and AD along the entire CST in ALS
patients relative to healthy controls (13–18). Several studies
showed specific alterations of DTI metrics only in some parts of
the CST: subcortical WM of the precentral gyrus, corona radiata,
posterior limb of the internal capsule, cerebral peduncles and
pons (19–21). DTI studies have also detected altered metrics in
the middle and posterior part of the corpus callosum in ALS
patients relative to healthy controls (22, 23). Cervical cord studies
also consistently showed DTI alterations in the lateral columns
of ALS patients (24–27), which were more severe at more distal
cervical segments (25).

Many neuroimaging studies characterized the structural
“signatures” in ALS patients with specific underlying genetic
mutations. In particular, diffuse WM abnormalities were
observed inC9orf72 repeat expansion carriers (themost common
genetic mutation) (28, 29). Particularly, C9orf72 patients showed
an involvement of the CST, whole corpus callosum and superior
longitudinal fasciculus compared with healthy controls, in terms
of decreased FA and increased MD (29). Only few structural MRI
studies were performed in carriers of pathogenic mutations in
SOD1, showing a relative preservation of brain motor networks
compared to sporadic ALS patients (30, 31).

Cross-sectional DTI studies shed light on the
pathophysiological processes associated with the development
of ALS. However, the definition of biomarkers that could
track progressive changes over time has crucial importance.
To date, relatively few longitudinal studies focused on DTI
changes over time in these patients, due to the difficulties in
enrolling enough cases with a rapidly evolving disease who could
undergo an appropriate number of follow-up scans. Most of
the studies, using a ROI approach or TBSS, showed decreasing
values of FA over time in CST, corpus callosum, frontal areas
and cerebellum (21, 32–35). One study demonstrated also
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that diffusivity increased both in the external and internal
capsule (21). Nevertheless, there are also studies showing
inconsistent results, probably due to different sample sizes,
follow-up intervals and, most importantly, the heterogeneity of
MND patients (36–38). The same limitations apply to the few
longitudinal studies assessing the evolution of cervical cord DTI
alterations (27, 36) that showed diverging results about the entity
of cord FA decrease over time. One recent study was performed
in ALS patients carrying C9orf72 mutation, demonstrating the
spreading of diffusivity alterations from anterior to posterior
WM regions over a 6-month period (39).

Phenotyping the MND Spectrum
DTI measures might also be crucial to distinguish different
MND phenotypes. Indeed, DTI metrics were widely used for
the identification of “signatures” in PLS. In particular, one study
demonstrated that PLS patients showed lower CST FA values
relative to healthy controls and ALS patients (40). Degeneration
in extra-motor areas has also been found to be similar (41) or
even more severe (40) in PLS patients compared to ALS patients.
Furthermore, widespread DTI alterations were found to correlate
with the severity of cognitive deficits in PLS patients (42).
On the other hand, the least extensive microstructural changes
were observed in patients with predominant LMN involvement,
with diverging results in literature concerning the extent and
significance of such damage (43–45). Particularly, a recent two-
center study suggested that WM integrity was disrupted along
the CST and in frontal and prefrontal regions in patients with
predominant LMN disease relative to healthy controls (46). Only
patients with predominant LMN involvement and a higher rate
of disease progression showed significant WM alterations in the
specific ALS-related tract systems (46).

Clinical and Neuropsychological
Correlations
Many DTI studies aimed to test the relationship between WM
changes and clinical and neuropsychological measures in MND.
Decreased FA in the CST related with disease severity and rate
of disease progression in ALS, identifying an association between
worsening disability and degeneration of WM tracts, both in the
brain (21) and the cervical cord (24, 27). These findings support
the potential use of connectivity measures as markers of disease
progression in ALS. Inconsistencies among different studies have
been reported as for the relationship between DTI measures
and disease duration in ALS patients, as longer disease duration
has been paradoxically associated with both increased FA (47)
and increased MD values of the CST (48). These discrepancies
may be explained by the different progression rates of the two
samples. DTI changes in the CST and corpus callosum, as
well as in the cingulum, inferior longitudinal, inferior fronto-
occipital, and uncinate fasciculi have been found to correlate with
performance at cognitive tests assessing attention and executive
functions (49). Additional extensive WM damage to extra-
motor frontotemporal tracts has also been shown, underlying
variable degree of behavioral and cognitive disturbances in ALS
patients (45, 50, 51). Particularly, one study demonstrated that
WM abnormalities of the corpus callosum and frontotemporal

tracts, including uncinate, cingulum, and superior longitudinal
fasciculi, are the best predictor of executive and non-executive
deficits and behavioral changes within the MND spectrum (51).

Network-Based Analyses
Network-based analysis of structural connections is a new
powerful technique that allows studying the brain of healthy
subjects or patients with neurodegenerative disorders. The
techniquesmentioned so far allow tomapWM tracts individually
using DTI. Recently, neuroimaging research has moved to the
study of the human connectome, which aims to map all the
possible pathways of the human brain (52). With such new
approach, it is possible to provide information about how
networks are embedded and interact in the brain. Using graph
analysis and connectomics, brain regions can be depicted as a
set of nodes, linked by edges representing structural connections.
Maps of structural connectivity are created following the
following steps: (1) network nodes are identified applying a
selected atlas of GM structures to the brain; (2) following
definition of the brain regions, WM tracts are reconstructed
using DTI; (3) streamlines of the whole brain touching each
couple i and j of the segmented GM nodes are selected; (4) the
number of streamlines is calculated for each tract and inserted
into a matrix; (5) for each structural connection, the level of
microstructural integrity is measured extracting the mean FA,
MD, RD, and AD values; (6) finally, all the values are inserted
into four different matrices. From the analysis of these matrices,
it is possible to provide information concerning the topological
organization of network architecture (53). Many studies have
examined the global and local graph metrics such as: (1) nodal
strength and degree, which provide information regarding the
effect of a node in the network; (2) clustering coefficient and
local efficiency, which reflect the level of local organization of
a network; (3) path length, that is the number of steps needed
to connect each pair of nodes; (4) global efficiency, calculated
as the inverse of path length, which represents the efficacy of
a network to communicate between each pair of nodes; (5)
modularity, which gives information regarding segregation of a
network, reflecting the level of modular organization (54, 55).
To date, modifications of brain topological organization and
disruption of structural connectivity have been associated with
several neurodegenerative disorders (56–58), including MND.

In a first cross-sectional study, structural brain networks were
compared between ALS patients and healthy controls applying
network-based statistics (59). ALS patients showed regions with
reduced WM connectivity, centered around the primary but also
included secondary motor regions (frontal cortex and pallidum).
In addition, overall efficiency and clustering coefficient were
found to be decreased in ALS patients. A second study studied
WM alterations using network analysis, comparing results with
those obtained using TBSS (60). The results, consistent with the
previous study, showed an impaired motor-frontal-subcortical
subnetwork in the ALS patients compared with controls (60).
The study also revealed that the results obtained with the
network analysis have a strong correspondence with voxel-based
approaches (60).
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To date, only a few longitudinal studies aimed to investigate
the effect of ALS on the brain network over-time. Particularly,
one study showed an expanding sub-network of impaired brain
connections after six months, with a central role of the primary
motor regions (61). The loss of structural connectivity was found
to propagate to frontal and parietal regions, supporting the idea
that disease spreads along WM connections following a pattern
classified into sequential stages (62).

DTI as a Non-invasive in-vivo Biomarker of
Disease Spreading
Neuropathological studies identified the cytoplasmic inclusions
of TDP-43 as the molecular hallmark in up to 98% of ALS cases
(63). In the last few years, several studies have speculated that the
progressive regional accumulation of TDP-43 aggregates in the
brain might be reflected by the consecutive deterioration of WM
fiber tracts (61). In light of this, DTI-based approaches have been
used to study propagation patterns in the brain of MND patients.
A DTI study, using a tract of interest-based staging approach,
confirmed the neuropathological progression of ALS in the
following order: CST (stage 1); corticorubral and corticopontine
tracts (stage 2); corticostriatal pathway (stage 3) and proximal
portion of the perforant path (stage 4) (64). Furthermore, the
extracted tracts of interest were used to categorize ALS patients
into the predefined stages according with their WM damage.
Staging categorization at baseline was able to classify 72% of the
ALS patients into the different stages. After 6 months, there was
an increase in ALS stage in 27% of ALS patients (64). Recent
studies applied the in-vivo staging approach also to phenotypic
variants of ALS. One study aimed to figure out if PLS might be a
separate disease or just a slowly progressive variant of ALS (41).
Microstructural changes were analyzed using the same approach
as “classical” ALS, demonstrating that ALS and PLS patients
showed identical alterations in the ALS-related tract systems,
considering consequently PLS as phenotypical variant of ALS
(41) (Figure 1).

The previously considered studies investigated pathology
spreading in ALS-related tracts that were selected a priori,
according with post-mortem neuropathological stages. In order
to overcome this a-priori selection, one study applied network
analysis to investigate the underlying pathogenic mechanism of
ALS (65). The results showed that regions involved by TDP-
43 pathology in early disease stages are highly structurally
interconnected in the brain (65). Furthermore, brain regions of
subsequent neuropathological stages were found more closely
interconnected than regions of more distant stages (65),
suggesting that spread of TDP-43 in ALS occurs along axonal
pathways (Figure 2). The DTI-based in-vivo staging of MND
patients needs to be confirmed in future longitudinal studies with
post-mortem confirmation.

DISCUSSION AND FUTURE DIRECTIONS

In the context of therapeutic trials, it is essential to identify
a useful biomarker that might help for diagnosis, stratification
and tracking the disease progression within the MND spectrum.

FIGURE 1 | (A) Whole brain-based spatial statistics (WBSS) of fractional

anisotropy (FA) maps at the group level for amyotrophic lateral sclerosis (ALS)

patients, primary lateral sclerosis (PLS) patients, and controls. WBSS of FA

maps demonstrated multiple clusters of regional FA reductions at p < 0.05

(corrected for multiple comparisons), projectional views. (B) Tractwise

fractional anisotropy statistics (TFAS) of FA maps at the group level for ALS

patients, PLS patients, and controls. TFAS demonstrated significant regional

FA reductions in ALS-related tract systems and in the grand average between

ALS patients and controls as well as between PLS patients and controls. No

alterations between groups were observed in the reference tract. *p < 0.05,

**p < 0.001. Reproduced with permission from Müller et al. NeuroImage

Clinical 2018 (41) (published open-access under a CC BY-NC-ND 4.0 license).

In order to provide new drugs that could aid the early
treatment of the disease, the identification of such biomarker
is a crucial point to be addressed. Within such a framework,
MRI has been long recognized as in-vivo biomarker and, in
the last few years, an increasing number of studies applied
advanced neuroimaging techniques in order to understand the
underlying mechanisms in MND. Particularly, we highlighted
the important role of DTI, as a very useful tool in order to
characterize microstructural changes during the progression of
the disease, to find “signatures” of the different phenotype of
MND and to track in vivo the progressive spread of TDP-
43 aggregates. In order to detect WM changes of different
phenotypes of MND, cross-sectional studies were performed
highlighting alterations within specific tracts, especially in the
CST as well as in the corpus callosum. In light of the fact that
decreased FA and increased MD describe the microstructural
damage in MND patients, we support the idea that the most
potential promising DTI biomarkers are FA or MD changes
in the CST and corpus callosum. Additionally, connectivity
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FIGURE 2 | (A) Network topological distance between nodes of stage I, stage I and stage II, stages I, and III and between stages I and IV show a strong ordering

effect (p = 0.002). Significance of differences in network topological distances between stages is marked as follows: *p < 0.05, **p < 0.005. (B) Matrix of mean

network topological distances between all four stages. Reproduced with permission from Schmidt et al. NeuroImage 2016 (65) (published open-access under a CC

BY-NC-ND 4.0 license).

measures might potentially be considered as a marker of disease
progression. This is because decreased FA and disease severity
and rate of disease progression are highly correlated. In the last
few years, the focus has shifted towards the analysis of disease
progression. Particularly, several longitudinal neuroimaging
studies are confirming the recently proposed neuropathological
staging model (62), demonstrating an expanding subnetwork of
impaired brain connections from the primary motor cortex to
frontal and parietal regions. All these findings support the idea
that WM tract involvement might be a valid biomarker to assess
in vivo the spreading of pathological proteins and to track the
neurodegeneration process.

In conclusion, DTI analysis has the potential to be a valid
technique for use at the individual patient level in the future.
However, there is urgent need for more longitudinal studies.

The combination of the in vivo staging using longitudinal DTI
scans with the post-mortem classification might be very useful
to understand deeply the pathophysiology of the disease and to
provide as soon as possible disease-modifying therapies.
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