
Exploring Garbage Collection with
Haswell Hardware Transactional Memory

Carl G. Ritson
University of Kent

C.G.Ritson@kent.ac.uk

Tomoharu Ugawa
Kochi University of Technology

ugawa.tomoharu@kochi-tech.ac.jp

Richard E. Jones
University of Kent

R.E.Jones@kent.ac.uk

Abstract
Intel’s latest processor microarchitecture, Haswell, adds support for
a restricted form of transactional memory to the x86 programming
model. We explore how this can be applied to three garbage collec-
tion scenarios in Jikes RVM: parallel copying, concurrent copying
and bitmap marking. We demonstrate gains in concurrent copying
speed over traditional synchronisation mechanisms of 48–101%.
We also show how similar but portable performance gains can be
achieved through software transactional memory techniques. We
identify the architectural overhead of capturing sufficient work for
transactional execution as a major stumbling block to the effective
use of transactions in the other scenarios.

Categories and Subject Descriptors D.3.4 [Programing Lan-
guages]: Processors—Memory management (garbage collection)

General Terms Algorithms, Languages

Keywords Garbage Collection; Transactional Memory; Java;
Jikes RVM

1. Introduction
As physical and energy constraints have led to the end of Den-
nard scaling and ever increasing clock speeds, manufacturers have
instead sought to increase performance by delivering increasingly
parallel hardware. Garbage collection (GC) designers have taken
advantage of parallel hardware in two ways. Parallel collectors use
multiple collector threads for activities such as marking, sweep-
ing or moving objects, although these collectors may still ‘stop the
world’ (halt all user threads, or mutators) while they work. Con-
current collectors allow mutator and collector threads to execute
simultaneously, although they briefly stop the world, for example,
to scan mutator threads. On-the-fly concurrent collectors, on the
other hand, never stop the world, but may stop one mutator at a
time to scan its roots.

All of these strategies require synchronisation. Parallel collec-
tors require coordination between collector threads, and concurrent
collectors between mutator and collector threads so that all threads
share a consistent and correct view of the heap. Synchronisation is
needed in parallel collectors to ensure that if two collector threads

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISMM ’14, 12 June, 2014, Edinburgh, UK.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2921-7/14/06. . . $15.00.
http://dx.doi.org/10.1145/2602988.2602992

attempt simultaneously to mark objects, e.g. by setting bits in a
bitmap, the mark state is updated correctly and no marks are lost.
Similarly, parallel copying collectors must ensure that if two col-
lector threads attempt to move an object, precisely one succeeds.
Concurrent copying collectors need to ensure that mutator updates
are not lost if a collector attempts to move an object at the same
time as a mutator is modifying its fields. All concurrent collectors
need to ensure that mutator and collector threads share a consistent,
if conservative, view of the liveness of objects in the heap.

Coordination between mutators and concurrent and incremen-
tal collectors is typically achieved by having the mutator use read
and/or write barriers as it loads values from or stores values into
object fields; often only pointer values need be barriered. Barrier
actions may notify the collector of changes to the connectivity of
objects, or may ensure that mutators only see the most up-to-date
versions of objects. In many cases, coordination actions can be im-
plemented cheaply using simple loads and stores [24]. However, in
some cases, collector and/or mutator threads need to be synchro-
nised, for example by using atomic instructions [11]. However, not
only are such instructions more expensive than simple loads and
stores, but the instructions sequences required are hard to get right,
especially in the face of modern processor memory models.

Recently, there has been considerable interest in transactional
memory as a simpler yet efficient solution to the problem of writing
concurrent software. Inspired by database systems, transactional
memory allows a thread to execute a sequence of instructions as
a transaction. If no other thread makes a conflicting access to the
memory locations used by the first thread, the transaction commits.
Otherwise, the transactions aborts and the state of the thread is
rolled back to that before the transaction started.

Transactional memory can be implemented in software or hard-
ware. Until recently, hardware transactions have not been avail-
able in commodity processors, but this has changed with the re-
lease of Transactional Synchronization Extensions in Intel’s new
Haswell family of processors. We explore whether transactional
memory, implemented in hardware or software, can improve the
performance of common GC actions. Our context is Jikes RVM [1],
a widely used metacircular Java virtual machine. We identify, from
an audit of its wide range of GCs, parallel semispace copying col-
lection, concurrent replicating GC and parallel bitmap marking as
candidates for transactional memory support. Our results show that:

• Both software and hardware transactional memory techniques
can improve the concurrent object copying speeds in the Sap-
phire on-the-fly collector by 48–101%.

• Hardware transactional memory offers no benefit to parallel
copying or bitmap-based mark-sweep collection.

• It is essential perform sufficient work to amortise the cost of
a transaction, and to plan activities to do as much work as
possible outside the transaction; we demonstrate how to do this.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/20119488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Haswell
With the release of their latest processor microarchitecture, code-
named Haswell, Intel added new Transactional Synchronization
Extensions (TSX) to their processors’ instruction set [12]. These
extensions provide Restricted Transactional Memory (RTM). Trans-
actional memory allows the atomic manipulation of arbitrary size
units of memory. Without transactional memory the largest unit of
memory that can be atomically manipulated on x86 architectures
is two memory words, 64 bits or 128 bits, using for example a
compare-and-swap (CAS) operation.1

2.1 Programming Model
At an instruction level, Intel’s RTM is simple to use. A transaction
is initiated with an XBEGIN instruction. Computation proceeds nor-
mally: memory can be read and written with common instructions
and other activities such as branching and arithmetic may also be
used. At the end of the transaction an XEND instruction commits any
changes to memory.

During the transaction, read and write sets are constructed.
These sets have cache line granularity and are based on the memory
addresses read or written by the transaction’s body. If these sets
conflict with memory being read or written by other hardware
threads then the transaction is aborted. If a transaction is aborted, all
changes to memory and registers are discarded and execution jumps
to a fallback handler supplied to the initial XBEGIN instruction.
Before invoking the fallback handler, status flags are set in the
processor’s EAX register. These flags allow the fallback handler to
determine what caused the transaction to abort.

It is worth clarifying that read and write sets are specific to a
given hardware thread (the smallest unit of parallel execution in a
computer system). In Intel’s Haswell architecture a computer may
have multiple processors, each of which has multiple cores, each
of which has multiple hardware threads. Hardware threads on the
same core share components such as arithmetic units and cache, but
have their own registers and instruction pointer.

2.2 Performance
Our early results suggest that the set-up and tear-down cost of a
successful memory transaction on Haswell is at least three times
the cost of a compare-and-swap [20]. This means that there is
no benefit from simply replacing other synchronisation operations
with transactions; rather, sufficient work must be available to merit
the use of the transaction. Beyond set-up and tear-down costs, we
found that reads within a transaction incur a performance penalty of
up to 20%. We believe that this arises from the additional coherence
constraints placed on reads. Writes normally incur this coherence
penalty anyway and thus are not affected. This makes transactions
most suited to write and update activity.

3. Methodology
All GC implementations presented in this paper were modifications
of Jikes RVM. Performance was evaluated using the 2006 and 2009
DaCapo benchmark suites [3]. All results were obtained from a sys-
tem with a 4-core Intel Core i7-4770 processor running at 3.4GHz,
with 16GiB of RAM. Stock Ubuntu Linux 12.04.3 LTS was used
with kernel 3.8.0-25-generic. The processor’s Turbo Boost mode
and CPU frequency scaling were disabled in the system’s BIOS to
allow for consistent results regardless of hardware temperature.

Unless otherwise stated, testing on Jikes RVM used ‘compiler
replay’ [7]. For each selected DaCapo benchmark, an initial set of

1 Compare-and-swap updates a memory location M with a new value Y iff
its current value matches another value X , reporting the success or failure
of the update.

ten warmup runs are used to allow the optimising compiler to reach
a stable state. The state of the optimising compiler is then recorded.
Results are collected from 20 independent runs in which classes
are compiled and initialised using the previously recorded compiler
state. A given benchmark run generates multiple data points (one
per GC); these are aggregated from all runs and the geometric
mean computed. Error bars presented represent the 95% confidence
interval computed as per Kalibera and Jones [17].

As we are interested in the performance of individual collector
actions (e.g. copying an object) rather than total time spent in GC,
a single fixed heap size of 350MiB is used for all tests, rather than
conducting experiments with a range of different heap sizes. For
stop-the-world collection, the GC is triggered when the available
heap is exhausted. For concurrent collection, the GC is triggered as
soon as 32MiB have been allocated since the last GC.

We do not explore reattempting failed transactions. While retry
of transactions is possible with all the algorithms presented here,
if a transaction fails we revert to the defined fallback case. This is
based on our earlier observation [20] that only a small percentage
of transactions are suitable for the processor to retry. Hence we
assume that only a small percentage of failing transactions would
succeed if reattempted.

4. Parallel Copying Collection
Copying collection typically creates a copy of all live objects in
a logically contiguous area of memory, the to-space, discarding
the previously used from-space and thus de-fragmenting the heap.
Copying is usually integrated with tracing of live objects. When an
uncopied object is reached, the GC copies the object and updates
with the object’s new to-space address the field in the to-space
object from which it reached this object. To preserve the topology
of the object graph, this address is also installed as a forwarding
pointer in the from-space object in case the trace should reach it
again by following other pointers. As part of this trace, unmarked
edges from the object are placed onto a work queue. By sharing
this work queue between a number of collector threads, copying
activity can be performed in parallel [15, 22].

Two or more threads may attempt to copy the same object si-
multaneously. If unmanaged, this could result in multiple divergent
copies of an object in to-space. To avoid this, interactions on the
same object must be synchronised. One solution is to reserve space
optimistically for the copy, race to install the forwarding pointer
with a compare-and-swap then, if successful, copy the object. Al-
ternatively and more conservatively, a GC thread could acquire ex-
clusive access to the object while it copies it. The disadvantage
of this method is that any other tracing threads that reach the ob-
ject must wait until the copy is complete. On the other hand, the
disadvantage of optimistic copying is that it may be difficult to un-
reserve space — for example, the GC thread may have had to ac-
quire a fresh allocation buffer — if a thread loses the race to install
the forwarding pointer.

Jikes RVM adopts the conservative approach, assigning ob-
jects three distinct monotonic states: uncopied, copying and copied.
The designers’ assumption was that contention by GC threads was
likely to be rare. On reaching an uncopied object the collector
threads race to transition the object from uncopied to copying,
using a compare-and-swap operation on the object’s header. The
winning thread copies the object before installing the forwarding
pointer and setting the object’s state to copied. In the Jikes RVM
semispace collector, waiting threads spin, testing a field in the ob-
ject’s header. This is potentially expensive as these threads make
no progress tracing until the copying thread completes. There is
also no protection for the case where the copying thread is context
switched by the operating system: other threads may be left busy
waiting until the copying thread is resumed.

4.1 Transactional Implementation
The obvious objective for a transactional implementation of this
algorithm is to remove the intermediate copying state. Instead, an
object should transition atomically from uncopied to copied. This
transition should be possible for any collector thread irrespective
of the state of the other collector threads in the system. In order
to amortize the overhead of the atomic update, a number of these
updates must be gathered into a single transaction.

To focus on the costs of transactional and non-transactional
copying, we investigated Jikes RVM’s simplest copying collector.
We modified the Jikes RVM semispace collector to use an opti-
mistic copying strategy. Each object is copied to to-space without
updating the from-space object’s state. On completion of the copy,
the state of the from-space object is updated (and the forwarding
pointer installed) using a compare-and-swap operation. If this op-
eration fails then the object has already been copied by another
collector thread. This process potentially creates redundant copies
which are discarded, creating floating garbage. However, unlike the
unsynchronised case, references to these copies are not used and
hence the integrity of to-space is preserved.

It might be thought that it would be better for the GC thread
to optimistically reserve space, and only to copy the object if it
succeeded in installing the forwarding pointer in the from-space
object. However, the structure of Jikes RVM makes this approach
difficult, and we wanted to minimise the changes that had to be
made. Furthermore, as we noted above, it may be difficult to un-
reserve space if the thread loses the race to install the forwarding
pointer. These difficulties are exacerbated if we try to deal with
multiple objects in a transaction.

Multiple forwarding pointer installations can be combined
within a transaction to reduce the overhead of the atomic oper-
ations. This is achieved by buffering forwarding pointer/state up-
dates to from-space objects and flushing the buffer within a transac-
tion. Any writes dependent on the final value of these updates must
also be buffered in order to maintain heap integrity. These writes
include updates to the fields in to-space from which the trace dis-
covered the copied objects. If dependent writes are not delayed
then to-space objects may prematurely become visible.

In Jikes RVM copying to to-space occurs while tracing objects.
Edges are updated to point at to-space as they are traced. These
updates depend on the final value of the from-space object state.
Hence these updates cannot be made until to-space address of
the object is committed. This preserves the integrity of the heap.
Tracing of copied objects is also delayed until the buffer has been
committed to avoid traversing cyclic subgraphs.

Within a transaction each buffer entry is processed as follows:

1. Load the buffer entry.

2. Load the state of the from-space object.

3. Update the from-space object state if it is still uncopied.

4. Commit writes dependent on the to-space value. If the from-
space object was updated, this will be the address stored in the
buffer entry. Otherwise it will be the forwarding pointer stored
in the from-space object (by another collector thread).

Only from-space object state updates and dependent edge up-
dates are buffered. This minimises the size of the transaction. In
the worst case the transaction size is three cache lines per copy: the
buffer entry, the from-space object state and the dependent write.
Thus transactions of up to 85 updates are theoretically possible.
However, there are also architectural reasons why some transac-
tions may never be able to complete, such as page faults or insuffi-
cient associative space in cache or TLB entries.

When a hardware transaction fails a fallback is needed. In our
case we fall back to using atomic compare-and-swap operations

to update from-space object state. The result of the compare-and-
swap determines the value of its dependent writes. It is not possible
to determine which memory access caused the transaction to fail,
hence if the transaction fails we use this method to flush the entirety
of the present transaction buffer.

4.2 Results
Figure 1 shows the copying speed of four copying methods for a se-
lection of DaCapo benchmarks. Space limitations prevent showing
all the DaCapo 2006 and 2009 benchmarks, but the results shown
here are representative. Performance is derived from the geomet-
ric mean of GC times. Results are normalised against the copying
speed of the unmodified semispace collector with a single collector
thread to show speed up. Within the figure the std series represents
the unmodified collector. The opt series represents the modified
collector performing optimistic copying, but not buffering updates.
The series htm and cas are the collector configured to buffer 16
object updates and commit these updates using hardware transac-
tional or compare-and-swap (fallback) mechanisms respectively. A
transaction size of 16 objects provides the largest transaction size
where the mean rate of transaction failures is less than 0.5% (and
1.5% of objects are duplicated due to buffering).

There are three cases where the hardware transactional variant
outperforms the unmodified collector: hsqldb 4-threads, antlr 8-
threads and pmd 8-threads. Of these the optimistic variant has bet-
ter performance in two cases. Hence there is no clear benefit from
using hardware transactional memory in this scenario. Addition-
ally, optimistic copy appears to provide no clear performance or
scalability benefit and typically results in reduced performance.

Comparing the hardware transactional and compare-and-swap
variants gives an indication of the performance gain from transac-
tional memory as the infrastructure cost is the same. Here hardware
transactional memory provides performance increases of up to 20%
(e.g. antlr 1, 2 and 4 threads) and a mean performance increase of
2%, 5% or 4% for 1, 2 or 4 threads respectively. Using all hard-
ware threads (8 collector threads) degrades hardware transactional
performance (mean 2% performance drop); this is to be expected
as the transaction buffer (L1 cache) is shared between hardware
threads. Given that the performance of the transactional collector
does not surpass that of the unmodified collector (with the noted ex-
ceptions), it is clear that the architectural cost of buffering updates
to form transactions negates its associated performance gains.

5. Concurrent Copying Collection
Section 4 described a collection scenario in which only collector
threads are executing during collection: stop-the-world collection.
However, concurrent GC threads must also synchronise with muta-
tor threads. In this section we investigate explore how transactional
memory can be used to accelerate copying in an implementation of
the Sapphire concurrent collector [11].

Garbage collection in Sapphire has three distinct phases of
activity: tracing, copying and flipping. In the tracing phase all
reachable objects in from-space are allocated a to-space ‘shell’.
This is similar to stop-the-world copying collection but the object
contents are not copied in this phase. An allocation barrier ensures
that any newly allocated objects are also allocated shells in to-
space. Once all objects have been traced the copying phase begins.

During the copying phase the collector copies the fields of
each from-space object to its to-space shell. Mutator threads use
a write barrier to replicate updates to both from-space and to-space
versions of the object. Collector thread writes to the to-space shells
are performed using compare-and-swap operations to ensure that
mutator updates will not be overwritten by the collector copying
activity. Critically, copying is ‘semantic’: to-space copies point

0.0

0.5

1.0

1.5

2.0

2.5

1 threads 2 threads
an

tlr
av

ro
ra

bl
oa

t
ec

lip
se

hs
ql

db
jy

th
on

lu
se

ar
ch

pm
d

su
nfl

ow
xa

la
n

0.0

0.5

1.0

1.5

2.0

2.5

4 threads

an
tlr

av
ro

ra
bl

oa
t

ec
lip

se
hs

ql
db

jy
th

on
lu

se
ar

ch
pm

d
su

nfl
ow

xa
la

n

8 threads

pe
rf

or
m

an
ce

re
la

ti
ve

to
st

d
1-

th
re

ad
cas htm opt std

Figure 1: Performance (based on time per collection) of different copying methods. Results are normalised against the unmodified semispace
collector (std) with one thread (higher is faster). The opt series shows optimistic copy, htm shows the hardware transactional method and cas
the compare-and-swap fallback method of executing transactions.

only at to-space versions of objects. Once all objects have been
copied the flip phase begins.

In the flip phase, references to from-space objects are replaced
with references to their to-space versions, and mutator threads be-
gin reading from to-space objects. Flipping is applied to roots and
mutator stacks only: references in to-space already point at to-
space. Collection is complete when all references to from-space
have been flipped. Within the copying phase two significant over-
heads exist:

• semantic copying requires conditional copying of each field,
• compare-and-swap is significantly slower than simply writing

to memory.

Semantic copying can be optimised by data structuring such that
fields can be copied in linear word-by-word fashion. We modified
Jikes RVM to ensure that reference maps are always ordered, allow-
ing us to process object data word-by-word efficiently. Once all ref-
erence fields (and preceding data) have been semantically copied,
any remaining data can be copied unconditionally word-by-word.
This leaves the use of compare-and-swap as a good candidate for
replacement with transactional memory instructions.

5.1 Hardware Transactional Method
The simplest approach is to copy a single object in each transaction.
This method is implemented using a version of the semantic copy
which does not rely on compare-and-swap. A transaction is started
and this method is then invoked. If the transaction fails then we can
fall back to the compare-and-swap version.

Object size is typically less than that of a single cache-line (64-
bytes) [6]. This represents the expected write set of a transaction
containing a single object. However, semantic copying requires the
dereferencing of each reference field of the source object. On a
32-bit machine a single cache-line can hold 16 references, each of
which may refer to a distinct object, hence a transaction’s read-set
may grow to 17 cache lines or 1088 bytes at most. In the best case
the object has no reference fields and hence the read-set is only
64 bytes.

Our earlier work indicated that transactions up to 16KiB are
possible on Haswell [20]. The estimates of transaction size above
show there is scope for copying multiple objects within a transac-
tion. Based on a read and write set total of 1152 bytes, 13 whole
objects will fit in a transaction, disregarding other overheads.

Inline copying A multiple-object transaction can either be con-
structed inline with scanning of the heap, or planned by building
a ‘to-be-copied’ list during the scan. Inline copying starts a trans-
action (XBEGIN) and scans the heap as normal. On visiting each
object the scan checks if the object will fit in the transaction. If not,
then the transaction is committed (XEND) and a new transaction is
started. Otherwise the object is copied within the open transaction
and its size added to the transaction size. Inline transaction con-
struction has the disadvantage that scanning-related reads will be
included in the transaction.

Planned copying removes the open transaction. Each object vis-
ited by the scan is added to a to-be-copied list. When the list reaches
the desired size, a transaction is initiated and all objects are copied
before committing the transaction. Planning removes scanning traf-
fic from the transaction, but has a comparatively more heavy weight
implementation and associated overheads. Various other activities
may be performed as part of planning the transaction, for example
looking up and caching object type information (so that associated
reads do not inflate the transaction). In section 5.3 we evaluate dif-
ferent methods of constructing a transaction.

5.2 Software Transactional Method
In addition to a hardware transactional implementation we also
tested a software transactional implementation. Rather than apply
a general purpose transactional solution we constructed a minimal
mechanism just for the copying phase of our Sapphire implemen-
tation. This is facilitated by the fact that the to-space replica of an
object is not read until after the copying phase is complete and thus
does not need to maintain consistency during the phase itself.

Our software transactional method comprises copying and ver-
ification steps which are performed for each object. The copying
step semantically copies a from-space object to its to-space replica
without using compare-and-swap. Any reference that has to be re-
solved as part of the semantic copy is stored in a buffer. A mem-
ory barrier (an MFENCE instruction on x86) is used to separate
the copying step from the verification step. In the verification step
the contents of a to-space replica are semantically compared to
the from-space object; reference fields in the from-space object are
compared against the buffer created during copying. If the two ob-
jects are consistent, the object has been successfully replicated. If
at any point the objects are found to be inconsistent then the object
is copied again using the fallback compare-and-swap method.

5.3 Results
To evaluate the performance of the different concurrent copying
methods described in this section, we measured the speed of copy-
ing objects between from-space and to-space. We measured this
by instrumenting Jikes RVM to record the time taken for the copy
phase of collection and the number of bytes copied during this
phase. These measurements are used to compute the copying speed
of each copying phase independently. The geometric mean of these
measurements is then computed from all measurements collected
across all runs of a given DaCapo benchmark. Each benchmark
may have a different copying speed due to variations in reference
density; references will slow copying as they must be resolved. The
measurement architecture was the same for all tests and thus any
overhead was constant.

First we investigated the multi-object copying methods de-
scribed in section 5.1 to determine the optimal transaction size for
these. We parameterised these methods over the number of bytes
written to to-space as a proxy for the overall transaction size. While
computing the size of the transaction required to copy an object is
possible at run time, the overhead incurred would be detrimen-
tal to performance. Due to semantic copying each word written to

antlr

avro
ra

bloa
t

ecl
ipse

hsq
ldb

jyt
hon

lusea
rch pmd

su
nflow

xa
lan

0

100

200

300

400

500

600

700

by
te

s/
us

cas
htm
mhtm

stm
unsafe

Figure 2: Speed of different copying methods in Sapphire with
mutators stopped. The base compare-and-swap method is shown as
cas. Hardware transactional copy is shown as htm and the planned
multi-object variant with 256 byte transactions as mhtm. Software
transactional copy is shown as stm. Unsynchronised copying, a
method only safe when mutators are stopped, is shown as unsafe.

to-space can cause an additional cache line to be added to the trans-
action’s read set. Hence the worst case transaction size required to
copy and object is proportional to the to-space size of the object.

Figure 3 shows the performance of three different multi-object
copying methods across a range of DaCapo benchmarks and trans-
action sizes. For these tests mutators are not active during the copy-
ing phase and hence results represent the optimal performance. The
inline scanning method is shown as mhtm inline. Planned transac-
tions are shown as mhtm plan and mhtm full. For mhtm plan the
transaction plan consists of the from-space and to-space addresses
of each object to be copied. With mhtm full the plan also includes
two words of header information from the object’s type informa-
tion block (TIB) in order to further reduce the number of cache
lines referenced during the transaction.

At small transaction sizes the performance of all three variants
is very similar. As transaction size increases, a tipping point is
reached, for the inline variant at around 128 bytes (approximately
2–3 objects). After this tipping point the performance of the inline
variant rapidly degrades, presumably as a result of the read set size
becoming too large for most transactions to complete.

Performance of both mhtm plan and mhtm full is stable once an
optimal transaction size has been reached. Some gradual decline in
performance can be seen, but a tipping point has clearly not been
reached. The full variant is always marginally slower that the more
basic plan variant. This suggests that the overhead of preloading
the TIB data is not amortized by any performance gained by this
optimisation. Based on these results we only evaluated the basic
planning model mhtm plan with a transaction size of 256 bytes.

Figure 2 shows the copying speed of all methods across a selec-
tion of DaCapo benchmarks with a single collector thread. These
tests represent the optimal case as mutator threads are stopped dur-
ing the copying phase: no interference is present. The base case
using compare-and-swap is represented by the cas series. The hard-
ware transactional method is shown by htm and multi-object hard-
ware transactional by the mhtm series. The software transactional

0

200

400

antlr avrora

0

200

400

bloat eclipse

0

200

400

hsqldb jython

0

200

400

lusearch pmd

64 256 512 768
0

200

400

sunflow
64 256 512 768
xalan

transaction size (bytes)

co
py

sp
ee

d
(b

yt
es

/u
s)

mhtm full mhtm inline mhtm plan

Figure 3: Speed of different transaction size transactions with multiple object copying. Inline transaction construction is shown as mhtm
inline. Planned transaction construction is shown as mhtm plan. Planned transaction construction including TIB pre-loading is shown as
mhtm full.

antlr

avro
ra

bloa
t

ecl
ipse

hsq
ldb

jyt
hon

lusea
rch pmd

su
nflow

xa
lan

0

100

200

300

400

500

600

700

by
te

s/
us

cas
htm

mhtm
stm

Figure 4: Speed of different copying methods in Sapphire with
mutators running. Copying methods are the same as those shown
in figure 2.

method corresponds to the stm series. As mutators are stopped it
is also possible to use an unsynchronised method of copying: this
is corresponds to the unsafe series. This series is unsafe because
it does not prevent inconsistencies arising from concurrent mutator
activity. Copying with transactional methods is 60-80% faster than
the base cas variant. However, there is still a significant difference
in copying speeds between synchronised variants and the unsyn-
chronised case (unsafe). It is significant that stm and htm variants
have comparable performance. This suggests that transactional per-
formance gains can be made without hardware support.

Figure 4 reproduces the tests shown in figure 2 with results from
the realistic configuration with mutator threads active during the
copying phase. The transactional methods, both hardware and soft-
ware, continue to show substantial performance improvements over
the original method of copying objects using CAS instructions. Re-
sults for some benchmarks with many mutator threads, in particu-
lar sunflow and xalan, show some reduction in performance of the
transactional methods. While the pattern of performance is broadly
similar to the case with mutators stopped, there is a slight indication
that the mhtm method is affected more by mutator contention.

Figure 5 shows the speed of different copying methods with in-
creasing numbers of collector threads. While the processor used
for testing has four cores, each of these cores has two hardware
threads, so we explore scaling up to eight collector threads. For cas,
htm and stm, peak performance is reached with six or seven col-
lector threads. As most benchmarks are not heavily multi-threaded
this may correspond to the case where there are one or two muta-
tor threads executing in parallel with the collector threads. Adding
further collector threads causes context switching with the mutator
and hence does not yield any further gain in performance.

Significantly, the multi-object hardware transactional method
(mhtm) does not scale as well as other methods. Haswell uses
the processor’s L1 cache to hold a transaction’s read and write
sets. Hardware threads on the same core share the L1 cache. As
mhtm creates larger transactions there is greater contention on L1
cache, leading to more transaction failures with higher numbers of
collector threads and reduced copying speeds. In particular antlr
shows an oscillation in performance. This may correspond to the
mapping of collector threads to hardware threads on the same or
different cores; this requires further investigation.

6. Bitmap Marking
All tracing collectors need some mechanism to mark the objects
that they have visited. Non-moving mark-sweep collectors do so
by setting a mark either in the object’s header or in a separate
side table. In principle, a single bit is sufficient for the mark, and
there is usually space for it in an existing header word. However,
some collectors use a small number of bits so that the value of a
mark used for the current collection is different from that used for
the next collection. This removes the need for the sweep phase to
clear the marks from live objects and hence reduces the number of
objects modified in the cache.

The alternative to storing the mark bit in object headers is to use
separate bitmaps. The size of the bitmap depends on two factors:
the alignment of objects in the heap and the number of bits used to
represent a mark. For example, a system that allocates objects on
double-word boundaries will require a mark bitmap half the size of
that required by a system that allocates on single-word boundaries.

The simplest design is a single bitmap to represent the entire
heap. However, in a block-structured heap, a separate bitmap can be
used for each block. The latter organisation has the advantage that
no space is wasted if the heap is not contiguous. This organisation
also permits varying alignment of objects per block, e.g. for ‘big
bag of pages’ schemes, further increasing the density of bitmaps.
Per-block bitmaps might be stored in the blocks. However, placing
the bitmap at a fixed position in each block risks degrading perfor-
mance as the bitmaps contend for the same sets in a set-associative
cache. A solution is to vary the position of the bitmap in the block
using some simple hash of the block’s address to determine an off-
set for the bit map. Alternatively, the bitmap can be stored to the
side, somehow indexed by the block, again perhaps by hashing [4].

Mark bitmaps have a number of potential advantages over mark
bits in object headers. A bitmap stores marks more densely. Mark-
ing with a bitmap modifies only the bitmap, not objects; conserva-
tive collectors use bitmap marking for this reason: as they are not
type accurate, they dare not modify data in the heap. Sweeping need
neither read nor modify live objects. Moreover, given the tendency
of objects to live and die in clusters [9, 16], use of a bitmap allows
a sweeper to test the liveness of several objects at a time in the
common case that every bit is set or every bit is clear. A corollary
is that it is simple to determine from the bitmap whether a com-
plete block is garbage. Overall, bitmap marking might be expected
to dirty fewer cache lines than header marking.

However, bitmaps also have disadvantages. A collector with
parallel marking threads must ensure that GC threads do not in-
terfere with each other as they update a bit map word: the update
must be indivisible. Either the bitmap must be updated with an
atomic instruction or bytes rather than bits must be used for marks.
In contrast, parallel collector threads can use plain stores to mark
header words since the action of setting the mark bit(s) is idempo-
tent. However, this may not be the case for a concurrent collector
in which both mutator and collector threads are active simultane-
ously. If mark bits share the same header words as other runtime
structures such as lock or hashcode bits, both mutator and collector
operations must be synchronised.

In this section we ask, can transactional memory techniques
reduce the synchronisation overheads required by bitmap marking
in Jikes RVM on Intel’s Haswell architecture?

6.1 Transactional Method
Updating a single mark in a bitmap is insufficient to amortize the
cost of transaction setup and shutdown: a transaction must set mul-
tiple marks to be efficient. As with concurrent copying (section 5)
there are two potential methods for constructing a transaction: in-
line and planned. We evaluated a method of constructing the trans-
action inline with heap tracing and found that transaction formation

0

250

500

1000

antlr avrora

0

250

500

1000

bloat eclipse

0

250

500

1000

hsqldb jython

0

250

500

1000

lusearch pmd

1 2 3 4 5 6 7
0

250

500

1000

sunflow

1 2 3 4 5 6 7

xalan

collector threads

co
py

sp
ee

d
(b

yt
es

/u
s)

cas htm mhtm stm

Figure 5: Speed of copying methods with increasing numbers of collector threads. The series are the same as figure 2.

0.0

0.5

1.0

1.5

2.0
1 threads 2 threads

an
tlr

av
ro

ra
bl

oa
t

ec
lip

se
hs

ql
db

jy
th

on
lu

se
ar

ch
pm

d
su

nfl
ow

xa
la

n

0.0

0.5

1.0

1.5

2.0
4 threads

an
tlr

av
ro

ra
bl

oa
t

ec
lip

se
hs

ql
db

jy
th

on
lu

se
ar

ch
pm

d
su

nfl
ow

xa
la

n

8 threads

pe
rf

or
m

an
ce

re
la

ti
ve

to
he

ad
er

1-
th

re
ad

bitmap header htm0 htm8

Figure 6: Performance (based on time per collection) of different marking methods. Results are normalised against the unmodified mark-
sweep collector using header marking (header) and one thread. The bitmap series shows the same collector using bitmap marking. The
hardware transactional architecture without using transactions is shown as htm0, and with transactions of eight marks as htm8.

and mark queue interaction interfered. Pushing and popping from a
shared queue of gray objects requires thread synchronisation opera-
tions which cannot be performed within a transaction. These opera-
tions are non-trivial to remove so we abandoned an inline approach.

A planned transaction can be constructed by buffering updates
to the marking bitmaps. During the trace when an object is to
be marked, the bitmap is not updated; rather, the relevant bitmap
address and mark bit are stored in a buffer. Once the buffer reaches
a given size, it is flushed by writing the relevant bitmap words
within a transaction. In the event of transaction failure the buffered
updates are applied using compare-and-swap.

This planning scenario produces an almost ideal transaction as
the read and write sets of the transaction need only contain the
buffer and the bitmap words updated. However it is important to
consider that each bitmap word updated by the transaction may lie
on a different cache line. Hence the worst case transaction size
is 64 bytes for each mark, plus 64 bytes buffer bytes per eight
marks. We determined by testing (results not shown) that optimal
performance was reached with transactions of eight marks.

6.2 Results
We tested the performance of transactional marking using Jikes
RVM’s mark-sweep collector. Figure 6 compares the performance
of different marking methodologies. As with parallel copying in
section 4, our performance metric is GC time.

The default configuration of the mark-sweep collector is to use
header marking, rather than bitmap marking. Header marking (la-
belled header) does not require synchronisation and thus represents
the unsynchronised case; we normalise results from other configu-
rations against this base case. Standard bitmap marking with a CAS
operation is represented by the bitmap series.

Results for the transactional method are shown by the htm8
series. To evaluate the impact of the architectural changes required
for transactional marking, we include results for the case where
marks are captured during the trace, but are committed immediately
using compare-and-swap (htm0 series).

Clearly performance of bitmap marking is significantly lower
than header marking (30–40% slower). Some of this performance
decrease can be attributed to the need for synchronisation on bitmap
marking; it is this that we hope to reclaim by using transactions.

Comparing htm0 to bitmap, we see that introducing our archi-
tecture for buffering marking reduces performance by a further
10%. A key architectural cost of buffering marks is the introduc-
tion of branching and indirect call costs on each mark operation.
Clearly these have a significant impact on the pipelining activity of
the processor and thus overall performance.

Once margins of error have been considered there is no clear
case where the transactional implementation (htm8) surpasses the
performance of synchronised bitmap marking. This suggests that
architectural costs have not been amortized by performance gains.
Furthermore this performance margin is maintained with increased
numbers of collector threads. Hence we can also conclude that
the transactional method does not have any improved scaling be-
haviour. However, we did not explore different organisations and
placements of the bitmaps in order to reduce the risk of contention
or false sharing of cache lines.

7. Related Work
The earliest work on GC transactions discussed it in the context
of transactional systems, such as reliable distributed systems [5],
object-oriented databases [2] or persistent object stores [25]. Here
the main issues were how to expose rollback mechanisms to the
collector. in contrast, we are interested in using transactional mem-
ory to support GC.

Transactional memory was first proposed by Herlihy and Moss
[10] as a hardware architecture intended to make lock-free syn-
chronization as efficient (and easy to use) as conventional tech-
niques based on mutual exclusion. Hardware transactional memory
(HTM) has been provided by Sun Microsystems’ Rock processor
(although this was never released as a product), IBM’s BlueGene/Q
and Azul Systems Vega processors. In 2009 AMD proposed the
Advanced Synchronization Facility (ASF), a set of x86 extensions
to provide a limited form of hardware transactional memory, but
has yet to announce whether it will be used in products.

However, Intel’s Transactional Synchronization Extensions
(TSX) have been implemented in some of its new Haswell com-
modity processors (2013). Ritson and Barnes evaluate in detail
the performance of this restricted transactional memory on a Core
i7-4770 processor and examine its potential application for the im-
plementation of communicating process architectures [20].

The idea of implementing transactional memory in software
alone (STM) is due to Shavit and Touitou [21]. Researchers have
proposed exposing STM to the programmer through language ex-
tensions such as atomic blocks with retry actions [8].

7.1 Transactional memory for copying
To the best of our knowledge, the first use of software transactional
memory to support GC was by McGachey et al. [18]. Their con-
current GC supported a version of Java extended with an atomic
construct. Read and write barriers were used both for transactional
code and to provide strong atomicity. Each object stores a transac-
tion version number in its header, which is used by both the mu-
tators and the GC. In contrast to (our transactional memory imple-
mentations of) the Sapphire on-the-fly copying GC which places no
restrictions on mutators, McGachey et al. must put an object into
exclusive mode before writing to it. The GC notes the version num-
ber before copying then object and checks that the number has not
changed afterwards. If it has, the copy aborts and has to be retried.
Only one object is copied in a transaction.

Collie [13] is an on-the-fly, concurrent collector that uses the
HTM provided by Azul Systems Vega processors to provide wait-
free compaction; again, to the best of our knowledge, it is the first
GC to exploit HTM. Collie uses a hardware supported read bar-
rier to ensure that mutators always access to-space replicas of ob-
jects, unlike Sapphire which uses from-space objects until its root-

flip phase. Collie is mostly compacting: an object that cannot be
physically copied wait-free (“individually transplanted”) is virtu-
ally copied by mapping its from-space page to the same physical
memory as its mirrored to-space page. In order to provide wait-
freedom, objects referenced from roots or accessed by mutators
while Collie is trying to move them are not compacted. During its
mark phase [23], Collie constructs conservative “referrer sets” of
objects holding references to each object. During the compaction
phase, read and write barriers mark objects as non-transportable,
replacing references to them (including those in their referrer set)
with references to their corresponding address on the mirrored to-
space page. In contrast, our copying collectors never pin objects,
although Jikes RVM does allocate some object in non-moving
spaces. Like our implementations, Collie tries to reduce the size
of transactional read and write sets. To transplant an individual ob-
ject, Collie copies its contents before it starts a transaction. Inside
the transaction, it checks the references in the referrer set: if any
point to the mirrored to-space, the transaction (and the copy) is
aborted. Otherwise the transaction commits.

8. Conclusion and Further Work
In this work we have explored the basic application of hardware
transactional memory to GC. Our results show that transactional
memory can provide performance gains if sufficient and concise
work is available for embedding in a transaction. The work must
be sufficient to amortize the cost of transaction setup and any other
architectural costs, and concise enough not to inflate the work that
must be performed within the transaction with dependent activity
that could be performed outside it.

Our results also suggest that while appropriate work may be
available for transactional execution, the architectural overheads
of capturing this work within existing collectors may outweigh
the benefits of using transactions (section 6.2). Further work is
required to establish how collectors may be designed to produce
packets of work suitable for transactional execution. From our work
here transactional memory is most applicable to concurrent and on-
the-fly collectors where synchronisation requirements are complex.
Whilst we present results only for Jikes RVM on Intel’s Haswell
architecture, the requirements for sufficient and concise work make
it unlikely that different conclusions could be drawn for other GCs
or architectures.

While not fully explored in this work, software transactional ap-
proaches can be applied to all the algorithms presented here. Where
tested, our software transactional approaches performed as well or
better than hardware transactional memory, suggesting that many
of the benefits of transactions can be obtained without hardware
support. One reason is that we can weaken the requirements for
consistency within a software transaction.

The existence of software transactional solutions to the algo-
rithms explored here suggests that the full potential of hardware
transactional memory is not being exploited. Hardware transac-
tional memory has the potential to solve problems which cannot
be overcome with traditional synchronisation mechanisms as it can
provide strong consistency for reads and writes to distributed mem-
ory locations. We suggest further work to explore this design space
for virtual machines and GC.

Acknowledgments
We are grateful to Rick Hudson and Intel for a license to imple-
ment Sapphire in Jikes RVM, and Laurence Hellyer for his work
on Sapphire. We are also grateful for the support of the JSPS
KAKENHI Grant Number 25330080, the EPSRC through grant
EP/H026975/1, Google’s Summer of Code and the University of
Kent Sciences Faculty Research Fund.

References
[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo,

J. J. Barton, S. F. Hummel, J. C. Sheperd, and M. Mergen. Imple-
menting Jalapeño in Java. In ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, ACM
SIGPLAN Notices 34(10), pages 314–324, Denver, CO, Oct. 1999.
ACM Press.

[2] L. Amsaleg, M. Franklin, and O. Gruber. Garbage collection for a
client-server persistent object store. ACM Transactions on Computer
Systems, 17(3):153–201, 1999.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, ACM SIGPLAN No-
tices 41(10), pages 169–190, Portland, OR, Oct. 2006. ACM Press.

[4] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Software: Practice and Experience, 18(9):807–820,
1988.

[5] D. L. Detlefs. Concurrent, Atomic Garbage Collection. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, 15213, Nov. 1991.

[6] S. Dieckmann and U. Hölzle. A study of the allocation behaviour of
the SPECjvm98 Java benchmarks. In R. Guerraoui, editor, 13th Euro-
pean Conference on Object-Oriented Programming, volume 1628 of
Lecture Notes in Computer Science, pages 92–115, Lisbon, Portugal,
July 1999. Springer-Verlag.

[7] A. Georges, L. Eeckhout, and D. Buytaert. Java performance eval-
uation through rigorous replay compilation. In ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, ACM SIGPLAN Notices 43(10), pages 367–384,
Nashville, TN, Oct. 2008. ACM Press.

[8] T. Harris and K. Fraser. Language support for lightweight transactions.
In ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, ACM SIGPLAN Notices 38(11),
pages 388–402, Anaheim, CA, Nov. 2003. ACM Press.

[9] B. Hayes. Using key object opportunism to collect old objects. In
ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, ACM SIGPLAN Notices 26(11),
pages 33–46, Phoenix, AZ, Nov. 1991. ACM Press.

[10] M. P. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In 20th Annual International
Symposium on Computer Architecture, pages 289–300, San Diego,
CA, May 1993. IEEE Press.

[11] R. L. Hudson and J. E. B. Moss. Sapphire: Copying garbage collection
without stopping the world. Concurrency and Computation: Practice
and Experience, 15(3–5):223–261, 2003.

[12] Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Man-
ual, June 2013.

[13] B. Iyengar, G. Tene, M. Wolf, and E. Gehringer. The Collie: a wait-free
compacting collector. In McKinley and Vechev [19], pages 85–96.

[14] R. Jones and S. Blackburn, editors. 7th International Symposium on
Memory Management, Tucson, AZ, June 2008. ACM Press.

[15] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Hand-
book: The Art of Automatic Memory Management. CRC Applied Al-
gorithms and Data Structures. Chapman & Hall, Aug. 2012.

[16] R. Jones and C. Ryder. A study of Java object demographics. In Jones
and Blackburn [14], pages 121–130.

[17] T. Kalibera and R. Jones. Rigorous benchmarking in reasonable time.
In E. Petrank and P. Cheng, editors, 12th International Symposium on
Memory Management, Seattle, WA, June 2013. ACM Press.

[18] P. McGachey, A.-R. Adl-Tabatabi, R. L. Hudson, V. Menon, B. Saha,
and T. Shpeisman. Concurrent GC leveraging transactional memory.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 217–226, Salt Lake City, UT, Feb. 2008. ACM
Press.

[19] K. McKinley and M. Vechev, editors. 11th International Symposium
on Memory Management, Beijing, China, June 2012. ACM Press.

[20] C. G. Ritson and F. R. Barnes. An evaluation of Intels Restricted
Transactional Memory for CPAs. In Communicating Process Archi-
tectures, 2013.

[21] N. Shavit and D. Touitou. Software transactional memory. In Pro-
ceedings of the 14th ACM Symposium on Principles of Distributed
Computing, pages 204–213, Aug. 1995.

[22] F. Siebert. Limits of parallel marking collection. In Jones and
Blackburn [14], pages 21–29.

[23] G. Tene, B. Iyengar, and M. Wolf. C4: The continuously concurrent
compacting collector. In H. Boehm and D. Bacon, editors, 10th
International Symposium on Memory Management, pages 79–88, San
Jose, CA, June 2011. ACM Press.

[24] X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking. Barriers
reconsidered, friendlier still! In McKinley and Vechev [19], pages 37–
48.

[25] J. Zigman, S. M. Blackburn, and J. E. B. Moss. TMOS: a transac-
tional garbage collector. In G. N. C. Kirby, A. Dearle, and D. I. K.
Sjoberg, editors, 9th International Workshop on Persistent Object Sys-
tems (Sept., 2000), volume 2135 of Lecture Notes in Computer Sci-
ence, pages 116–135, Lillehammer, Norway, 2001. Springer.

	Introduction
	Haswell
	Programming Model
	Performance

	Methodology
	Parallel Copying Collection
	Transactional Implementation
	Results

	Concurrent Copying Collection
	Hardware Transactional Method
	Software Transactional Method
	Results

	Bitmap Marking
	Transactional Method
	Results

	Related Work
	Transactional memory for copying

	Conclusion and Further Work

