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Magnetic resonance imaging (MRI) offers significant insight into the complex
organization of neural networks within the human brain. Using resting-state functional
MRI data, topological maps can be created to visualize changes in brain activity, as well
as to represent and assess the structural and functional connections between different
brain regions. Crucially, Alzheimer’s disease (AD) is associated with progressive loss in
this connectivity, which is particularly evident within the default mode network. In this
paper, we review the recent literature on how factors that are associated with risk of
dementia may influence the organization of the brain network structures. In particular,
we focus on cognitive reserve and the common genetic polymorphisms of APOE and
BDNF Val66Met.
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INTRODUCTION

Recently, it was estimated that more than 47 million elderly people are affected by dementia globally
(Alzheimer’s Disease International, 2009; Prince et al., 2016) and that an additional 131 million
people will develop this health-challenging syndrome by 2050 (Prince et al., 2016). Alzheimer’s
disease (AD), a progressive condition causing behavioral changes, memory loss, and decline in
learning capacity (Anand et al., 2014), is the most common cause of dementia worldwide (Hardy,
1997). Most cases of AD occur in individuals over the age of 75, but, relatively younger individuals,
including those carrying certain genetic mutations (Loy et al., 2014), may develop the disease before
65 years of age (Alzheimer’s Association, 2015).

Knowledge of the brain changes that occur in AD has increased remarkably from the late 20th
century due to extensive research on a range of related neurodegenerative processes. Particular
progress has been made with regard to what has been termed the pathological ‘hallmarks’ of AD –
the presence of amyloid plaques and neurofibrillary tangles (NFTs) – which detrimentally affect
axons, dendrites, and synapses (Vickers et al., 2000, 2016). Plaques are the result of accumulations of
an abnormal form of the beta amyloid (Aβ) protein in the brain. NFTs are formed by the aggregation
of aberrant tau protein (Vickers et al., 2000; Savva et al., 2009) and are more directly related to the
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death of neurons (Jacobs et al., 2012). Within the cerebral
cortex, the earliest plaques are usually found in the neocortex,
whilst initial formation of tangles occurs in medial temporal
lobe (MTL) structures, such as the entorhinal cortex and
hippocampus (Price and Morris, 1999). The MTL is a
very important region responsible for memory formation
and long-term memory (Squire and Zola-Morgan, 1991).
Throughout the cerebral cortex, neurons that provide long
corticocortical connections are the most prone to NFT-
induced deterioration (Morrison and Hof, 1997), which may
then underlie the pattern of synaptic loss seen in AD.
Entorhinal-hippocampal circuits are compromised early in
AD, followed by the gradual disconnection of the MTL, and
then the loss of connectivity between association neocortices
(Morrison and Hof, 1997). This pattern of progressive and
degenerative pathology may underlie the deterioration of
certain cognitive functions during aging, leading eventually
to frank AD. The early pathological accumulation of Aβ

has been linked to cognitive impairment and could also
affect functional connectivity between spatially distant brain
regions (Delbeuck et al., 2003). A summary table of studies
examining functional connectivity and Aβ in healthy aging
and AD can be found in Table 1. Neuroimaging is a vital
component of international research collaborations (Hendrix
et al., 2015) and has been used to investigate mechanisms of
interrupted structural and functional connectivity underlying
the course of AD (Dennis and Thompson, 2014). A better
understanding of how the pathological changes in AD affect
the organization of brain networks, or how these networks
may respond or adapt to accumulating pathology, might
offer further insights into the potential scope of functional
resilience. The term resilience is described as the capability
of a tissue to be resistant to damage (Cosco et al., 2017).
In this respect, factors such as education and lifestyle could
increase resilience by heightened connectional redundancy
and/or preserving functional connections in the brain, and
may ultimately delay the clinical expression of AD pathology.
Indeed, studies investigating the association of education and
cognitive decline in AD have found that more highly educated
individuals are able to tolerate more neuropathology before
the clinical expression of AD (Bennett et al., 2003), potentially
because education moderates the relationship between brain
pathological load and cognitive impairments (Brayne et al.,
2010; Valenzuela et al., 2011), as well as functional connections
(Marques et al., 2016).

Studies have shown that functional connectivity is damaged
or interrupted in AD (Stam et al., 2006, 2008), and, conversely,
investigating the impact of AD on structural and functional
networks may also provide more accurate information regarding
brain connectivity and how brain regions communicate with
each other (Sheline and Raichle, 2013). This review focuses
on the methods with which brain connectivity is analyzed,
the changes in structural and functional networks found in
AD, and the role of cognitive reserve and specific genetic
factors in partially determining functional brain connectivity.
In this regard, potential changes in functional connectivity
and resistance to pathology will involve both non-modifiable

and modifiable factors that will impact on how brain systems
respond to accumulating pathological burden. Hence, we discuss
features of structural and functional brain networks in relation to
genetic biomarkers and environmental factors linked to AD risk,
progression and resilience.

METHODS TO ANALYZE CONNECTIVITY

Neuroimaging techniques (Figure 1), such as magnetic resonance
imaging (MRI), have long been used to investigate anatomical
connections, detect pathological alterations, and monitor
the progression of neurodegenerative diseases, including AD
(Figure 1A). MRI involves the generation of a strong static
magnetic field to create images and to map fluctuation signals
related to brain activity (Heeger and Ress, 2002). MRI also
allows the quantification of brain atrophy, which can be used to
distinguish normal brain aging from AD (Frankó et al., 2013).
For example, a recent study found that MRI and cognitive testing
in cognitively healthy individuals are useful tools for predicting
the development of AD, particularly when investigating the
progress from healthy cognition to the appearance of mild
cognitive impairments (MCIs) after 5 years (Albert et al., 2018).
The delayed presence of clinical symptoms makes it challenging
to diagnose individuals in preclinical stages. Therefore, animal
models could provide an opportunity to identify biomarkers
of early disease (Sabbagh et al., 2013), which include insights
from neuroimaging, such as gray and white matter alterations
measured by diffusion tensor imaging (DTI; Weston et al., 2015).

Diffusion tensor imaging is an MRI-based neuroimaging
method that measures the diffusion of water molecules, enabling
the assessment of the fiber-tract structures of white matter
(Jones et al., 2013; Teipel et al., 2016). This technique allows
the strengths and differences of white matter tract connections
in specific population groups to be compared (Jones et al.,
2013) before a reduction of cognition is evident (López-Gil
et al., 2014), for example between older individuals with and
without AD (Figure 1C). Other structural imaging parameters
that are currently used to gain further insight into the integrity
of the brain over the life include intracranial volume and
the presence and number of white matter hyper-intensities
(Bartrés-Faz and Arenaza-Urquijo, 2011).

Functional MRI (fMRI) permits simultaneous monitoring of
the activity of different brain regions while a subject is at rest or
performing a task (Binder et al., 1999). In fMRI, oxygen in blood
is measured through blood-oxygen-level-dependent (BOLD)
signals (Ogawa et al., 1990; Heeger and Ress, 2002). Specifically,
the underlying premise is that more oxygen is required for
greater neuronal activity, thereby creating a signal that can be
detected using fMRI (Figure 1B). Thus, it is possible to measure
changes in oxygen concentration, cerebral blood flow (CBF) and
volume (CBV) that are delayed by 1–2 s after MRI excitation.
This is referred to as the hemodynamic response (Buxton et al.,
2004). If the BOLD signal from different areas of the brain show
similar and synchronized activity, it is assumed that these regions
communicate with each other and transfer information, which
is defined as functional connectivity (Raichle, 1998). Functional
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TABLE 1 | Studies examining functional connectivity and amyloid-beta in healthy aging and Alzheimer’s disease.

Study Samples Imaging measures Main findings

Fischer et al. (2015) CN preclinical AD (n = 12),
Age-matched controls (n = 31)

DTI using tractography,
measuring
fludeoxyglucose-PET

CN preclinical AD (with Aβ positivity) exhibited similar white
matter network changes to clinical AD as compared to controls;
for instance, CN preclinical AD had more shorter paths and
reduced global efficiency compared to controls.

Grandjean et al. (2014) Transgenic mice (n = 38)
Wild-type mice (n = 36)

Structural MRI,
Rs-fMRI
DTI

The progression of functional connectivity was disrupted in
somatosensory and motor cortex in ArcAβ transgenic mice
compared to wild-type mice. This decrease was noticeable
even before amyloidosis in transgenic mice.

Mormino et al. (2011) CN older (n = 44),
AD (n=22)

Structural MRI,
Rs-fMRI,
PIB-PET imaging

Increased Aβ in CN older individuals was associated with
decreased default mode network functional connectivity in
multiple posteromedial regions suggesting that the
accumulation of Aβ and related brain changes occurs before
overt cognitive impairment.

Sheline et al. (2010b) 35 AD, 68 CN older
PIB− (n = 24)
PiB+ (n=20)

Structural MRI,
Rs-fMRI, and
Dynamic PET scan

CN people with Aβ deposition exhibited impairments in
functional connectivity, particularly default mode network
disruptions.

Bero et al. (2012) Young APP/PS1 transgenic mice
(n = 7)
Old APP/PS1 transgenic mice
(n = 7)
Young wild type mice (n = 13)
Old wild type mice (n = 10)

Functional connectivity
optical intrinsic signal
imaging

Aβ accumulation was related to decreased functional
connectivity in older APP/PS1 mice compared to young
APP/PS1 mice and wild-type mice. Brain regions that had more
Aβ showed the most conspicuous age-related decreases in
connectivity.

Hedden et al. (2009) 38 CN older adults,
PIB− (n = 17),
PiB+ (n = 21)

Structural MRI,
fMRI,
Dynamic PET

Functional connectivity was disrupted in CN older adults with
Aβ positivity. Connectivity impairments related to Aβ deposition
were evident between the hippocampus and posterior cingulate
(default mode network regions) and associated with memory
deficit.

Drzezga et al. (2011) CN PiB− (n=12)
CN PiB+ (n = 12)
MCI PiB+ (n = 13)

Structural MRI,
Rs-fMRI,
fluorodeoxyglucose-PET,
PiB-PET

MCI with Aβ burden exhibited hypometabolism, decrease of
neuronal activity and disruption of functional connectivity in
posterior brain regions (precuneus/posterior cingulate)
compared to CN older adults.

Lim et al. (2013) 165 CN
PIB− (n = 116)
PiB+ (n = 49)
BDNF Met carriers (n = 58)
BDNF Val/Val (n = 107)
APOE e4 (n=70)

Structural MRI,
PET PiB imaging,
Neuropsychological
assessments at baseline,
18 and 36 months

BDNF Met carriers with Aβ burden positivity demonstrated an
accelerated decline in memory function as well as a reduction
of hippocampal volume compared to BDNF Val homozygotes.

Franzmeier et al. (2017b) CN Aβ+ (n = 24)
amnestic MCI Aβ (n = 44)

Structural MRI,
Rs-fMRI,
FDG-PET

Individuals with amnestic MCI with Aβ positivity and more years
of education demonstrated attenuation of precuneus
hypometabolism and relatively increased global frontal cortex
functional connectivity.

AD Alzheimer’s disease, Aβ Amyloid-beta, APP/PS1 Amyloid precursor protein presenilin, APOE Apolipoprotein E, BDNF Brain-derived neurotrophic factor, CN Cognitively
normal, DTI Diffusion tensor imaging, FDG Fluodeoxyglucose, MCI Mild cognitive impairment, MRI Magnetic resonance imaging, PET Positron-Emissions-Tomography,
PiB Pittsburgh Compound B, Rs-fMRI Resting-state functional magnetic resonance imaging.

connections, defined as temporal correlations between spatially
distant cortical brain regions, are revealed through fluctuations
in low-frequency portions of BOLD signals (Ogawa et al., 1990).
With age, functional connectivity networks gradually decrease
(Dennis and Thompson, 2014), which may be important for
understanding early AD or the series of brain changes that
make the older brain more or less susceptible to additional
disease processes.

Resting-state fMRI is an increasingly frequent method
employed to study differences between various cohorts and
involves the investigation of the activity of the brain while the
individual is at rest and not performing a task. Resting-state fMRI
can be used to determine how different brain regions operate and
process information in functional space. Additional advantages

are that resting-state fMRI is less demanding on the individual
and easier to apply than task-related fMRI (Sheline and Raichle,
2013). The individual is instructed to not fall asleep while keeping
their eyes closed in a lying position.

There are a variety of approaches for analyzing resting-state
fMRI. For instance, seed-based analysis (Beckmann et al., 2005)
investigates the BOLD signals between the selected region of
interest (seed region) and the rest of the brain (Biswal et al.,
1995). In AD, the precuneus has showed decreased functional
connectivity to other brain regions, such as the left hippocampus,
left parahippocampus, anterior cingulate cortex and gyrus rectus,
as compared to non-dementia controls (Sheline and Raichle,
2013). The investigation of simultaneous neuronal connections
across the brain is called independent component analysis (ICA),
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FIGURE 1 | Differences among the imaging techniques, MRI, fMRI, and DTI. (A) A structural MRI comparison between a healthy human brain (left) compared to
pathological changes in Alzheimer’s disease (AD, right; Oishi et al., 2011). (B) A functional MRI representing brain activation of a resting-state network in a healthy
brain (left) compared to a hypothetical AD brain activation (right). The representation of the connectivity map shows how brain activity decreases with pathology
within the default mode network (DMN); red/orange represents higher connectivity, while blue represents inversely correlated activity. (C) A comparison between a
cognitively healthy woman (72 years old, left) and a woman with AD (70 years old; Oishi et al., 2011). The yellow arrows show the different color strength of the
cingulum hippocampal area after DTI analysis. (A,C) Reprinted from Oishi et al. (2011) with permission from IOS Press. The publication is available at IOS Press
through https://content.iospress.com/articles/journal-of-alzheimers-disease/jad0007.
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FIGURE 2 | A spatial map of a brain slice is represented, demonstrating brain
activity in the DMN; red represents regions that are most active while the
individual is at rest.

and is a wholly data-driven form of analysis (Beckmann et al.,
2005) (Figure 2). Using ICA-based analysis, Greicius et al.
(2004) reported a decline of resting-state functional connectivity
between hippocampus and posterior cingulate cortex (PCC) in
the AD group compared to healthy older individuals.

Another technique used to examine resting-state functional
connectivity is graph analysis, which employs a way of specifically
visualizing the complex interactions in the brain (Mijalkov
et al., 2017). Using graph theory, functional connectivity is
represented as a series of ‘nodes’ (voxels) and ‘edges’ (correlated
activity between nodes) (Watts and Strogatz, 1998; Stam et al.,
2007). It has been predicted that small-world networks in
human fMRI studies with low-frequency oscillation might reveal
connectivity of the brain structure. A specific focus of this form
of analysis in network organization is the average minimum
number of edges that must be traversed between any two nodes
in a brain network, referred to as ‘effective path length.’ The
characteristics of small-world networks are clustering coefficient,
high integration and their typical feature is shorter effective path
length (Travers and Milgram, 1967; Rubinov and Sporns, 2010;
Kaminski and Blinowska, 2018). Cluster coefficient is described
as a measurement of nodes that are locally interconnected
(Kaminski and Blinowska, 2018). This approach is particularly
useful when measuring and comparing differences in structural
and functional connectivity (Bullmore and Sporns, 2009), and
could be used to advance our understanding of the pathology of
neurodegenerative diseases (Figure 3A). A further advantage of
graph theory analysis is that it makes no assumptions about how
close any two nodes are in space.

CHANGES IN STRUCTURAL AND
FUNCTIONAL CONNECTIVITY IN AD

Structural Connectivity
In AD, the loss of connections between neurons can result in
other structural alterations, such as atrophy, hypometabolism,
and NFT accumulation (Zhang et al., 2009). Significant atrophy
in AD, identified through MRI, occurs in the posterior
hippocampus and the temporal and parietal cortices, which are
three of the structures that are involved in the default mode
network (DMN; Greicius et al., 2003). The default mode is a

network in the brain that is activated when individuals are not
engaged in a task, but are spontaneously thinking of past or future
events (Buckner et al., 2008). The DMN is a highly interconnected
set of cortical regions that demonstrate substantial correlated
activity, particularly when the attentional network is inactive
(Shulman et al., 1997; Buckner et al., 2008).

Diffusion tensor imaging studies investigating white matter
changes in individuals with AD have demonstrated that the
disease causes a deterioration of white matter fiber bundles in
the MTL (Zhang et al., 2007), which may be present years
before overt episodic memory deficits (Sexton et al., 2010),
impaired executive function (Reijmer et al., 2014), and other
symptoms of cognitive impairment (Zhang et al., 2007; Fischer
et al., 2015). Similarly, in an animal model, López-Gil et al.
(2014) reported neuronal differences in structural networks
of chronically hypertensive rats before the manifestation of
disrupted executive functioning occurred, which may provide
insights into early stages of dementia. Moreover, Grandjean
et al. (2014) discovered reduced fractional anisotropy values
in transgenic mice with cerebral Aβ. In cognitively healthy
individuals with elevated Aβ in the brain, potentially the
pathological correlate of early AD, structural changes appear
similar to individuals with MCI in terms of the topology
of structural network connectivity (Fischer et al., 2015).
Interestingly, these individuals with high brain Aβ load despite
no overt cognitive symptomatology, demonstrated increased
shortest path length in white matter networks in the absence of
major neurodegenerative features such as atrophy or reduction
of cortical glucose (Fischer et al., 2015).

Finally, the structural networks (or nodes) of individuals with
AD who possessed fewer connections (or edges) were more
susceptible to global disruption of white matter tracts than
individuals with more connections (Daianu et al., 2015). In
addition, a rat transgenic model bearing mutant human amyloid
precursor protein (APP) and presenilin genes also demonstrated
a reduction of local and global efficiency, as well as less clustering
as compared to non-transgenic rats (Muñoz-Moreno et al., 2018).
Moreover, Muñoz-Moreno et al. (2018) found alterations in
the right medial PFC in these transgenic rats, while in human
studies, the right medial frontal cortical areas in AD indicated
a decline in nodal efficiency compared to healthy controls (Lo
et al., 2010). In summary, changes in structural connectivity could
be useful in predicting the degradation of white matter bundles,
as well as the strength of functional connectivity networks
(Greicius et al., 2009).

Functional Connectivity
Performance within many domains of cognitive function
decreases slowly with age, but, importantly, higher cognitive
performance has been correlated with increased functional
connectivity in older adults (Arenaza-Urquijo et al., 2013).
Compared to animal studies, transgenic AD rat models require
longer cognitive training to achieve the same performance
as non-transgenic rats. Although the structural network was
changed, these alteration did not result in functional network
differences proposing associations between the capability to
learn and the reorganization of functional networks in the

Frontiers in Aging Neuroscience | www.frontiersin.org 5 March 2019 | Volume 11 | Article 30

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00030 March 5, 2019 Time: 16:25 # 6

Pietzuch et al. Resting-State Networks in Alzheimer’s Disease

brain (Muñoz-Moreno et al., 2018). Nevertheless, a gradual
decrease in functional connectivity among the hippocampus
and medial prefrontal cortex (PFC) is expected with age
(Damoiseaux et al., 2016).

It has been proposed that disconnection of functional
networks in the brain, such as those observed in AD, could
serve as critical markers for the presence of early stages
of neurodegenerative diseases, particularly with regard to the
abnormal accumulation of Aβ in the brain (Stam et al., 2007;
Zhang and Raichle, 2010). Resting-state studies have reported a
decrease in functional connectivity in healthy older individuals
with Aβ burden in the posteromedial regions, ventral medial
PFC, right angular gyrus, and the left middle and superior frontal
gyri (Mormino et al., 2011), as well as between the precuneus
and left hippocampus, parahippocampus, anterior cingulate,
gyrus rectus and dorsal cingulate (Sheline et al., 2010a,b). Early
accumulation of Aβ in older healthy individuals, particularly
in the precuneus, has been suggested to result in impairment
in hippocampal function (Sheline et al., 2010a,b). In contrast,
Mormino et al. (2011) reported that DMN connectivity responds
in a varied manner to the presence of higher Aβ deposition in
older non-demented people with Aβ accumulation. Specifically,
the authors found that there was increased connectivity in
regions of the right dorsal PFC, left anterior medial PFC and
left temporal cortices, as well as decreased DMN connectivity
in several posteromedial regions, the ventral medial PFC, right
angular gyrus, and the left frontal gyri (Mormino et al., 2011).
Disruption within the DMN has also been found in healthy older
individuals with high amyloid burden (Hedden et al., 2009).
Interestingly, these healthy individuals (n = 38) exhibited the
same amount of Aβ burden compared to half of the individuals
with MCI (n = 46) and all individuals with AD (n = 35).

Such associations have also been investigated in animal
models. Bero et al. (2012) demonstrated an aging-related
reduction of bilateral functional connectivity in the retrosplenial
cortex in wild-type mice, which could be a pre-existing biomarker
for neural dysfunction due to its significant association with
memory performance (Corcoran et al., 2011). Interestingly, in
transgenic AD mouse model involving cortical amyloidosis,
it has been shown that an age-related decrease in functional
connectivity in specific brain regions is more severe in the
presence of higher Aβ deposition (Bero et al., 2012). Grandjean
et al. (2014) also reported reduced functional connectivity in
transgenic mice, however, this reduction appeared in the early
months before the accumulation of Aβ in the somatosensory
and motor cortex.

A study investigating whole-brain connectivity found
abnormalities in cortical hubs of the temporo-parietal cortex and
precuneus/PCC in healthy mild cognitive impaired subjects with
Aβ burden (Drzezga et al., 2011). In general, greater atrophy has
been related to less brain connectivity (Hoffstaedter et al., 2015),
but not all studies have found support for this association. For
example, a study by Gili et al. (2011), reported that functional
connectivity decline was not related to the amount of gray matter
atrophy in the PCC in individual with MCI.

Disconnection between functional networks could be an
essential biomarker for AD. For instance, individuals with AD

exhibit disruption of functional connectivity between the inferior
lateral temporal cortex (ITC), precuneus, right thalamus and the
PCC (Zhang et al., 2009), between the left hippocampus and PCC
(Sorg et al., 2007), as well as between the right hippocampus
and the right and left cuneus, precuneus, and right ITC (Wang
et al., 2006). This pattern of disconnection is likely associated
with impairments in memory, processing speed and executive
function (Damoiseaux et al., 2016). Another proposed early
biomarker for AD could lie in the disruptions that have been
identified within the visual cortices, specifically the impairments
in connectivity between the PCC and the dorsal and ventral visual
pathways (Zhang et al., 2009). These changes have been suggested
to lead to deteriorating visual function in AD (Zhang et al., 2009).

Small-world network analysis in AD has shown longer path
length in the central, temporal, and frontal brain regions as
compared to age-matched, non-demented individuals (Stam
et al., 2007). Decreased local connectedness within networks,
also called clustering, has also been reported in individuals with
AD, and correlated with lower cognitive performance (Stam
et al., 2007). This finding led Stam et al. (2007) to speculate
that individuals in the early stages of AD may show relatively
diminished topology of small-world networks. A recent study
found support for this notion by demonstrating that individuals
with MCI and AD had a longer characteristic path length
compared to healthy controls (Mijalkov et al., 2017). Moreover,
AD appeared to be associated with a greater number of edges
connecting to a node regionally, as well as increases and decreases
in the efficiency of local nodes when compared to the controls
(Mijalkov et al., 2017). To understand these differences in
network topology, it is necessary to account for genetic variations
that might affect the organization of the brain and which may also
be linked to neurodegeneration in AD (Figure 3A).

ROLE OF GENETIC FACTORS RELATED
TO AD IN FUNCTIONAL CONNECTIVITY

Apolipoprotein E (APOE)
The inheritance of gene-related factors such as apolipoprotein
E (APOE), in particular the APOE ε4 allele, is associated with
an increased risk of AD (Mahley et al., 2006, This genetic
polymorphism is associated with increased Aβ deposition in
the brain (Mahley et al., 2009; Morris et al., 2010; Sheline
et al., 2010a), possibly influencing brain functional connectivity
(Mahley et al., 2009), as well as affecting cognitive functioning in
older age (Wisdom et al., 2011).

Resting-state fMRI studies have reported diverging
associations of APOE polymorphisms and functional con-
nectivity in healthy individuals that may relate to the age
of the sample groups (Goveas et al., 2013; Wu et al., 2016).
For example, APOE ε4 alleles have been associated with both
increased and decreased DMN functional connectivity in
cognitively healthy individuals (Fleisher et al., 2009). Comparing
non-demented middle-aged (50–65 years) individuals carrying
the APOEε4 with non-carriers, ε4 carriers showed elevated
functional connectivity in the middle frontal gyrus, whilst non-ε4
carriers had greater functional connectivity in the right medial
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FIGURE 3 | Differences among network organizations are shown using a
graph theoretical approach. (A) A graph of a healthy person (left) is compared
to a person with Alzheimer’s disease (AD; right), showing fewer connections
(edges) between the spatially distant brain regions (nodes or dots) in AD. The
green (left) and orange (right) dots represent hemispheres. The next two
figures are hypothetical figures of the BDNF Val66Met polymorphism (B), in
which the connections are noticeably decreased in Met carriers. The last
figure represents the carriage of both (C), BDNF and APOE displaying a
distinct reduction of edges and nodes in individuals.

frontal gyrus (Wu et al., 2016). Conversely, Goveas et al. (2013),
demonstrated decreased functional connectivity within the DMN
in cognitively healthy APOE ε4 carriers (44–65 years of age) in
the bilateral dorsomedial PFC, superior frontal gyri, and in the
left hippocampus, as well as increased functional connectivity
in the left lentiform nucleus and bilateral caudate. Additionally,
a decrease in interhemispheric functional connectivity within
the DMN was found in healthy elderly APOEε4 carriers (65–80
years of age; Lu et al., 2017). Notably, most of these regions
are also affected in AD, which emphasizes the significance
of the involvement of the DMN in the preclinical phase of

AD (Sheline et al., 2010a). More recently, Zheng et al. (2018)
investigated functional connectivity in young adults who were
APPs/presenilin-1/2 mutation carriers or APOEε4 positive
carriers relative to adults without these AD-linked genetic factors
(18–35 years). Interestingly, greater functional connectivity was
observed in both the APOEε4 carriers and in the APP/presenilin-
1/2 group as compared to healthy controls. This increased
connectivity was found between the left hippocampus and the
bilateral medial PFC/precuneus. Only APOEε4 carriers displayed
increased connectivity between the right hippocampus and the
left middle temporal gyrus. Here, the authors have suggested that
the ‘beneficial’ effect of APOE ε4 in functional connectivity in
younger individuals may be due to mechanisms of compensation
of cognitive disruptions, which may be detrimental as the
individual ages.

Due to inconsistencies in published evidence, it is important
to consider how APOE polymorphisms may be associated
with other measures of functional connectivity. Studies that
have investigated APOE effects in small-world networks have
reported higher susceptibility of fewer functional hubs and
reduced centrality in healthy older ε4 carriers compared to
non-ε4 carriers (Seo et al., 2013). Regional cerebral glucose
metabolism, clustering of whole-brain functional networks, and
path length have all been reported to be decreased in ε4 carriers
(Seo et al., 2013). However, in a study with a greater sample
size of 147 cognitively normal individuals, more clustering and
longer path lengths were identified in ε4 carriers when compared
to non-carriers (Goryawala et al., 2015). Non-demented ε4-
carriers also had more long-distance connections in the parietal
and temporal lobes, whilst non-ε4 carriers exhibited more
short-distance connections in the parietal and occipital lobe.
Healthy older individuals with the ε4 allele also had less short-
distance connections in the frontal lobe connections, while both
groups showed more long-distance connections in the frontal
lobe (Goryawala et al., 2015). In summary, this study found the
brain networks of those carrying APOEε4 to be organized into an
abnormal structure when compared to non-carriers, with fewer
connections in the frontal lobe and more structural long length
connections, which could partially explain the negative APOE ε4
cognitive phenotype.

Brain-Derived Neurotrophic Factor
(BDNF)
Another genetic factor related to AD is the BDNF gene (Brown
et al., 2014). The BDNF protein belongs to the family of nerve
growth factors, which affect neurogenesis (Erickson et al., 2010)
as well as long-term potentiation (LTP) and activity-dependent
synaptic plasticity (Egan et al., 2003). Post-mortem studies of
AD have shown that BDNF protein levels are decreased in the
hippocampus, entorhinal cortex, temporal, frontal, and parietal
cortex when compared to cognitively intact age-matched controls
(Connor et al., 1997; Garzon et al., 2002). Lower BDNF levels
may be related to volume loss in the hippocampus (Erickson
et al., 2010), but this may be secondary to other pathological
changes that occur in AD (Buchman et al., 2016). BDNF
concentration is highly variable between individuals and is
relative to physiological state; for example, after physical exercise,
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peripheral blood BDNF concentration is increased (Dinoff et al.,
2016). A recent review supported this finding by reporting
increased neurogenesis and plasticity in the hippocampus in rats
and mice after treadmill exercise, which led to improved short-
and long-term memory functions (Jahangiri et al., 2018).

A common single nucleotide polymorphism in the BDNF
gene, specifically a valine-to-methionine substitution at codon 66
(Val66Met), has an influence on LTP as well as activity-dependent
BDNF secretion (Egan et al., 2003). BDNF Val66Met has been
associated with cognitive performance as well as with AD brain
morphology. In particular, the BDNF Met gene carriers (aged 60
and older), which were in preclinical stages of AD, demonstrated
reduced memory function and smaller hippocampal and
temporal lobe volume as compared to Val homozygotes (Lim
et al., 2013; Brown et al., 2014). Authors also observed that more
physical exercise was related to larger hippocampal and temporal
lobe volumes in Val homozygotes but not in Met carriers (Brown
et al., 2014). Notably, in Met carriers, physical activity was linked
to reduced volumes of the temporal lobe, which is likely due to
more apoptotic alterations (Brown et al., 2014). Likewise, Egan
et al. (2003) demonstrated that the BDNF Met allele is related
to qualitative changes of the hippocampus, which might cause
insufficient memory functioning. Studies have proposed that
there might be a relationship between Aβ and BDNF Val66Met,
in which the BDNF polymorphism might mediate the effects
on Aβ neurotoxicity on the brain (Fahnestock, 2011). Lim et al.
(2013) reported not only a faster rate of atrophy in hippocampal
volume, but also a faster decline in episodic memory performance
in BDNF Met carriers who had a high Aβ load over a 36-month
period compared to healthy individuals with BDNF Met but low
levels of Aβ. Relative to Val homozygotes with a low Aβ load,
Val homozygotes with a high Aβ load also experienced reduced
cognitive performance, indicating that being a Val homozygote
would not necessary protect against cognitive decline
(Lim et al., 2013).

In older adults with late-onset depression, BDNF Met carriage
was associated with reduced resting-state functional connectivity
between the bilateral hippocampus and cerebellum (Yin et al.,
2015). BDNF Met carriers with late-onset depression also had
reduced strong (positive) functional connectivity between the
hippocampus and the temporal cortex; however, there was
also evidence of increased anti-correlated (negative) functional
connectivity between the hippocampus and the dorsal anterior
cingulate cortex, dorsal-lateral PFC, and angular gyrus (Yin
et al., 2015). Similarly, Wang et al. (2014) observed elevated
functional connectivity between the dorsal lateral PFC and
the anterior insula in cognitively healthy BDNF Met carriers.
Finally, Park et al. (2017) investigated the influence of BDNF
Val66Met polymorphism on structural networks of middle-
aged healthy individuals. The authors targeted nodes and edges
in their analysis and simulated manipulation of the white
matter networks. They demonstrated that Val homozygotes
were more robust and resistant to gray matter damage
compared to Met carriers (Park et al., 2017). Studies of white
matter networks determined that BDNF Met carriers were
more susceptible to node disruptions than Val homozygotes
(Park et al., 2017).

The interaction of the BDNF Met and APOEε4
polymorphisms was investigated by Gomar et al. (2016) in
healthy older adults, as well as in individuals with MCI and
AD. Here, the authors found that BDNF Met alleles were
associated with poorer cognitive performance, predominantly
in memory and semantic fluency. In support, Ward et al. (2014)
found decreased performance in episodic memory function
in BDNF Met carriers, however, only in combination with
carriage of the APOE ε4 allele, the latter perhaps representing a
cumulative effect of carriage of both risk alleles. This cumulative
effect may be influencing the functional brain networks
and reduce connections between different brain regions.
BDNF Met carriers may have fewer connections compared
to BDNF Val homozygotes (Figure 3B) and APOE ε4/BDNF
Met carriers may have even fewer connections compared to
non ε4/BDNF Val homozygote carriers, which may decrease
connectivity (Figure 3C).

In a separate study, BDNF Met/APOEε4 carriers with high
brain Aβ levels demonstrated a faster rate of decline over a 54-
month period in verbal and visual episodic memory and language
processing when compared to BDNF Met/non-APOE ε4 carriers
(Lim et al., 2015). In comparison, BDNF Val/ε4 carriers with
a high Aβ burden demonstrated a relatively mild reduction in
cognitive functioning. In BDNF Met/APOEε4 carriers with high
Aβ load, memory deficits are detectable after 3 years, whereas it
takes 10 years in APOEε4-/BDNF Val homozygotes with a high
Aβ load to reach the same clinical threshold (Lim et al., 2015).
A recent meta-analysis investigated the relationship between
APOE and BDNF Val66Met and concluded that there were
more women with AD carrying the BDNF Met polymorphism
(Zhao et al., 2018). However, no significant relationships between
APOEε4 carriers and BDNF Met carriers were identified in the
overall analysis that included both men and women with AD.

APOE and BDNF polymorphisms may interact with each
other and possibly influence functional connectivity. BDNF Met
carriers with the APOE ε4 allele exhibited decreased brain
activation in the MTL (Kauppi et al., 2014). Atrophy, particularly
in the entorhinal cortex, and acceleration of AD pathology, has
been linked to poor compensation mechanisms of the brain
in individuals with BDNF Met carrying the APOEε4 (Gomar
et al., 2016). Ward et al. (2015b) investigated the effect of BDNF
and APOE on cognitive function and cognitive reserve, the
latter which is a theoretical construct where neural networks
compensate for lost neurons and connections (Stern, 2002).
The authors observed that the BDNF Val66Met polymorphism,
but not APOE variants, moderated the relationship between
executive function and cognitive reserve, in which exposure to
a more cognitively enriched environment was associated with
better executive functioning in Val homozygotes but not in Met
carriers (Ward et al., 2015a). In another study, Ward et al.
(2017) investigated the same healthy older adult sample and
found that differences in executive functioning between cognitive
reserve tertile groups became smaller over time in BDNF Val
homozygotes, but cognitive reserve-related differences became
more pronounced in BDNF Met carriers. An explanation for
these results is that cognitive reserve could have varying cognitive
effects depending on the BDNF Val66Met polymorphism (Ward
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et al., 2017). Altogether, experimental studies indicate that the
BDNF polymorphism influences key neurobiological processes
associated with development and activity-dependent learning
(Egan et al., 2003).

COGNITIVE RESERVE AND BRAIN
CONNECTIVITY

It is possible that common variation in the BDNF gene may
result in differences in the development and maintenance of
structural and functional networks throughout the life course,
which ultimately may be associated with either better or worse
brain resilience to neurodegenerative disease processes, such as
in AD. Given the role of BDNF in development and adult brain
plasticity, it is also possible that this gene variation may have
an influence on the construction of patterns of connectivity
that underlie resistance to pathology, perhaps related to the
theoretical construct of cognitive reserve (Stern, 2002, 2006), in
which neurons are compensating for impaired and lost neurons.

Stern (2002, 2009) proposed two different kinds of
reserve in relation to a brain challenged by insult and/or
neurodegeneration. Brain or neural reserve, which is often
referred to as the ‘passive’ model of reserve, focuses on
anatomical brain structures, especially brain size and the number
and architecture of neurons and synapses (Katzman, 1993). This
model, later revised by Satz (1993), proposed that individuals
with higher synaptic count, dendritic branching and larger brain
volume should be able to withstand the loss of more neurons
without functional consequence, providing compensation
for the pathological changes of AD (Stern, 2009). The brain
reserve model suggests that most of its capacity is established
in the early years of life, usually by the age of five (Reiss et al.,
1996). Nevertheless, investigations have demonstrated that
brain reserve may be modifiable. For example, the brains of
adult monkeys are able to form and renew cells throughout
life (Eriksson et al., 1998), and human brains have also been
proposed to have neurogenic capacity, particularly in the dentate
gyrus (Kempermann et al., 2015).

The ‘active’ model of reserve is often referred to as ‘cognitive
reserve,’ which is a hypothetical construct that relates to
the functional resilience of the brain against accumulating
pathological changes (Stern et al., 1999). According to the
theory of cognitive reserve, brains with more complex neural
networks have a higher level of inbuilt redundancy, which
are subsequently able to compensate for degenerative or lost
neurons (Stern, 2002, 2006). Factors such as lifetime experience,
educational and occupational attainment, and socioeconomic
status are posited to play a significant role in the development
of cognitive reserve (Stern, 2009, 2012). For example, individuals
with AD and higher cognitive reserve (education levels) had
greater DMN connectivity compared to individuals with AD
and lower education levels (Bozzali et al., 2015). Bastin et al.
(2012) on the other hand, determined that there was more
cerebral pathology and reduced activity of metabolism in
the temporoparietal cortex in healthy individuals with higher
education. Furthermore, although Brayne et al. (2010) found that

the amount of accumulation of pathological burden in the brain
was not affected by the number of years of education that an
individual had completed, higher levels of educational attainment
was found to be associated with a lower risk of demonstrating
dementia on the background of the burden of pathology.

Lifelong engagement in cognitively stimulating activities may
reduce the risk of developing dementia by 40% (Scarmeas and
Stern, 2003; Valenzuela et al., 2011). In support, Jahangiri et al.
(2018) noted that exercise was associated with improved memory
function, as well as reduced risk of developing neurodegenerative
disease in different animal models. In human studies, Larsson
et al. (2017) reported that individuals with higher educational
attainment had a lower risk of developing AD. Similarly,
in healthy participants (50–79 years), education later in life
(university study for at least 12 months) was positively associated
with cognitive reserve (as estimated by current psychological
assessment scores) compared to those who did not complete any
further university education (Lenehan et al., 2016). Associations
between education and age are evident particularly in the
attention and speed processing domains (Perry et al., 2017). In
line with these findings, Summers et al. (2017) found that 92.5%
of individuals 50 years and older who had attended university
for at least 12 months showed increased cognitive performance
in domains that may be a proxy for cognitive reserve.

Stern (2009) hypothesized that individuals with AD who have
higher cognitive reserve possess more flexible neural networks
and will retain a higher level of cognitive performance with
an increasing neuropathological load. This notion of neural
flexibility could potentially be demonstrated in re-organizable
functional networks of the brain observed in cognitively healthy
individuals (Bosch et al., 2010). In this study of healthy
older individuals, higher cognitive reserve was associated with
increased brain activity in the DMN, but it was also associated
with decreased brain activity in regions associated with speech
comprehension. In contrast, in individuals with MCI or AD,
decreased activation in the DMN and more activation in language
processing in subjects was associated with higher cognitive
reserve (Bosch et al., 2010).

Education and cognitive reserve have a positive effect on
functional connectivity networks (Marques et al., 2016) and
cognitive functioning (Bozzali et al., 2015). There is evidence
that high cognitive reserve levels were related to working
memory, while age had a negative effect on cognition (Ward
et al., 2015a). High cognitive reserve has been associated with
greater functional connectivity in healthy elderly individuals
(Marques et al., 2016). Arenaza-Urquijo et al. (2013) examined a
cognitively healthy older population (60–80 years) and described
better brain metabolism, higher gray matter volume as well as
enhanced functional connectivity in individuals who had more
years of early-life formal education. In particular, the authors
found higher functional connectivity in regions such as the
anterior cingulate cortex, right hippocampus, right PCC, left
inferior frontal lobe and left angular gyrus in people with those
with more education.

Marques et al. (2015) likewise examined the relationship
between education and functional connectivity and found
that individuals with more education had larger networks.
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These enlarged networks were connected to all lobes in each
hemisphere and influenced functional connections in a positive
way, which was predicted to moderate the effects of age on
brain connectivity (Marques et al., 2015). Moreover, Marques
et al. (2016) investigated whether sex and the number of years of
education [used as demographic characteristics (DEM)], in 120
healthy older individuals influenced functional networks in the
brain. The authors demonstrated that the DEM had a positive
effect locally (in the neighborhood areas), on the strength of
nodes, efficiency and on clustering coefficient, exhibiting greater
communication within the networks of the occipital and parietal
lobe areas. There was also a relationship found between the DEM
and network transitivity indicating that individuals with more
education use different neural processing (Marques et al., 2016).
Network transitivity is defined as the connection between two
nodes that are linked to each other via an edge in a network.

In addition, Marques et al. (2016) examined how cognitive
reserve measured by educational attainment affected functional
connectivity in resting state fMRI. They demonstrated that
larger networks with more functional connections in the brain
were related to higher cognitive reserve. Greater local efficiency
and higher local clustering in the cuneus, as well as in the
areas of the superior and middle occipital lobe were related to
higher levels of cognitive reserve (Marques et al., 2016). The
inferior temporal gyrus is predicted to have a significant role
for cognitive reserve, because of its betweenness centrality and
nodal strength, which demonstrated a positive correlation with
cognitive reserve. The fraction of all shortest paths in the network
that pass through a given node is called betweenness centrality
(Rubinov and Sporns, 2010). The inferior temporal gyrus is a
significant hub responsible for recognition and visualization of
words and numbers (Grotheer et al., 2016), which are important
functions involved in cognitive reserve networks (Marques et al.,
2016). Finally, global efficiency, which is “a measure of functional
integration” (Marques et al., 2016), was greater in individuals
displaying higher cognitive reserve compared to individuals with
lesser cognitive reserve.

Colangeli et al. (2016) conducted a meta-analysis of whether
functional brain networks were associated with cognitive reserve
in healthy older adults, as well as in amnestic MCI (aMCI)
and AD. Findings in all subgroups showed greater functional
brain activation in the anterior cingulate in the left hemisphere
while performing a cognitively stimulating task (e.g., recognition
memory task). However, the cognitively healthy older adult
group demonstrated greater activation in several brain regions
as compared to the aMCI and AD groups. These activated brain
regions included the left anterior cingulate and left precuneus, the
right cingulate gyrus, and the superior frontal gyrus of the dorso-
lateral PFC, all of which are susceptible to degenerative changes in
individuals diagnosed with AD and aMCI (Colangeli et al., 2016).

Bozzali et al. (2015) investigated whether cognitive reserve
modifies resting-state functional connectivity in healthy,
aMCI, and AD individuals (mean age 74.6 years). Functional
connectivity was associated with the cognitive reserve proxy,
education, within the DMN. Higher functional connectivity
within the PCC was associated with higher education in
individuals with AD, in which education possibly initiated

mechanism of compensation. Education may also have led to
brain plasticity and supported the PCC from atrophying. Some
of the aMCI group exhibited similar connectivity strength,
however, there was no strong functional connectivity found in
the healthy group (Bozzali et al., 2015).

Franzmeier et al. (2016) also demonstrated that higher global
functional connectivity was present in individuals with MCI
with relatively higher levels of education. Individuals with more
years of education and prodromal AD were able to compensate
for fluorodeoxyglucose (FDG)-PET hypometabolism in the
precuneus and had greater connectivity in the left frontal lobe,
as well as better performance in memory (Franzmeier et al.,
2017a,b). Moreover, Franzmeier et al. (2017b) demonstrated that
individuals with MCI who had higher educational attainment
and high Aβ levels had a more global left frontal cortex
connectivity when controlled for age and sex, whereas, in
healthy individuals, global left frontal cortex connectivity was not
related with metabolism in the precuneus. Negative connectivity
between the left lateral frontal cortex and the DMN was also
found in people with MCI who had achieved higher education
(Franzmeier et al., 2017a). Perry et al. (2017) demonstrated a
positive correlation between years of education and cognitive
functioning (e.g., visuospatial, executive function, language) but
a weak relationship between education and brain networks,
especially when the brain already showed evidence of age-related
changes in healthy individuals. The greatest impact in age-
related alterations later in life was found in the sensorimotor
networks, especially those underlying processing speed and
attention (Perry et al., 2017).

In summary, education early in life and other life-long
cognitively stimulating activities could be possible protectors
against neurodegenerative diseases, and might bolster cognitive
reserve later in life (Ward et al., 2015b).

CONCLUSION

The brain is a large set of complex networks that are
connected structurally and functionally. Different areas of
the brain share and communicate information in functional
space, creating networks. These networks can be adversely
or positively influenced by various genetic and environmental
factors. For instance, studies reported that APOE ε4 was
associated with decreased functional connectivity (Lu et al.,
2017) and longer path length in functional networks (Goryawala
et al., 2015). However, there was also decreased path length
(Seo et al., 2013) and increased functional connectivity found
in healthy APOE ε4 carriers (Wu et al., 2016). Similarly,
healthy older BDNF Met carriers were associated with reduced
functional connectivity, while Val homozygotes showed a
more robust network in the brain structure (Park et al.,
2017). Cognitive activities and environmental enrichment
have favorable effects on BDNF Val homozygotes, and over
time also on BDNF Met carriers (Ward et al., 2017),
which possibly may promote maintaining healthy cognitive
functioning and reduce the detrimental effects progressing
age. In general, studies provided evidence that education
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and cognitive reserve are associated with an increase of
functional connectivity in the brain networks (Marques
et al., 2016). This could potentially affect brain networks
in a positive way and may mitigate and protect against
cognitive impairments later in life, and hopefully delay or
even prevent the onset of AD (Prince et al., 2013). Future
studies should investigate whether cognitive reserve and
environmental enrichment work as compensatory mechanisms
to influence and alter the networks of more susceptible genetic
polymorphisms to AD, such as APOE ε4 and BDNF Met
carriers. Education later in life increases cognitive reserve
and could provide more resistance and resilience to brain
pathology. Overall, these findings indicate that the functional
networks of the brain are influenced by a combination of
genetic and environmental factors. An improved understanding
of these relationships is vital in order to fully grasp how
neurodegenerative changes affect brain function, but also to
determine how cognitive resilience to neurodegenerative changes
may be promoted.
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