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The germinal center (GC) is a transient anatomical structure formed during the adaptive

immune response that leads to antibody affinity maturation and serological memory.

Recent works using two-photon microscopy reveals that the GC is a highly dynamic

structure and GC B cells are highly motile. An efficient selection of high affinity B

cells clones within the GC crucially relies on the interplay of proliferation, genome

editing, cell-cell interaction, and migration. All these processes require actin cytoskeleton

rearrangement to be well-coordinated. Dysregulated actin dynamics may impede on

multiple stages during B cell affinity maturation, which could lead to aberrant GC

response and result in autoimmunity and B cell malignancy. This review mainly focuses

on the recent works that investigate the role of actin regulators during the GC response.
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The germinal center (GC) is the site where B cells can modify their B cell receptor (BCR) affinity
for antigen by expression of activation induced deaminase (AID), proliferation, and selection.
The outcome will be plasma cells and memory B cells that have acquired B cell receptors (BCR)
with higher affinity for antigen. During the last 10 years, the dynamics of GC B cells have been
investigated by usage of intravital two photon microscopy and revealed an enormous dynamics
of GC B cells in migration pattern and interactions with follicular dendritic cells (FDCs) and T
follicular helper (Tfh) cells (1–3). A long-standing question about how the antigen is delivered to
the FDC network has also been revealed. Small antigens can diffuse into the FDC network by the
conduit system (4). Migratory B cells in the marginal zone (MZ) of the spleen and B cells close
to the sinusoid macrophages in lymph nodes (LN) can capture antigen by the B cell complement
receptors such as CD21 and deliver the antigen into the FDC network (5).

The GC reaction relies on the interplay between cell migration, cell-cell interaction, and cell
proliferation. The GC is anatomically divided into the dark zone (DZ) and light zone (LZ). The DZ
is the site where B cells have high expression of AID that induces somatic hypermutation (SHM)
and Ig class switch recombination (Ig CSR) in the genes encoding the Ig heavy and light chains.
The LZ is the site for B cell competition and selection to obtain B cells with highest affinity for
antigen. Recent migratory B cell from the DZ compete for retrieval of native antigen on follicular
dendritic cells (FDCs). BCR binding of antigen leads to endocytosis and processing of antigen
for loading on MHC class II molecules (6–9). This process relies on that B cells form two types
of immunological synapses, the first synapse will polarize the machinery for BCR endocytosis
for antigen retrieval from FDCs and the second synapse is formed by MHC class II—peptide
interaction with T cell receptors (TCR)s on Tfh cells (8). During extraction of antigen from the
immune synapse by B cells, the strength and timing of mechanical forces in immune synapses can
promote affinity discrimination (10, 11). The antigen presenting B cells interact with Tfh cells that
provide co-stimulation and cytokines such as IL-21 and IL-4. The B cell expressing a BCR that have
acquired highest affinity for the antigen will acquire more antigen for MHC class II presentation
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and outcompete B cells expressing a BCR with lower affinity for
antigen (3). An estimated 10% of the B cells migrate back to the
DZ (3, 12) to undergo more SHM to increase the BCR affinity for
antigen. The B cells that have acquired higher affinity for antigen
can undergo differentiation to plasma cells and memory cells
(13). Whereas the differentiation program to become a plasma
cell is defined in quite detail, the memory B cell differentiation
program has only recently started to be identified. It is clear
that the cell fate decisions that B cells make in the GC are
well characterized and coordinated by expression of transcription
factors. Pax5 is critical to maintain the GC B cell phenotype.
Increased expression of IRF4 and downregulation of Pax5 is the
first differentiation step toward plasmablasts and followed by
upregulated expression of Blimp1 and Xbp1 in fully differentiated
plasma cells. This induces a loss of B cell identity and plasma
blasts leave the GC to migrate to the B-T cell bridging areas. The
GC response is orchestrated by coordinated changes in cell shape
to migrate between the DZ and LZ and to communicate with
FDCs and Tfh cells in the LZ.

During the process of finding interaction partners, GC B
cells rapidly change cell shape and polarization by forming
leading edge protrusions and trailing uropods (14). It is therefore
not surprising that inborn errors in genes that regulate the
actin cytoskeleton lead to aberrant GC formation. What is
perhaps more surprising is that specific mutations lead to
development of autoreactive GCs, suggesting that the effects
on discriminating the self and non-self B cell clones during

FIGURE 1 | Predicted role of actin regulators during the GC response of B cells. (Upper left): Schematics of the lymph node structure. (Lower left):

Immunohistochemistry of a single GC. Red: GL7; Green: CD21/35; Blue: B220. (Right): Schematic of a GC. Antigen-engaged B cells meet antigen experienced Tfh

cells and enter the B cell follicle to initiate a GC response. B cells in dark zone express AID (activation-induced cytidine deaminase) and undergo somatic

hypermutation. B cell clones that successfully mutate the BCR migrate to light zone, capture antigens deposit on the surface of FDC (follicular dendric cells), and

present the antigen to Tfh (T follicular helper) cells. The positive selected B cell clones can differentiate into plasma cells, memory cells or migrate back to dark zone for

further mutations and selection.

the GC reaction is skewed. The importance of actin dynamics
and generation of force in the B cell immune synapse has
recently been described (11, 15). Investigation of patients with
primary immunodeficiency diseases due to inborn errors in
B cell responses provides important information about B cell
dysfunction in severe disease (16). To understand aberrations
in the GC reaction, animal models provide in depth analysis
of the anatomical structure in secondary lymphoid organs and
the outcome measured as plasma cell generation and antibody
production (Figure 1). Here we review recent progress in
understanding how cytoskeletal regulators leading to Arp2/3
mediated actin polymerization regulate the B cell fate during
the GC response (Table 1). This axis of regulation to actin
dynamics involves B cell receptor (BCR) signaling to guanine
exchange factors (GEFs) that activate the small GTPases of the
Ras homology (Rho) family. Rho GTPases binds to and activates
the Wiskott-Aldrich syndrome (WASp) family proteins for actin
polymerization by the Arp2/3 complex.

GEFS: DOCK FAMILY AND VAV1-3

GEFs activate small GTPases by stimulating the exchange of
guanosine diphosphate (GDP) to guanosine triphosphate (GTP).
GTPase activating proteins (GAPs) stimulate GTP hydrolysis
thereby reinstating the GDP-bound form of the GTPases to
terminate their signaling. Regulated by GEFs and GAPs, the
Rho family GTPases cycle between a GDP-bound inactive form
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and a GTP-bound active form (17). The GEFs that regulate
Rho GTPases called RhoGEFs fall into two different classes:
the dedicator of cytokinesis (Dock) family of proteins including
Dock 1–11 and the diffuse B-cell lymphoma (Dbl) family
including Vav1-3.

Dock Family Proteins
Dock8, a GEF for Rho GTPases, was first identified in a
yeast two hybrid screening for Cdc42 binding partners (18).
Dock8 deficiency in patients leads to multiple immune disorders
including T and B cell deficiency, increased cutaneous viral
infection, severe atopy with elevated serum IgE level, and
compromised antibody response (19, 20). Detailed analysis of
patient PBMCs reveal a reduced proportion of T cells and slightly
elevated CD19+ B cells. However, among the periphery blood B
cells in Dock8 deficient patients, there is almost a complete lack
of CD27+ B cells including switched memory (IgD−CD27+) B
cells and non-switched memory (MZ like, IgD+CD27+) B cells.
This is associated with reduced serum IgG and IgM response
to vaccination and lack of serological memory in the patients
(21). These data suggests that Dock8 deficiency leads to a
compromised GC response. In depth studies of a Dock8−/−

mice shows reduced naïve T cells, MZ B, and B1 B cell subsets.
Upon antigen challenge, the Dock8−/− B cell response in the
extrafollicular pathway is comparable to that of wildtype B cells.
However, the GC response and antibody affinity maturation of
Dock8−/− B cells is greatly compromised although the rate of
SHM is comparable to wildtype cells. The reduced GC response
is probably not due to compromised entry of Dock8−/− B cells
into the GCs. Because during the early GC response (day 2–5),
Dock8−/− and wildtype B cells occupy the GC area equally well.
However, at the later time points, Dock8−/− GC B cells gradually
lose the competition, suggesting a critical role of Dock8 for GC
B cell persistence or survival. This defect may be caused by the
compromised immune synapse formed during the selection stage
of GC B cells in the LZ, which may provide crucial survival signal
to the GC B cells (22).

Dock2
Dock2 is predominantly expressed in hematopoietic cells and
human loss-of-function mutations result in early onset of
invasive bacterial and viral infection, T cell lymphopenia, and
decreased antibody responses (23). Detailed analysis of Dock2-
deficient patient cells reveal defective T cell and B cell responses
upon antigen stimulation as a result of impaired Rac activation
and actin polymerization. Analysis of B cell specific Dock2−/−

(CD19-Cre x Dock2fl/fl) mice and cell lines have identified a
critical role of Dock2 in B cells during the antigen induced
immune synapse formation, cell proliferation, and plasma cell
differentiation (24, 25). CD19-Cre x Dock2fl/fl mice have normal
B cell development in bone marrow from the pro-/pre-B cell
stage to the immature B cell stage. However, there is a dramatic
decrease in the mature B cell subsets including transitional B cell,
marginal zone B, and follicular B cells (25, 26). This could at least
partly result from compromised cell migration to chemokines
of Dock2−/− B cells (26, 27). CD19-Cre x Dock2fl/fl mice have
decreased IgG1 and IgG2b antibody response to T cell dependent

(TD) antigen. Examination of the GC response show that Dock2
deficiency does not affect GC B cell formation and Ig class
switching, whereas the GC B cell proliferation and differentiation
into plasma cells are greatly compromised (25). This could be
caused by a defective immune synapse formation at the selection
stage in the LZ and therefore lack of survival and differentiation
signal from the Tfh cells.

Dock10
Other proteins in the Dock family have been associated with
B cell biology and the GC response. In a screen for genes
upregulated by IL-4 activation of B cells, Dock10 was one of the
highest expressed genes (28, 29). Dock10−/− mice have reduced
numbers of B cells in secondary lymphoid organs, and FO B
cells display elevated expression of membrane CD23 (30). These
results suggest that Dock10 plays a role in B-cell lymphopoiesis in
secondary lymphoid tissue. However, specific deletion of Dock10
in B cells was associated with amild phenotype with normal B cell
development and normal B cell spreading, polarization, motility,
chemotaxis, aggregation, and Ig class switching. Dock10B B cells
showed lower proliferation in response to anti-CD40 and IL-4
stimulation in vitro and Dock10B mice had reduced IgG response
to NP-KLH in vivo (28). This suggest that IL-4 induced activation
of B cells was decreased both in vitro and in vivo but that most B
cell responses were functional in the absence of Dock10, rising
the interesting question if the closest homologs to Dock10, Dock
9, and Dock11 may have redundant activity in B cells.

Dock11 is highly expressed in lymphocytes and Dock11-
deficient mice have reduced development of splenic MZ B cells
(31). Dock11−/− mice show a normal antibody response to T
cell independent (TI) antigens and TD antigens, TNP-LPS, TNP-
Ficoll, and NP-CGG (32). This indicates that Dock11−/− mice
have a normal GC response although generation of high affinity
antibodies was not examined in detail.

Vav1, Vav2, and Vav3
Vav proteins were first described as proto-oncogenes acting as
substrates for tyrosine protein kinase activity (33). Recent studies
examining the role of Vav family proteins, including Vav1, Vav2,
and Vav3, in lymphocytes have revealed their critical function to
link lymphocyte antigen receptor activation to actin cytoskeleton
dynamics. Vav1, Vav2, and Vav3 share more than 50% homology
in the protein sequences, all of which are composed of a Dbl-
homologous (DH) domain, pleckstrin homology (PH) domain,
SH2/SH3 domain, proline rich area, and a calponin homology
(CH) domain (34). Reduced Vav1 expression has been detected
in common variable immunodeficiency (CVID) patients with
defective TCRmediated signaling (35). Vav1 expression is mainly
restricted to the haematopoietic lineage cells (36). Although Vav1
has been shown to play a critical role in T cell development and
activation by regulation of TCR signaling, B cell development
of Vav1−/− mice seems largely unaltered, except a profound
reduction of B1 B cells in the peritoneal cavity (37–39). The
in vivo response of Vav1−/− B cells to T-independent antigens
(both TI-1 and TI-2) is comparable to wildtype cells as measured
by production of antigen specific IgM. However, despite normal
formation of GCs in response to vesicular stomatitis virus (VSV),
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antigen specific IgG responses are reduced. In response to NIP-
OVA, Vav1−/− mice completely lack GCs, which probably leads
to reduced antigen specific IgG1 and IgG2b. Vav1 is highly
expressed in all haematopoietic cells, whereas Vav2 shows the
highest expression in splenic mature B cells when compared to
other B cell subsets, suggesting an important role of Vav2 in
mature B cell homeostasis. Consistently, Vav2−/− mice seem to
have a development block from the immature/transitional B cell
stage to the mature B cell stage. There is also reduced response
to both TI and TD antigens of Vav2−/− B cells when compared
to wildtype cells. In response to TNP-KLH, Vav2−/− mice show
an 80% reduction in the GC B cells. Because T cell subsets and
function are suggested to be unaltered inVav2−/− mice, it is likely
that the compromised GC response in Vav2−/− mice results from
a B cell intrinsic defect (40, 41).

All three proteins of Vav1, Vav2, and Vav3 are quickly
phosphorylated after the antigen receptor engagement.
Since previous data demonstrates relative mild defect in
Vav1−/− and Vav2−/− single knockout mice, Vav1, Vav2, and
Vav3 may have functional redundancy downstream of BCR
activation. The collected experimental data so far supports
this hypothesis. Vav1−/− Vav2−/− double knockout mice
and Vav1−/− Vav2−/− Vav3−/− triple knockout mice have
a more severe B cell deficiency, including a developmental
block at the immature/transitional B cell stage in bone
marrow and spleen, reduced serum level of IgM and IgG,
defective response to TI and TD antigens and greatly
compromised cell proliferation and calcium flux upon BCR
stimulation (42).

SMALL RHO GTPASES

The Rho family belongs to the Ras super family of small
GTPases and like other Ras-related proteins, most of the Rho
GTPases adopt either active GTP-bound or inactive GDP-bound
conformational states. The important role of the small Rho
GTPases in regulation of actin dynamics was first characterized
by Alan Hall and coworkers that showed induction of specific
actin structures when microinjected into fibroblasts (43–46).
Cell division control protein 42 homolog (Cdc42), Ras-related
C3 botulinum toxin substrate 1 (Rac1), and Ras homolog gene
family, member A (RhoA) has been the prototypic members
of the family of small Rho GTPases. Cdc42 microinjection into
fibroblasts induces membrane filopodia and Cdc42 regulates cell
polarity and cell division (44). Rac1 induces membrane ruffles
and lamellipodia and RhoA regulates stress fiber formation (46,
47). It was later shown that such actin dependent structures is
induced by Cdc42, Rac1, and RhoA in other cell types including
B cells (48, 49). Studies from many laboratories have revealed
extensive cross-talk among the Rho GTPases, not the least
in hematopoietic cells that express many variants of the Rho
GTPases (50).

Cdc42
The small GTPase Cdc42 can mediate the interaction between
actin and microtubules and regulate cell shape and polarity.
Cdc42 coordinates actin polymerization by direct binding to

WASp and N-WASp (51–53) and coordinates the microtubule
cytoskeleton by binding to the Cdc42 interacting protein
(CIP4) that directly regulates microtubule assembly (54, 55).
In vitro, dominant negative mutants of Cdc42 interfere with
B cell formation of cytoskeletal responses such as formation
of filopodia, and cell polarization and migration (48, 49).
Two patients with unrelated Cdc42 mutations have been
reported recently (56, 57). The patients are characterized
with developmental delay, macro thrombocytopenia, and
lymphedema. Repeated upper respiratory infection and
chronic leukocytopenia has been observed in one of the
patients, indicating a mild form of immunodeficiency. Using
animal models, Cdc42 has a non-redundant role during B
cell development since deletion in early B cell progenitors
results in a severe reduction in the numbers of mature B cells
(58, 59). Using CD19-Cre for deletion of a floxed Cdc42 allele,
Cdc42-deficient B cells have decreased phosphorylation of Akt
upon BCR activation and reduced BAFFR signaling leading to
reduced proliferation and increased apoptosis (58). Mice with
B cell-specific deletion of Cdc42 induced a reduced antibody
response to TNP-Ficoll and NP-KLH. Early deletion of Cdc42
during B cell development using mb1-Cre x Cdc42flox/flox

mice, led to reduced B cell number in spleen and LN and
antibody titers reaching the detection limit (59). This led to
abolished capacity to generate a high affinity antibody response
to NP-KLH and reduced GC response to Influenza A virus.
Together this suggests that Cdc42 serves an important role
during B cell development in the bone marrow. Using the
super resolution microscopy technique dSTORM, Cdc42
KO B cells showed increased dispersion of IgM nanoclusters
and decreased BCR induced signaling leading to reduced
internalization of antigen (59). Using two-photon microscopy,
Cdc42 KO B cells formed fewer contacts with antigen-specific
T cells (59).

Cdc42−/− B cells migrate normally to chemokines in vitro
(58, 60), but have reduced capacity to home to the B cell follicles
in the spleen (60). To exclude the effect of Cdc42 deletion
on B cell development and the effect of Cdc42 deficiency on
positioning in LNs and splenic white pulp, inducible deletion of
Cdc42 by crossing Cdc42flox/flox mice with mb1-Cre-ERT2 mice
was employed (60). This approach allowed for specific deletion
of Cdc42 in B cells that had already entered the B cell follicles.
Inducible deletion of Cdc42 in B cells led to reduced number of
splenic MZ B cells and follicular B cells. Upon antigen challenge
with the particulate antigen sheep red blood cells (SRBC),
Cdc42B−ERT2 had reduced formation of GCs. In response to NP-
KLH, Cdc42B−ERT2 B cells showed reduced capacity to induce
NP-specific antibodies. This was associated with reduced capacity
to present antigenic peptides to T cells in vitro (60). Moreover,
Cdc42B−ERT2 B cells failed to form membrane extensions rich in
tubulin and formed only short membrane protrusions that do not
contain tubulin.

Together, these studies suggest that Cdc42 plays a role
both during B cell development and in GC response
and Cdc42 deficient B cells fail to regulate formation
of membrane extensions and to interact with T follicular
helper cells.
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Rac1 and Rac2
The Rac proteins were first identified in Snyderman’s laboratory
in 1989 (61). Sequence analysis reveals more than 90%
homologous region between Rac1 and Rac2 proteins. A point
mutation that leads to a dominant negative form of Rac2 (D57N)
has been identified in infant patients characterized with recurrent
bacterial infection and failure of wound healing resulting from
defective neutrophil function (62–64). Although there is reduced
T and B cell count in the patient, serum Ig level is normal
except for one patient that had hypogammaglobulinemia (64).
One of the patients harboring a homozygous mutation in Rac2
(W56X) that leads to a complete loss of the protein developed
progressive B cell lymphopenia and hypogammaglobinemia (64).
Based on studies of mice that lack Rac1 and Rac2, their function
in multiple cellular processes, including proliferation, survival,
adhesion, and migration have been implicated. In contrast to
the B cell specific Rac1 knockout mice that do not present an
obvious alteration of B cell functionality, Rac2 deficiency or
combined deficiency of Rac1 and Rac2 (Rac1BRac2−/−) leads
to developmental block of B cells at the immature/transitional
B cell stage. A study by Tybulewicz et al. shows that this is
probably not due to a differentiation arrest of the transitional B
cells, since ectopic expression of the anti-apoptotic gene Bcl-xl
can partly rescue the differentiation defect of the Rac1BRac2−/−

immature/transitional B cells. Instead, the defective migration
toward chemokines is likely to be the reason why Rac1BRac2−/−

B cells are unable to enter the white pulp where crucial survival
signals to the mature B cells are available. This leads to a large
reduction of the mature B cell population in the spleen including
marginal zone B cells and follicular B cells (65). Defective entry of
mature B cells into the white pulp makes it difficult to study the
role of Rac1 and Rac2 in antigen-activated B cells. To circumvent
this issue, Rac proteins were inducibly deleted by Tamoxifen in
the mature B cell population (Rac1B−ERT2Rac2−/−) (66). The TI
response to TNP-LPS of Rac1B−ERT2Rac2−/− B cells is greatly
compromised, with reduced level of antigen specific IgM and
IgG3, whereas the TD response to TNP-SRBC in these mice
seems comparable to wildtype mice, with a normal GC response
and plasma cell output. Notably, Rac1B−ERT2Rac2−/− mice have
increased serum titer of antigen specific IgG2b. In vitro analysis
of Ig class switching reveals that the Rac1B−ERT2Rac2−/− B cells
have increased capacity to switch to IgG2b, possibly attributed
to increased gamma2b germline transcript. In addition, B cell
activation induced by BCR cross-linking is compromised in
Rac1B−ERT2Rac2−/− B cells and associated with reduced cell
proliferation and survival. This could be caused by compromised
BCR signaling and upregulation of BAFF-R.

CIP4
CIP4 (Cdc42 interacting protein 4) belongs to the Fes–CIP4
homology-Bin/Amphyphysin/Rvsp (F-BAR) family of proteins,
which includes FBP17 (formin binding protein 17), and Toca-
1 (transducer of Cdc42-dependent actin assembly 1). CIP4
interacts with Cdc42 and is a downstream target of activated
GTP-bound Cdc42 (54). Similar to mice with Cdc42-deficient
B cells, mice completely devoid of CIP4 have normal B and T
cell development but reduced germinal center formation and

decreased production of high affinity IgG in response to NP-KLH
(67). Since CIP4 was deleted in all cells, the specific role of CIP4
in GC B cells and T cells was not examined. CIP4-deficient T cells
had decreased migration and integrin-mediated adhesion under
sheer forces, suggesting a defect in entry of Tfh cells into the GC.

TC10/RhoG
TC10/RhoG is an atypical Rho GTPase identified as a member
of the ras homolog gene family (68). TC10/RhoG is a member of
the Rho family of GTPases that shares 72–62% sequence identity
with Rac1 and Cdc42, respectively (69). In contrast to the marked
defect of Cdc42-deficient B cells, specific deletion of TC10 had
little effect on B cell development or differentiation into GC B
cells, indicating that Cdc42 may compensate for loss of TC10
(70). Indeed, deletion of both Cdc42 and TC10 in B cells led
to much reduced B cell proliferation in response to LPS and
CpG stimulation.

WASP FAMILY OF ACTIN REGULATORS

The RhoGTPases activate theWiskott-Aldrich syndrome protein
(WASp) family of actin regulators. The WASp family of
proteins includes WASp, neuronal (N)-WASp, and WASp-
family verprolin-homologous protein (WAVE)/suppressor of
the cyclic AMP receptor (SCAR) 1–3, WASp and SCAR
homolog (WASH), and junction-mediating and regulatory
protein (JMY) (71–73). WASp family proteins are characterized
by high homology in the C-terminal domain consisting of
the verprolin cofilin acidic (VCA) domain though which they
can bind to globular actin and the Arp2/3 complex. The N-
terminus of the protein show higher variability likely linked
to cell-specific functions. At rest, WASp and N-WASp resides
in an auto-inhibited conformation due to an intramolecular
interaction between the VCA domain and the GTPase-binding
domain (74–76). Upon binding of Cdc42, the auto-inhibited
conformation is released and exposes the VCA domain that
allows for recruitment of the Arp2/3 complex and actin
polymerization. Rac1 and Rac2 regulate activation of the
multimeric WAVE/Scar regulatory complex to stimulate actin
polymerization by the VCA domain (77–79). WASp was the
first identified member due to that its loss-of-function leads to
the severe immunodeficiency disease Wiskott-Aldrich syndrome
(WAS), initially described by Alfred Wiskott in 1937 and Robert
Aldrich in 1954 (Wiskott A, Familiärer, angeborener Morbus
Werlhofii? Monatsschr Kinderheilkd 1937; 68:212-216; Aldrich
RA, Pediatrics 1954; 13:133–139).

WASp and N-WASp
WASp is uniquely expressed in hematopoietic lineage cells
whereas N-WASp that shares 50% homology with WASp in
the amino acid sequence is ubiquitously expressed. Humoral
immunodeficiency caused by mutations in the WAS gene
encoding WASp is associated with failure to respond to common
pathogens and up to 40–70% of patients developing autoimmune
disease with high titers of autoantibodies (80–85).

WAS patients have normal to slightly reduced absolute
numbers of circulating B cells, however, have reduced MZ B cells
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and dysmorphic GC in spleen (80, 86). Although the proportion
of memory B cells remains intact, WAS patient memory B cells
have reduced responsiveness to BCR activation probably due to
impaired BCR signaling (87). WASp−/− mice have normal B
cell development and FO B cells, but reduced number of MZ
B cells and MZ precursor T2-MZP cells (88–90). This leads to
reduced capacity to respond to TI antigens TNP-Ficoll and TNP-
dextran, likely due to a combined effect of reduced number ofMZ
B cells and decreased antigen delivery by the MZ B cells to the
B cell follicle (88, 90, 91). WASp−/− mice have slightly reduced
capacity to form high affinity IgG antibodies to TD antigen NP-
KLH and particulate antigen SRBCs (88, 90–92). WASp−/− B
cells have decreased formation of the immune synapse upon
BCR activation in vitro (89, 93) and reduced capacity to from
long membrane extensions (49). Despite this defects in the BCR
response, WASp−/− B cells can present antigen and induce
T cell activation similar to wildtype B cells, at least in vitro
(94, 95). WASp acts as a negative regulator for autoreactive
B cells since both WAS patients and WASp−/− mice develop
broad range IgM and IgG autoantibodies associated in mice
with spontaneous generation of GCs (81, 85, 95). Moreover,
WASp−/− B cells are hyper responsive to B cell receptor and
Toll-like receptor (TLR) signals in vitro, thereby promoting a
B cell–intrinsic break in tolerance. To understand the B cell
intrinsic defects, WASpflox/flox mice were bred mb1-Cre mice
to delete WASp specifically in B cells. These WASpB mice have
high titers of autoreactive IgM and IgG and form large GCs
in the absence of antigen challenge (91, 96). To reveal the
unique and redundant role of WASp and N-WASp in the GC
response, WASp−/− mice or WASpflox/flox mice were bred to N-
WASpflox/flox mice and CD19-Cre or mb1-Cre to delete WASp
and N-WASp specifically in B cells. Analysis of WASp−/−N-
WASpB andWASpBN-WASpB mice revealed a reduced response
to NP-KLH with small GCs that lost LZ and DZ integrity and
failure to generated high affinity NP-specific IgG antibodies
(95, 97). Strikingly, N-WASp deletion in WASp−/− B cells
lowered the autoreactive antibodies and GCs, suggesting that
N-WASp deletion protects mice from developing autoimmune
disease (95, 97). Interestingly, N-WASp-deleted B cells (that
express normal WASp) have increased BCR synapse response
associated with development of autoantibodies in N-WASpB

mice (93). This indicates that WASp and N-WASp serve both
unique and redundant roles in BCR signaling to B cell activation.
WASp-deficient follicular T (Tfh) cells show defective activation
and proliferation and is likely to contribute to altered antibody
production inWAS patients andWASp−/− mice (98). Moreover,
WASp deficiency in regulatory B cells leads to exacerbated
experimental autoimmune arthritis (99).

The WAS gene is localized on the X chromosome and only
boys are affected by WAS mutations. Studies of asymptomatic
femaleWAS carriers has revealed that while haematopoietic stem
cells have largely random X chromosome inactivation, there is a
strong selective advantage for B and T cells that express WASp
during development and differentiation (88, 89). By analysis of
WASp+/− heterozygous mice and WT:WASp−/− bone marrow
chimeric mice, a strong advantage was detected for WASp-
expressing FO B cells andMZB cells in the spleen, as well as GC B

cells in Peyer’s patches (88, 89). It was later shown thatWASp−/−

B cells competed equally well with wildtype B cells among GC B
cells, both DZ and LZ cells, whereas WASp−/−N-WASpB had
selective disadvantage in contribution to the GC B cells (95).
This suggests that WASp together with N-WASp are needed
for a normal GC response to prevent selection of autoreactive
B cells. Gene therapy for WAS patients is currently evaluated
in several centers and has shown success and ameliorate the
autoreactive B cells. Gene therapy may provide a future curative
option alongside haematopoietic stem cell transplantation (100).

WASp-interacting Protein (WIP)
WIP was originally cloned as a WASp interacting protein using
a yeast two-hybrid system. WIP interacts with the N-terminal
WASp homology domain (WH) 1 domain of both WASp and
N-WASp and is essential for their stability (101–103). Three
pedigrees of WIP deficient patients have been reported so far
(104–106). Their symptoms highly resemble those of WAS
patients, however, with milder thrombocytopenia and earlier
onset of severe infections and T cell deficiency (107). Similar
to WAS patients, WIP deficient patients have elevated serum
IgE titer and normal to elevated IgG and IgM antibody titer,
suggesting abnormal B cell responses (105, 107). WIP−/− B
cells show reduced B cell homing, chemotaxis, survival, and
differentiation due to an altered CD19 cell surface dynamics
(108). Upon NP-KLH immunization, WIP−/− mice failed to
form GCs and have reduced NP-specific antibody responses.
This was caused by reduced activation of phosphatidylinositol-
4,5-bisphosphate 3-kinase (PI3K) in WIP−/− B cells. WIP has
important function in B cells, independent of its binding to
WASp, by direct binding to actin (109). B cells expressing WIP
lacking the actin binding domain (ABD) of WIP (WIP1ABD)
have reduced BCR induced actin foci and reduced signaling with
PI3K to p-Akt. Using NP-KLH immunization of WT:WIP−/−

mixed bone marrow chimeras, WIP−/− B cells are less efficient
at differentiating into GC B cells in a competitive environment.
However, in a non-competitive setting, GC responses are
comparable to WT mice but WIP−/− mice are impaired in
producing high-affinity antibodies (109). It was recently shown
in T cells that WIP bridges Dock8 to WASp and actin and that
Dock8 GEF activity is essential for TCR-driven WASp activation
and F-actin assembly (110). It is plausible that WIP serves a
similar function in BCR signaling.

CONCLUSIONS AND
FUTURE PERSPECTIVES

Positive selection of B cells in GCs depends on the BCR affinity
and requires help from Tfh cells. Selected B cells have three
possible fates: to become a plasma cell, a memory cell, or to
re-enter the DZ for more rounds of mutation and selection.
Absolute high affinity is suggested to drive GC B cells to
differentiate into plasma cells, whereas relatively lower affinity
lead to differentiation into memory B cells. However, several
questions remain elusive about how variable BCR affinity is
discriminated and how cell fate decisions within the GCs are
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FIGURE 2 | Involvement of actin regulators in the receptor signaling during B cell activation. From Left to right, surface or cytosolic Toll-like receptors (TLRs),

chemokine receptors, B cell receptors (BCRs), and immune synapse. Role of actin regulators discussed is indicated.

regulated. Some recent studies suggests that the actin regulators
are involved in the antigen retrieval of GC B cells from FDC
by polarization of the lysosomes to the BCR-antigen immune
complex and by generating mechanic forces. This raises the
interesting question of whether dysregulated actin dynamics can
directly influence the fate decision of GC B cells and eventually
impact on the quality and efficacy of humoral immune responses.

Deficiency in cytoskeletal regulation often influences the cell
fate decision to become a FO B cell or MZ B cells. Mice
devoid of Dock8, Cdc42, Rac2, WASp, WASp plus N-WASp,
and WIP have reduced number of MZ B cells. Reduced MZ
B cells may lead to decreased delivery of antigens to the FDC
network, as is the case for mice lacking WASp and WASp plus
N-WASp in B cells (88, 92). The reduction in MZ B cells may
be related to changes in BCR signaling strength. Data support
that the strength of BCR signaling in the transitional B cells
that enter secondary lymphoid organs is important. MZ B cells
are favored by low BCR signaling whereas FO B cells depend
on high BCR signaling (111). Within the GC, BCR signaling
may be of less importance and BCR as an endocytic receptor
for antigen capture, processing, and presentation may be more
important during affinity maturation (6). In contrast with naive
and memory B cells, which extract antigen in the synapse
center, GC B cells extract antigen using several small peripheral
clusters. Both naive and GC B cell synapses require proximal
BCR signaling, but GC B cells signal less through the protein
kinase Cβ-NFκB allowing them to more stringently regulate
antigen binding (10). A unifying conclusion from the studies

discussed here is that there is enormous redundancy in signaling
pathways leading to Arp2/3 mediated actin polymerization
(Figure 2). However, approaches to use double-deficiency of
two potential redundant factor such as WASp and N-WASp
have led to surprising results. This is likely due to that the
signaling threshold for BCR activation is fine-tuned to achieve
a balance between antigen affinity and antigen extraction to
avoid differentiation of autoreactive B cells and malignant B
cell clones.
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