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Head and neck squamous cell carcinoma (HNSCC) is a significant cause of morbidity

and mortality worldwide. Current treatment options, even though potentially curative,

have many limitations including a high rate of complications. Over the past few years

immune checkpoint inhibitors (ICI) targeting cytotoxic lymphocyte antigen-4 (CTLA-4),

programmed cell death protein 1 (PD-1), and programmed cell death ligand 1 (PD-L1)

have changed treatment paradigms in many malignancies and are currently under

investigation in HNSCC as well. Despite improvements in treatment outcomes and the

implementation of combined modality approaches long-term survival rates in patients

with locally advanced HNSCC remain suboptimal. Accumulating evidence suggests that

under certain conditions, radiation may be delivered in conjunction with ICI to augment

efficacy. In this review, we will discuss the immune modulating mechanisms of ICI and

radiation, how changing the dose, fractionation, and field of radiation may alter the tumor

microenvironment (TME), and how these two treatment modalities may work in concert

to generate durable treatment responses against HNSCC.
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INTRODUCTION

Head and neck cancer is the sixth most common cancer worldwide, with ∼600,000 newly
diagnosed cases and 350,000 deaths annually (1). The vast majority of these cancers are squamous
cell carcinomas. Most patients with HNSCC present with locally advanced disease and are
usually managed with combined modality therapy often incorporating radiation therapy (RT) and
chemotherapy. Despite this,∼50% of patients with high-risk disease experience disease recurrence
within 3 years of follow up (2, 3). Those who do develop a recurrence have limited treatment options
that are often associated with significant morbidity and poor prognosis, emphasizing the need for
alternative treatment options (4).

It is now well-accepted that the immune system plays an important role in preventing tumor
development and progression. Our growing understanding of adaptive immune responses has
led to the discovery of various checkpoints that are often exploited by cancer to evade immune
mediated destruction. Immune checkpoint inhibitors have therefore been developed with the goal
of overcoming this form of immune-evasion and are currently in clinical use for various disease
sites including those of the head and neck. Indeed, numerous clinical trials have demonstrated
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improvement in overall survival (OS) and progression free
survival (PFS) with the use of these agents in both the metastatic
and locally-advanced disease setting. Unfortunately, only 20–
30% of patients typically respond to treatment, and even fewer
have responses that persist beyond 6 months (5).

Radiation therapy is a fundamental modality in the treatment
of HNSCC.While the immunemodulating properties of RT were
first reported in the 1970s (6), harnessing this affect to faithfully
produce meaningful clinical responses has proven difficult.
Recent case reports describing systemic disease responses after
combined RT and ICI however has led to the hypothesis that
combined therapymay work synergistically to improve treatment
outcomes (7, 8).

The goal of this review is thus to discuss the roles of
combined ICI and radiation in the treatment of HNSCC.
First, we performed a thorough literature search to include
peer reviewed preclinical studies and reviews that highlight the
current understanding of the immune system’s role in tumor
development and the importance of checkpoints in curtailing
the immune response. Next, we discuss the tumoricidal effects
of radiation, how it modulates the immune response, and
how dose, fractionation, and field size can potentially affect
treatment outcomes. Lastly, we examine the findings of various
clinical trials registered on www.clinicaltrials.gov and that have
either been published in peer reviewed journals or presented at
societal meetings, that investigate combined therapy and their
implications for the future management of HNSCC.

IMMUNE CHECKPOINT INHIBITION AND
ITS ROLE IN TUMOR IMMUNITY

Initially proposed by Paul Ehrlich over 100 years ago and formally
defined by Burnet and Thomas some 50 years later, it is now
accepted that the immune system actively protects the host
from neoplastic processes, a phenomenon known as cancer
immunoediting (9, 10). A full discussion of this hypothesis is
reviewed in detail elsewhere (11–15).

Suffice it to say that cluster of differentiation (CD)8+ cytotoxic
T lymphocytes (CTLs) are instrumental to the immunoediting
process. These cells have evolved to detect intracellular antigens,
including those from viral pathogens, which are displayed on the
cell surface bymajor histocompatability (MHC) class I molecules.
Antigenic peptides are recognized by the T cell receptor (TCR)
which is specific for a single antigen. Engagement of the TCR
by the peptide-MHC class I complex triggers T cell mediated
apoptosis of the target cell via release of cytotoxic granules
containing perforin and granzymes, release of cytokines such as
interferon (IFN)-γ and tumor necrosis factor (TNF)-α, and direct
interactions via Fas-Fas ligand (16, 17).

Given the highly destructive nature of CTLs, their activation
and activity are tightly regulated via so-called immune-
checkpoints. They first require activation, or priming, by antigen
presenting cells (APC)s which consists of three signals and
typically occurs in draining lymph nodes (DLN). Signal one is
engagement of the TCR with the peptide-MHC class I complex
on the surface of the APC. Signal 2 occurs through binding of the

co-stimulatory molecules CD80/CD86 (also known as B7-1 and
B7-2, respectively) by the APCwith CD28 expressed by the T cell.
Signal 3 occurs when interleukin (IL)-2 binds to CD25 on the T
cell in an autocrine fashion promoting progression through the
cell cycle (18, 19).

Modulation of the immune response can occur at signal
2 through the competitive binding of CD28 by CTLA-4, also
known as CD152. CTLA-4 has a 500–2,500-fold higher binding
affinity compared with CD80/86 and results in decreased IL-
2 production, decreased CTL proliferation, and arrest of T cell
activation (20). CTLA-4 blockade improves antitumor immunity
by shifting the balance back toward immune activation (21).
Ipilimumab, a monoclonal antibody that inhibits CTLA-4,
has demonstrated improvements in PFS, OS, response rates,
and response duration in patients with either metastatic or
locally advanced melanoma in two separate Phase III clinical
randomized trials and has demonstrated activity in multiple
other disease types (22, 23).

Once activated the CTL will circulate in the periphery,
searching for any cell expressing its cognate antigen. Recognition
of antigen will result in T-cell directed apoptosis as described
above. The target cell however can once again evade destruction
through the expression of PD-L1. PD-L1 is additionally expressed
by monocytes, regulatory T cells (Tregs), B cells, dendritic
cells, and other tumor infiltrating lymphocytes. Engagement
of PD-L1 with its receptor, PD-1, expressed by CTLs upon
activation, triggers an intracellular cascade that interferes with
TCR/CD28 signaling. This in turn results in decreased cytokine
production and inhibits cell cycle progression. Chronic exposure
to PD-1 signaling generates T cell exhaustion and tolerance
even in the face of “actionable antigens” (24, 25). While
constitutive expression of PD-L1 by healthy cells prevents
unintended injury to surrounding bystander cells, its exploitation
by cancers, such as melanoma and HNSCC, contributes to
evasion of immune-mediated killing. Monoclonal antibodies
targeting either PD-1 (nivolumab, pembrolizumab, cemiplimab)
or PD-L1 (atezolizumab, avelumab, durvalumab) have therefore
been developed to overcome this mechanism of resistance. In
early clinical trials, several of these agents have demonstrated
efficacy in various disease sites including colorectal cancer, non-
small cell lung cancer, melanoma, renal cell carcinoma and will
be discussed in greater detail below.

THE MECHANISM OF ACTION OF
RADIATION THERAPY

Radiation as a Therapeutic Modality
Radiotherapy is the use of high energy electromagnetic waves (X-
rays or γ-rays), charged particles (electrons, protons, or alpha
particles), or other modalities to treat both malignant and benign
diseases (26). Absorption of ionizing radiation, measured in Gray
(Gy), by biologic tissue causes deoxyribonucleic acid (DNA)
strand breaks, either directly or indirectly via the generation
of reactive oxygen species (ROS), resulting in cell death via
autophagy, necrosis, or apoptosis. In order to minimize normal-
tissue toxicity, the total dose of radiation needed to achieve tumor
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kill is often “fractionated” into smaller doses, typically delivered
in a daily fashion (26). While variable depending on the tumor
type, location, or presence of gross disease, doses of 50–70Gy
are delivered in 1.5–2.25Gy per fraction for cancers of the head
and neck.

Technological advancements in the delivery of external
beam radiation therapy including CT-based inverse planning,
multi-leaf collimation, patient immobilization, and active image
guidance, have led to the development of techniques such
as stereotactic body radiation therapy (SBRT) and stereotactic
radiosurgery (SRS) which allow for the precise delivery of very
high doses of radiation in 1 to 5 fractions. These techniques are
currently in use for the treatment of brain and bone metastases,
early stage non-small cell lung cancer, pancreatic cancer, prostate
cancer, and recurrent head and neck cancers (27–30). While
these high doses of radiation result in irreversible lethal DNA
damage, both preclinical and clinical data now suggest that
changes in the TME may also contribute to tumor control (31).

How RT Promotes an Anti-tumor Immune
Response
The tumoricidal effects of RT appear to at least in part be
dependent on an intact immune system. In 1979, Slone et al.
demonstrated that thymectomized mice required twice the dose
of radiation to achieve cure compared with mice with intact
immune systems (6). Effects of RT on the immune response have
been seen in antigen presentation, effector T cell recruitment,
creation of an immunosuppressive tumor microenvironment,
and the expression of immune checkpoint receptors.

The Importance of Adjuvant Signaling
Similar to how T cells require multiple signals for successful
priming, dying cells need to express both exogenous or mutated
antigens as well as adjuvant signals in order to elicit an
antigen specific immune response. This may in part explain
why cells undergoing accidental necrosis, such as that from
freeze thawing or osmotic shock, fail to generate protective
immunity (32–35). The adjuvant signals in question come in
the form of damage-associated molecular pattern (DAMP)s
such as adenosine triphosphate (ATP), high mobility group
protein 1 (HMGB1), and calreticulin (CRT), which bind to
their respective pattern recognition receptors (PRR)s. After RT,
CRT is upregulated by irradiated tumor cells which acts as a
pro-phagocytic signal via CD91 on activated APCs. Meanwhile,
HMGB1, which is also elevated after RT, binds to TLR4 receptors
on dendritic cells (DC) resulting in increased activation. These
activated APCs begin taking up antigen and promote CTL cross-
priming as discussed above (Figure 1) (35–38).

Chemotherapies, such as paclitaxel and oxaliplatin, have also
been shown to promote immunogenic cell death (ICD) via CRT,
ATP, HMGB1, and various heat shock proteins (33). Combined
with radiation, Golden et al. demonstrated that platinums
and taxanes increase the pro-immunogenic repertoire from
dying tumor cells that could facilitate host anticancer immune
responses (36). Interestingly cisplatin (CDDP), an alkylating
agent commonly used concurrently with RT in treating HNSCC
and is in the same drug class as oxaliplatin, fails to induce

ICD. This is likely due to cisplatin’s inability to trigger CRT
translocation from the lumen to the endoplasmic reticulum
(ER), a process which is dependent on the phosphorylation of
eukaryotic translation initiation factor 2α (eIF2α), the formation
of ER stress, and initiation of macroautophagy. The authors
however demonstrate that tumor immunogenicity with CDDP
is possible through the addition of an ER stress inducer such as
tunicamycin (39).

The Importance of Antigenicity
As mentioned earlier, antigenicity, in the form of neo-antigens,
in combination with strong adjuvant signals is required to
generate a robust adaptive immune response. This has been
observed in human malignancies with a high mutational burden
due to mismatch repair deficiency. Specifically, patients with
mismatch repair deficient colorectal cancers who were treated
with pembrolizumab experienced a statistically significant
improvement in immune-related progression free survival of
78% compared with 11% in those whose tumors were mismatch
repair-proficient (40).

Tumors with a low mutational burden however may become
antigen rich through the addition of radiation. Reits et al.
demonstrated that RT induced the expression of unique proteins
involved in DNA repair, cell cycle check-points, apoptosis,
and protein degradation, that were subsequently loaded and
presented by host MHC class I molecules to effector T cells (41).
Similarly, a study by Garnett et al. assessing the responses of 23
human cancer cell lines after non-lytic doses of radiation found
that 91% up-regulated one or more surface molecules involved in
CTL mediated killing (42).

Of course, immune responses can be provoked against foreign
antigens such as viral DNA. As a large subset of HNSCC stem
from either human papilloma virus (HPV) or Epstein Barr virus
(EBV) infections, these types of antigens may play an important
role in immune stimulation. Thus taken together, these studies
suggest that radiation may act as an in situ vaccine (43).

Once activated CTLs depend on recognition of their cognate
antigen presented via MHC class I molecules on the host cell
to initiate cell killing. One method used by malignant cells to
evade CTL mediated killing is by downregulating and impairing
MHC class I peptide presentation (44, 45). Radiation however
upregulates MHC expression in various human cancer cell lines
(46–48). This process however may be dose dependent as MHC
class I expression in a melanoma cell line increased over 2-fold at
doses of ionizing radiation of 10–25Gy but not at doses of 1 or
4 Gy (41).

Radiation Triggers Increased Cytokine and

Chemokine Secretion
Radiation also leads to an increased release of cytokines and
chemokines which promotes T cell trafficking and priming (49).
This is initiated through the detection of DNA damage by cyclic
guanosine monophosphate (GMP)-adenosine monophosphate
(AMP) synthase (cGAS). The binding of non-sequence specific
DNA to cGAS triggers the synthesis of cyclin GMP-AMP
(cGAMP) which in turn acts as a messenger that binds to the
ER-membrane adaptor stimulator of interferon genes (STING).
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FIGURE 1 | Radiation simultaneously induces immune suppression and immune activation in the TME. RT induces dsDNA damage both directly and indirectly by

ROS formation. Activation (Right): RT triggers release of the cytokines IL-1β, TNF-α, and IL-6 which promote inflammation and inhibit tumor proliferation while IFN-β

promotes DC recruitment. CRT expression by the irradiated tissue binds to CD91 on DCs which promotes phagocytosis. Increased antigen uptake by DCs and

activation by HMGB1 binding to TLR4 leads to CTL cross priming in draining lymph nodes. Recognition of cognate antigen by the naïve CTL provides Signal 1

required for CTL maturation. Co-stimulation (signal 2) by CD80/86 on the DC with CD28 on the CTL leads to upregulation of the high-affinity IL-2 receptor, CD25, as

well as IL-2 secretion by the CTL which promotes T cell proliferation and survival. Release of the chemokines CXCL9, CXCL10, and CXCL16 recruit activated CTLs to

the TME which recognize their cognate antigen via MHC class I molecules on the tumor surface. This in turn initiates cytolysis via release of cytokines (IFN-γ, TNF-α),

cytotoxic granules (Granzymes, perforins), and direct cell-cell interactions (Fas-Fas ligand). Suppression (Left): CSF-1 promotes recruitment of TAMs to the TME.

Production of IL-10 and TGF-β by the TAM promotes Treg recruitment. Together, release of IDO enhances tryptophan consumption resulting in CTL starvation. PD-L1

expression by tumor, TAMs, and Tregs impairs cytotoxicity of activated CTL and promotes exhaustion. Expression of CD25 by Tregs competes with CTL uptake of

IL-2 thus indirectly impairing CTL proliferation and survival. CTLA4 expressed by both Tregs and DCs competes with CD80/CD86 for CD28 co-stimulation (signal 2)

thus preventing CTL activation and promoting anergy.

Through a series of phosphorylation reactions, STING ultimately
leads to the activation of the transcription factors interferon
regulatory factor 3 (IRF3) and nuclear factor-kB (NF-kB) (50, 51).
These transcription factors then travel to the nucleus where they
induce the expression of type 1 interferons, IL-1β, IL-6, and
TNF-α up to 6 h after radiation (52, 53) (Figure 1). Of these
cytokines, the type 1 interferon, IFN-β, is critical in producing the
antitumor immunity of RT; type 1 IFN knockout mice exhibited
abrogated T cell priming compared with their wild-type controls
(54). Furthermore, STING deficient mice fail to reject tumor after
local radiation highlighting the importance of the cGAS-STING
signaling pathway in RT tumor immunity (55).

Ionizing radiation also upregulates chemokines such as CXC-
motif chemokine 9 (CXCL9), and CXCL10, which are involved
in the recruitment of activated CD8+ T cells (56). CXCL16,
which recruits CXCR6 expressing Th1 and CD8+ effector T cells,
is upregulated by both mouse and human breast cancer cells;
CXCR6 deficient mice experienced impaired tumor regression
and decreased CD8+ T cell infiltration after irradiation (57, 58).

IFN-γ produced after RT has also been shown to enhance MHC
class I expression and CTL trafficking (38, 59).

How RT May Suppress the Anti-tumor
Immune Response
Like a double-edged sword radiation can also create an
immunosuppressive environment through the recruitment
of tumor associated macrophages (TAMs), myeloid derived
suppressor cells (MDSCs), and CD3+CD4+CD25+Foxp3+

Tregs (Figure 1). TAM recruitment is dependent on colony
stimulating factor (CSF)-1 which is increased after radiation.
Once present, TAMs secrete IL-10 and transforming growth
factor-β (TGF-β) which inhibits DC maturation and promotes
Treg activation, induce T cell anergy via PD-L1 expression, and
create metabolic starvation by expression of indoleamine-pyrrole
2,3-dioxygenase (IDO) (60, 61). Meanwhile, Tregs promote
immunosuppression by consumption of IL-2 which is necessary
for CTL activation, secretion of IL-10, TGF-β, and IL-35,
expression of IDO, and upregulation of CTLA-4 which competes
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with CD28 binding of B7.1 and B7.2 necessary for T cell priming
by APCs (38, 62, 63).

Preclinical models also suggest that Tregs may be
radioresistant compared to their CTL counterparts. Using
the murine TRAMP C1 model of prostate cancer in mice
treated with and without RT, Kachikuwu et al. demonstrated
an increased number of Tregs after both local and whole body
radiation. In fact these cells persisted in the spleen after doses
as high as 20Gy and maintained their suppressive potential in
vitro (64, 65). Furthermore, Schaue et al. demonstrated that Treg
recruitment may be based on radiation dose. Using a mouse
model of melanoma treated with varying doses of radiation
revealed that a dose of 15Gy resulted in a higher proportion of
regulatory T cells compared with 5Gy (66). Fractionation did
not appear to have significant effect on Tregs however.

Dovedi et al. showed that radiation at dose of 10Gy in 5
fractions resulted in upregulation of PD-L1 expression in mouse
models of melanoma, colorectal cancer, and triple negative breast
cancer. Expression changes were detected as early as 1 day after
RT, peaking at 72 h before returning to baseline levels at day 7.
This phenomenon was dependent on CD8+ T cell production of
IFN-γ (67). RT also has been shown to increase PD-1 expression
on CD8+ and CD4+ T cells (68). In humans, PD-L1 expression
was significantly increased in patients with previous concurrent
chemoradiotherapy for locally advanced esophageal cancer. This
was correlated with poorer OS compared to patients with lower
PD-L1 levels (69).

THE POTENTIAL IMPORTANCE OF
RADIATION DOSE AND FRACTIONATION

In 2009, Lee et al. demonstrated that in a B16 melanoma mouse
model, a single ablative dose of 20Gy led to tumor regression
that corresponded to an increase in infiltrating T cells to the TME
and lymphoid tissue. In the same study, using a metastatic breast
cancer model, single fraction ablative radiation (between 15 and
25Gy) led to complete resolution of distant lung metastases.
The response however was abrogated when the radiation was
fractionated, specifically 20Gy in 4 fractions, over 2 weeks (70).
These findings were partially confirmed by Schaue et al. in a study
where B16-OVAmice were treated with either 5, 7.5, 10, or 15Gy
delivered in a single fraction. Tumor regression was observed
at doses higher than 5Gy. In contrast to the findings by Lee,
fractionating the dose into either 5, 3, or 2 fractions had superior
tumor responses (66).

Vanpouille-Box et al. offer a mechanism that may explain
this response. Using the TSA mouse breast cancer model,
they demonstrated that one or three 8Gy doses of radiation
increases the production of double stranded DNA compared
with either 20 or 30Gy single fraction doses. At these higher
single fraction doses, an elevation in the exonuclease, Trex1,
which plays an essential role in clearing cytoplasmic DNA,
was detected. Knocking down Trex1 expression abrogated
the abscopal response. The threshold for Trex1 upregulation
ranged from 12 to 18Gy across various mouse and human
carcinoma cell lines. Additionally, increasing amounts of
cytoplasmic dsDNA triggered the release of IFN-β, which is

involved in DC recruitment. This was significantly increased
in the 8Gy times 3 regimen vs. any of the single fraction
schemes and was critical in eliciting anti-tumor T cell
responses (71).

COMBINING RADIATION AND
IMMUNOTHERAPY

To determine whether immune checkpoint blockade can
enhance the response to radiation, Demaria et al. utilized the
4T1 mouse mammary model and treated mice with either a
monoclonal antibody against CTLA-4 (9H10) alone, RT (24Gy
in 1 or 2 fractions) to the primary tumor alone, or RT in
combination with 9H10. Anti-CTLA4 therapy alone did not
delay tumor growth or improve survival whereas RT alone
delayed growth of the primary lesion. Combination therapy
significantly improved OS and resulted in fewer lung metastases.
Depletion of CD8+ and CD4+ T cells confirmed that this process
was depended on the presence of CD8+ T cells (72).

PD-1 blockade similarly enhances anti-tumor responses.
Using the CT26 murine colon cancer cell line, Dovedi et al.
obtained survival rates of 66% and 80% with fractionated RT
(10Gy in 5 fractions) combined with either a PD-1 or PD-L1
inhibitor, respectively. This synergistic response was dependent
on the sequencing of therapies. Improvement in OS was only
observed when anti-PD-L1 therapy was given concurrently,
starting either on day 1 or 5, with fractionated RT as opposed to
adjuvantly, 7 days after the completion of RT. Since fractionated
RT can induce PD-1 expression in tumor infiltrating CD4+

and CD8+ T cells hours after treatment, checkpoint blockade
administered at this time likely blocks the PD-1/L1 signaling
axis thereby augmenting T cell responses and preventing T cell
anergy (67).

The efficacy of immunotherapy is also affected by radiation
dose fractionation. Using the TSA mouse breast cancer model,
Dewan et al. implanted tumors at two separate sites. Established
tumor at one site was treated with either 20Gy in a single
fraction, 24Gy in 3 fractions, or 30Gy in 5 fractions with
or without the addition of 9H10. Combination therapy with
fractionated radiation, but not single fraction RT, resulted in
almost complete tumor regression and significantly delayed
growth in the non-irradiated tumor. Interestingly, 24Gy in 3
fractions was significantly more effective than 30Gy in 5 fractions
at inhibiting tumor growth and generating tumor specific CD8+

CTL responses (73, 74).
Taken together, the preclinical data suggests that 14–24Gy

delivered in 2–3 fractions with concurrent ICImay be the optimal
dose and fractionation of radiation, and sequencing of therapies
for generating robust anti-tumor CTL responses. Whether this is
true in humans as well remains to be elucidated.

THE POTENTIAL IMPORTANCE OF FIELD
SIZE AND ELECTIVE NODAL IRRADIATION

Another consideration for the radiation-oncologist, in addition
to dose and fractionation, is determination of targets and field
size. To aid with target delineation, the international commission
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on radiation units (ICRU) developed the concept of gross target
volume (GTV), clinical target volume (CTV), and planning
target volume (PTV). In brief, the GTV covers all gross disease
observed on physical exam and on imaging studies. The CTV
encompasses the GTV plus an additional margin ranging from
a few millimeters to several centimeters with the goal of covering
areas of suspected subclinical disease or disease extension. The
PTV is a margin added to the CTV which accounts for errors
in daily patient positioning and instrument accuracy which may
in turn affect target location (75). As these margins are applied
volumetrically, it quickly becomes apparent that their summation
leads to a field size that is substantially larger than the tumor.

From an immunologic perspective, the effects of exposing
large volumes of healthy tissue to radiation remains unclear.
For instance, lymphocytes that traverse through this defined
margin of unaffected tissue to reach the tumor may be
eradicated by radiation before they are able to illicit an effective
anti-tumor response. Injury to the healthy neighboring tissue
itself may also promote an anti-inflammatory environment
through the secretion of cytokines and the upregulation of
immunosuppressive markers such as PD-L1 in an attempt
to protect itself from immune mediated killing, thus stifling
immune responses even further. SRS and SBRT, techniques which
often limit margin sizes to only a few millimeters, may be one
way to mitigate these potential complications while preserving
the tumoricidal and immune stimulating effects of radiation and
is an ongoing area of investigation.

In an attempt to prevent regional disease recurrence,
radiation-oncologists will often treat DLN regions that are at
high risk for disease based on findings from historical surgical
series and analysis of recurrence patterns. This technique is
termed elective nodal irradiation (ENI) and when employed,
is considered part of the CTV. Given the extensive lymphatic
drainage of the head and neck, ENI is commonly used when
treating in either the adjuvant or definitive setting despite
a surgically negative or clinically negative neck, respectively.
The DLN however are one of the major locations where DC
priming of CTLs occurs and is therefore essential in generating
tumor specific CD8+ T cell responses. In fact, Sharabi et al.
demonstrated that the DLN are the primary site for the
cross-presentation of MHC class I tumor antigens seen after
stereotactic radiation and can be enhanced by either anti-PD-
1 therapy or ablation of Tregs (76). Thus, surgical ablation and
ENI may actually curtail the efficacy of immunological responses.
In fact, Takeshima et al. demonstrated that the generation of
tetramer positive tumor specific CTL were significantly reduced
after radiation in mice whose DLN were either surgical removed
or genetically defective compared with mice whose DLN were
intact (77). Recently, Marciscano et al. demonstrated that
mice that underwent irradiation of both the tumor and DLNs
experienced a statistically significant reduction in the number
of intratumoral antigen specific CD8+ effector T cells compared
with those receiving irradiation of the tumor alone. This was in
part mediated by a decrease in chemokine expression [C-CMotif
Chemokine Ligand 5 (CCL5), CXCL10, and CCL3]. Survival was
significantly worse in animals receiving radiation to the tumor
and DLN compared with those receiving RT to the tumor alone

when treated with concurrent immune checkpoint blockade
(78). Thus, taken together, these pre-clinical studies suggest that
perhaps avoiding both the surgical removal and irradiation of
DLN may be necessary to maximize the immunogenic response
to combined radiation and immunotherapy. Whether this is true
in humans however has yet to be ascertained.

While the immune stimulating potential of these techniques
are intriguing, it is important for the reader to bear mind that
changes in dose, reduction of margins, and omission of elective
lymph node irradiation may come at the cost of local tumor
control and thus goes against the current standard of care. These
factors however warrant additional investigation and should be
considered as evaluable metrics in future clinical trials.

CLINICAL TRIALS EVALUATING IMMUNE
MODULATION IN HNSCC

While HNSCCs are most commonly caused by either viral
infection (HPV, EBV), tobacco use, and/or alcohol consumption,
its progression is closely linked to immune escape. Thus, it stands
to reason that mechanisms such as immune checkpoint blockade,
which are aimed at overcoming self-tolerance and reengaging the
immune system, may lead to tumor eradication and improved
long term control. This strategy has already shown promise in
clinical trials outside of the head and neck area, (79–81), and
as PD-L1 is expressed in anywhere from 46 to 100% of cases
depending on cut off for positivity and detection technique,
the use of anti-PD-1/L1 therapy also has a biological basis in
HNSCCs (82, 83).

Nivolumab, a human IgG4 monoclonal antibody against PD-
1, was tested in a phase III open-label clinical trial (CheckMate
141) in 361 patients with recurrent or metastatic HNSCC who
experienced disease progression within 6 months of receiving
platinum-based chemotherapy. Patients were randomized to
receive either nivolumab (at a dose of 3mg per kilogram of
body weight every 2 weeks) or investigator’s choice single-agent
standard therapy consisting of either methotrexate, docetaxel, or
cetuximab. OS was significantly improved in the nivolumab arm:
median OS was 7.5 months [95% confidence interval (CI), 5.5
to 9.1] with nivolumab vs. 5.1 months (95% CI, 4.0 to 6.0) with
standard therapy. The rate of grade 3 and 4 adverse events was
significantly lower with nivolumab (13.1%) compared with the
standard arm (35.1%), without deterioration of patient reported
quality of life scores (4).

KEYNOTE-040 was a similar open-label, phase III clinical
trial including 495 patients with recurrent or metastatic
HNSCC after a platinum-based chemotherapy which used
pembrolizumab, another PD-1 monoclonal antibody. Patients
were randomized to either monotherapy with pembrolizumab
or standard of care chemotherapy. While the final publication
is still pending at the time of this writing, the results were
initially presented at the European Society of Medical Oncology
meeting in 2017. Despite a 19% improvement in OS compared
with standard of care therapy, the study failed at that time to
reach its primary endpoint which was pre-specified to detect
significance with a hazard ratio of 0.80. However, patients with
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PD-L1 expression levels >50% had significant improvement in
OS with the use of pembrolizumab vs. standard chemotherapy,
11.6 vs. 7.9 months, respectively (HR = 0.54; 95% CI = 0.35 to
0.82, p = 0.0017). As additional survival data for this patient
population was collected, updated information using the same
data cutoff date was presented at the American Association
for Cancer Research Annual Meeting in 2018. With the more
complete dataset, the HR for OS now reached 0.8 (p = 0.0161),
reinforcing the utility of pembrolizumab for platinum-refractory
recurrent or metastatic HNSCC (84).

While nivolumab and pembrolizumab target the PD-1
receptor, durvalumab targets the PD-1 ligand (PD-L1). In an
open-label phase I/II multicenter trial, durvalumab was tested in
multiple solid tumor subtypes including HNSCC. Specifically, 62
patients with recurrent or metastatic disease were treated with
durvalumab at 10 mg/kg every 2 weeks for 12 months. Overall
response rate was 12% and as high as 25% in patients with
PD-L1 positivity. Again, ICI was well-tolerated, with Grade 3
or higher toxicity being reported in only 7% of patients (85).
The HAWK study, an international phase II trial evaluating the
objective response rates of durvalumab in 111 immunotherapy-
naïve patients with platinum refractory recurrent/metastatic
HNSCC with ≥25% PD-L1 expression, revealed a response rate
of 16.2% in HPV positive patients and 10.9% in HPV negative
patients. PFS and OS were 2.1 and 7.1 months, respectively.
Adverse events of any grade was 57.1 and 8% for greater than
grade 3 toxicity (86). Lastly, a phase II randomized trial in
recurrent or metastatic patients with PD-L1 low or negative
tumors (<25% expression on tumor cells) known as CONDOR
failed to demonstrate enhanced efficacy of adding the CTLA-
4 antibody tremelimumab to single agent durvalumab (ORR
7.8% vs. 9.2% for combination therapy and monotherapy,
respectively) (87).

The successes of ICI therapy in the second line metastatic and
recurrent setting has spurred significant interest in the use of PD-
1 and PD-L1 ICIs in the first line for recurrent and/or metastatic
disease as well as in locally advanced disease. Recently, the
results from KEYNOTE 048, a 3-arm phase III trial using either
pembrolizumab monotherapy, pembrolizumab in combination
with platinum and 5-FU, or standard of care platinum and 5-FU
plus cetuximab (“EXTREME” regimen) in the first-line treatment
of recurrent or metastatic HNSCC, were presented. The primary
endpoints included OS and PFS in all patients as well as in
patients with positive PD-L1 expression as defined by a combined
positive score (CPS), which includes the total number of PD-
L1 stained cells (tumor cells, lymphocytes, macrophages) divided
by the total number of viable tumor cells in a field multiplied
by 100. For CPS ≥20%, patients treated with pembrolizumab
had a median OS of 14.9 months vs. 10.7 months for patients
treated with the EXTREME regimen (p = 0.00007). In all
patients, regardless of CPS, when pembrolizumab was added to a
chemotherapy backbone of platinum and 5-fluorouracil patients
had longer OS than if they were treated with EXTREME (median
OS 13.0months vs. 10.7months, p= 0.0034). Additional analyses
including the efficacy of these treatments in CPS <1 patients, the
use of second-line treatments in each arm, and the impact of HPV
have not yet been reported (88).

Combining Radiation and Immunotherapy
in the Clinic
As discussed above, pre-clinical studies clearly demonstrate that
radiation modulates the immune system in ways that, when
combined with immunotherapy, has the potential to augment
treatment responses. In the clinic, this has been demonstrated
through development of what is known as the abscopal (“ab” -
away from, “scopus”- target) response. First coined by R H mole
in 1953, it describes a phenomenon that can occur when localized
radiation therapy induces regression of disease at a distant site. In
2012, Michael Postow published a case report of a patient with
metastatic melanoma who demonstrated disease progression
after being on treatment with ipilimumab for over a year. She
subsequently underwent a course of palliative SBRT, 28.5Gy in
3 fractions, to a single painful paraspinal lesion, followed by an
additional dose of ipilimumab 1 month later. Post treatment
imaging at 3 months revealed regression of the irradiated lesion
as well as the non-irradiated areas of disease in the hilum and
spleen. This corresponded to increased antibody titers for NY-
ESO-1, an antigen frequently expressed by melanoma, as well
as an increase in effector CD4+ T cells (8). Together these
findings suggest that radiation triggered antigen release that
with the addition of ipilimumab was able to generate a systemic
immune response.

The data on efficacy of combined therapy in the clinical
setting is still lacking while many trials are underway. A small
retrospective study assessed treatment outcomes of 37 patients
on immunotherapy (nivolumab 83.8%, atezolizumab 10.8%,
pembrolizumab 5.4%) with brain metastases receiving SRS to
a total of 85 lesions. They demonstrated that patients treated
with concurrent SRS and ICI had longer OS and reduced
rates of distant brain failure (DBF) than those who received
SRS either before or after starting ICI (1 year OS, 87.3% vs.
70.0% vs. 0%, p = 0.008; 1 year DBF, 38.5% vs. 65.8% vs.
100%, p = 0.042). Additionally, local control was significantly
improved with combination therapy at 1 year (100% vs. 72.3%,
p = 0.016) (89).

Despite the excitement generated by this report, concerns
about the possibility of increased toxicity with combined therapy
exist (90). For instance, a recent retrospective review from the
Dana Farber Cancer Institute examined 480 cases of patients
with newly diagnosed brain metastases treated with SRS, 115
of whom were also on treatment with checkpoint inhibitors
(ipilimumab, pembrolizumab, or nivolumab). Patients who
received ICI were 2.5 times more likely to develop radionecrosis;
the highest risk (HR 4.7) was in patients withmelanoma receiving
ipilimumab (91).

Combining Radiation and Immunotherapy
in Head and Neck Cancer
With regards to HNSCC, the majority of available clinical data
currently focuses on the safety of combining ICI and radiation.
Preliminary toxicity results have been published from GORTEC
2015-01 (“PembroRad”).This phase II trial randomized patients
with locally advanced head and neck squamous cell carcinoma
(LA-HNSCC) who were unfit to receive cisplatin to either
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TABLE 1 | Clinical trials incorporating checkpoint inhibitors and radiation therapy in head and neck squamous cell carcinoma.

NCT ID# Phase Title ICI Treatment arms

PHASE 1

NCT03539198 NA A prospective observational study of study of proton

SBRT and immunotherapy for recurrent/progressive

locoregional or metastatic head and neck cancer

Nivolumab Loading dose of Nivolumab on D-14 then

concurrently w/RT;

Proton SBRT 5 fxs; 35–45Gy)

NCT02764593 1 Safety Testing of Adding Nivolumab to Chemotherapy in

Patients With Intermediate and High-Risk

Local-Regionally Advanced Head and Neck Cancer

Nivolumab Loading dose on D-14 then concurrently

w/cisplatin or cetuximab and RT, followed by

adjuvant ICI;

70Gy in 35 fxs; IMRT

NCT03402737 1 SBRT + Immunomodulating Systemic Therapy for

Inoperable, Recurrent Head and Neck Cancer

Nivolumab Concurrently w/RT;

6–8Gy times 2 fxs 6–8Gy times 3 fxs 6–10Gy

times 3 fxs 6–12Gy times 3 fxs

NCT02318771 1 Radiation therapy and MK-3475 for patients with

recurrent/metastatic head and neck cancer, renal cell

cancer, melanoma, and lung cancer

Pembrolizumab Arm A: Adjuvant (3–17 days post RT);

Arm B: Concurrent;

A1 and B1: 8Gy in 1 fx Arms A2 and B2: 20Gy

in 5 fxs

NCT02586207 1 Pembrolizumab in combination with CRT for LA-SCCHN Pembrolizumab Loading dose on D-7 then concurrent q3 weeks

with cisplatin-RT;

70Gy in 35 fxs

NCT02819752 1 Pembrolizumab combined with chemoradiotherapy in

squamous cell carcinoma of the head and neck (PEACH)

Pembrolizumab Concurrently with CRT;

Standard therapy

NCT03509012 1 Immunotherapy in combination with chemoradiation in

patients with advanced solid tumors (CLOVER)

Durvalumab Various regimens

NCT02938273 1 Bioimmunoradiotherapy (Cetuximab/RT/Avelumab) Avelumab Loading dose D-7 then concurrently

w/cetuximab-RT;

70Gy over 7 weeks

NCT01935921 1 Ipilimumab, cetuximab, and intensity-modulated

radiation therapy in treating patients with previously

untreated stage III-IVB head and neck cancer

Ipilimumab Concurrently w/cetuximab-RT;

IMRT daily for 7 weeks

NCT01860430 1 A phase Ib trial of concurrent cetuximab (ERBITUX®) and

intensity modulated radiotherapy (IMRT) With ipilimumab

(YERVOY® ) in locally advanced head and neck cancer

Ipilimumab Concurrently w/cetuximab-RT;

70–74Gy in 2Gy daily fxs; IMRT

NCT03162731 1 Nivolumab, ipilimumab, and radiation therapy in treating

patients with stage IVA-B head and neck cancer

Nivolumab,

Ipilimumab

Loading dose of Nivolumab on D-21 then

concurrently w/RT and ipilimumab;

70Gy in 35 fxs

NCT03529422 1 Durvalumab and Tremelimumab with radiotherapy for

adjuvant treatment of intermediate risk SCCHN

Durvalumab,

Tremelimumab

Concurrently w/RT;

60Gy in 30 fxs; IMRT

NCT03317327 1/2 REirradiation and programmed cell death protein 1

(PD-1) blockade on recurrent squamous cell head and

neck tumors (REPORT)

Nivolumab Concurrently w/RT;

60Gy in 1.5Gy fxs BID for 4 weeks

NCT03247712 1/2 Neoadjuvant immunoradiotherapy in head and neck

cancer

Nivolumab Concurrently w/RT;

Arm 1: 8Gy times 5 fxs daily Arm 2: 8Gy times

3 fxs QOD

NCT02759575 1/2 A study of chemoradiation plus pembrolizumab for

locally advanced laryngeal squamous cell carcinoma

Pembrolizumab Loading dose on D-21 then concurrently

w/cis-RT;

70Gy in 35 fxs

NCT03114280 1/2 Pembrolizumab and induction chemotherapy in head

and neck squamous cell carcinoma (PICH study) (PICH)

Pembrolizumab Neoadjuvant with chemotherapy, followed by

concurrent chemoradiotherapy with

carboplatin;

Unknown dose or RT

NCT03051906 1/2 Durvalumab, cetuximab, and radiotherapy in head neck

cancer (DUCRO-HN)

Durvalumab Concurrently w/cetuximab-RT followed by

adjuvant therapy; 69.96Gy in 2.12Gy fxs

NCT03212469 1/2 A trial of durvalumab and tremelimumab in combination

with SBRT in patients with metastatic cancer

(ABBIMUNE)

Durvalumab,

tremelimumab

SBRT

NCT03283605 1/2 Immunotherapy and SBRT for metastatic head and neck

carcinomas

Durvalumab,

tremelimumab

Neoadjuvant then concurrently w/RT;

SBRT

NCT03522584 1/2 Durvalumab, tremelimumab, and stereotactic body

radiation therapy in treating participants with recurrent or

metastatic head and neck squamous cell carcinoma

Durvalumab,

tremelimumab

Loading dose D-14 then concurrently w/RT;

SBRT QOD

(Continued)

Frontiers in Oncology | www.frontiersin.org 8 March 2019 | Volume 9 | Article 122

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Manukian et al. Radiation and Immunotherapy for HNSCC

TABLE 1 | Continued

NCT ID# Phase Title ICI Treatment arms

PHASE 2

NCT02684253 2 Screening trial of nivolumab with image guided,

stereotactic body radiotherapy (SBRT) vs. nivolumab

alone in patients with metastatic head and neck

squamous cell carcinoma (HNSCC)

Nivolumab Concurrently w/RT;

SBRT 27Gy in 3 fxs QOD

NCT03521570 2 Intensity-modulated radiation therapy and nivolumab for

recurrent or second primary head and neck squamous

cell cancer

Nivolumab Loading dose of Nivolumab on D-14 then

concurrently with RT;

IMRT daily for 6–6.5 weeks

NCT03107182 2 Chemotherapy and locoregional therapy trial (surgery or

radiation) for patients with head and neck cancer

(OPTIMA-II)

Nivolumab Induction with chemotherapy followed by

adjuvant therapy;

Dose de-escalated to 45–50Gy (Arm 2 and 3)

or conventional dose to 70Gy (Arm 4)

NCT03511391 2 Checkpoint inhibition in combination with an

immunoboost of external body radiotherapy in solid

tumors (CHEERS)

Pembrolizumab,

Nivolumab

Concurrently with RT;

SBRT 8Gy times 3 fxs

NCT03313804 2 Priming immunotherapy in advanced disease with

radiation

Pembrolizumab,

Nivolumab,

Atezolizumab

Concurrently w/RT;

SBRT with BED >100Gy or 30Gy in 3Gy fxs

NCT02641093 2 Phase II trial of adjuvant cisplatin and radiation with

pembrolizumab in resected head and neck squamous

cell carcinoma

Pembrolizumab Loading dose 1 week prior to surgery then

concurrently w/ cis-RT;

60–66Gy in 2Gy fxs

NCT02707588 2 Tolerance and efficacy of pembrolizumab or cetuximab

combined with RT in patients with locally advanced

HNSCC (PembroRad)

Pembrolizumab Concurrently w/RT;

69.96Gy in 2.12Gy daily fxs

NCT02609503 2 Pembrolizumab + radiation for locally Adv SCC of the

Head and Neck (SCCHN) Not eligible cisplatin

Pembrolizumab Concurrently w/RT;

IMRT daily for 7 weeks

NCT02296684 2 Immunotherapy with MK-3475 in surgically resectable

head and neck squamous cell carcinoma

Pembrolizumab Arm 1: Neoadjuvant and adjuvant therapy Arm

2: Neoadjuvant;

NCT02289209 2 Reirradiation With pembrolizumab in locoregional

inoperable recurrence or second primary squamous cell

CA of the head and neck

Pembrolizumab Concurrently w/RT;

1.2Gy BID for 5 days a week for 5 weeks

NCT02777385 2 Pembrolizumab in combination with cisplatin and

intensity modulated radiotherapy (IMRT) in head and

neck cancer

Pembrolizumab Arm 1: adjuvant 3 weeks post cisplatin-RT Arm

2: concurrently with cisplatin-RT;

70Gy in 35 fxs; IMRT

NCT03085719 2 Targeting PD-1 therapy resistance with focused high or

high and low dose radiation in SCCHN

Pembrolizumab Concurrently w/RT; High (3 fxs) vs. low dose (2

fxs)

NCT03532737 2 Concomitant immune check point inhibitor with

radiochemotherapy in head and neck cancer

Pembrolizumab Loading dose on D-14 then concurrently

w/either cetuximab or cis-RT;

66–70Gy in 30–35 fxs; IMRT

NCT03057613 2 The addition of pembrolizumab to postoperative

radiotherapy in cutaneous squamous cell cancer of the

head and neck

Pembrolizumab Concurrently w/and adjuvantly to post-op RT;

60–66Gy for 6 weeks; IMRT

NCT03383094 2 Chemoradiation vs. immunotherapy and radiation for

head and neck cancer

Pembrolizumab Concurrently w/and adjuvant to cis-RT; 70Gy

in 33–35 fxs

NCT03546582 2 SBRT +/– pembrolizumab in patients with

local-regionally recurrent or second primary head and

neck carcinoma (KEYSTROKE)

Pembrolizumab Adjuvant to RT;

SBRT

NCT03386357 2 Radiotherapy with pembrolizumab in metastatic HNSCC Pembrolizumab Concurrently w/RT;

12Gy times 3 fxs

NCT03624231 2 Feasibility and efficacy of

Durvalumab+Tremelimumab+RT and Durvalumab+RT

in Non-resect. Locally advanced HPVnegativ HNSCC

(DURTRE-RAD)

Durvalumab,

Tremelimumab

Loading dose D-14 then concurrently w/ RT,

followed by adjuvant therapy;

70Gy in 35 fxs over 7 weeks

NCT03426657 2 Radiotherapy with double checkpoint blockade of locally

advanced HNSCC

Durvalumab,

Tremelimumab

Concurrently w/RT followed by durva

monotherapy;

70Gy in 35 fxs

NCT03258554 2/3 Radiation therapy with Durvalumab or Cetuximab in

treating patients with stage III-IVB head and neck cancer

who cannot take cisplatin

Durvalumab Loading dose D-14 then concurrently w/RT;

IMRT

(Continued)
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TABLE 1 | Continued

NCT ID# Phase Title ICI Treatment arms

PHASE 3

NCT03349710

(closed to

slow

accrual)

3 Nivolumab or nivolumab plus cisplatin, in combination

WITH radiotherapy in patients with cisplatin-ineligible or

eligible locally advanced squamous cell head and neck

cancer

Nivolumab RT w/cis and nivo vs. RT w/cis

RT w/cetuximab vs. RT w/nivo

70Gy in 35 fractions over 7 weeks; IMRT

NCT03576417 3 A trial evaluating the addition of nivolumab to cisplatin-rt

for treatment of cancers of the head and neck

(NIVOPOSTOP)

Nivolumab Loading dose of Nivolumab on D-21 then

concurrently w/cis-RT;

66Gy over 6.5 weeks; IMRT

NCT03040999 3 Study of pembrolizumab (MK-3475) or placebo with

chemoradiation in participants with locally advanced

head and neck squamous cell carcinoma

(MK-3475-412/KEYNOTE-412)

Pembrolizumab Loading dose then concurrently w/cis-RT;

70Gy in 35 fxs over either 6 (accelerated) or 7

(standard) weeks

NCT02952586 3 Study to compare avelumab in combination with

standard of care chemoradiotherapy (SoC CRT) vs. SoC

CRT for definitive treatment in patients with locally

advanced squamous cell carcinoma of the head and

neck (Javelin head and neck 100)

Avelumab Concurrently w/cisplatin-RT; 70Gy in 35 fxs;

IMRT

NCT02999087 3 Randomized trial of avelumab-cetuximab-radiotherapy

vs. SOCs in LA SCCHN (REACH)

Avelumab Concurrently w/cetuximab-RT;

69.96Gy in 2.12Gy daily fxs; IMRT

NCT03700905 3 Study of nivolumab alone or in combination with

ipilimumab as immunotherapy vs. standard follow-up in

surgical resectable HNSCC after adjuvant therapy

(IMSTAR-HN)

Nivolumab

Ipilimumab

Neoadjuvant Nivolumab followed by surgery,

adjuvant cisplatin-RT (66Gy in 33 fx), and

adjuvant Ipilimumab and Nivolumab

NCT03673735 3 Maintenance immune check-point inhibitor following

post-operative chemo-radiation in subjects with

hpv-negative HNSCC (ADHERE)

Durvalumab Induction Durvalumab followed by cisplatin-RT

(66Gy in 33 fx), and maintenance Durvalumab

NCT03258554 3 Radiation therapy with durvalumab or cetuximab in

treating patients with stage III-IVB head and neck cancer

who cannot take cisplatin

Durvalumab Concurrently with RT (IMRT)

Selected clinical trials incorporating the use of one or more immune checkpoint inhibitor and radiation therapy are included below. When available, the dosing and sequencing for the trials

is included. SBRT, Stereotactic Body Radiotherapy; RT, radiation therapy; fxs, fractions; Gy, gray; ICI, immune checkpoint inhibitor; CRT, chemoradiotherapy; IMRT, intensity-modulated

radiation therapy; LA-SSCHN, locally advanced squamous cell carcinoma of the head and neck; BED, biologically equivalent dose.

RT with cetuximab or RT with pembrolizumab. Of the 133
accrued patients, 92% completed at least 33 fractions of RT
and 87% received 3 courses of ICI. While rates of Grade 3
dermatitis, rash, and mucositis were significantly reduced in the
pembrolizumab arm, rates of dysthyroidism were significantly
increased compared to those treated with cetuximab. In this study
it was somewhat concerning that treatment-related mortality was
higher than previous GORTEC studies in both arms, possibly
reflecting patient selection (i.e., the inclusion of high risk patients
due to age and/or comorbidities that made them cisplatin-
ineligible) (92). Efficacy results of the PembroRad trial are
still pending.

A smaller phase 2 trial evaluated the safety and efficacy of
durvalumab with concurrent palliative RT in 10 patients with
either inoperable or metastatic disease with a minimum of 5%
PD-L1 expression across multiple disease sites. Five patients
reported radiation related adverse events of Grade 1 or 2 severity,
and no one experienced grade 3 or greater toxicity. The most
common side effect was mucositis which was transient and
resolved in <1 week (93).

Other trials have evaluated the combination of ICI with
radiotherapy and cisplatin in locally advanced HNSCC. Overall
there have been no safety concerns with this approach.

Specifically, Powell et al. presented the results of a phase
I clinical trial investigating the role of pembrolizumab with
cisplatin based chemo-radiation for LA-HNSCC at the national
meeting of the American Society of Clinical Oncology (ASCO)
(94). Of the 27 patients with AJCC 7th edition stage III or
IV oropharyngeal, hypopharyngeal, and laryngeal squamous
cell carcinomas, 78% of patients completed all planned doses
of ICI while 3 patients discontinued treatment due to either
Grade 2 peripheral neuropathy, Grade 1 Lhermitte syndrome, or
Grade 3 elevation in liver transaminases. All patients successfully
completed radiation to the planned dose of 70Gy without
significant delay, defined as >5 days, and 85% received the target
dose of cisplatin. One patient died due to a concurrent illness
unrelated to the treatment regimen.

Similarly, the combination of nivolumab with cisplatin in
either 3 weekly or weekly dosing was shown to be safe without
unexpected toxicities (95). In RTOG 3504 pilot trial, patients
with newly diagnosed HNSCC who were considered either
intermediate risk (p16+, oropharynx T1-2N2b-N3/T3-4N0-3,
>10 pack-years smoking; or T4N0-N3, T1-3N3, ≤10 pack-
years) or high-risk (oral cavity, larynx, hypopharynx, or p16-
oropharynx, stage T1-2N2a-N3 or T3-4N0-3) were enrolled and
treated with nivolumab in addition to cisplatin and radiation.
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Cisplatin was given at either a low weekly dose (40 mg/m2) or
high dose (100 mg/m2 every 3 weeks). Nivolumab was given at
a dose of 240mg every 14 days when in conjunction with the
weekly dose cisplatin and as a single dose of 240mg followed
by 360mg every 21 days with the high dose cisplatin. After
the conclusion of concurrent chemoradiotherapy, patients were
planned to continue on 480mg every 28 days for 7 doses. As
above, all patients were able to complete the prescribed dose
of radiation therapy, 70Gy in 35 fractions. Of the 17 patients
available for analysis at the time interim data was presented,
15 were able to receive at least 70% of their planned platinum
dose. Three patients discontinued cisplatin, 2 for an allergic
reaction and 1 for cholecystitis. Three patients also discontinued
nivolumab for known side-effects related to the drug. One
grade 4 AE of elevated amylase was reported but resolved. This
trial demonstrated the safety of the combination of nivolumab
with chemoradiotherapy as well as the feasibility of adjuvant
nivolumab after CRT.

More recently, Wise-Draper et al. reported results from
a phase II trial investigating the role of neoadjuvant
pembrolizumab followed by surgery and then adjuvant
concurrent pembrolizumab-RT or pembrolizumab-cisplatin-RT
in patients with LA-HNSCC (96). At interim analysis 16 out
of 16 patients in the pembrolizumab-RT arm had no Grade 4
toxicity or delay in care due to dose-limiting toxicity, leading
the authors to conclude the combined regimen is safe. The
pembrolizumab-cisplatin-RT arm also had no grade 4 events
reported in the 19 patients included in their preliminary data.

In order to assess the efficacy of combining ICI with SBRT in
metastatic HNSCC, a phase II trial enrolled 56 patient to receive
either nivolumab alone (n = 28) or nivolumab given with SBRT
given as 9Gy × 3 to a single lesion between the first and second
doses of nivolumab (n = 28). Non-irradiated index lesions were
followed for response. As above, the rates of grade 3 or greater
treatment-related toxicities were low, occurring in 14.3% of the
nivolumab alone arm and 10.7% of the nivolumab and SBRT arm.
The ORR was not significantly different, 30.8% vs. 25.9%, p =

0.93, nor were the mPFS (1.9 months vs. 2.4 months, p = 0.89)
or 1 year OS rates (46% vs. 54%, p = 0.46). Thus, they failed to
demonstrate an abscopal response in the index lesions. However,
subgroup analysis revealed that tumors with a high mutational
burden had significantly more responders and that mutational
burden predicted response regardless of viral status (97).

Taken together these studies suggest that ICI can be
safely administered concurrently with radiation therapy without

exacerbation of expected toxicities. Most importantly, however,
they highlight the need for additional prospective data looking
at efficacy. Fortunately, in addition to the aforementioned trials
whose efficacy results are still pending, there are over 40 phase I
to III clinical trials aimed at addressing exactly this question in
head and neck cancers alone (Table 1).

CHALLENGES AND FUTURE DIRECTIONS

It is now evident that radiation, through a plethora of diverse
mechanisms, has the ability to generate anti-tumor immune
responses which can be potentiated by immune checkpoint
inhibition. Despite the progress made over the last few years
in our understanding of this response, numerous questions
remain. It is unclear as to how ICI should be delivered
with RT i.e., neoadjuvant, concurrent, adjuvant, or in some
combination of the three. Furthermore, it remains to be seen
whether combining anti-CTLA4 and anti-PD-1/L1 therapy,
given their non-redundant nature, truly improves responses or
whether the toxicity precludes the use of such regimens. Both
of these questions are currently being addressed in numerous
clinical trials (from phase I to phase III) in HNSCC that are
listed in Table 1.

For the radiation oncologist, there are also the questions of
total dose, fraction size, inter-fraction time, target selection, and
field size. Preclinical data appears to support the use of large
doses in few fractions in producing optimal immune responses,
but this still requires validation in humans. In terms of target,
radiation oncologists typically select symptomatic lesions where
RT may provide palliative relief. This however may not be the
best methodology as it is unknown whether targeting bone vs.
soft tissue, or even those located in so-called “sanctuary sites”
such as the CNS, may confer better outcomes. Lastly, with
improvements in targeting it is unclear what field sizes would
improve responses. For instance, if tighter tumor margins reduce
unwanted eradication of trafficking CTLs or if larger margins
increase antigen exposure allowing for improved DC uptake
and CTL priming. Therefore, in order to truly maximize the
potential of these therapies, more research in both the preclinical
and clinical setting is warranted.
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