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Risk factors are key epidemiological concepts that are used to explain disease

distributions. Identifying disease risk factors is generally done by comparing the

characteristics of diseased and non-diseased populations. However, imperfect disease

detectability generates disease observations that do not necessarily represent accurately

the true disease situation. In this study, we conducted an extensive simulation exercise to

emphasize the impact of imperfect disease detection on the outcomes of logistic models

when case reports are aggregated at a larger scale (e.g., diseased animals aggregated

at farm level). We used a probabilistic framework to simulate both the disease distribution

in herds and imperfect detectability of the infected animals in these herds. These

simulations show that, under logistic models, true herd-level risk factors are generally

correctly identified but their associated odds ratio are heavily underestimated as soon

as the sensitivity of the detection is less than one. If the detectability of infected animals

is not only imperfect but also heterogeneous between herds, the variables associated

with the detection heterogeneity are likely to be incorrectly identified as risk factors. This

probability of type I error increases with increasing heterogeneity of the detectability, and

with decreasing sensitivity. Finally, the simulations highlighted that, when count data is

available (e.g., number of infected animals in herds), they should not be reduced to a

presence/absence dataset at the herd level (e.g., presence or not of at least one infected

animal) but rather modeled directly using zero-inflated count models which are shown to

be much less sensitive to imperfect detectability issues. In light of these simulations,

we revisited the analysis of the French bovine abortion surveillance data, which has

already been shown to be characterized by imperfect and heterogeneous abortion

detectability. As expected, we found substantial differences between the quantitative

outputs of the logistic model and those of the zero-inflated Poisson model. We conclude

by strongly recommending that efforts should be made to account for, or at the very least

discuss, imperfect disease detectability when assessing associations between putative

risk factors and observed disease distributions, and advocate the use of zero-inflated

count models if count data is available.

Keywords: risk factors, logistic regression, zero-inflated Poisson model, bias, surveillance, sensitivity, bovine
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INTRODUCTION

A disease risk factor is a variable that is associated with an
increased likelihood of occurrence of a disease. It is a key
epidemiological concept that is used to generate hypotheses
about disease origins and to explain disease distributions.
Consequently, identifying disease risk factors can help defining
effective strategies to monitor, prevent or control epidemics.
However, some limits exist since all the possible factors cannot
be studied for statistical reasons (1) or practical reasons as the
corresponding data is not always available.

Disease risk factors can be identified thanks to observational
studies like cohort studies. This approach compares the
frequency of disease occurrence between a group of
epidemiological units (e.g., animals or herds) exposed to the
hypothetical risk factor and a non-exposed group. Alternatively,
disease risk factors can be identified thanks to case-control
studies, in which the frequency of the hypothesized risk factor is
compared between a group of diseased epidemiological units and
a non-diseased group. In both of these popular study designs,
cases are identified based on a detection process that can be not
perfectly sensitive, potentially leading to false negatives. This
is particularly true for case-control studies that rely on disease
data generated by surveillance systems. Indeed, surveillance
systems for endemic diseases, which aim at monitoring disease
prevalence or at detecting cases to implement control measures,
are generally composed of several surveillance components (like
passive surveillance and active surveillance at the abattoir or on
farms), all of which being likely imperfectly sensitive (2).

Passive surveillance, which is a continuous surveillance
approach based on voluntary reporting of suspect cases by
field actors, requires a good detection of diseased animals by
farmers and veterinarians followed by a notification to veterinary
authorities. An effective passive surveillance component requires
a good observation of all the animals of the herd, a knowledge
of the warning indicators (increase of mortality, specific clinical
signs) and the will to report the suspicion. For some diseases,
like the OIE-notifiable diseases (3), reporting suspect cases
is mandatory. However, imperfect passive surveillance is very
common, and can be explained by different reasons, including
economic reasons in the case of stamping-out policies with
inappropriate financial compensations (4–6), psychological and
social reasons (7–12) and also technical and practical reasons
(13). Active surveillance, which is an active search of cases
through a pre-defined sampling design, is also imperfect, mainly
because it is often based on a sampling of the at-risk population.
Moreover, the sensitivity and specificity of diagnostic tests are
also imperfect. As a consequence, the sensitivity of the disease
observation processes that generate the data that is used to
identify disease risk factors is likely to be imperfect and even
potentially heterogeneous between epidemiological units, i.e.,
some cases are more likely to be detected than others.

As a preliminary work of this study, we searched the available
literature focused on the identification of animal disease risk
factors using surveillance data (see the Supplementary Materials

for further details regarding the methodology of this scoping
review). It came out that the logistic model was the most

common analytical method, used in around 50% of the identified
publications. This method, whichmodels the presence or absence
of a disease in epidemiological units as a function of some of
their characteristics, does not account explicitly for imperfect
detection, since epidemiological units with no detected cases
are considered as control units, i.e., disease-free units. However,
among these papers, more than half discuss the potential bias
induced by imperfect detection: for example, the variation of
the sensitivity according to the slaughterhouse for detecting a
lesion (14) or the influence of human density on the detection
of diseased animals (15). In some of the papers that do not used
logistic models, authors used zero-inflated (ZI) count models
which were claimed to be able to take into account imperfect
detection (16, 17). These zero-inflated models, introduced by
Lambert, (18), are extensively used in ecology to study the
distribution of cryptic animal species (19, 20). ZI count models
assume that the number of individuals of a given species observed
on a site (in veterinary epidemiology, this could be translated into
the number of outbreaks observed in a district or the number of
cases observed in a farm) is defined by two successive processes:
a binomial process driving the presence or absence of the species
on that site and a count process driving the number of observed
individuals given the species was present. Therefore, ZI count
models in ecology assume two different origins of zeroes: the
zeroes related to the absence of the species (“true zeroes”) and,
because the observation process is imperfect, those related to
the non-detection of any individual of the species despite it is
present (“false zeroes”). Consequently, they are relevant when
count data is available and when the sensitivity is imperfect, but
assume that the specificity is perfect. In epidemiological studies,
this is generally a valid assumption since positive tests are often
confirmedwith another test or combined with clinical suspicions.

The objectives of this paper were (1) to quantify the impacts
of an imperfect and potentially heterogeneous case detection
sensitivity on the identification of disease risk factors when using
logistic models and (2) to emphasize how zero-inflated Poisson
(ZIP) models use disease count data to adjust for imperfect
detection. These questions were investigated by using simulations
and illustrated by revisiting the analysis of the data generated
by the French bovine abortion mandatory reporting system, as
presented by Bronner et al. (21).

MATERIALS AND METHODS

Simulation Study
In this simulation study, we considered a set of “epidemiological
units,” each of them being a cluster of “elementary units” that
could be diseased and potentially detected. As an illustration,
the epidemiological units could be geographical units (like
herds, districts or hexagons) composed of several animals, herds,
or villages.

The simulation approach considered two dichotomous
factors: a “true” risk factor, referred to as X1, which affects
the probability of disease presence in epidemiological units,
and a second factor, referred to as X2, which affects the
probability of detecting each diseased elementary unit in diseased
epidemiological units (i.e., it affects the detection sensitivity at
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the elementary unit level). As a consequence, X2 is not a risk
factor as it is not associated with the probability of the disease
to be present in the epidemiological units, but can be considered
as a variable that generates an “observational bias.” Fifty percent
and 40% of the epidemiological units were associated with the
factors X1 and X2, respectively. These attributions were done
independently so that 20% of the epidemiological units had both
X1 and X2, 30% had none and 20% and 30% had only X2 and only
X1, respectively. The disease detection has then been simulated
in three successive steps: simulation of the disease presence in
epidemiological units, simulation of the true number of cases in
diseased epidemiological units and simulation of the observed
number of cases in diseased epidemiological units.

Simulating Disease Presence
In epidemiological unit i, the disease status (Di) was considered
as a random variable defined by

Di ∼ Bern(previ)

with

previ = X1i∗prev.1+ (1− X1i)∗prev.2

with prev.1 and prev.2 being parameters defining the
probabilities of disease presence in the epidemiological
units in which X1 = 1 and X1 = 0, respectively. The
odds ratio of disease presence [OR(X1)] was defined
as prev.1∗(1-prev.2)/[(1-prev.1)∗prev.2].

Then, the number of cases in diseased epidemiological unit
i (Ci) was considered as a random variable defined by a zero-
truncated Poisson distribution (since there cannot be 0 cases in
a diseased epidemiological unit) of parameter m, such that

Pr (Ci = c) =
mc

(ec − 1) ∗c!

with m being the average number of cases in diseased
epidemiological units.

Simulating Disease Observations
The case detection sensitivity (Se) was assumed to differ between
epidemiological units according to the variable X2, so that the
number of detected cases in epidemiological unit i (Yi) was
considered as a random variable defined by

Yi ∼ Binom(c, Sei)

with c being the true number of cases and

Sei = X2i∗Se.1+ (1− X2i)∗Se.2

with Se.1 and Se.2 being parameters defining the case detection
sensitivity in the epidemiological units in which X2= 1 and
X2 = 0, respectively. Consequently, this simulation framework
allowed the presence of false negative epidemiological units, i.e.,
epidemiological units with at least one case but none detected.
Finally, these disease observations were either synthesized as
binary data at the level of the epidemiological unit (Y1, presence

or not of at least one detected case) to be used in the logistic
regression, or considered as a count data (Y2, number of detected
cases in epidemiological units) to be used in the zero-inflated
Poisson (ZIP) regression. Two hypothetical illustrative examples
of this system are presented in the Supplementary Materials.

Modeling Disease Observations
The explanatory variables to be used in the logistic and ZIP
regressions were the factors X1 (associated with the probability
of disease presence in epidemiological units) and X2 (associated
with the likelihood of detecting cases in diseased epidemiological
units). The logistic model was defined by

logit (Pr (Y1i = 1)) = α0 + αX1∗x1i + αX2∗x2i

with α0, αX1, and αX2 being the parameters to be estimated and
x1i and x2i being the values of X1 and X2 for epidemiological unit
i. Note that, for the logistic model, OR(X1)= exp(αX1).

The ZIP model was defined by

Pr
(

Y2i = y
)

=

{
(

1− previ
)

+ previ∗e−λi if y = 0

previ∗
e−λi∗λi

y

y! if y > 0

with

logit
(

previ
)

= β0 + βX1∗x1i + βX2∗x2i

and

ln (λi) = γ0 + γX1∗x1i + γX2∗x2i

with β0, βX1, βX2,γ0, γX1, and γX2 being the parameters to be
estimated and x1i and x2i being the values of X1 and X2 for
epidemiological unit i. Note that, for the ZIP model, OR(X1)
= exp(βX1). This formulation of the ZIP model makes it clear
that it is made of two parts: a “logistic” part which describes the
probability of disease presence in the epidemiological units, and
a “count” part which describes the number of detected cases in
the epidemiological units where the disease is present.

For both the logistic and ZIP regressions, the significant
variables were identified based on an automated stepwise
backward selection procedure based on the likelihood ratio
test (1, 22).

Assessing Bias and Accuracy of Model Outputs
For both models, if X1 was significantly associated with the
probability of disease presence in epidemiological units (p <

0.05), the value of the associated odds ratio as estimated by the
model ORmodel(X1) was recorded and the relative bias (RB) of
the odds ratio was calculated as follows:

RB =
ORmodel(X1)− OR(X1)

OR(X1)

with OR(X1) being the “true” odds ratio used to simulate the
disease occurrence.
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TABLE 1 | Parameter values used in the simulations.

Parameter Description Scenario 1 Scenario 2 Scenario 3 Scenario 4

N Number of epidemiological units 10,000 10,000 10,000 10,000

m Mean number of cases in diseased epidemiological units 4 1 to 17 4 1 to 17

prev.2 Probability of disease presence in epidemiological units that do not have the

factor X1

0.2; 0.4; 0.6; 0.8 0.1; 0.2; 0.5 0.1; 0.2; 0.5 0.1; 0.2; 0.5

OR(X1) Odds ratio of the probability of disease presence based on X1 1 to 10 2; 5; 10 2; 5; 10 2; 5; 10

Se.1 Sensitivity of detection of diseased elementary units in epidemiological units

that have the factor X2

0.01, 0.02, …,1 0.01, 0.02, …,1 0.1, 0.2, ...,1 0.3; 0.6; 0.9

Se.2 Sensitivity of detection of diseased elementary units in epidemiological units

that do not have the factor X2

Se.2=Se.1 Se.2=Se.1 0.1, 0.2, ...,1 0.3; 0.6; 0.9

Simulation Scenarios
The simulations depend on eight parameters that are presented
in Table 1. Different scenarios were run to illustrate the effects
of different parameters, in situations with a homogeneous
sensitivity between the epidemiological units (Scenario 1 and
Scenario 2) and in situations with a heterogeneous sensitivity
(Scenario 3 and Scenario 4). The number of epidemiological
units (N) was set at 10,000 for all scenarios to make sure that
not identifying the risk factors is not due to a too small sample
size, i.e., to a lack of power of the model. The other parameters
(m, prev.2, OR(X1), Se.1 et Se.2) were assigned varying values
to assess their influence on the model outcomes. For each
set of parameter values, 500 simulations were run to compute
various summary statistics of model performance, including the
probability that the parameters X1 and X2 are correctly and
incorrectly identified as risk factors, respectively, and the relative
bias of the odds ratio associated with parameter X1. In an
exploratory phase, we ran 1,000 simulations but no substantial
change in the computed summary statistics could be observed,
so 500 simulations were considered a good compromise between
computing time and outcome precision. All simulations and
analyses were performed using the R software 3.3 version (23).

Revisiting French Bovine Abortion
Surveillance Data
To illustrate with a real example that logistic and ZIP models
can lead to significantly different results as suggested by the
simulations, we used the French bovine abortion surveillance
data and revisited the analysis presented in Bronner et al. (21).
Based on a demonstration that only 20 to 30% of abortions are
detected visually (24), the authors fitted a zero-inflated model to
the number of reported abortions in bovine herds and showed
that the probability of reporting at least one abortion in herds
where at least one abortion occurred (sensitivity of the reporting
at herd-level) was heterogeneous between herds and varied
according to the production type and the herd size. Therefore, it
provided a useful case study to illustrate the discrepancy between
logistic and zero-inflated models when using disease data that
have been collected by an imperfect and heterogeneous disease
detection process. Note that for the sake of simplicity of this
illustrative example, we only used the two explanatory variables
that were kept in the final model in Bronner et al. (21) and did

not account for other variables that could have been associated
with the outcome variable such as the farm biosecurity level
for example.

Data Sources and Study Population
As described in Bronner et al. (21), all bovine abortions occurring
on the French territory have to be reported to the local veterinary
authority. All reported abortions are therefore registered in the
French national animal health information database (SIGAL).
In our study, and similar to Bronner et al. (21), abortion data
was extracted from SIGAL and information about the herds (size
and type of production) was extracted from the French national
cattle register (BDNI). Our study focused on all cattle abortions
that occurred in mainland France between August 1st 2010 and
July 31st 2011, which was a year without any wave of abortive
diseases such as Bluetongue or Schmallenberg disease (21, 25, 26).
A random selection of 90% of the farms was used as a model
training dataset, while the remaining 10% were used for the
evaluation of the fitted models.

Statistical Modeling and Model Validation
Logistic and ZIP models were adjusted to the abortion dataset.
The epidemiological units were the farms and the elementary
units were the animals on the farms. For the logistic model,
the response variable was the presence of at least one reported
abortion in the farm, while the response variable of the ZIPmodel
was the number of reported abortions per farm. Note that reasons
for zero reported abortions in a farm could either be because
no abortion occurred or because the farmer did not detect any
abortion or because the farmer detected at least one but did
not report any. For both models the two putative explanatory
variables were the production type (beef, dairy, mixed) and the
herd size. Similar to Bronner et al. (21), herd size was categorized
into three modalities according to the terciles to allow for non-
linear associations with the response variable.

Since we assumed no wave of abortive infectious diseases, the
two different models did not account for any spatial dependence
of the observations. It is worth stressing that, should there be any
evidence or reasons to believe that the condition of interest is
contagious and could have spread spatially, including a spatial
autocorrelation term in the models becomes necessary (27).

The absence of correlation between the two explanatory
variables was verified with a Kendall test (28, 29). The significant
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variables were identified based on an automated stepwise
backward selection process based on the likelihood ratio test
(1, 22). The interactions between the two explanatory variables
were also tested.

Receiver operating characteristic plots were built using the
validation dataset and the areas under the curves (AUC)
were calculated to check the ability of the two models to
correctly predict the presence of at least one reported abortion
in farms.

RESULTS

Simulation Study
Identification of X1 as a Risk Factor
The logistic regression identified correctly and systematically
the factor X1 as a risk factor, independently of the case
detection sensitivity and the mean number of cases in diseased
epidemiological units. Similarly, the “logistic” part of the ZIP
model correctly and systematically identified X1 as a disease risk
factor. As a result, the probability of type II error (not identifying
a true risk factor) could be considered as very low for bothmodels
in our simulations. However, it was noticed that the ZIP model
became unstable when the mean number of cases per diseased
epidemiological unit was one (results not shown).

Identification of X2 as a Risk Factor
Expectedly, when the detection sensitivity was homogeneous
between units (so when X2 had no structural influence on the
simulations), X2 was never identified by the logistic regression
as a statistically significant risk factor (see the diagonal on
Figure 1). However, when the sensitivity was imperfect and
heterogeneous (so when X2 influenced the case detection
sensitivity), X2 was identified as a statistically significant risk
factor by the logistic regression, introducing a risk of a type
I error (incorrect identification of a variable as a risk factor).
More specifically, the risk of a type I error increased with
increasing heterogeneity of the detection sensitivity between the
epidemiological units. However, for high values of detection
sensitivities, the probability of type I error was more limited,
even in the presence of heterogeneity (top-right corner of
Figure 1). As illustrated in Figure 1, when the detection
sensitivity was at least 75% in all the epidemiological units,
the probability that the factor X2 is wrongly identify as a risk
factor was <30%.

The “logistic” part of the ZIP model never identified the factor
X2 as a risk factor, whatever the case detection sensitivity and
the mean true number of cases per diseased epidemiological unit.
As a result, the probability of type I error can be considered as
very low for the ZIP model in our simulations. Moreover, it can
be noted that the “count” part of the ZIP model systematically
identified correctly X2 as a factor influencing the number of
detected cases (see the purple zones on Figure 2). Note that when
the sensitivity was homogeneous between units (so when X2

had no structural influence on the simulations), X2 was never
identified as a factor influencing the number of detected cases
(see the red diagonal on Figure 2).

FIGURE 1 | Probability that the factor X2 is identified as a variable statistically

significantly associated with the presence of at least one reported case (i.e.,

risk factor for “apparent” presence) by a logistic regression as a function of the

detection sensitivity in epidemiological units with X2 = 0 or X2 = 1. This figure

was done by simulating 500 datasets generated with prev.2 = 0.2, OR(X1) = 5

and m = 4.

FIGURE 2 | Probability that the factor X2 is identified as a variable statistically

significantly associated with the average number of reported cases in

epidemiological units with at least one case (i.e., risk factor for number of case

reports given presence of at least one case) by a zero-inflated Poisson

regression as a function of the detection sensitivity in epidemiological units

with X2 = 0 or X2 = 1. This figure was done by simulating 500 datasets

generated with prev.2 = 0.2, OR(X1) = 5 and m = 4.
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Bias of the Odds Ratio
In the logistic model, imperfect sensitivity led to
underestimations of the odds ratio associated with the risk
factor X1 (Figure 3). For an imperfect but homogeneous
sensitivity (i.e., when the sensitivity is less than one but
similar in all units), the lower the sensitivity the higher the
underestimation (see the diagonal of the Figure 3). In the
case of heterogeneous sensitivity, the relative bias decreased
when the sensitivity increased in the units where X2 = 1 even
if the sensitivity remained poor in the units where X2 = 0,
and vice-versa. Indeed, as illustrated in Figure 3, when the
detection sensitivity was at least 75% in the epidemiological
units where X2 = 1, the odds ratio associated with the risk
factor X1 was not underestimated by more than 20% even if the
detection sensitivity was around 25% in the epidemiological units
where X2 = 0.

The “logistic” part of the ZIP model correctly estimated the
odds ratio associated with the risk factor X1 (the median of the
relative bias was null or almost null), whatever the detection

FIGURE 3 | Relative bias of the odds ratio estimated by a logistic regression

as a function of the detection sensitivity in epidemiological units with X2 = 0 or

X2 = 1. This figure was done by simulating 500 datasets generated with prev.2

= 0.2, OR(X1) = 5 and m = 4.

sensitivity and the mean true number of cases per diseased
epidemiological unit.

Bovine Abortion Study
Population Characteristics
The database included 99,996 farms from 37 departments
(French administrative unit). The mean size of the farms was
15,482 bovine-days with a median size of 13,485 bovine-days
(minimum= 1; maximum= 276,605). Regarding the production
types, 58,979 farms were beef farms (59%), 29,275 were dairy
farms (29%), and 11,742 were mixed farms (12%). Overall, 19,200
farms (19%) reported at least one abortion between August
1st 2010 and July 31st 2011. Size distribution, production type
distribution and distribution of the number of reported abortions
per farm are presented in Table 2 and Figure 4 for the whole
database (99,996 farms).

Inferences From the Zero-Inflated Poisson Model
The “count” part of the ZIP model shows that the production
type and the size of the French bovine farms were statistically
significantly associated with the number of reported abortions
in farms where abortions occurred (Table 3). Indeed, compared
to beef farms, the number of reported abortions in affected
farms was significantly higher in mixed and dairy farms.
Similarly, whatever the production type, the bigger the farm
the higher the number of reported abortions in affected
farms. These factors are therefore likely to influence the
probability of reporting at least one abortion in farms with

FIGURE 4 | Distribution of the number of reported abortions per farm.

TABLE 2 | Distribution of farm characteristics (production type and herd size) according to whether or not at least one abortion was reported during the period of interest.

Farms with no reported abortion Farms with ≥ 1 reported abortion

Size

Production
Beef Dairy Mixed Beef Dairy Mixed

≤7,686 bovine-day 28,129 2,728 1,028 876 254 43

>7,686 et ≤ 18,586 bovine-day 13,680 9,753 2,236 1,678 4,868 835

>18,586 bovine-day 11,895 6,605 4,742 2,721 5,067 2,858
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TABLE 3 | Results from the bovine abortion zero-inflated Poisson regression.

Variable Categories OR 95%CI p-value of the LRT

“LOGISTIC” PART

Production type Beef Reference Reference

Mixed 0.90 0.63–1.29 <0.01

Dairy 1.97 1.65–2.37

Herd size ≤7,686 Reference Reference

(bovine-day) >7,686 and ≤18,586 2.35 2.00–2.78 <0.01

>18,586 3.30 2.81–3.87

Interaction Production type Herd size

Production type Mixed >7,686 and ≤ 18,586 5.78 2.36–14.16

& Herd size Dairy >7,686 and ≤ 18,586 7.86 4.58–13.48

(bovine-day) Mixed >18,586 6.94 2.89–16.69 <0.01

Dairy >18,586 8.79 5.17–14.93

Variable Categories IRR 95%CI p-value

“COUNT” PART

Production type Beef reference reference

Mixed 1.60 1.52–1.69 <0.01

Dairy 1.75 1.67–1.83

Herd size ≤7,686 reference reference

(bovine-day) >7,686 and ≤18,586 2.05 1.78–2.35 <0.01

>18,586 3.21 2.80–3.69

OR, Odds ratio; IRR, incidence rate ratio; 95%CI, 95% confidence interval; LRT, likelihood ratio test.

TABLE 4 | Results of the bovine abortion logistic regression.

Variable Categories OR 95%CI p-value of the LRT

Production type Beef Reference Reference

Mixed 1.35 0.95–1.85 <0.01

Dairy 2.96 2.53–3.44

Herd size ≤7,686 Reference Reference

(bovine-day) >7,686 and ≤18,586 3.91 3.58–4.28 <0.01

> 18,586 7.40 6.81–8.04

Interaction Production type Herd size

Production type Mixed >7,686 and ≤ 18,586 11.93 5.56–25.54

& Herd size Dairy >7,686 and ≤ 18,586 16.22 10.77–24.45 <0.01

(bovine-day) Mixed >18,586 19.28 9.13–40.75

Dairy >18,586 24.91 16.66–37.25

OR, Odds ratio; 95%CI, 95% confidence interval; LRT, likelihood ratio test.

at least one abortion: farmers managing small beef farms
with abortions would be less likely to report at least one
abortion than farmersmanaging large dairy farms with abortions,
introducing a bias in the abortion presence/absence data at
farm level and therefore a potential bias in the outcomes of
logistic regressions.

The “logistic” part of the ZIP model highlights that the
production type and the farm size were factors statistically
significantly associated with the probability of having at least one
abortion (Table 3). For a given herd size, dairy farms were more
likely to have at least one abortion than beef farms. Similarly, for a

given production type, medium-size farms and large farms were
more likely to have at least one abortion than small-size farms.
The interaction between the production type and the herd size
highlights that the influence of the herd size varied depending on
the production type (Table 3).

Inferences From the Logistic Model
The final logistic model included “production type” and “herd
size” as statistically significant explanatory variables, as well as
the interaction between these two variables (Table 4). For a
given herd size, dairy farms were more likely to have reported
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FIGURE 5 | Receiver operating characteristic curve for the logistic model

implemented on the bovine abortion dataset. The dotted line represents the

diagonal (Sensitivity = 1-Specificity).

abortions than beef farms. Similarly, for a given production type,
medium-size farms, and large-size farms were more likely to
have reported abortions than small-size farms. The statistically
significant interaction between the production type and the herd
size highlights that the influence of the herd size varies depending
on the production type (Table 4).

Evaluation of the Models
The receiver operating characteristic curves are similar between
the two models, and only the one for the logistic model is
represented on Figure 5. For both models, the area under the
curve is 0.76 suggesting an acceptable discriminatory power of
each model between the farms with no reported abortion and the
ones with at least one reported abortion.

DISCUSSION

This study illustrates the limitations of logistic regressions for
identifying disease risk factors when case detection sensitivity
is less than one and potentially heterogeneous between
epidemiological units. First, it was shown that imperfect
sensitivity has little impact on the risk of a type II error (not
identifying a true risk factor) in logistic regressions, but that
it could lead to strong underestimations of the odds ratio
even with small under-detection issues. The extent of the odds
ratio underestimation was shown to increase with decreasing
case detection sensitivity and decreasing within-herd prevalence.
Finally, this study highlighted that a heterogeneous case detection
sensitivity driven by an external variable induces an important
risk of a type I error (identifying incorrectly a variable as a risk

factor) if this external variable is included as an explanatory
variable in logistic regression models and that the risk of this
type I error increases with increasing heterogeneity of the
detection sensitivity.

Our simulation results suggested that, under the ZIP
modeling approach, imperfect and heterogeneous case detection
sensitivities had limited impacts on the risk of both type I and
type II errors for the identification of risk factors in the “logistic”
part of themodel. This is due to the “count” part of the ZIPmodel
that enables to explain the average number of detected cases
in diseased epidemiological units, allowing for an adjustment
of the probability of disease presence in the epidemiological
units. This property of the ZIP model made it very popular in
ecology to model the distribution of cryptic wildlife populations
whose individual detection probability is less than one (19, 20).
However, it is worth noting (1) that an increased average number
of detected cases in diseased epidemiological units, as modeled
by the count part of the ZIP, can be the consequence of either an
increased true number of cases in diseased units or of a greater
probability of detection of each case (as discussed for the bovine
abortion study), and (2) that the count part of the ZIP does not
make the difference between these two processes.

Regarding the analysis of bovine abortions in France, the
logistic model identified both the production type and the farm
size as variables statistically significantly associated with the odds
of having at least one reported abortion (Table 3). From this,
one cannot say whether this increased odd of having at least
one reported abortion is the consequence of an increased chance
of having at least one abortion or of an increased chance of
reporting at least one abortion in farms with at least one abortion
(what could be due to either a higher abundance of abortions
in farms with at least one abortion or to a higher probability
of detecting and reporting abortions in farms with at least one
abortion). The ZIP model identified these two variables both in
the “logistic part” and the “count part” of the model (Table 4).
Being included in the count part suggests that these variables
influence the number of reported abortions [the production type
probably because of a closer monitoring of the cows in dairy
farms and the farm size probably because of a higher number of
opportunities for abortion due to a larger number of cows in large
farms, as suggested in Bronner et al. (13)]. Being included in the
logistic part of the ZIP (despite the adjustment by the count part)
suggests that these variables are also statistically significantly
associated with the odds of occurrence of at least one abortion.

Compared to beef herds, dairy herds were found to be

associated with a higher probability of occurrence of at least
one abortion, but also with a higher average number of

reported abortions in herds where at least one abortion occurred

(as mentioned just before, this is probably due to the fact

that dairy herds are more closely monitored than beef herds

so that abortions are more easily detected). This positive
association in the count part explains why the “apparent”

odds ratio of having at least one abortion in dairy herds
as compared to beef herds estimated by the logistic model
is greater than the “adjusted” odds ratio of having at least
one abortion estimated by the “logistic” part of the ZIP
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model (Tables 3, 4). The exact same explanation applies to
the interpretation of the other differences between the two
models. This case study is an eloquent illustration of how
quantitative outputs of logistic models can be biased if based
on disease data that had been generated by imperfect detection
processes. Despite the difference between the quantitative
outcomes of the two models, note that the qualitative results
are comparable. Indeed, in the two models, both putative
risk variables were found to be significantly associated with
the presence of at least one abortion in a herd. However, as
shown in the simulation study, qualitative results could have
been different would the detection heterogeneity had been
structured differently.

To identify disease risk factors when disease distribution

is observed imperfectly, some authors have suggested using

Bayesian hierarchical models that incorporate information on the

sensitivity and specificity of disease detection (30). However, this

approach requires either an independent study to estimate the

sensitivity and specificity parameters or the use of a gold standard
applied to a subset of individuals diagnosed with the regular
test (30). Capture-recapture methods could also be a useful
approach to study disease risk factors when disease observation is
imperfect, but they require at least two independent surveillance
protocols of the disease of interest (31) or a longitudinal
follow-up of the epidemiological units whose disease status is
imperfectly observed (32, 33).

LIMITATIONS

The simulation framework did not account for the size of the
epidemiological units (e.g., the number of animals in farms),
since it was assumed that the number of cases within diseased
epidemiological units was small compared to the size of the
epidemiological units, what justified the use of a Poisson
distribution for the count part of the zero-inflated count model.
However, for diseases for which the within-herd prevalence could
be greater, it would be necessary to account for the size of the
epidemiological units.

Also, the simulation study was designed with the specific aim
to provide explicit insights on the limits that the logistic and ZIP
models could have in situations with imperfect case detection. As
a consequence, it is acknowledged that their design framework
sometimes fails to capture the complex reality of field situations.
First, the simulation design was based only on two independent
factors which were associated either with the probability of
disease in the epidemiological units (factor X1) or with the
probability of case detection in diseased epidemiological units
(factor X2). Yet, as shown in the analysis of the abortion data,
reality is generally more complex with multiple factors being
associated with these probabilities and with factors potentially
being associated with both probabilities. Then, the simulated
population of interest was composed of 10,000 units in order to
make sure that the sample size would not jeopardize the power
of the model, so that an absence of association could not be
attributed to a too small sample size.While national studies based
on epidemiological units defined at the farm level (similar to the

bovine abortion study) could have sample sizes in the same order
of magnitude, studies based on epidemiological units defined at
geographical levels such as districts in a country or villages in
a region, would likely be associated with much smaller sample
sizes. This could lead to a greater risk of type II error than the
risk of the imperfect detectability only.

In addition, only logistic regression was used in this study to
analyse the aggregated case reports, since it is one of the most
popular approaches to analyse binary outcomes. However, it is
widely acknowledged that the measure of association of logistic
regressions (the odds ratio) can be difficult to communicate,
especially to non-epidemiologists and that it can strongly
overestimate the prevalence ratio (a measure of association much
easier to communicate) when dealing with frequent outcomes
(34). To overcome these limitations, alternativemodels have been
advocated to analyse binary outcomes, including Cox, Poisson
and log-binomial regressions. An interesting continuation of this
work would be to assess the impact of imperfect disease detection
on these alternative models.

Finally, the bovine abortion models only included the
variables that were significantly associated with the number of
abortions per farm in France, as identified by Bronner et al.
(21). It is acknowledged that other variables (e.g., production
company, biosecurity level, farmer’s level of education, etc.) could
also contribute to explaining the distribution of abortions and
that observations could potentially be spatially dependent, even
in the absence of an epidemic of abortive diseases. However, since
the objective of these bovine abortion models was to illustrate
how logistic and ZIP models could generate different outcomes
as demonstrated in the simulation study, the complexity of the
two models was purposively kept to a minimum.

CONCLUSION

This work showed that, when the detection sensitivity is
imperfect, logistic models applied to case reports aggregated
at a larger scale (e.g., diseased animals aggregated at farm
level or outbreaks aggregated at administrative level) are likely
to lead to biased estimates of odds ratios, and even to
identify incorrectly as risk factors potential variables influencing
the detection sensitivity itself (type I error). Consequently,
we strongly recommend that logistic models outputs are
systematically discussed with regards to potential imperfect and
heterogeneous detectability issues. When count data is available
(e.g., number of infected animals in herds), we advocate the
importance of not reducing the data to a presence/absence
dataset (e.g., presence or not of at least one infected animal
in herds) but rather to model it directly using zero-inflated
count models.
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