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ABSTRACT 

Sediment rating curve (SRC) is a conventional and a common regression model in estimating 

suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation 

in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream 

flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, 

Guilan Province, Iran, SRC equation was derived, and then, using evolutionary algorithms (genetic 

algorithm and particle swarm optimization algorithm) it was calibrated again.  Worth mentioning, 

before model calibration, to increase the generalization power of the models, using self-organizing  map  

(an unsupervised artificial neural network for data clustering), the data were clustered and then by  

data sampling, they were classified into two homogeneous groups (calibration and test data set). The 

results showed that evolutionary algorithms are appropriate methods for optimizing coefficients of 

SRC model and their results are much more favorable than those of the conventional SRC models or 

SRC models corrected by correction factors. So that, the sediment rating curve models calibrated with 

evolutionary algorithms, by reducing the RMSE of the test data set of 5754.02 ton day-1 (in the initial 

SRC model) to 1681.21 ton day-1 (in the calibrated models by evolutionary algorithms) increased the 

accuracy of suspended sediment load estimation at a rate of 4072.81 ton day-1. In total, using 

evolutionary algorithms in calibrating SRC models prevents data log-transformation and use of 

correction factors along with increasing in the accuracy of molding results. 

Key words: Clustering, Genetic and PSO Algorithms, Sediment Rating Curve, Self-Organizing Map, Suspended Sediment 

Load. 

INTRODUCTION 

It is necessary to have adequate up-to-date 

information about the suspended sediment 

load (SSL) of rivers and monitor them 

continually in order to be aware of the 

watershed sediment yield condition, the 

amount of erosion  as well as changes in the 

river bed and river bank, the quality of water,  

along with optimum design and favorable 

performance of water resource structures 

(Tayfur 2012; Nourani et al. 2016; Buyukyildiz 

& Kumcu, 2017; Vercruysse et al. 2017; Sarkar et 

al. 2017; Salehpour Jam et al. 2017). Regarding 

the existing limitations (cost of sampling, time, 

etc.), the SSL is often estimated indirectly using 

sediment rating curve (SRC) model. The 

standard model of SRC is obtained through the 

following exponential regression equation 

(Ulke et al. 2009): 
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Where, Q (t) is the mean flow discharge (m3 s-1); 

SSL (t) is the suspended sediment discharge 

(ton day-1);  a and b are the constant coefficients 

of the regression equation. In equation 1, SSC 

(mg l-1) can be used instead of SSL (ton day-1). 

To use the SRC regression model, the 

coefficients (a and b) should be calculated 

optimum. This is firstly done through the 

taking logarithm of variables of flow discharge 

and sediment discharge as well as formulating 

a linear regression equation between them.  

Then, the linear regression coefficients are 

calculated using least square method. Once the 

coefficients and sediment discharge are 

calculated, the obtained values for the sediment 

discharge should be back-transformed (an anti-

log is taken of them) in order to be used. Studies 

have shown that the distribution of remaining 

values (the difference between the observed 

and computed values of sediment discharge) in 

this way is not normal, and the mean 

distribution is greater than zero (Kao et al. 

2005). In other words, when calculating a and b 

coefficients, a kind of bias appears in the SRC 

regression model and makes the estimated 

values of SSL lower than its corresponding 

observed values (Ferguson  1986). This problem 

is most obvious in flood discharges and causes 

more errors. To correct the bias resulting from 

the logarithmic transformation, different 

correction factors have been introduced so far 

(FAO, Quasi-Maximum Likelihood Estimator, 

Minimum Variance Unbiased Estimator, etc.), 

and all of them aim at increasing the values 

calculated through SRC model. However, these 

factors sometimes cause another bias in the 

form of an overestimation besides making the 

results with the same data zero (Kao et al. 2005). 

In recent years, the application of 

computational intelligence methods in 

estimation of environmental variables such as 

suspended sediment load and modeling the 

complex hydrological processes, such as 

rainfall-runoff  has been rapidly rising. (Kalteh 

2008; Gholami et al. 2015; Chen & Chau 2016; 

Kisi & Zounemat-Kermani 2016; Buyukyildiz & 

Yurdagul Kumcu 2017). Also, meta-heuristic 

algorithms (or evolutionary algorithms) such as 

genetic algorithms (GAs) and particle swarm 

optimization (PSO) have been commonly used 

in solving problems related to water resource 

engineering. Kisi et al. (2017) used PSO and 

differential evolution (DE) algorithms as 

training algorithms of ANNs (ANN-PSO and 

ANN-DE) for modeling groundwater 

qualitative parameters, i.e., SO4 and SAR. 

Cheng et al. (2002) could calibrate parameters of 

a rainfall-runoff model of Xinanjiang 

watershed automatically with multiple 

objectives (including time to peak, peak rate, 

and total volume of flood) using GA and fuzzy 

algorithm. In another study, Hejazi et al. (2008) 

calibrated parameters of a distributed rainfall-

runoff model using multi-objective GA. Tayfur 

(2009) optimized parameters of some empirical 

equations and could estimate the longitudinal 

dispersion coefficient of a river. Kisi et al. (2012) 

used the genetic programming (GP) model in 

order to estimate the amount of daily 

suspended sediment in two stations in the 

Cumberland River in America. Kuok et al. 

(2010) applied the PSO algorithm to optimize 

parameters of neural network model of daily 

rainfall-runoff in Sungai Bedup watershed, 

Malaysia. They showed that the neural network 

training through the above method was 

successful. Guo & Wang (2010) used radial 

basis function (RBF) neural network whose 

parameters was optimized based on PSO 

algorithm to estimate SSL of Yangtze river. In 

another similar research, in relation to the 

application of evolutionary algorithms in the 

modeling and monitoring of water quality of 

rivers, Altunkaynak (2009) could optimize SRC 

coefficients of Mississippi River located in St. 

Louis, MO using GA. The results of the study 

showed the priority of SRC model optimized 

by GA over its conventional model. In another 

similar study conducted by Mohammad 

Rezapour et al. (2016) using genetic and PSO 

algorithms, the relationship between flow 

discharge and sediment discharge was 

optimized. The comparison of the results of 

models showed that the SRC models optimized 

by evolutionary algorithms had better results 

than the conventional SRC models. Swain and 
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Sahooh (2017) also used the combination of the 

regression methods and genetic algorithm (GA) 

to optimize three regression models between 

turbidity concentration (Tu) and Landsat 

surface reflectance (Ls) (Tu-Ls); total 

suspended solid (TSS) as well as Tu (Tss-Tu) 

and six heavy metals (HV) and also TSS (HV-

TSS). In another field, to predict non-deposition 

sediment transport, Ebtehaj & Bonakdar (2016) 

used PSO and imperialist competitive 

algorithms (ICA) for estimating the densimetric 

Froude number. The results showed that the 

algorithm ICA is superior to the algorithm PSO. 

Clustering and sampling them play an 

important role in building similar homogenous 

data sets (such as calibration, cross-validation, 

and test data set) for data-driven models (such 

as regression, neural network, and Neuro-

fuzzy models). The failure to use similar 

homogenous data in the mentioned three 

sections has much direct effect on the precision 

and final efficiency of designing models and 

reduces its power generalization (May et al. 

2010). In the present study, self-organizing map 

clustering method (SOM) was used to build 

two similar homogenous data sets of 

calibration and test  the models regarding 

drastic changes in sediment discharge data 

during the statistical period. Regarding the 

foregoing, the objectives and innovations of 

this study are summarized as follows: 

A. Estimation of daily SSL of Shalman River 

using the traditional SRC model and the SRC 

model modified by traditional correction 

factors. 

B. Optimization of SRC model's coefficients 

using evolutionary algorithms (GA and PSO 

algorithm) and re-estimation of SSL. 

C. Comparison of traditional SRC models (part 

A) with optimized models (part B) in terms of 

SSL estimation as accurate as possible. 

MATERIALS AND METHODS 

In this study, MATLAB 7.11 software was used 

to implement GA and PSO algorithms, cluster 

the data, and calculate the cluster validity 

index. The data were statistically analyzed 

using SPSS 19 and MATLAB software 

programs. 

The study area and used data 

The present study was performed in the 

Shalman watershed at Shalman hydrometric 

station, which is located between longitude 

49°56'-50°18' E and latitude 36°54'- 37°14' N in  

Guilan Province, Iran (Fig. 1).  

The watershed has the area of 48021 hectares 

and mean elevation of 522 m above sea level. 

The data used in this study included 

841information records of hydrometric data of 

instantaneous flow discharge and sediment 

discharge in Shalman Hydrometric Station 

during the 34 years (1972-2006). The statistical 

parameters [mean ( X ), standard deviation (Sx), 

coefficient of variation (CV), skewness 

coefficient (Csx), overall minimum (Xmin) and 

maximum (Xmax)] of the whole data set in this 

period are presented in Table 1. 

According to the statistical data in Table 1, the 

sediment discharge has a high skewness and 

coefficient of variation, as the variation 

between its maximum and minimum is very 

high. This result along with other calculated 

statistics revealed the complexity of SSL 

modeling of the river. 

 

Preparation of homogenous data for 

calibrating and evaluating the models 

To build the SRC models as accurate as 

possible, the calibration data of the models 

should represent the data of the entire 

statistical period. Moreover, to evaluate the 

models and its results, the test data should be 

similar to those of calibration (in terms of 

statistical parameters) and have the same 

distribution. To do so, the SOM clustering 

method was used to cluster the data, and 

proportional allocation method was used to 

sample the clusters to prepare two 

homogenous and similar sets of data 

(calibration and test data sets). The number of 

optimal clusters was determined using Davies-

Bouldin index. To analyze the results of 

clustering, besides comparing the statistical 

parameters (mean, standard deviation, 

skewness, etc.) together, the similarity of data 
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distribution (in calibration and evaluation) 

was examined using Two-Sample 

Kolmogorov-Smirnov Test (KS). All these 

stages are briefly described below: 

 

Data clustering using self-organizing map 

(SOM) 

Data clustering is a common method in 

analysis of statistical data in which similar data 

are classified into different clusters in a way 

that the samples in each cluster are similar to 

one another but different from samples of 

other clusters (Yar Kiani 2009).  

 

The self-organizing map (SOM) is an 

unsupervised artificial neural network 

proposed by Kohonen (1982). One of the most 

important application of the SOM is its ability 

in the clustering of data. Generally, SOM 

networks learn to cluster groups of similar 

input data from a high dimensional input 

space in a non-linear fashion onto a low 

dimensional (most commonly two-

dimensional) discrete lattice of neurons in an 

output layer (Kohonen 2001). The typical 

structure of an SOM consists of two layers: an 

input layer and a Kohonen or output layer (Fig. 

2). 

 

 
Fig. 1. The location of Shalman watershed and Shalman Hydrometric Station. 

 

Table 1. Statistical characteristics of the data used during the study. 

Cv Csx Xmin Xmax Sx X  Data Type Data Set 

2.37 58.55 0.01 349.08 29.84 12.54 Flow, Qw (m3 s-1) Whole data 

7.96 314.08 0.004 144852.8 6525.98 819.5 SSL, Qs (ton day-1)  

In the SOM structure, input layer contains one 

neuron for each variable (xi for I = 1,2,..., n) (e.g., 

flow discharge, suspended sediment load, etc.) 

in the data set and it is fully connected to the 

Kohonen layer through adjustable weights (wji 

for j = 1,2, ..., m). 

The process of network learning is formed of 

three phases of the competition, co-operation 
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and adaptation. In competitive phase, by 

introducing a data pattern (an input vector) to 

the SOM network, the Euclidean distances of 

the data to the neurons of output layer are 

calculated and each neuron of the output layer 

that has the least distance is selected as a 

winner neuron or neuron which is the closest 

neuron to the input vector. 

 
Fig. 2. A 5×5 two-dimensional self-organizing map (modified from Kalteh et al. (2008).

 

This neuron is also called best matching unit 

(BMU). Notably, at the first, the weight of 

neurons in the output layer is randomly 

defined, but during the process of learning, it is 

more similar to the vector values of input 

variables. The Euclidean distance is calculated 

according to the following equation (Bowden et 

al. 2002): 

D𝑗 = |x − w𝑗| = [∑ (x𝑖 − w𝑗𝑖)2N
i=1 ]

1

2   ,   𝔧 =

1, 2, … , M                                                              (2) 

Where: Dj, jth neuron distance of the output 

layer to x input vector (X = (xi; i = 1,2,3, ..., N) ∈ 

Rn), N, the number of input vector variables, M, 

the number of neurons in the output layer, Wji, 

neurons weight of the output layer and |.|||  is the 

Euclidean distance. After determining the 

BMU, its weight and the weight of its other 

neighboring neurons, depending on their 

distances from the BMU (co-operation phase), 

are updated according to the equation (3) 

(adaptation phase). 

 

 (3)                                         w𝔧i(t + 1) =  w𝔧𝔦(t) +

θ(t) ∗ η(t) ∗ [x𝔦(t) − w𝔧𝔦(t)] 

 

Where: t, time, θ(t), a function transforming the 

distance between neighboring neurons of the 

BMU to a ratio of the neighborhood and η (t) is  

 

the learning rate. The process of learning the 

SOM network is continued by presenting new 

input data vectors to the SOM network, and 

during this process the connection weights are 

adjusted until they remain unchanged. A full 

description of the self-organizing map process 

was proposed by Kohonen (1982). 

 

Cluster validity index (Determining the 

optimal number of clusters) 

The indexes evaluating the quality of 

clustering, regardless of the algorithm used in 

them, examine the clusters in terms of two 

parameters: 1- Intra-cluster Similarity (Cluster 

Compactness) and 2- Inter-cluster Dissimilarity 

(Cluster Separation). A suitable clustering 

method (in which number of clusters are 

optimum) is that in which the value of the two 

parameters is high (Kaufman et al. 2009). Most 

of indexes evaluating the quality of clustering 

use the distance criterion to calculate intra-

cluster compactness and intra-cluster 

separation (May et al. 2010). 

There are various methods to determine the 

optimal number of clusters (Dunn index, 

silhouette index, Davies-Bouldin index, 

validation index, etc.) of which Davies-Bouldin 

index was used in this study due to its 

efficiency and easy implementation in 
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MATLAB software. The index is briefly 

described below: 

Davies-Bouldin index: It calculates mean 

similarity between two clusters that are most 

similar (Yar Kiani 2009). The lower calculated 

value of the index increases the quality of 

clustering. The index uses the inter-cluster 

similarity that is defined based on the 

dispersion of a cluster and inter-cluster 

dissimilarity. Equation 4 (Yar Kiani 2009): 

           
ij

d

j
s

i
s

ij
R




                                      (4) 

Where, Rij: similarity between i and j clusters; Si 

and Sj: dispersion of i and j clusters; and dij: 

distance between the centers of the two 

clusters. In Equation 4, dispersion of a cluster 

and the distance between two clusters are 

calculated respectively through equations 5 

and 6: 

     
)(

j
v

i
vd

ij
d 

                                       (5) 

Where, dij: distance between i and j clusters; 

and Vi and Vj: centers of i and j clusters. 

         

),(
1
 

i
cx i

vxd

i
c

i
s

                        (6) 

Where, ic
is the number of data in the ith 

cluster. Finally, Davies-Bouldin index is 

calculated through Equation 7: 

             





cn

i
iR

cn
DB

1

1

                                 (7) 

Where, DB: Davies-Bouldin index; nc: number 

of clusters; and Ri: the highest inter-cluster 

similarity that is calculated using Equation 8: 

)(
,...1ijR

jicnj
MaxiR




 ,   cni ,...1
              

(8) 

Cluster sampling method 

To prepare two sets that were as homogenous 

and similar as possible (calibration and test 

data sets), the proportional allocation method 

was used for sampling the clusters. In this 

method, the number of samples varies with the 

size of the cluster, as the size of a cluster 

increases, the number of samples increases too, 

and vice versa (May et al. 2010). Equation 9:   

 
 


H

i
Nj

Nh
nnh

1                                              (9) 

Where, nh: number of samples drawn from h 

cluster; n: number of required data; Nh: 

number of data in h cluster; and Nj: number of 

data in other clusters.  In the present study, 80% 

of the data were used for making the calibration 

set, and the remaining 20% of the data were 

used for making the test sets. 

 

Statistical analysis of the data obtained from 

clustering 

Besides, comparison of statistical data (mean, 

standard deviation, skewness, etc.), the 

nonparametric two-sample Kolmogorov-

Smirnov test (due to the abnormal distribution 

of data) was used to examine and compare 

homogeneity and the similarity of the data in 

calibration and test data sets. The KS test was 

performed at error level of 1% (α = 1%) using 

Equation 10 and MATLAB software 

(Mansourfar 2009): 

  2

)
2

(

1

)
1

(

n

i
nF

n

i
nF

Max
C

D 

                (10) 

Where, F(ni1) and F(ni2): the cumulative 

frequency of the variable x in the two sets; and 

DC: the test statistic, absolute maximum of the 

difference between relative cumulative 

frequency of the two data sets. 

Preparation of sediment rating curve models 

(SRC and SRC-FAO models) 

The sediment rating curve model (SRC model) 

was prepared on the basis of Equation 1 and 

least square method using homogenized data 

of the calibration data set. Moreover, the FAO 

correction factor was used to modify the SRC 

model (SRC-FAO model). The FAO correction 

factor introduced by Jones et al. (1981) for 
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decreasing bias (underestimation) and 

increasing values calculated in SRC model 

using Equation 11: 

      

b
Qw

Qs
CF

)(



                                           (11) 

Where, CF: FAO correction factor; Qs : mean 

sediment discharge of observational samples 

(mg l-1 or ton day-1); Qw : mean flow discharge 

of observational samples (m3 s-1); and b: the 

parameter used in the SRC model (Equation 1). 

After calculating FAO correction factor (CF), 

the CF substitutes the parameter a in Equation 

1. 

Using genetic algorithm in the optimization 

of coefficients of the SRC model (SRC-GA 

model) 

The GA is a nonlinear search and optimization 

method inspired by biological processes of 

natural selection and survival of the fittest 

species. This searching method has relatively 

few assumptions and do not rely on any 

mathematic properties of function (continuity 

and differentiability) (Tayfur 2012). In this 

method, a population of potential responses is 

obtained through selecting a random set out of 

initial solutions, which are actually a set of 

initial responses of the problem (initial 

population). 

Thereafter, individuals of the population 

compete with each other to survive and make 

better responses based on the objective function 

(Equation 12); consequently, the quality and 

quantity of the appropriate responses increase 

in next generations using three genetic 

operators, including selection, reproduction, 

and mutation; and this process continues up to 

the convergence of the algorithm and finding 

the optimal final response (here a and b 

coefficients in the SRC regression model). 

2)
1

(
1

)( eSSLn
i oSSL

n
OF  


         (12)          

Where,  : vector of SRC coefficients (values of  

a chromosome’s genes); SSLo and SSLe: values 

of observational and calculated suspended 

sediment discharge (ton.day-1); and n: number 

of calibration data. 

When using GA, roulette wheel selection 

method (weighting method based on the cost of 

the chromosome) was used to select parents for 

reproduction; the blending method was used to 

reproduce; and uniform random number 

generation method was used for genetic 

mutations. Noteworthy, GA was used with 

calibration data, and SRC model coefficients 

after optimization were used in the SSL 

estimation of the test data set.  

In total, to use a continuous genetic algorithm 

in this study, we determined an initial 

population of 50, reproduction of 75%, 

mutation of 15%, and maximum number of 

reproductions of 500.  

Using a particle swarm optimization 

algorithm in optimizing coefficients of the 

SRC model (SRC-PSO model) 

PSO consists of a group of particles 

(individuals) which refine their knowledge of 

the search space (Kisi et al. 2017). In this 

algorithm, each solution (a and b coefficients in 

this study) called a particle is assumed as a bird 

in the migrating swarm pattern and its 

adequacy is determined by an objective 

function (like Equation 14). 

In PSO algorithm, particles cooperate with one 

another to reach a common goal, and thus, this 

method is more effective than that in which 

particles act separately (Shahriar et al. 2011). 

In this method, the collective behavior does not 

only depend on individuals’ behavior in the 

society, but also associates with the manner of 

interaction among individuals in a group in a 

way that particles scatter in the searching space 

and then gradually moves toward successful 

areas (optimum solutions) to achieve the best 

solutions under the influence of their own 

knowledge and their neighbors’ knowledge. 

In PSO algorithm, firstly, some particles with 

random location and speed are created; then, 

these particles modify their movement toward 

the goal based on the best previous location of 

themselves and their neighbors in each 

repetition.  
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After consequent repetitions, the problem 

converges to the optimum solution. The speed 

(V) and location (X) of each particle are 

modified through equations 13 and 14, 

respectively (Shahriar Shahhoseini et al. 2011; 

Kisi et al. 2017):  

 

))()((
2

*
2

))()((
1

*
1

)()1( tixtigbestrandCtixtipbestrandCtiVtiV  
       (13) 

)1()()1(  tiVtixtix                                                                                                               (14)   

In the above equations, gbest shows the best 

location obtained from the population of 

particles; pbest is the best location of the 

particle itself experienced up to now; t is the 

number of repetitions; rand1 and rand2 are 

random numbers in the interval [0 and 1]; and 

C1 and C2 coefficients are respectively cognitive 

parameter (personal experience) and social 

parameter (collective experience) that 

determine the slope of moving when searching 

for a location.  

The value of these two coefficients is 

determined in the interval [0 and 2], mostly 2 or 

1.49 for both coefficients. In the above 

equations, ω is the inertia coefficient that 

decreases linearly and is defined in the interval 

[0 and 1] (Shahriar Shahhoseini et al. 2011).  

To use the PSO algorithm in this study, the 

number of initial particles, C1 and C2 

coefficients, inertia coefficient, and the number 

of reproductions up to the final convergence 

were 50, 2, 0.9, and 500 respectively. 

 

Evaluating the efficiency of models 

To evaluate the results obtained from different 

models of SRC (the conventional SRC model, 

SRC-FAO, SRC-GA and SRC-PSO) and 

compare their results with those of 

observational sediment data (data of the test 

set), graphic drawings and error measurements 

were performed. Moreover, for each model, the 

scatter plot of the observational data was 

drawn using calculated data of the model, and 

we determined the linear regression equation 

and correlation coefficient (R2) of the best fit 

line (Equation 15). To analyze the measurement 

error of models, root mean square error 

(RMSE), mean absolute error (MAE) and Nash-

Sutcliffe (NS) were used through equations 16 

to 18: 
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                (18)                                        

In the above equations, So and SM are observed 

and estimated suspended sediment discharge, 

respectively, n is the number of data introduced 

to the model and 𝑆𝑜̅ and 𝑆𝑀̅  are the means of 

observed and estimated suspended sediment 

discharge. 

 

RESULTS 

Results of data clustering 

Optimal number of clusters in the studied data 

were determined as 8 clusters using SOM 

clustering and Davies-Bouldin index (Fig. 2). 

Results of statistical parameters and 

nonparametric two-sample Kolmogorov-

Smirnov test in calibration and test data sets 

(obtained from data clustering through the 

proportional allocation method) are 

respectively shown in Tables 2 and 3. 
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Table 2. Statistical parameters of the variables used in calibration and test data sets. 

Statistical Parameters  

Cv Csx Xmin Xmax Sx X  Model Variables and Data Set 

      )1-s 3(m w)Flow Discharge (Q 

2.37 6.61 0.01 349.08 30.65 12.90 Calibration Set 

2.37 8.21 0.01 298.21 26.39 11.10 Test Set 

      Sediment Discharge (SSL) (Qs) (ton day-1) 

8.03 16.90 0.01 144852.76 6610.89 822.50 Calibration Set 

7.66 12.03 0.00 78616.51 6190.53 807.41 Test Set 

 

Table 3. Results of two-sample Kolmogorov-Smirnov test of the data. 

h tD cD P-value Data Sets Model Variables 

0 0.14* 0.06 0.75 Calibration & Test )1-s 3) (mwDischarge (Q Flow 

0 0.14* 0.05 0.87 Calibration & Test )1-day) (ton sSediment Discharge (SSL) (Q 

                                                   *Significant at the error level (α) = 1% 

 
Fig. 2. Determining the optimal number of clusters using SOM clustering and Davies-Bouldin 

index.

 

In Table 3, h letter is a statistic for two-sample 

Kolmogorov-Smirnov test in MATLAB 

software. When h = 0, it means that it does not 

reject the null hypothesis (which is that x1 and 

x2 are from the same continuous distribution) 

at the significance level of α (α is the desired 

significance level, e.g. 0.05). The obtained 

results from the K-S test showed that the 

distribution of the corresponding data in both 

data sets (calibration and test data sets) was 

identical (proof of H0 hypothesis of the K-S 

test). These results are also graphically 

illustrated in Fig. 3. Based on the above results, 

it could be concluded that the data used in 

calibration of the models were selected in a 

way that represented the data of the entire 

statistical period. It can increase the  

 

generalizability of the models. 

 

Results of modeling 

Table 4 shows the results of calibration and 

evaluation of various models of SRC using 

data of calibration and test data sets. The 

obtained results show that hybrid models of 

SRC (SRC-GA and SRC-PSO models) are more 

favorable than the SRC model and SRC model 

modified by an FAO factor (SRC-FAO). Also, 

among the hybrid models, SRC-GA model was 

selected as the best model because it had 

slightly more proper performance than SRC-

PSO model. In  Fig. 4, the fitness of various 

models of SRC to observational data [flow 

discharge (QW) and daily sediment discharge 

(QS) in calibration data set] has been 
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presented. As well shown in Fig. 4, GA and 

PSO hybrid models showed better fitness than 

other models.  

Furthermore, their difference was very partial, 

as their curves almost overlay each other.

 
Fig. 3. Comparing the distribution of flow discharge (Qw) and suspended sediment discharge (Qs) in 

the calibration and test data sets using two-sample Kolmogorov-Smirnov test.

Table 4. Results of evaluating various models with calibration and test data sets. 

 

 

 

 

 

 

 

 

 

 

Performance Measures and Data Sets 

Equation Model 
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0.94 0.63 0.13 0.11 710.20 703.05 5754.02 6220.87 Qs = 3.0718Qw1.3248 SRC 

0.94 0.63 0.87 0.62 638.99 802.09 2247.07 4079.17 Qs = 27.7752Qw1.3248 SRC-FAO 

0.98 0.64 0.93 0.64 347.31 471.88 1681.21 3964.10 Qs = 2.7866Qw1.750 SRC-GA 

0.97 0.64 0.93 0.64 370.02 502.34 1700.76 3960.88 Qs = 4.1783Qw1.6779 SRC-PSO 
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Fig. 4. Fitness of various SRC models to the observational data (calibration data set).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Scatter plot of observed and estimated suspended sediment load (SSL) 

(test data set) from different SRC models.

As shown in Fig. 4, some of the data are far 

from the regression line. This problem can be 

explained in two parts. First, one of the 

problems which is associated with sediment 

data measured at the hydrometric stations is 

basically the lack of data samples on flood 

conditions. So, it is common that the quality of 

these data does not have enough precision to a 

perfect model calibration. Second, in the 

sediment rating curve, there is only one 

predictor variable which is the flow discharge. 

According to the Rodríguez-Blanco et al. 

(2010), only 19% of the variance in the amount 

of suspended sediment discharge can be 

described by flow discharge. So, the poor 

quality of data on the one hand and use only 

one predictor variable in the regression model 

on the other hand cause that the model is not 

able to simulate all sediment data in low and 

high flows. Fig. 5, has shown scatter plot and 

results obtained from simulation of 

observational suspended sediment discharge 

of the test data set of different models. 

As can be seen in Fig. 5, the slope of fitness line 

in the evolutionary models (SRC-GA and SRC-

PSO) is better than those of FAO-SRC and SRC 
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models (0.78 against 0.71 in FAO-SRC and 0.07 

in SRC models respectively). However, in 

comparison with PSO-SRC model, the GA-SRC 

model, by having the less y-intercept and more 

R2 was identified as the best model in this 

study. Fig. 6 shows variations in the value of 

the cost function (RMSE on calibration data 

set) in GA and PSO algorithms over different 

generations (500 generations) up to reaching 

convergence and determining the optimum 

value of SRC model coefficients. 

 

DISCUSSION AND CONCLUSION 

Accurate suspended sediment load estimation 

is very essential in planning, designing, 

operating and favorable performance of water 

resource structures. The models based on 

regression methods, such as SRC model, have 

restricted assumptions such as normality, 

linearity and constant variance. These models 

are able to provide only one solution point (a 

and b coefficients) for estimation of sediment 

load. On the other hand, the evolutionary 

algorithms, such as GAs, PSO and etc. can 

produce more than one solution points that 

provide the optimal relation between flow 

discharge and sediment loads. Also, they are 

not restricted by regression assumptions. 

Generally, to optimize the coefficients of the 

SRC model, data log-transformation and least 

square error method are used in a form of linear 

regression.

  

 
Fig. 6. Diagram of the minimum cost (RMSE) as a function of generations up to reaching 

convergence in GA and PSO algorithms.

 

The data log-transformation results in a bias in 

the calculation of model coefficients and 

underestimation of SSL (sediment discharge or 

sediment concentration). This problem is most 

obvious in high flood discharges, and the 

model error increases with an increase in the 

flow discharge. So far, different correction 

factors have been introduced to correct the bias. 

However, these factors sometimes cause 

another error in the form of an overestimation 

along with different results. In this study, 

besides the conventional methods (least square 

error method and the model modified with 

FAO factor), the SRC model coefficients were 

optimized through evolutionary algorithms  

(GA and PSO) and results were much more 

favorable than those of the conventional  

 

methods. The results of this study conformed to 

those of the studies conducted by Altunkaynak 

(2009), Mohammad Rezapour et al. (2016) and 

Swain & Sahooh (2017). Using evolutionary 

algorithms also prevents the data logarithm 

transformation and use of correction factors 

and increases the accuracy of results. Moreover, 

to increase generalizability of data-driven 

models, the samples used in calibration of 

models should represent the data of the entire 

statistical period. To properly evaluate the 

model and its results, the test data set should be 

similar to those of calibration data set. This is an  

important problem and of the fundamental 

challenges in modeling, as the failure to use 

similar homogenous data in calibration and test 

sets may largely affect the results of modeling. 
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So that, the SOM clustering method can be used 

to provide similar homogeneous data sets for 

calibration and evaluation of data-driven 

models (Li et al. 2010). 
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های تکاملی و شبکه عصبی رسوب با استفاده از الگوریتم سازی ضرایب منحنی سنجهبهینه

 مصنوعی بدون ناظر

 

 .الف صالح پورجم، *.م طباطبائی

 
 خاک و آبخیزداری، سازمان تحقیقات، آموزش و ترویج کشاورزی، وزارت جهاد کشاورزی، تهران، ایرانپژوهشکده حفاظت 

 
 (07/06/69: تاریخ پذیرش 14/04/69: تاریخ دریافت)

 

 چکیده

این، در اغلب موارد وجود . با استمنحنی سنجه رسوب، یک مدل رگرسیونی مرسوم در برآورد بار رسوب معلق از دبی جریان 

. ودشهای منحنی سنجه رسوب سبب بروز  خطا شده که منجر به کم برآوردی بار رسوب معلق میها در مدلتبدیل لگاریتمی داده

رود های دبی جریان روزانه و بار رسوب معلق ایستگاه هیدرومتری شلمان واقع در رودخانه شلماندر این مطالعه، با استفاده از داده

م های تکاملی )الگوریتدل منحنی سنجه رسوب اقتباس و پس از آن این مدل با استفاده از الگوریتمدر استان گیلان، ایران، م

ها دلدهی مبه منظور افزایش قدرت تعمیم که . لازم به ذکراستشدواسنجی  سازی ازدحام ذرات( مجدداًژنتیک و الگوریتم بهینه

ها هها(، دادبندی دادهخوشه برایده )یک شبکه عصبی بدون ناظر ازمانسها، با استفاده از روش نگاشت خودو قبل از واسنجی آن

های واسنجی و ها به دو دسته همگن و مشابه )مجموعه دادهها، دادهگیری از آنبندی شده و سپس با استفاده از نمونهخوشه

سازی ضرایب مدل منحنی برای بهینههای مناسبی های تکاملی، روشبندی شدند. نتایج نشان داد که الگوریتمآزمون( طبقه

های سنتی منحنی سنجه رسوب یا منحنی سنجه تصحیح شده با مراتب بهتر از مدل ها بهسنجه رسوب هستند و نتایج آن

 RMSEهای تکاملی با کاهش مقدار ، به نحوی که مدل منحنی سنجه رسوب واسنجی شده با الگوریتماستضرایب تصحیحی 

های واسنجی شده با تن در روز )در مدل 21/1961تن در روز )در مدل اصلی منحنی سنجه( به   02/7774 های آزمون ازداده

است. در مجموع، استفاده از  تن در روز افزایش داده 61/4072های تکاملی( صحت برآورد رسوب معلق را به میزان الگوریتم

ها و استفاده از ضرایب تصحیح مانع از تبدیل لگاریتمی دادههای منحنی سنجه رسوب، های تکاملی در واسنجی مدلالگوریتم

 .شودسازی میو همچنین سبب افزایش صحت نتایج شبیه شده
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