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Brain energy metabolism has been the object of intense research in recent years.
Pioneering work has identified the different cell types involved in energy production
and use. Recent evidence has demonstrated a key role of L-Lactate in brain energy
metabolism, producing a paradigm-shift in our understanding of the neuronal energy
metabolism. At the center of this shift, is the identification of a central role of astrocytes
in neuroenergetics. Thanks to their morphological characteristics, they are poised to
take up glucose from the circulation and deliver energy substrates to neurons. Astrocyte
neuron lactate shuttle (ANLS) model, has shown that the main energy substrate that
astrocytes deliver to neurons is L-Lactate, to sustain neuronal oxidative metabolism.
L-Lactate can also be produced from glycogen, the storage form of glucose, which is
exclusively localized in astrocytes. Inhibition of glycogen metabolism and the ensuing
inhibition of L-Lactate production leads to cognitive dysfunction. Experimental evidence
indicates that the role of lactate in cognitive function relates not only to its role as a
metabolic substrate for neurons but also as a signaling molecule for synaptic plasticity.
Interestingly, a similar metabolic uncoupling appears to exist in peripheral tissues plasma,
whereby glucose provides L-Lactate as the substrate for cellular oxidative metabolism. In
this perspective article, we review the known information on the distribution of glycogen
and lactate within brain cells, and how this distribution relates to the energy regime of
glial vs. neuronal cells.
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INTRODUCTION

L-Lactate was isolated in the 18th century and found to be released by muscle cells upon
exertion, its physiological role been reduced, for a long time, to a simple waste product of
anerobic metabolism. Interesting work in the ’80s started to unveil the metabolic properties
of L-Lactate in skeletal muscles (Brooks, 1985). In contrast, our understanding of the energy
metabolism in the central nervous system (CNS) was delayed because of the technical challenges
in studying the brain compared to the peripheral organs. However, in the ’90s, it was proposed
that astrocytes release L-Lactate as a result of aerobic glycolysis, i.e., the processing of glucose to
lactate in the presence of physiological concentrations of oxygen, upon synaptic stimulation to
support neuronal function, providing the first evidence of a lactate shuttle in the CNS (Pellerin
and Magistretti, 1994; Magistretti and Allaman, 2018). This metabolic profile of astrocytes and
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their role in brain energy metabolism was initially received with
skepticism, as mammalian cells are known to generate their main
energy source molecule, ATP, within mitochondria, starting
from glucose. Indeed, since glucose is almost fully oxidized
by the brain, this implied that a transfer of L-Lactate from
astrocytes to neurons should exist. ATP is mainly produced by
oxidative phosphorylation, fueled by the tricarboxylic acid (TCA)
cycle. Pyruvate originating from the glycolysis is transformed
in a sequence of reactions to produce substrates supporting
the TCA activity. Neurons are no different and express
similar transporters for glucose (GLUT) at their membrane.
Consistent with their high energetic demands neurons are
mainly oxidative (80%–90% of their metabolism; Magistretti
and Allaman, 2015). Questions then arise, as to why should
neurons behave differently, and somehow rely on astrocyte-
derived lactate to support their energy needs? Is this metabolic
profile due to the specific expression of metabolic enzymes
or because of the inability of neurons to store energy in
the form of glycogen (Magistretti and Allaman, 2018)? Also,
how do astrocytes sustain neuronal metabolism? In this
short perspective article, we will briefly analyze these three
points, and provide a review of recent evidence that address
these questions.

THE ASTROCYTE NEURON LACTATE
SHUTTLE (ANLS)

According to the neuro-metabolism view up to the early ’90s,
cells in the CNS simply need to consume glucose, whose
constant supply needs to be provided by the vascular system,
in order to sustain the brain homeostasis. Indeed, as already
demonstrated by Sherrington at the end of the 19th century,
blood flow is coupled to neuronal activity through a mechanism
known as neurovascular coupling (Roy and Sherrington, 1890)
mediated by a variety of vasoactive molecules (Magistretti
and Allaman, 2015). This activity-dependent increase in local
blood flow was considered sufficient to provide the necessary
amount of glucose for the direct use by neurons. However,
particularly upon intense neuronal activity, such as during
long term potentiation (LTP), when synaptic plasticity requires
additional energy support, glucose does not seem to be the
preferred substrate to maintain neuronal activity (Suzuki et al.,
2011). Experiments that investigated learning and memory
formation in the context of the energy metabolism have shown
that lactate, rather than glucose, was effective in reversing the
amnestic effect caused by the inhibition of monocarboxylate
transporters (MCTs) and of pharmacological inhibition of
glycogenolysis, one of the mechanisms responsible for lactate
production (Suzuki et al., 2011; Boury-Jamot et al., 2016;
Gao et al., 2016). Supporting this view is the ‘‘Astrocyte-
Neuron Lactate Shuttle (ANLS),’’ a neuroenergetic model first
proposed in the ’90s, according to which glutamate uptake
into astrocytes as a result of synaptic activity triggers an
intracellular signaling cascade within astrocytes that results
in the production of L-Lactate through aerobic glycolysis
(Pellerin and Magistretti, 1994).

The ANLS model reconciled, the morphological-based
hypotheses of Camillo Golgi related to astrocytic metabolic
support of neurons, with experimental evidence. In vivo
experiments have demonstrated that indeed astrocytes are the
predominant site of glucose uptake during synaptic activity
(Figure 1). Thus, downregulating the expression of glutamate
transporters on astrocytes drastically reduces the activity-
dependent uptake of glucose into the brain parenchyma (Cholet
et al., 2001; Voutsinos-Porche et al., 2003). A mirror experiment
in which an increase in glutamate transporters in astrocytes was
induced pharmacologically, resulted in an increase in glucose
uptake into the brain parenchyma as determined by in vivo
2-deoxyglucose PET (Zimmer et al., 2017).

Additional in vivo experiments have shown that a gradient
exists between the concentration of L-Lactate in neurons and
astrocytes, favoring its efflux from astrocytes and its influx in
neurons (Mächler et al., 2016), a phenomenon that has been
also validated using computational models (Jolivet et al., 2015;
Coggan et al., 2018).

Lactate is not only an energy substrate for neurons.
Indeed, recent evidence, triggered by the observation that
lactate transfer from astrocytes to neurons is necessary for
LTP expression, synaptic plasticity and memory consolidation
(Suzuki et al., 2011) has shown that lactate is also a signaling
molecule for synaptic plasticity. Indeed lactate modulates
the expression of at least 20 genes related to synaptic
plasticity and neuroprotection (Yang et al., 2014; Margineanu
et al., 2018). This signaling action of lactate is due to a
positive modulation of N-Methyl-D-aspartate (NMDA) receptor
signaling (Yang et al., 2014).

GLYCOGEN

Recent findings about the specific role of lactate derived from
glycogen, rather than direct glycolysis of glucose, represents
another modality through which the ANLS operates. Glycogen
has a well-known structure, formed by linear chains of glucose
that accumulates around a core protein called glycogenin,
forming round granules of various size, between 20 and
80 nm in diameter in astrocytic processes (Calì et al., 2016).
Glycogen was first discovered in peripheral tissues, and its
concentration in the brain, compared to muscle and liver,
is considerably lower, in a concentration ratio of 1:10:100,
respectively (Magistretti and Allaman, 2013). Interestingly,
glycogen granules are specifically located in astrocytes, although
under pathological conditions they can accumulate in neurons,
eventually to cause neurodegeneration, like in the Lafora disease
(Magistretti and Allaman, 2007; Vilchez et al., 2007).

As glycogen is the storage form of glucose, it is safe to
speculate about its physiological role as energy storage, which
implies that astrocytes can be considered energy reservoirs. A
pioneering work in the ’80s demonstrated how, in the cortex,
two neuromodulators, vasoactive intestinal peptide (VIP)
and noradrenaline (NA; Magistretti et al., 1981; Magistretti
and Morrison, 1988), are potent glycogenolytic signals, a
phenomenon resulting in local increase of phosphate-bound
energy sources (ATP) within the stimulated networks
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FIGURE 1 | Schematics of the peripheral vs. central action of L-Lactate. Left, In the brain, neurons (blue) can uptake glucose using glucose transporters (GLUTs)
and use it as a source of energy at the level of their soma. Around synapses, astrocytes (green) take up glucose from the blood vessels (red) and store it as glycogen
granules (black). Upon synaptic activity, astrocytes produce L-Lactate in proximity of synapses, which express monocarboxylate transporter (MCT) transporters to
import lactate as local source of energy. Lactate can also be formed from glycogen, the storage form of glucose. Right, In peripheral tissues glucose fuels
tricarboxylic acid (TCA) cycle via circulating lactate through glycolysis.

(Magistretti and Schorderet, 1984). Recent evidence confirms
these findings, expanding our understanding of the role of NA
in particular, whose network activation is mobilized during
attentional states necessary for cognitive functions such as
learning and memory (Gao et al., 2016; Alberini et al., 2017).
From a molecular point of view, NA binds to β2 adrenergic
receptors in astrocytes, whose activation triggers glycogenolysis
(Magistretti and Morrison, 1988; Sorg and Magistretti, 1992)
and the subsequent rise of extracellular lactate levels that are
needed for LTP and memory formation (Suzuki et al., 2011;
Gao et al., 2016).

Therefore, given the role of lactate derived from astrocytic
glycogen in synaptic plasticity, a functional relationship between
astrocytic processes filled with glycogen and synaptic profiles is
likely to exist (Calì et al., 2016, 2017; Agus et al., 2018). Indeed,
recent reports using 3D electron microscopy have shown the
preferential location of glycogen granules in astrocytic processes
around synapses, rather than being randomly distributed in
the astrocytic cytosol, both in the hippocampus and in the
cortex (Calì et al., 2016; Mohammed et al., 2018). From an
ultrastructural point of view, such distribution suggests that
when high firing rate results in phenomena like LTP, that
are translated into higher functions such as learning and
memory stabilization, lactate, derived from glycogen stored
within astrocytic granules close to synapses may exert its
dual role of both energy substrate and signaling molecule
for plasticity (Figure 1).

Sustained neuronal activity, like the one leading to LTP,
does not merely induce a metabolic response in astrocytes,
whose effect would be measurable after hours, but is also
known to trigger an immediate calcium elevation (Araque
et al., 2014; Bazargani and Attwell, 2016; Santello et al.,

2019). Astrocytic calcium waves are diverse and complex
(Di Castro et al., 2011; Agarwal et al., 2017; Bindocci et al.,
2017), and their exact nature is still under debate, although
evidence has shown their role in triggering glutamate
release both in vitro and in situ (Bezzi et al., 1998). One
potential mechanism involves exocytosis of synaptic-like
microvesicles (Calì et al., 2008, 2009, 2014; Marchaland
et al., 2008) upon activation of astrocytic GPCRs (Bezzi
et al., 2004). It is worth mentioning that in a recent report,
astrocytes have been shown to modulate levels of another
monamine, dopamine, in the prefrontal cortex (Petrelli et al.,
2018). These astrocytes express channels and enzymes that
regulate homeostasis of dopamine, which could potentially
modulate glycogen phosphorylase (GP) activity via cAMP
(Smith et al., 2004). Furthermore, dopamine activation of
D1-like receptors increases intracellular calcium levels, a
mechanism likely to take place in astrocytes. Despite the
link between LTP and calcium waves in astrocytes, a similar
effect on metabolic substrates like lactate or glycogen is
not known. A direct link has been reported between the
activation of the store-activated calcium channels (SOCE)
in astrocytes and glycogenolysis. This process serves as
a glycolytic source of ATP to fuel SERCA pumps, to
maintain adequate calcium levels in ER stores (Müller
et al., 2014). Calcium, in particular, is an indirect signal
for GP activation; therefore, one could speculate about
the role of calcium in mobilizing energy stores in close
proximity of microdomains. Conversely, calcium signaling
in astrocytes might be affected by their metabolic turnover,
as they depend on NAD+/NADH redox state, which is
highly influenced by lactate fluxes (Requardt et al., 2012;
Wilhelm and Hirrlinger, 2012).
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PERIPHERAL LACTATE UTILIZATION

The role of L-Lactate is not limited to the CNS. Metabolism
in peripheral tissues, and the action of lactate have also
been extensively investigated in skeletal muscle, heart and in
tumoral tissues. Several groups identified the presence of lactate
dehydrogenase (LDH) on the mitochondria of sperm cells
(Hochachka, 1980) and then in kidney, liver and muscle cells
(Kline et al., 1986; Brandt et al., 1987). Brooks (1985) first named
the cell-to-cell lactate shuttle in muscle, in 1985. Interestingly,
the lactate shuttle is not limited to cytoplasm-mitochondria
communication but also to cytosol-peroxisome where it supports
the β-oxidation (McClelland et al., 2003). Lactate is produced
continuously under aerobic conditions in skeletal muscle and
oxidative muscle cells have the capacity to oxidize lactate present
in the plasma or released by glycolytic muscle cells. It was
also shown that rodent and human muscles cells possess the
mitochondrial lactate oxidation complex (mLOC; Dubouchaud
et al., 2000) that includes the presence of LDH isoforms, MCTs
and cytochrome C oxidase, in their mitochondria. Furthermore,
lactate can also be oxidized by mitochondria isolated from liver,
heart and skeletal muscle cells.

During exercise, the oxidation of L-Lactate released by muscle
cells increases up to 75%–80% of the basal values in the blood
stream (Mazzeo et al., 1986) and it is now demonstrated that
lactate can stimulate mitochondria biogenesis through activation
of PGC1α (Hashimoto et al., 2007) which in turn influences
the transcription of LDH isoforms to increase the ratio of
LDHA/LDHB. This change promotes the formation of Lactate
over pyruvate (Summermatter et al., 2013). In the heart, during
exercise, it is also believed that lactate becomes the predominant
source of energy compared to other metabolic sources (Gertz
et al., 1988) and longitudinal studies have demonstrated that
trained animals have reduced lactate blood levels, most likely
due to an enhanced capacity to use it as a substrate by different
organs (Bergman et al., 1999). Interestingly, it appears that
during endurance exercise, significant amounts of brain derived
neurotrophic factor (BDNF) are released in the bloodstream
correlating with the release of L-Lactate (Schiffer et al., 2011).
BDNF is an important trophic factor in the brain. L-Lactate has
been demonstrated to increase BDNF expression in different
neural cell systems (Coco et al., 2013; Yang et al., 2014).
Interestingly, recent work has shown that cortical astrocytes can
recycle BDNF and ultimately promote TrkB phosphorylation, to
sustain LTP (Vignoli et al., 2016).

Besides its role in brain and muscle physiology, lactate has
an important role in cancer cells. Tumors have high glycolytic
metabolism even under normal O2 levels, a phenomenon known
as the Warburg effect. This environment supports cancer cell
survival and leads to accumulation of L-Lactate. This buildup
has been reported to inhibit the migration of CD8+, CD4+
T-cells (Haas et al., 2015). Moreover, tumors producing high
level of LDHA (favoring the conversion of Pyruvate to Lactate)
have less positive outcomes (Brand et al., 2016). Blood lactate
concentration observed around a tumorigenic environment can
vary massively, raising from 1.5 to 3 mM in physiological
conditions, up to 30–40 mM in cancerous tissues (Hirschhaeuser

et al., 2011; Colegio et al., 2014; Haas et al., 2015). Moreover,
the inhibition of the immune system by L-Lactate is not limited
to a disturbance of immune cells metabolism, but also through
an increase of pro-survival factor such as HIF-1α or angiogenic
factors (Shi et al., 2011; Magistretti and Allaman, 2018).

Overall, lactate has been shown to be involved in multiple
processes besides its metabolic support to muscle cells. L-Lactate
ensures the survival of tumoral tissues by both promoting
an environment favorable for their growth and reducing the
reactivity of the adaptive immune system.

LACTATE AS A METABOLIC BUFFER
BETWEEN GLUCOSE AND OXIDATIVE
METABOLISM IN PERIPHERAL TISSUES

Recently a mechanism reminiscent of the ANLS has been shown
to operate at the whole-body level (Figure 1). Indeed using in vivo
Magnetic Resonance Spectroscopy to trace the fate of various
metabolites in fed and starving mice, it was shown that 13C-
lactate was extensively labeling TCA intermediates in peripheral
organs (Hui et al., 2017). By measuring glucose metabolites in
all organs, the authors found a considerably higher amount of
circulating lactate compared to other metabolites, concluding
that L-Lactate can act as a reservoir molecule whose turnover can
be glycolytically fine-tuned on demand, rather than directly using
glucose. This mechanism is reminiscent of what is observed in
tumorigenic environment, where circulating lactate represents a
more efficient way to use local energy reserves and uncouple it
from glucose availability, which can be influenced by multiple
factors. Interestingly, the only exception was the brain, where
glucose was surpassing the amount of circulating lactate. As
shown by the ANLS, a lactate gradient between astrocytes and
neurons (Mächler et al., 2016) allows its exchange via the
MCTs. Such a metabolic flow relies on astrocytic glycolysis,
which is necessarily coupled to glucose utilization, triggered by
synaptic signaling (Pellerin andMagistretti, 1994;Magistretti and
Allaman, 2015). An even more tightly regulated way of energy
delivery on demand occurs via lactate derived from glycogen
(Suzuki et al., 2011; Gao et al., 2016). In this case, energy stores,
under the form of glycogen granules, around synapses, can serve
asmetabolic reservoirs of lactate for energy delivery and plasticity
signals for synapses. Consistent with the fact that astrocytes
are locally synthesizing on demand lactate from glucose and
glycogen, the amount of peripheral lactate accessing the brain is
minimal (Hui et al., 2017).

From the above considerations, one should consider a dual
action of lactate; one, as a source of energy, based on the
uncoupling of glucose metabolism from the TCA cycle in
astrocytes and the delivery of lactate to neurons. The second one,
via the glycogen, as a signaling molecule for plasticity.

ANY ISSUES?

At its time of publication in 1994 (Pellerin and Magistretti,
1994), the ANLS model has been challenged, although the
concept of the lactate shuttle, at least in the skeletal muscle,

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 March 2019 | Volume 13 | Article 82

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Calì et al. Lactate, Head Over Feet

was not a novelty (Brooks, 1985). It is worth mentioning that
most controversies around the ANLS raised from calculations
inferred from theoretical models or metabolic stoichiometry
rather than experimental data, opposing to the ANLS a
model hypothesizing lactate flow from neurons to astrocytes,
for disposal into the blood stream. (Dienel, 2012, 2017)
To summarize, the few opponents to the ANLS argue that
considering the rapid release of lactate in the bloodstream upon
brain activity and the small concentration of lactate in the
brain its oxidation in the neurons cannot support their synaptic
activity. However, a compelling number of in vivo investigations
have demonstrated that synaptic activity, and glutamate release
trigger upstream intracellular cascades in astrocytes promoting
glucose utilization mainly by astrocytes (Chuquet et al., 2010;
Jakoby et al., 2014). Moreover, experimental work has also
shown that upon glutamate activity, the glycolytic activity in
the astrocytes is enhanced, compared to neurons (Mongeon
et al., 2016) and that the loss of astrocytic glutamate transporters
reduced the glucose consumption in activated brain areas
(Cholet et al., 2001). Finally, some questions arose about
the neuronal type that can support the model. For example,

since GABA uptake by the astrocytes does not trigger aerobic
glycolysis (Peng et al., 1994; Chatton et al., 2003) it is
clear that energy delivery to GABA neurons operates through
other mechanisms. However, since GABA neurons are mostly
interneurons that are activated by glutamatergic inputs, it is
conceivable that the glutamate-stimulated ANLS may provide
energy to GABAergic neurons. Overall, converging evidence
from several laboratories indicates that the ANLS provides
an operational model for the coupling between neurons and
astrocytes (Barros and Weber, 2018).
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