
ORIGINAL RESEARCH
published: 07 March 2019

doi: 10.3389/fnins.2019.00095

Frontiers in Neuroscience | www.frontiersin.org 1 March 2019 | Volume 13 | Article 95

Edited by:

Mark D. McDonnell,

University of South Australia, Australia

Reviewed by:

Sacha Jennifer van Albada,

Forschungszentrum Jülich, Germany

Sadique Sheik,

AiCTX AG, Switzerland

*Correspondence:

Abhronil Sengupta

asengup@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 14 September 2018

Accepted: 25 January 2019

Published: 07 March 2019

Citation:

Sengupta A, Ye Y, Wang R, Liu C and

Roy K (2019) Going Deeper in Spiking

Neural Networks: VGG and Residual

Architectures. Front. Neurosci. 13:95.

doi: 10.3389/fnins.2019.00095

Going Deeper in Spiking Neural
Networks: VGG and Residual
Architectures
Abhronil Sengupta 1*, Yuting Ye 2, Robert Wang 2, Chiao Liu 2 and Kaushik Roy 1

1Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States, 2 Facebook

Reality Labs, Facebook Research, Redmond, WA, United States

Over the past few years, Spiking Neural Networks (SNNs) have become popular as a

possible pathway to enable low-power event-driven neuromorphic hardware. However,

their application in machine learning have largely been limited to very shallow neural

network architectures for simple problems. In this paper, we propose a novel algorithmic

technique for generating an SNN with a deep architecture, and demonstrate its

effectiveness on complex visual recognition problems such as CIFAR-10 and ImageNet.

Our technique applies to both VGG and Residual network architectures, with significantly

better accuracy than the state-of-the-art. Finally, we present analysis of the sparse

event-driven computations to demonstrate reduced hardware overhead when operating

in the spiking domain.

Keywords: spiking neural networks, event-driven neural networks, sparsity, neuromorphic computing, visual

recognition

1. INTRODUCTION

Spiking Neural Networks (SNNs) are a significant shift from the standard way of operation of
Artificial Neural Networks (Farabet et al., 2012). Most of the success of deep learning models of
neural networks in complex pattern recognition tasks are based on neural units that receive, process
and transmit analog information. Such Analog Neural Networks (ANNs), however, disregard the
fact that the biological neurons in the brain (the computing framework after which it is inspired)
processes binary spike-based information. Driven by this observation, the past few years have
witnessed significant progress in the modeling and formulation of training schemes for SNNs as
a new computing paradigm that can potentially replace ANNs as the next generation of Neural
Networks. In addition to the fact that SNNs are inherently more biologically plausible, they offer
the prospect of event-driven hardware operation. Spiking Neurons process input information only
on the receipt of incoming binary spike signals. Given a sparsely-distributed input spike train,
the hardware overhead (power consumption) for such a spike or event-based hardware would be
significantly reduced since large sections of the network that are not driven by incoming spikes can
be power-gated (Chen et al., 1998). However, the vast majority of research on SNNs have been
limited to very simple and shallow network architectures on relatively simple digit recognition
datasets like MNIST (LeCun et al., 1998) while only few works report their performance on more
complex standard vision datasets like CIFAR-10 (Krizhevsky and Hinton, 2009) and ImageNet
(Russakovsky et al., 2015). The main reason behind their limited performance stems from the fact
that SNNs are a significant shift from the operation of ANNs due to their temporal information
processing capability. This has necessitated a rethinking of training mechanisms for SNNs.

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00095
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00095&domain=pdf&date_stamp=2019-03-07
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:asengup@purdue.edu
https://doi.org/10.3389/fnins.2019.00095
https://www.frontiersin.org/articles/10.3389/fnins.2019.00095/full
http://loop.frontiersin.org/people/614469/overview
http://loop.frontiersin.org/people/657306/overview
http://loop.frontiersin.org/people/502975/overview

Sengupta et al. Going Deeper in Spiking Neural Networks

2. RELATED WORK

Broadly, there are two main categories for training SNNs—
supervised and unsupervised. Although unsupervised learning
mechanisms like Spike-Timing Dependent Plasticity (STDP) are
attractive for the implementation of low-power on-chip local
learning, their performance is still outperformed by supervised
networks on even simple digit recognition platforms like the
MNIST dataset (Diehl and Cook, 2015). Driven by this fact,
a particular category of supervised SNN learning algorithms
attempts to train ANNs using standard training schemes
like backpropagation (to leverage the superior performance
of standard training techniques for ANNs) and subsequently
convert to event-driven SNNs for network operation (Pérez-
Carrasco et al., 2013; Cao et al., 2015; Diehl et al., 2015;
Zhao et al., 2015). This can be particularly appealing for
NN implementations in low-power neuromorphic hardware
specialized for SNNs (Merolla et al., 2014; Akopyan et al.,
2015) or interfacing with silicon cochleas or event-driven sensors
(Posch et al., 2011, 2014). Our work falls in this category and is
based on the ANN-SNN conversion scheme proposed by authors
in Diehl et al. (2015). However, while prior work considers the
ANN operation only during the conversion process, we show that
considering the actual SNN operation during the conversion step
is crucial for achieving minimal loss in classification accuracy. To
that effect, we propose a novel weight-normalization technique
that ensures that the actual SNN operation is in the loop
during the conversion phase. Note that this work tries to exploit
neural activation sparsity by converting networks to the spiking
domain for power-efficient hardware implementation and are
complementary to efforts aimed at exploring sparsity in synaptic
connections (Han et al., 2015a).

3. MAIN CONTRIBUTIONS

The specific contributions of our work are as follows:
(i) As will be explained in later sections, there are various

architectural constraints involved for training ANNs that can
be converted to SNNs in a near-lossless manner. Hence, it is
unclear whether the proposed techniques would scale to larger
and deeper architectures for more complicated tasks. We provide
proof of concept experiments that deep SNNs (extending from
16 to 34 layers) can provide competitive accuracies over complex
datasets like CIFAR-10 and ImageNet.

(ii) We propose a new ANN-SNN conversion technique that
statistically outperforms state-of-the-art techniques. We report a
classification error of 8.45% on the CIFAR-10 dataset which is the
best-performing result reported for any SNN network, till date.
For the first time, we report an SNN performance on the entire
ImageNet 2012 validation set. We achieve a 30.04% top-1 error
rate and 10.99% top-5 error rate for VGG-16 architectures.

(iii) We explore Residual Network (ResNet) architectures as a
potential pathway to enable deeper SNNs. We present insights
and design constraints that are required to ensure ANN-SNN
conversion for ResNets.We report a classification error of 12.54%
on the CIFAR-10 dataset and a 34.53% top-1 error rate and
13.67% top-5 error rate on the ImageNet validation set. This

is the first work that attempts to explore SNNs with residual
network architectures.

(iv) We demonstrate that SNN network sparsity significantly
increases as the network depth increases. This further motivates
the exploration of converting ANNs to SNNs for event-driven
operation to reduce compute overhead.

4. PRELIMINARIES

4.1. Input and Output Representation
The main difference between ANN and SNN operation is the
notion of time. While ANN inputs are static, SNNs operate
based on dynamic binary spiking inputs as a function of time.
The neural nodes also receive and transmit binary spike input
signals in SNNs, unlike in ANNs, where the inputs and outputs
of the neural nodes are analog values. In this work, we consider
a rate-encoded network operation where the average number of
spikes transmitted as input to the network over a large enough
time window is approximately proportional to the magnitude
of the original ANN inputs (pixel intensity in this case). The
duration of the time window is dictated by the desired network
performance (for instance, classification accuracy) at the output
layer of the network. A Poisson event-generation process is used
to produce the input spike train to the network. Every time-step
of SNN operation is associated with the generation of a random
number whose value is compared against the magnitude of the
corresponding input. A spike event is triggered if the generated
random number is less than the value of the corresponding
pixel intensity. This process ensures that the average number of
input spikes in the SNN is proportional to the magnitude of the
corresponding ANN inputs and is typically used to simulate an
SNN for recognition tasks based on datasets for static images
(Diehl et al., 2015). Figure 1 depicts a particular timed-snapshot
of the input spikes transmitted to the SNN for a particular image
from the CIFAR-10 dataset. Note that since we are considering
per pixel mean subtracted images, the input layer receives spikes
whose rate is proportional to the input magnitude with sign equal
to the input sign. However, for subsequent layers all spikes are
positive in sign since there are generated by spiking neurons
in the network. SNN operation of such networks are “pseudo-
simultaneous,” i.e., a particular layer operates immediately on the
incoming spikes from the previous layer and does not have to
wait for multiple time-steps for information from the previous
layer neurons to get accumulated. Given a Poisson-generated
spike train being fed to the network, spikes will be produced
at the network outputs. Inference is based on the cumulative
spike count of neurons at the output layer of the network over
a given time-window.

4.2. ANN and SNN Neural Operation
ANN to SNN conversion schemes usually consider Rectified
Linear Unit (ReLU) as the ANN activation function. For a neuron
receiving inputs xi through synaptic weightswi, the ReLU neuron
output y is given by,

y = max

(

0,
∑

i

wi.xi

)

(1)

Frontiers in Neuroscience | www.frontiersin.org 2 March 2019 | Volume 13 | Article 95

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sengupta et al. Going Deeper in Spiking Neural Networks

FIGURE 1 | The extreme left panel depicts a particular input image from the CIFAR-10 dataset with per pixel mean (over the training set) subtracted that is provided

as input to the original ANN. The middle panel represents a particular instance of the Poisson spike train generated from the analog input image. The accumulated

events provided to the SNN over 1,000 timesteps is depicted in the extreme right panel. This justifies the fact that the input image is being rate encoded over time for

SNN operation.

Although ReLU neurons are typically used in a large number
of machine learning tasks at present, the main reason behind
their usage for ANN-SNN conversion schemes is that they bear
functional equivalence to an Integrate-Fire (IF) Spiking Neuron
without any leak and refractory period (Cao et al., 2015; Diehl
et al., 2015). Note that this is a particular type of Spiking Neuron
model (Izhikevich, 2003). Let us consider the ANN inputs xi
encoded in time as a spike train Xi(t), where the average value
of Xi(t), E[Xi(t)] ∝ xi (for the rate encoding network being
considered in this work). The IF Spiking Neuron keeps track of
its membrane potential, vmem, which integrates incoming spikes
and generates an output spike whenever the membrane potential
cross a particular threshold vth. The membrane potential is reset
to zero at the generation of an output spike. All neurons are reset
whenever a spike train corresponding to a new image/pattern
in presented. The IF Spiking Neuron dynamics as a function of
time-step, t, can be described by the following equation,

vmem(t + 1) = vmem(t)+
∑

i

wi.Xi(t) (2)

Note that the neuron dynamics is independent of the actual
magnitude of the time-step. Let us first consider the simple case
of a neuron being driven by a single input X(t) and a positive
synaptic weight w. Due to the absence of any leak term in the
neural dynamics, it is intuitive to show that the corresponding
output spiking rate of the neuron is given by E[Y(t)] ∝ E[X(t)],
with the proportionality factor being dependent on the ratio of
w and vth. In the case when the synaptic weight is negative,
the output spiking activity of the IF neuron is zero since the
neuron is never able to cross the firing potential vth, mirroring the
functionality of a ReLU. The higher the ratio of the threshold with
respect to the weight, the more time is required for the neuron
to spike, thereby reducing the neuron spiking rate, E[Y(t)], or
equivalently increasing the time-delay for the neuron to generate
a spike. A relatively high firing threshold can cause a huge delay
for neurons to generate output spikes. For deep architectures,
such a delay can quickly accumulate and cause the network to not
produce any spiking outputs for relatively long periods of time.
On the other hand, a relatively low threshold causes the SNN to

lose any ability to distinguish between different magnitudes of the
spike inputs being accumulated to the membrane potential (the
term

∑

i wi.Xi(t) in Equation 2) of the Spiking Neuron, causing
it to lose evidence during the membrane potential integration
process. This, in turn, results in accuracy degradation of the
converted network. Hence, an appropriate choice of the ratio of
the neuron threshold to the synaptic weights is essential to ensure
minimal loss in classification accuracy during the ANN-SNN
conversion process (Diehl et al., 2015). Consequently, most of
the research work in this field has been concentrated on outlining
appropriate algorithms for threshold-balancing, or equivalently,
weight normalizing different layers of a network to achieve near-
lossless ANN-SNN conversion.

4.3. Architectural Constraints
4.3.1. Bias in Neural Units
Typically neural units used for ANN-SNN conversion schemes
are trained without any bias term (Diehl et al., 2015). This is
due to the fact that optimization of the bias term in addition
to the spiking neuron threshold expands the parameter space
exploration, thereby causing the ANN-SNN conversion process
to be more difficult. Requirement of bias less neural units also
entails that Batch Normalization technique (Ioffe and Szegedy,
2015) cannot be used as a regularizer during the training process
since it biases the inputs to each layer of the network to ensure
each layer is provided with inputs having zero mean. Instead,
we use dropout (Srivastava et al., 2014) as the regularization
technique. This technique simply masks portions of the input
to each layer by utilizing samples from a Bernoulli distribution
where each input to the layer has a specified probability of
being dropped.

4.3.2. Pooling Operation
Deep convolutional neural network architectures typically
consist of intermediate pooling layers to reduce the size of
the convolution output maps. While various choices exist for
performing the pooling mechanism, the two popular choices are
either max-pooling (maximum neuron output over the pooling
window) or spatial-averaging (two-dimensional average pooling
operation over the pooling window). Since the neuron activations

Frontiers in Neuroscience | www.frontiersin.org 3 March 2019 | Volume 13 | Article 95

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sengupta et al. Going Deeper in Spiking Neural Networks

are binary in SNNs instead of analog values, performing max-
pooling would result in significant information loss for the next
layer. Consequently, we consider spatial-averaging as the pooling
mechanism in this work (Diehl et al., 2015).

5. DEEP CONVOLUTIONAL SNN
ARCHITECTURES: VGG

As mentioned previously, our work is based on the proposal
outlined by authors in Diehl et al. (2015) wherein the neuron
threshold of a particular layer is set equal to the maximum
activation of all ReLUs in the corresponding layer (by passing the
entire training set through the trained ANN once after training is
completed). Such a “Data-Based Normalization” technique was
evaluated for three-layered fully connected and convolutional
architectures on the MNIST dataset (Diehl et al., 2015). Note
that, this process is referred to as “weight-normalization” and
“threshold-balancing” interchangeably in this text. As mentioned
before, the goal of this work is to optimize the ratio of the
synaptic weights with respect to the neuron firing threshold,
vth. Hence, either all the synaptic weights preceding a neural
layer are scaled by a normalization factor wnorm equal to the
maximum neural activation and the threshold is set equal to 1
(“weight-normalization"), or the threshold vth is set equal to the
maximum neuron activation for the corresponding layer with the
synaptic weights remaining unchanged (“threshold-balancing").
Both operations are exactly equivalent mathematically.

5.1. Proposed Algorithm: Spike-Norm
However, the above algorithm leads us to the question: Are ANN
activations representative of SNN activations? Let us consider
a particular example for the case of maximum activation for a
single ReLU. The neuron receives two inputs, namely 0.5 and 1.
Let us consider unity synaptic weights in this scenario. Since the
maximum ReLU activation is 1.5, the neuron threshold would be
set equal to 1.5. However, when this network is converted to the
SNN mode, both the inputs would be propagating binary spike
signals. The ANN input, equal to 1, would be converted to spikes
transmitting at every time-step while the other input would
transmit spikes 50% of the duration of a large enough time-
window. Hence, the actual summation of spike inputs received
by the neuron per time-step would be 2 for a large number of
samples, which is higher than the spiking threshold (1.5). Clearly,
some information loss would take place due to the lack of this
evidence integration.

Driven by this observation, we propose a weight-
normalization technique that balances the threshold of each
layer by considering the actual operation of the SNN in the
loop during the ANN-SNN conversion process. The algorithm
normalizes the weights of the network sequentially for each layer.
Given a particular trained ANN, the first step is to generate the
input Poisson spike train for the network over the training set
for a large enough time-window. The Poisson spike train allows
us to record the maximum summation of weighted spike-input
(the term

∑

i wi.Xi(t) in Equation 2, and hereafter referred to
maximum SNN activation in this text) that would be received by

the first neural layer of the network. In order to minimize the
temporal delay of the neuron and simultaneously ensure that
the neuron firing threshold is not too low, we weight-normalize
the first layer depending on the maximum spike-based input
received by the first layer. After the threshold of the first layer
is set, we are provided with a representative spike train at
the output of the first layer which enables us to generate the
input spike-stream for the next layer. The process is continued
sequentially for all the layers of the network. The main difference
between our proposal and prior work (Diehl et al., 2015) is the
fact that the proposed weight-normalization scheme accounts
for the actual SNN operation during the conversion process.
As we will show in the Results section, this scheme is crucial
to ensure near-lossless ANN-SNN conversion for significantly
deep architectures and for complex recognition problems.
We evaluate our proposal for VGG-16 network (Simonyan
and Zisserman, 2014), a standard deep convolutional network
architecture which consists of a 16 layer deep network composed
of 3 × 3 convolution filters (with intermediate pooling layers to
reduce the output map dimensionality with increasing number
of maps). The pseudo-code of the algorithm is given below.

Algorithm 1: SPIKE-NORM

input : Input Poisson Spike Train spikes, Number of
Time-Steps #timesteps

output: Weight-normalization / Threshold-balancing
factors vth,norm[i] for each neural layer (net.layer[i])
of the network net

1 initialization vth,norm[i] = 0 ∀ i = 1, ..., #net.layer;
2 // Set input of 1st layer equal to spike

train

3 net.layer[1].input = spikes;
4 for i← 1 to #net.layer do
5 for t← 1 to #timesteps do
6 // Forward pass spike-train for

neuron layer-i characterized by

membrane potential net.layer[i].vmem

and threshold net.layer[i].vth
7 net.layer[i] : forward(net.layer[i].input[t]) ;
8 // Determine threshold-balancing

factor according to maximum SNN

activation,

max(net.layer[i].weight ∗ net.layer[i].input[t]),
where ’*’ represents the

dot-product operation

9 vth,norm[i]=max(vth,norm[i],max(net.layer[i].weight ∗
net.layer[i].input[t]));

10 end

11 // Threshold-balance layer-i

12 net.layer[i].vth = vth,norm[i];
13 // Record input spike-train for next

layer

14 net.layer[i+ 1].input =
net.layer[i] : forward(net.layer[i].input);

15 end

Frontiers in Neuroscience | www.frontiersin.org 4 March 2019 | Volume 13 | Article 95

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sengupta et al. Going Deeper in Spiking Neural Networks

6. EXTENSION TO RESIDUAL
ARCHITECTURES

Residual network architectures were proposed as an attempt
to scale convolutional neural networks to very deep layered
stacks (He et al., 2016a). Although different variants of the basic
functional unit have been explored, we will only consider identity
shortcut connections in this text (shortcut type-A according
to the paper; He et al., 2016a). Each unit consists of two
parallel paths. The non-identity path consists of two spatial
convolution layers with an intermediate ReLU layer. While the
original ResNet formulation considers ReLUs at the junction of
the parallel non-identity and identity paths (He et al., 2016a),
recent formulations do not consider junction ReLUs in the
network architecture (He et al., 2016b). Absence of ReLUs
at the junction point of the non-identity and identity paths
was observed to produce a slight improvement in classification
accuracy on the CIFAR-10 dataset1. Due to the presence of the
shortcut connections, important design considerations need to be
accounted for to ensure near-lossless ANN-SNN conversion. We
start with the basic unit, as shown in Figure 2A, and point-wise
impose various architectural constraints with justifications. Note
the discussion in this section is based on threshold-balancing
(with synaptic weights remaining unscaled), i.e., the threshold of
the neurons are adjusted tominimize ANN-SNN conversion loss.

6.1. ReLUs at Each Junction Point
As we will show in the Results section, application of our
proposed SPIKE-NORM algorithm on such a residual architecture
resulted in a converted SNN that exhibited accuracy degradation
in comparison to the original trained ANN. We hypothesize
that this degradation is attributed mainly to the absence of any
ReLUs at the junction points. Each ReLU when converted to an
IF Spiking Neuron imposes a particular amount of characteristic
temporal delay (time interval between an incoming spike and
the outgoing spike due to evidence integration). Due to the
shortcut connections, spike information from the initial layers
gets instantaneously propagated to later layers. The unbalanced
temporal delay in the two parallel paths of the network can
result in distortion of the spike information being propagated
through the network. Consequently, as shown in Figure 2B, we
include ReLUs at each junction point to provide a temporal
balancing effect to the parallel paths (when converted to IF
Spiking Neurons). An ideal solution would be to include a ReLU
in the parallel path, but that would destroy the advantage of the
identity mapping.

6.2. Same Threshold of All Fan-In Layers
As shown in the next section, direct application of our proposed
threshold-balancing scheme still resulted in some amount of
accuracy loss in comparison to the baseline ANN accuracy.
However, note that the junction neuron layer receives inputs
from the previous junction neuron layer as well as the non-
identity neuron path. Since the output spiking activity of a
particular neuron is also dependent on the threshold-balancing

1http://torch.ch/blog/2016/02/04/resnets.html

factor, all the fan-in neuron layers should be threshold-balanced
by the same amount to ensure that input spike information
to the next layer is rate-encoded appropriately. However, the
spiking threshold of the neuron layer in the non-identity path
is dependent on the activity of the neuron layer at the previous
junction. An observation of the typical threshold-balancing
factors for the network without using this constraint (shown in
Figure 2C) reveal that the threshold-balancing factors mostly lie
around unity after a few initial layers. This occurs mainly due to
the identity mapping. The maximum summation of spike inputs
received by the neurons in the junction layers are dominated
by the identity mapping (close to unity). From this observation,
we heuristically choose both the thresholds of the non-identity
ReLU layer and the identity-ReLU layer equal to 1. However, the
accuracy is still unable to approach the baseline ANN accuracy,
which leads us to the third design constraint.

6.3. Initial Non-residual Pre-processing
Layers
An observation of Figure 2C reveals that the threshold-balancing
factors of the initial junction neuron layers are significantly
higher than unity. This can be a primary reason for the
degradation in classification accuracy of the converted SNN.
We note that the residual architectures used by authors in He
et al. (2016a) use an initial convolution layer with a very wide
receptive field (7× 7 with a stride of 2) on the ImageNet dataset.
The main motive behind such an architecture was to show the
impact of increasing depth in their residual architectures on
the classification accuracy. Inspired by the VGG-architecture,
we replace the first 7 × 7 convolutional layer by a series of
three 3 × 3 convolutions where the first two layers do not
exhibit any shortcut connections. Addition of such initial non-
residual pre-processing layers allows us to apply our proposed
threshold-balancing scheme in the initial layers while using a
unity threshold-balancing factor for the later residual layers.
As shown in the Results section, this scheme significantly
assists in achieving classification accuracies close to the baseline
ANN accuracy since after the initial layers, the maximum
neuron activations decay to values close to unity because of the
identity mapping.

7. EXPERIMENTS

7.1. Datasets and Implementation
We evaluate our proposals on standard visual object recognition
benchmarks, namely the CIFAR-10 and ImageNet datasets.
Experiments performed on networks for the CIFAR-10 dataset
are trained on the training set images with per-pixel mean
subtracted and evaluated on the testing set. We also present
results on the much more complex ImageNet 2012 dataset that
contains 1.28 million training images and report evaluation (top-
1 and top-5 error rates) on the 50,000 validation set. 224 × 224
crops from the input images are used for this experiment.

We use VGG-16 architecture (Simonyan and Zisserman,
2014) for both the datasets. ResNet-20 configuration outlined
in He et al. (2016a) is used for the CIFAR-10 dataset
while ResNet-34 is used for experiments on the ImageNet

Frontiers in Neuroscience | www.frontiersin.org 5 March 2019 | Volume 13 | Article 95

http://torch.ch/blog/2016/02/04/resnets.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sengupta et al. Going Deeper in Spiking Neural Networks

FIGURE 2 | (A) The basic ResNet functional unit. (B) Design constraints introduced in the functional unit to ensure near-lossless ANN-SNN conversion. (C) Typical

maximum SNN activations for a ResNet having junction ReLU layers but the non-identity and identity input paths not having the same spiking threshold. While this is

not representative of the case with equal thresholds in the two paths, it does justify the claim that after a few initial layers, the maximum SNN activations decay to

values close to unity due to the identity mapping.

dataset. As mentioned previously, we do not utilize any batch-
normalization layers. For VGG networks, a dropout layer is
used after every ReLU layer except for those layers which
are followed by a pooling layer. For Residual networks,
we use dropout only for the ReLUs at the non-identity
parallel paths but not at the junction layers. We found
this crucial for achieving training convergence. Note that we
have tested our framework only for the above mentioned
architectures and datasets. There is no selection bias in the
reported results.

Our implementation is derived from the Facebook ResNet
implementation code for CIFAR and ImageNet datasets available
publicly1. We use same image pre-processing steps and scale
and aspect-ratio augmentation techniques as used in2 (for
instance, random crop, horizontal flip and color normalization
transforms for the CIFAR-10 dataset). We report single-crop
testing results while the error rates can be further reduced with
10-crop testing (Krizhevsky et al., 2012). Networks used for the
CIFAR-10 dataset are trained on 2 GPUs with a batchsize of
256 for 200 epochs, while ImageNet training is performed on
8 GPUs for 100 epochs with a similar batchsize. The initial
learning rate is 0.05. The learning rate is divided by 10 twice,
at 81 and 122 epochs for CIFAR-10 dataset and at 30 and 60
epochs for ImageNet dataset. A weight decay of 0.0001 and
a momentum of 0.9 is used for all the experiments. Proper
weight initialization is crucial to achieve convergence in such
deep networks without batch-normalization. For a non-residual
convolutional layer (for both VGG and ResNet architectures)
having kernel size k × k with n output channels, the weights
are initialized from a normal distribution and standard deviation
√

2
k2n

. However, for residual convolutional layers, the standard

deviation used for the normal distribution was
√
2

k2n
. We observed

this to be important for achieving training convergence and a
similar observation was also outlined in Hardt and Ma (2016)
although their networks were trained without both dropout
and batch-normalization.

2https://github.com/facebook/fb.resnet.torch

7.2. Experiments for VGG Architectures
Our VGG-16 model architecture follows the implementation
outlined in3 except that we do not utilize the batch-normalization
layers. We used a randomly chosen mini-batch of size 256 from
the training set for the weight-normalization process on the
CIFAR-10 dataset. While the entire training set can be used
for the weight-normalization process, using a representative
subset did not impact the results. We confirmed this by running
multiple independent runs for both the CIFAR and ImageNet
datasets. The standard deviation of the final classification error
rate after 2,500 time-steps was ∼ 0.01%. All results reported
in this section represent the average of 5 independent runs
of the spiking network (since the input to the network is a
random process). No notable difference in the classification
error rate was observed at the end of 2, 500 time-steps and the
network outputs converged to deterministic values despite being
driven by stochastic inputs. For the SNN model based weight-
normalization scheme (SPIKE-NORM algorithm) we used 2,500
time-steps for each layer sequentially to normalize the weights.

Table 1 summarizes our results for the CIFAR-10 dataset.
The baseline ANN error rate on the testing set was 8.3%. Since
the main contribution of this work is to minimize the loss in
accuracy during conversion from ANN to SNN for deep-layered
networks and not in pushing state-of-the-art results in ANN
training, we did not perform any hyper-parameter optimization.
However, note that despite several architectural constraints being
present in our ANN architecture, we are able to train deep
networks that provide competitive classification accuracies using
the training mechanisms described in the previous subsection.
Further reduction in the baseline ANN error rate is possible
by appropriately tuning the learning parameters. For the VGG-
16 architecture, our implementation of the ANN-model based
weight-normalization technique, proposed by Diehl et al. (2015),
yielded an average SNN error rate of 8.54% leading to an
error increment of 0.24%. The error increment was minimized
to 0.15% on applying our proposed SPIKE-NORM algorithm.

3https://github.com/szagoruyko/cifar.torch

Frontiers in Neuroscience | www.frontiersin.org 6 March 2019 | Volume 13 | Article 95

https://github.com/facebook/fb.resnet.torch
https://github.com/szagoruyko/cifar.torch
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sengupta et al. Going Deeper in Spiking Neural Networks

TABLE 1 | Results for CIFAR-10 dataset.

Network architecture ANN

error (%)

SNN

error (%)

Error increment

(%)

4-layered networks (Cao et al.,

2015)

(Input cropped to 24 x 24)

20.88 22.57 1.69

3-layered networks (Esser et al.,

2016)

− 10.68 −

8-layered networks (Hunsberger

and Eliasmith, 2016)

(Input cropped to 24 x 24)

16.28 16.46 0.18

6-layered networks (Rueckauer

et al., 2017)

8.09 9.15 1.06

VGG-16

(ANN model based

conversion)

8.3 8.54 0.24

VGG-16

(SPIKE-NORM)

8.3 8.45 0.15

Note that we consider a strict model-based weight-normalization
scheme to isolate the impact of considering the effect of an
ANN vs. our SNN model for threshold-balancing. Further
optimizations of considering the maximum synaptic weight
during the weight-normalization process (Diehl et al., 2015) is
still possible.

Previous works have mainly focused on much shallower
convolutional neural network architectures. Although
Hunsberger and Eliasmith (2016) reports results with an
accuracy loss of 0.18%, their baseline ANN suffers from some
amount of accuracy degradation since their networks are trained
with noise (in addition to architectural constraints mentioned
before) to account for neuronal response variability due to
incoming spike trains (Hunsberger and Eliasmith, 2016). It is
also unclear whether the training mechanism with noise would
scale up to deeper layered networks. Our work reports the best
performance of a Spiking Neural Network on the CIFAR-10
dataset till date.

The impact of our proposed algorithm is much more
apparent on the more complex ImageNet dataset. The rates
for the top-1 (top-5) error on the ImageNet validation set are
summarized in Table 2. Note that these are single-crop results.
The accuracy loss during the ANN-SNN conversion process is
minimized by a margin of 0.57% by considering SNN-model
based weight-normalization scheme. It is therefore expected
that our proposed SPIKE-NORM algorithm would significantly
perform better than an ANN-model based conversion scheme
as the pattern recognition problem becomes more complex since
it accounts for the actual SNN operation during the conversion
process. Note that Hunsberger and Eliasmith (2016) reports a
performance of 48.2%(23.8%) on the first 3072-image test batch
of the ImageNet 2012 dataset.

At the time we developed this work, we were unaware of a
parallel effort to scale up the performance of SNNs to deeper
networks and large-scale machine learning tasks. The work was
recently published in Rueckauer et al. (2017). However, their
work differs from our approach in the following aspects:

TABLE 2 | Results for ImageNet dataset.

Network architecture ANN

error (%)

SNN

error (%)

Error increment

(%)

8-layered networks (Hunsberger

and Eliasmith, 2016)

(Tested on subset of 3,072

images)

− 48.20

(23.80)

−

VGG-16 (Rueckauer et al., 2017)

(Tested on subset of 2,570

images)

36.11

(15.14)

50.39

(18.37)

14.28

(3.23)

VGG-16

(ANN model based

conversion)

29.48

(10.61)

30.61

(11.21)

1.13

(0.6)

VGG-16

(SPIKE-NORM)

29.48

(10.61)

30.04

(10.99)

0.56

(0.38)

(i) Their work improves on prior approach outlined in Diehl
et al. (2015) by proposing conversion methods for removing the
constraints involved in ANN training (discussed in section 4.3).
We are improving on prior art by scaling up the methodology
outlined in Diehl et al. (2015) for ANN-SNN conversion by
including the constraints.
(ii) We are demonstrating that considering SNN operation in
the conversion process helps to minimize the conversion loss.
Rueckauer et al. (2017) uses ANN based normalization scheme
used in Diehl et al. (2015).
While removing the constraints in ANN training allows authors
in Rueckauer et al. (2017) to train ANNs with better accuracy,
they suffer significant accuracy loss in the conversion process.
This occurs due to a non-optimal ratio of biases/batch-
normalization factors and weights Rueckauer et al. (2017). This is
the primary reason for our exploration of ANN-SNN conversion
without bias and batch-normalization. For instance, their best
performing network on CIFAR-10 dataset incurs a conversion
loss of 1.06% in contrast to 0.15% reported by our proposal
for a much deeper network. The accuracy loss is much larger
for their VGG-16 network on the ImageNet dataset—14.28%
in contrast to 0.56% for our proposal. Although Rueckauer
et al. (2017) reports a top-1 SNN error rate of 25.40% for
an Inception-V3 network, their ANN is trained with an error
rate of 23.88%. The resulting conversion loss is 1.52% and
much higher than our proposals. The Inception-V3 network
conversion was also optimized by a voltage clamping method,
that was found to be specific for the Inception network and
did not apply to the VGG network Rueckauer et al. (2017).
Note that the results reported on ImageNet in Rueckauer et al.
(2017) are on a subset of 1, 382 image samples for Inception-
V3 network and 2,570 samples for VGG-16 network. Hence, the
performance on the entire dataset is unclear. Our contribution
lies in the fact that we are demonstrating ANNs can be
trained with the above-mentioned constraints with competitive
accuracies on large-scale tasks and converted to SNNs in a
near-lossless manner.

This is the first work that reports competitive performance of
a Spiking Neural Network on the entire 50,000 ImageNet 2012
validation set.

Frontiers in Neuroscience | www.frontiersin.org 7 March 2019 | Volume 13 | Article 95

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sengupta et al. Going Deeper in Spiking Neural Networks

7.3. Experiments for Residual Architectures
Our residual networks for CIFAR-10 and ImageNet datasets
follow the implementation in He et al. (2016a). We first
attempt to explain our design choices for ResNets by
sequentially imposing each constraint on the network and
showing their corresponding impact on network performance
in Figure 3. The “Basic Architecture” involves a residual
network without any junction ReLUs. “Constraint 1” involves
junction ReLUs without having equal spiking thresholds for
all fan-in neural layers. “Constraint 2” imposes an equal
threshold of unity for all the layers while “Constraint 3”
performs best with two pre-processing plain convolutional
layers (3 × 3) at the beginning of the network. The baseline
ANN ResNet-20 was trained with an error of 10.9% on
the CIFAR-10 dataset. Note that although we are using
terminology consistent with He et al. (2016a) for the network
architectures, our ResNets contain two extra plain pre-
processing layers. The converted SNN according to our
proposal yielded a classification error rate of 12.54%. Weight-
normalizing the initial two layers using the ANN-model
based weight-normalization scheme produced an average
error of 12.87%, further validating the efficiency of our
weight-normalization technique.

On the ImageNet dataset, we use the deeper ResNet-34 model
outlined in He et al. (2016a). The initial 7 × 7 convolutional
layer is replaced by three 3 × 3 convolutional layers where
the initial two layers are non-residual plain units. The baseline
ANN is trained with an error of 29.31% while the converted
SNN error is 34.53% at the end of 2,500 timesteps. The results
are summarized in Table 3 and convergence plots for all our
networks are provided in Figure 4. It is worth noting here that the
main motivation of exploring Residual Networks is to go deeper
in Spiking Neural Networks. We explore relatively simple ResNet
architectures, as the ones used in He et al. (2016a), which have
an order of magnitude fewer parameters than standard VGG-
architectures. Further hyper-parameter optimizations or more
complex architectures are still possible. While the accuracy loss
in the ANN-SNN conversion process is more for ResNets than
plain convolutional architectures, yet further optimizations like
including more pre-processing initial layers or better threshold-
balancing schemes for the residual units can still be explored.
This work serves as the first work to explore ANN-SNN
conversion schemes for Residual Networks and attempts to
highlight important design constraints required for minimal loss
in the conversion process.

7.4. Computation Reduction Due to Sparse
Neural Events
ANN operation for prediction of the output class of a particular
input requires a single feed-forward pass per image. For SNN
operation, the network has to be evaluated over a number
of time-steps. However, specialized hardware that accounts for
the event-driven neural operation and “computes only when
required” can potentially exploit such alternative mechanisms
of network operation. For instance, Figure 5 represents the

FIGURE 3 | Impact of the architectural constraints for Residual Networks.

“Basic Architecture” does not involve any junction ReLU layers. “Constraint 1”

involves junction ReLUs while “Constraint 2” imposes equal unity threshold for

all residual units. Network accuracy is significantly improved with the inclusion

of “Constraint 3” that involves pre-processing weight-normalized plain

convolutional layers at the network input stage.

TABLE 3 | Results for residual networks.

Dataset Network architecture ANN error (%) SNN error (%)

CIFAR-10 ResNet-20 10.9 12.54

ImageNet ResNet-34 29.31 (10.31) 34.53 (13.67)

average total number of output spikes produced by neurons
in VGG and ResNet architectures as a function of the layer
for ImageNet dataset. A randomly chosen minibatch was
used for the averaging process. We used 500 timesteps for
accumulating the spike-counts for VGG networks while 2,000
time-steps were used for ResNet architectures. This is in
accordance to the convergence plots shown in Figure 4. An
important insight obtained from Figure 5 is the fact that neuron
spiking activity becomes sparser as the network depth increases.
Hence, benefits from event-driven hardware is expected to
increase as the network depth increases. While an estimate
of the actual energy consumption reduction for SNN mode
of operation is outside the scope of this current work, we
provide an intuitive insight by providing the number of
computations per synaptic operation being performed in the
ANN vs. the SNN.

The number of synaptic operations per layer of the network
can be easily estimated for an ANN from the architecture for
the convolutional and linear layers. For the ANN, a multiply-
accumulate (MAC) computation takes place per synaptic
operation. On the other hand, a specialized SNN hardware
would perform an accumulate computation (AC) per synaptic
operation only upon the receipt of an incoming spike. Hence,
the total number of AC operations occurring in the SNN would
be represented by the dot-product of the average cumulative
neural spike count for a particular layer and the corresponding
number of synaptic operations. Calculation of this metric reveal

Frontiers in Neuroscience | www.frontiersin.org 8 March 2019 | Volume 13 | Article 95

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sengupta et al. Going Deeper in Spiking Neural Networks

FIGURE 4 | Convergence plots for the VGG and ResNet SNN architectures

for CIFAR-10 and ImageNet datasets are shown above. The classification error

reduces as more evidence is integrated in the Spiking Neurons with increasing

time-steps. Note that although the network depths are similar for CIFAR-10

dataset, the ResNet-20 converges much faster than the VGG architecture.

The delay for inferencing is higher for ResNet-34 on the ImageNet dataset due

to twice the number of layers as the VGG network.

FIGURE 5 | Average cumulative spike count generated by neurons in VGG

and ResNet architectures on the ImageNet dataset as a function of the layer

number. Five hundred timesteps were used for accumulating the spike-counts

for VGG networks while 2,000 time-steps were used for ResNet architectures.

The neural spiking sparsity increases significantly as network depth increases.

that for the VGG network, the ratio of SNN AC operations
to ANN MAC operations is 1.975 while the ratio is 2.4 for
the ResNet (the metric includes only ReLU/IF spiking neuron
activations in the network). However, note the fact that a
MAC operation involves an order of magnitude more energy
consumption than an AC operation Han et al. (2015b). Hence,

the energy consumption reduction for our SNN implementation
is expected to be significantly lower in comparison to the original
ANN implementation. It is worth noting here that the real metric
governing the energy requirement of SNN vs. ANN is the number
of spikes per neuron. Energy benefits are obtained only when
the average number of spikes per neuron over the inference
timing window is <1 (since in the SNN the synaptic operation is
conditional based on spike generation by neurons in the previous
layer). Hence, to get benefits for energy reductions in SNNs, one
should target deeper networks due to neuron spiking sparsity.

While the SNN operation requires a number of time-steps in
contrast to a single feed-forward pass for an ANN, the actual
time required to implement a single time-step of the SNN in
a neuromorphic architecture might be significantly lower than
a feedforward pass for an ANN implementation (due to event-
driven hardware operation). An exact estimate of the delay
comparison is outside the scope of this article. Nevertheless,
despite the delay overhead, as highlighted above, the power
benefits of event-driven SNNs can significantly increase the
energy (power x delay) efficiency of deep SNNs in contrast
to ANNs.

8. CONCLUSIONS AND FUTURE WORK

This work serves to provide evidence for the fact that SNNs
exhibit similar computing power as their ANN counterparts.
This can potentially pave the way for the usage of SNNs in
large scale visual recognition tasks, which can be enabled by
low-power neuromorphic hardware. However, there are still
open areas of exploration for improving SNN performance.
A significant contribution to the present success of deep
NNs is attributed to Batch-Normalization (Ioffe and Szegedy,
2015). While using bias less neural units constrain us to train
networks without Batch-Normalization, algorithmic techniques
to implement Spiking Neurons with a bias term should be
explored. Further, it is desirable to train ANNs and convert
to SNNs without any accuracy loss. Although the proposed
conversion technique attempts to minimize the conversion loss
to a large extent, yet other variants of neural functionalities apart
from ReLU-IF Spiking Neurons could be potentially explored to
further reduce this gap. Additionally, further optimizations to
minimize the accuracy loss in ANN-SNN conversion for ResNet
architectures should be explored to scale SNN performance to
even deeper architectures.

AUTHOR CONTRIBUTIONS

AS developed the main concepts, performed the simulations, and
wrote the paper. All authors assisted in the writing of the paper
and developing the concepts.

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla,

P., et al. (2015). TrueNorth: design and tool flow of a 65 mw 1

million neuron programmable neurosynaptic chip. IEEE Trans. Comp.

Aided Design Integr. Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.

2474396

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comp. Vision 113,

54–66. doi: 10.1007/s11263-014-0788-3

Frontiers in Neuroscience | www.frontiersin.org 9 March 2019 | Volume 13 | Article 95

https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1007/s11263-014-0788-3
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sengupta et al. Going Deeper in Spiking Neural Networks

Chen, Z., Johnson, M.,Wei, L., and Roy,W. (1998). “Estimation of standby leakage

power in CMOS circuit considering accurate modeling of transistor stacks,” in

Proceedings, International Symposium on Low Power Electronics and Design,

1998 (Monterey, CA: IEEE), 239–244.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney: IEEE), 1–8.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–

11446. doi: 10.1073/pnas.1604850113 .

Farabet, C., Paz, R., Pérez-Carrasco, J., Zamarreño-Ramos, C., Linares-Barranco,

A., LeCun, Y., et al. (2012). Comparison between frame-constrained fix-pixel-

value and frame-free spiking-dynamic-pixel ConvNets for visual processing.

Front. Neurosci. 6:32. doi: 10.3389/fnins.2012.00032

Han, S., Mao, H., and Dally, W. J. (2015a). Deep compression: compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149.

Han, S., Pool, J., Tran, J., and Dally, W. (2015b). “Learning both weights and

connections for efficient neural network,” in Advances in Neural Information

Processing Systems (Montreal, QC), 1135–1143.

Hardt, M., and Ma, T. (2016). Identity matters in deep learning. arXiv preprint

arXiv:1611.04231.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas, NV), 770–778.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). “Identity mappings in deep residual

networks,” in European Conference on Computer Vision (Springer), 630–645.

Hunsberger, E., and Eliasmith, C. (2016). Training spiking deep networks for

neuromorphic hardware. arXiv preprint arXiv:1611.05141.

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: accelerating deep network

training by reducing internal covariate shift,” in International Conference on

Machine Learning (Lille), 448–456.

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Krizhevsky, A., and Hinton, G. (2009). Learning multiple layers of features from

tiny images. Available online at: https://www.cs.toronto.edu/~kriz/learning-

features-2009-TR.pdf

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet

classification with deep convolutional neural networks,” in Advances in

Neural Information Processing Systems (Lake Tahoe, NV), 1097–1105.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proceed. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Pérez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,

Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-driven

vision systems by low-Rate rate coding and coincidence processing–application

to feedforward convNets. IEEE Trans. Pattern Anal. Mach. Intelligence 35,

2706–2719. doi: 10.1109/TPAMI.2013.71

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB

dynamic range frame-free PWM image sensor with lossless pixel-level video

compression and time-domain CDS. IEEE J. Solid-State Circ. 46, 259–275.

doi: 10.1109/JSSC.2010.2085952

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T.

(2014). Retinomorphic event-based vision sensors: bioinspired cameras

with spiking output. Proc. IEEE 102, 1470–1484. doi: 10.1109/JPROC.2014.

2346153

Rueckauer, B., Hu, Y., Lungu, I.-A., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).

ImageNet large scale visual recognition challenge. Int. J. Comp. Visi. 115,

211–252. doi: 10.1007/s11263-015-0816-y

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: A simple way to prevent neural networks from overfitting. J.

Mach. Learn. Res. 15, 1929–1958. Available online at: http://dl.acm.org/citation.

cfm?id=2627435.2670313

Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., and Tang, H. (2015).

Feedforward categorization on AERmotion events using cortex-like features in

a spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 26, 1963–1978.

doi: 10.1109/TNNLS.2014.2362542

Conflict of Interest Statement: AS was employed by Facebook through a summer

internship. YY, RW, and CL were employed by company Facebook.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Sengupta, Ye, Wang, Liu and Roy. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 10 March 2019 | Volume 13 | Article 95

https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.3389/fnins.2012.00032
https://doi.org/10.1109/TNN.2003.820440
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/5.726791
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/TPAMI.2013.71
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1109/JPROC.2014.2346153
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1007/s11263-015-0816-y
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313
https://doi.org/10.1109/TNNLS.2014.2362542
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Going Deeper in Spiking Neural Networks: VGG and Residual Architectures
	1. Introduction
	2. Related Work
	3. Main Contributions
	4. Preliminaries
	4.1. Input and Output Representation
	4.2. ANN and SNN Neural Operation
	4.3. Architectural Constraints
	4.3.1. Bias in Neural Units
	4.3.2. Pooling Operation

	5. Deep Convolutional SNN Architectures: VGG
	5.1. Proposed Algorithm: Spike-Norm

	6. Extension to Residual Architectures
	6.1. ReLUs at Each Junction Point
	6.2. Same Threshold of All Fan-In Layers
	6.3. Initial Non-residual Pre-processing Layers

	7. Experiments
	7.1. Datasets and Implementation
	7.2. Experiments for VGG Architectures
	7.3. Experiments for Residual Architectures
	7.4. Computation Reduction Due to Sparse Neural Events

	8. Conclusions and Future Work
	Author Contributions
	References

