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This paper presents an exploratory analysis of the mitochondrial DNA (mtDNA) of

32 species in the subphylum Vertebrata, divided in 7 taxonomic classes. Multiple

stochastic parameters, such as the Hurst and detrended fluctuation analysis (DFA)

exponents, Shannon entropy, and Chargaff ratio are computed for each DNA sequence.

The biological interpretation of these parameters leads to defining a triplet of novel

indices. These new functions incorporate the long-range correlations, the probability of

occurrence of nucleic bases, and the ratio of pyrimidines-to-purines. Results suggest that

relevant regions in mtDNA can be located using the proposed indices. Furthermore, early

results from clustering algorithms indicate that the indices introduced might be useful in

phylogenetic studies.

Keywords: DNA, random-walk, Hurst exponent, detrended fluctuation analysis, Shannon entropy, coefficient of

disequilibrium

1. INTRODUCTION

Previous mathematical studies on DNA sequences have seen a variety of approaches and frequently
involve a numerical representation of the nucleotide chains. For instance, distance matrices have
been constructed using different metrics (Randi et al., 2003; Liao and Wang, 2004; Zhang and Tan,
2007; Kandiah and Shepelyansky, 2013). These matrices, in combination with clustering methods,
are used to evaluate phylogenetic relationships among species (Yu and Huang, 2013).

Other studies involve the representation of DNA sequences as random-walks, known as DNA-
walks (Peng et al., 1994). The main objectives of these studies focus on the long-range correlations
among nucleotides; i.e., “how the frequency of each nucleotide of a pairing nucleotide couple
changes locally” (Namazi and Kiminezhadmalaie, 2015). These DNA-walk studies find differences
in the long-range correlation between coding and non-coding DNA sequences (Peng et al., 1994).

Recently, DNA-walk analysis has been used in combination with the fractal dimension and
Hurst exponent to identify mosaic structures in DNA that allow distinguishing between healthy
and cancerous cells (Namazi and Kiminezhadmalaie, 2015).

Additionally, alternative statistical tools frequently used in DNA sequence analysis include
Shannon entropy, which is a measure of the amount of “information" stored within a system
(López-Ruiz et al., 1995). In a biological sense, Shannon entropy evaluates the probability of
independent occurrences of each nucleic base in a DNA sequence. In recent studies, fluctuations
in local Shannon entropy in DNA sequences have been analyzed to identify regions of repeating
patterns of one or more nucleotides, known as tandem repeats (Thanos et al., 2018). The capability
of Shannon entropy to highlight important segments in DNA sequences has led to the supported
notion that entropy studies might be used for biological classifications of species (Melnik and
Usatenko, 2014).
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Similarly, the concept of complexity has played a central role
in various DNA sequence analyses. For instance, López-Mancini-
Calbet (LMC) complexity, employed in this paper, has led to the
development of an effective gene-predicting technique (López-
Ruiz et al., 1995; Monge and Crespo, 2015). In a recent study,
the symbolic complexity of DNA sequences is used to identify
segments resulting from random duplication, as well as changes
in the speed of accumulation of point mutations (Salgado-Garcia
and Ugalde, 2016).

Our objective is to examine the parameters previously
mentioned to determine a small number of coefficients with
biological relevance that may be used to determine rates of
change in nucleotide bases, establish comparisons between
regions, and better understand the relation among species in a
phylogenetic sense.

This paper is structured as follows: section 2 introduces
the concepts and methodology; section 3 presents the results
obtained and the variables introduced; and section 4 is devoted
to a discussion of the results, comments on the methodology in
general, and final remarks. Tables and figures are incorporated
in sections 2 and 3, respectively. The Supplementary Material

includes a table with the identification codes for
the data.

2. METHODOLOGY

GenBank R© is the National Institutes of Health’s genetic
sequence database made possible by the collaboration of
several organizations. All datasets used within this work were
obtained through GenBank because of its availability of access,
encouragement of use, and the advantage that the information
stays up-to-date.

A total of 32 complete mtDNA sequences of different species
in the subphylum Vertebrata were selected. The lengths vary
from 16, 207 to 18, 254 base pairs (bp). The choice of this type
of DNA presents multiple advantages: it is relatively small in size
(in contrast, human chromosomal DNA contains hundreds of
millions bp); the sequences contain conserved regions, can be
compared in blocks among different species, and contain a small
percentage of non-coding regions; and the interpretation of the
mutations in mtDNA as an estimator of evolutionary change
(Barton and Jones, 1983). For these reasons, the exploratory
nature of this study does not require additional information on
the species themselves. Thus, the selection criteria focused on 32
different members from 7 groups intuitively related in taxonomic
classes. The 32 NCBI codes from the data files have been attached
in the Table S1.

A pre-processing of the data files consists of a realignment of
the sequences to set the control region of the heavy chain (H-
chain) in the direction of transcription as the new ending point.
This realignment is done once. The displacement loop, or D-
loop, is within the control region and the most varying region
in mtDNA, with substantial differences observed even among
individuals of the same species (Yamamoto, 2001). See Figure S1
(Supplementary Material). Additionally, the header information
was removed, which contains the identification key and the
name of the organism. The downloaded files (in .fasta format)

were processed using the programming language R version 3.4.4
(2018-03-15). The packages used are stringr and fractal.

2.1. DNA-Walk
DNA consists of sequences of nitrogenous bases: adenine (A),
guanine (G), thymine (T), and cytosine (C). The length and
distribution of the bases fluctuate from species to species. Several
mappings have been introduced based on properties intrinsic to
DNA. Moreover, adenine and guanine have a two-ring structure
and belong to the purine group, while cytosine and thymine
have a one-ring structure and belong to the pyrimidine group.
Furthermore, adenine bonds with thymine through a double
hydrogen bond, which is called a weak bond, while guanine and
cytosine bond through a triple hydrogen bond, which is called a
strong bond. Figure 1 illustrates these descriptions. In summary,
we have:

• Purine (R): {A,G} / Pyrimidine (Y): {C,T}
• Strong Hydrogen bond (S): {G,C} /Weak Hydrogen bond (W):

{A,T}
• Keto (K): {G,T} / Amino (M): {A,C}

Considering the properties described previously, it is possible to
read a DNA sequence and assign either a +1 or −1 depending
on whether the respective nucleotide is a purine or pyrimidine
(RY rule). This can be interpreted as random steps xi of a one-
dimensional walk. Then, the final position after n steps is given by

Xn = x0 +

n
∑

i=1

xi (1)

where x0 = 0 by definition.
Let S = {s1s2 . . . sM} be a nucleotide sequence of

length M, where sk ∈ {A,C,G,T} for k ∈ {1, 2, . . . ,M}.
Hence, a one-dimensional DNA-walk can be defined through
the following rules:

• RY rule:

xk =

{

1 if sk ∈ R = {A,G}

−1 if sk ∈ Y = {C,T}
(2)

• SW rule:

xk =

{

1 if sk ∈ S = {C,G}

−1 if sk ∈ W = {A,T}
(3)

• KM rule:

xk =

{

1 if sk ∈ M = {A,C}

−1 if sk ∈ K = {G,T}
(4)

where sk is the k−th nucleotide and xk is the value of the k−th
assigned step in a DNA sequence. The path of the DNA-walk after
n steps is then defined as the partial sums Xn = x0 +

∑n
k=1 xk,

where n ∈ {1, 2, . . . ,M} and x0 = 0.
In the context of DNA-walks, Equation (2) evaluates

the tendency of changes between purines and pyrimidines.
Transversions (substitutions of purines for pyrimidines, or vice
versa) are less likely to happen and have been used to evaluate
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FIGURE 1 | Chemical structure of DNA. Adenine, guanine, cytosine, and

thymine are shown in colors green, blue, red, and purple, respectively. Notice

the double-ring structure of the purines (A,G) and the single-ring structure of

the pyrimidines (C,T ). Similarly, the type of bond is readily observable: double-

and triple-Hydrogen bonds for A, T and G,C, respectively. This illustration, by

Madeleine Price Ball, has a Creative Commons Zero (CC0, i.e., “No Rights

Reserved") license and has been published in previous articles (Wikimedia

Commons Contributors, 2018).

molecular evolution (Stoltzfus and Norris, 2016). Thus, using
this rule within corresponding blocks of nucleotides in different
species, it is possible to observe changes in the DNA-walk that
could be interpreted as an evolutionary variation. Similarly,
Equation (4) is associated with the rate of recombination between
transversions and transitions (purine-purine or pyrimidine-
pyrimidine substitutions).

Moreover, Equation (3) refers to the difference in abundance
of the GC bond with respect to the AT bond. A higher GC
content suggests a significantly higher temperature for DNA
denaturing (melting temperature Tm). Previous studies have
shown that GC content is associated to an age-related natural
selection and environmental factors (Min and Hickey, 2008).
Finally, it is assumed that each DNA-walk is an ergodic stochastic
process. Specifically, the conceived notion adopted is that each
DNA sequence may be used to represent the ensemble of DNA
sequences of individuals within the same species.

In summary, the three assignment rules provide insight into
the evolutionary aspects of the organisms considered.

2.2. Hurst Exponent and DFA Exponent
Additional information of the long-range correlations of
DNA-walks can be obtained via stochastic methods such as
rescaled-range analysis and detrended fluctuation analysis. With
these methods, it is possible to obtain the Hurst exponent,

which represents a quantitative measure of the fractal nature
of DNA sequences.

The Hurst exponent, here denoted by α, satisfies 0 < α < 1.
In comparisons of mtDNA sequences, each Hurst exponent can
be interpreted as a measure of the tendency of changes between
nucleotides according to the rules mentioned in the previous
section. The calculations used to obtain the Hurst exponent
have been reported in previous studies (Peng et al., 1994;
Buldyrev et al., 1995).

The Hurst exponent is directly related to the fractal dimension
α′ by the relation:

α′ = 2− α. (5)

The fractal dimension evaluates changes in detail of the pattern
of a DNA-walk with respect to the scale used for measurement.

An alternative method to calculate the Hurst exponent of a
DNA-walk is DFA. In contrast to the rescaled-range analysis,
DFA analyzes the random fluctuations of the DNA-walk without
trend in the data (Peng et al., 1994; Buldyrev et al., 1995). The
DFA exponent is computed using the following algorithm:

• Given a numerical sequence X = {X1,X2, . . . ,XM}, calculate
the cumulative sum

yk =

k
∑

i=1

(Xi − X) (6)

where k = 1, 2, . . . ,M and X is the mean value of X.
• Divide yk intoM/L subintervals of length L. For each window,

calculate the polynomial linear fit (the local trend) yk,L via
least-squares minimization.

• Calculate the fluctuation, which is an average of the squares of
the detrended sequence given by

F2(L) =
1

M

M
∑

k=1

∣

∣yk − yk,L
∣

∣

2
. (7)

• The slope β of the linear regression analysis in the scale
log F(L)/ log L is an estimator of the Hurst exponent.

This method tests for self-similarity at different window sizes
L. No correlation (or short-range correlations) gives stochastic
properties such as those of a random-walk, so β = 0.5; in
contrast, long-range correlations give a value of β 6= 0.5.
Specifically, correlation yields β > 0.5, while anti-correlation
gives β < 0.5.

This paper adopts a minimum block size of 4 nucleotides,
while themaximum is B = M

2 , corresponding to half the length of
the sequence in question. ShouldM be odd, B is rounded down.

2.3. Chargaff Ratio
In a remarkable discovery, Erwin Chargaff determined that there
is a balance held in DNA by the nucleobases (Chargaff, 1950),
known as Chargaff’s Rule. These state: (1) that globally (i.e.,
considering both strands of DNA) adenine is equal to thymine
in quantity, and (2) that guanine is equal to cytosine in quantity.
This result was the basis for the Watson-Crick model, which
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determined that adenine binds with thymine and that guanine
binds with cytosine (Watson and Crick, 1953).

On this basis, and in the context of this work, the Chargaff
ratio is defined as the ratio of pyrimidines to purines:

ξ =
NC + NT

NA + NG
(8)

where NC,NT ,NA,NG represent the amount of cytosine,
thymine, adenine, and guanine, respectively, within one strand of
DNA. Note that this value is always positive. If 0 ≤ ξ < 1, there
are more purines than pyrimidines (i.e., NC + NT < NA + NG);
similarly, ξ > 1 reflects an excess of pyrimidines over purines. A
Chargaff ratio with value 1 results from an equal number of either
type of nucleotide bases.

2.4. Shannon Entropy
In his seminal paper, Claude Shannon introduced the concept of
information entropy. It measures the “amount" of information or
uncertainty of a system (Shannon and Weaver, 1998). Let � =

{ω1,ω2, . . . ,ωN} be a set of events where each ωi has probability
of occurrence pi ∈ [0, 1], for i = 1, 2, . . . ,N. Thus, the Shannon
entropy of the system is defined as

H = −K

N
∑

i=1

pi log2(pi), (9)

where K is a positive constant chosen appropriately according
to the units desired for measurement (thus, for this work, K =

1). For the case when pi = 0, pi log2(pi) = 0 in the limit
definition. Also, note that the logarithm is in base 2; this is
because information in a computer is encoded in binary digits,
or bits, which are the basic units of measurement of information.

For N = 2, events ω1 and ω2 have probability p and 1 − p,
respectively, see Figure S2 (Supplementary Material). Thus, it
can be seen that a maximum is attained at p = 1 − p = 1

2 .
This result can be extended to the general case withN events. The
proof requires Jensen’s inequality for a concave function (in this
case, the logarithmic function), and is given below. Using some
algebra to rewrite Equation (9) with K = 1 yields

H = log2

(

N
∏

i=1

(

1

pi

)pi
)

By the weighted arithmetic-mean and geometric-mean inequality,
this implies that

2H =

N
∏

i=1

(

1

pi

)pi

≤

N
∑

i=1

pi

(

1

pi

)

= N

where equality (the maximum) is satisfied when p1 = p2 = · · · =

pN . That is, when

H = log2(N). (10)

To evaluate Shannon entropy in the context of DNA sequence
analysis, it seems rather reasonable to define the set of possible

events as � = {A,G,C,T}. However, it is expected that
the probability of occurrence of each nucleotide in a DNA
sequence will likely be different for different species; thus, these
associated probabilities will be calculated empirically for each
DNA sequence in a straightforward fashion. That is, by counting
the amount of each nucleotide within the sequence and taking
the corresponding proportion by dividing by the total amount of
nucleotidesM. Thus, the probabilities will be given by

pA =
NA

M
, pC =

NC

M
, pG =

NG

M
, pT =

NT

M
,

(11)
where NA,NC,NG,NT are the amount of adenine, cytosine,
guanine, and thymine, respectively.

In the context of DNA sequence analysis, maximum entropy
is attained whenever the nucleic bases within a DNA sequence
are found with equiprobability. It may thus be interpreted that
such a sequence is the result of a random combination of these
events. Any departure from the maximum value of the Shannon
entropy due to an underlying structure might contribute to
determining any tendencies present in a sequence, see Figure S3
(Supplementary Material).

In a more general sense, the entropy fluctuations could be
analyzed by means of the Local Shannon entropy. By studying
the local fluctuations of entropy at a given scale, and across
scales, an “entropic microscope" could highlight areas with a high
degree of variation or, equally interesting, low degree of variation,
as seen in previous studies (Melnik and Usatenko, 2014;
Thanos et al., 2018).

2.5. Coefficient of Disequilibrium
Additional information of DNA sequences can be derived
from the deviations from equiprobability of occurrence of each

FIGURE 2 | DNA-walk illustration for various species using the

purine-pyrimidine rule. Observe the vicinity of nucleotide 2, 700 and the

change in tendency from a purine-rich region (positive slope) to a

predominance of pyrimidines for the remaining DNA-walk (negative slope).
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nucleotide. This measure is known as disequilibrium (López-Ruiz
et al., 1995). The events in the set � have probability pi for
i = 1, 2, 3, 4. The coefficient of disequilibrium, D, is defined as:

D =

N=4
∑

i=1

(

pi −
1

4

)2

. (12)

FIGURE 3 | DNA-walk illustration for various species using the strong- and

weak-bond rule. Observe the immediate (and consistent) tendency. This

indicates that mtDNA is rich in adenine and thymine, whose type of bond is

weaker than that of cytosine and guanine.

FIGURE 4 | DNA-walk illustration for various species using the keto and amino

rule. The figure shows a higher amount of adenine and cytosine.

This sum of squared distances can be seen as a type of
variance. Note that D = 0 in the case of equilibrium. Any
deviation from this would result in D > 0. The maximum
disequilibrium value, Dmax = 3

4 can be obtained using
multivariate calculus.

The coefficient of disequilibrium may represent a
measure of relatedness between a DNA sequence and one
resulting from a random process if each (independent)
event has a probability pi of occurrence. That is, larger
deviations from an equiprobable space yield higher
coefficients of disequilibrium. It can be observed that
this behavior counters that of the Shannon entropy in
an intuitive manner.

2.6. Coefficient of Complexity
The coefficient of complexity C is then given by the product of the
Shannon entropy (9) and the coefficient of disequilibrium (12), as
in (13). It can be seen from (12) thatD resembles the definition of

TABLE 1 | Results of the Chargaff ratio and Shannon entropy for all groups.

Scientific name (common name) ξ H

Ambystoma tigrinum tigrinum (Eastern tiger salamander) 1.081 1.9059

Bufo gargarizans (Chusan Island toad) 1.2617 1.9598

Rana plancyi (Eastern golden frog) 1.3562 1.9591

Ara ararauna (Blue-and-yellow macaw) 1.2537 1.9421

Archilochus colubris (Ruby-throated hummingbird) 1.2296 1.9409

Columba livia (Rock pigeon) 1.2664 1.9381

Gallus gallus (Red junglefowl) 1.2851 1.9316

Ninox strenua (Powerful owl) 1.2421 1.926

Carcharodon carcharias (Great white shark) 1.249 1.9444

Cyprinus carpio (Common carp) 1.0981 1.9577

Dicentrarchus labrax (European seabass) 1.2372 1.9765

Poecilia reticulata (Guppy) 1.2228 1.9529

Didelphis virginiana (Virginia Opossum) 1.1117 1.8969

Macropus giganteus (Eastern gray kangaroo) 1.1762 1.9275

Vombatus ursinus (Common wombat) 1.164 1.9254

Bos taurus (Cattle) 1.1332 1.9339

Canis lupus familiaris (Dog) 1.1848 1.9441

Capra aegagrus (Wild goat) 1.1441 1.9292

Felis catus (Domestic cat) 1.1398 1.9429

Mus musculus musculus (House mouse) 1.1316 1.9154

Oryctolagus cuniculus (Common rabbit) 1.2169 1.9403

Rattus rattus (House rat) 1.1465 1.9219

Gorilla gorilla gorilla (Western lowland gorilla) 1.2706 1.9322

Homo sapiens (Human) 1.2716 1.9305

Lemur catta (Ring-tailed lemur) 1.1869 1.9246

Pan paniscus (Bonobo) 1.2711 1.9272

Pan troglodytes (Common chimpanzee) 1.2717 1.9293

Alligator mississippiensis (American alligator) 1.2338 1.9383

Chelydra serpentina (Common snapping turtle) 1.1259 1.9205

Crocodylus niloticus (Nile crocodile) 1.1347 1.9504

Crotalus horridus (Timber rattlesnake) 1.1898 1.9337

Naja naja (Indian cobra) 1.1597 1.9324
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TABLE 2 | Results of the Hurst exponent for all groups and each of the three

random-walk rules.

Scientific name (common

name)

αRY αSW αKM

Ambystoma tigrinum tigrinum

(Eastern tiger salamander)

0.91798 0.91328 0.90701

Bufo gargarizans (Chusan Island

toad)

0.91688 0.91187 0.91191

Rana plancyi (Eastern golden

frog)

0.91695 0.91259 0.91228

Ara ararauna (Blue-and-yellow

macaw)

0.91657 0.91337 0.9133

Archilochus colubris

(Ruby-throated hummingbird)

0.91621 0.91298 0.91332

Columba livia (Rock pigeon) 0.91696 0.91336 0.91383

Gallus gallus (Red junglefowl) 0.91564 0.91109 0.91368

Ninox strenua (Powerful owl) 0.91569 0.91662 0.91341

Carcharodon carcharias (Great

white shark)

0.91506 0.91385 0.91056

Cyprinus carpio (Common carp) 0.91759 0.91463 0.91045

Dicentrarchus labrax (European

seabass)

0.91881 0.90116 0.91412

Poecilia reticulata (Guppy) 0.91631 0.91447 0.90864

Didelphis virginiana (Virginia

Opossum)

0.91844 0.91408 0.90997

Macropus giganteus (Eastern

gray kangaroo)

0.91811 0.91388 0.91113

Vombatus ursinus (Common

wombat)

0.9179 0.91391 0.91207

Bos taurus (Cattle) 0.91704 0.9137 0.91125

Canis lupus familiaris (Dog) 0.91666 0.91426 0.91009

Capra aegagrus (Wild goat) 0.91783 0.9136 0.91174

Felis catus (Domestic cat) 0.91755 0.91438 0.91172

Mus musculus musculus (House

mouse)

0.91641 0.91368 0.91138

Oryctolagus cuniculus (Common

rabbit)

0.91665 0.91411 0.91117

Rattus rattus (House rat) 0.91655 0.91301 0.9119

Gorilla gorilla gorilla (Western

lowland gorilla)

0.91509 0.91436 0.91224

Homo sapiens (Human) 0.91549 0.91484 0.91255

Lemur catta (Ring-tailed lemur) 0.91821 0.91424 0.91033

Pan paniscus (Bonobo) 0.91545 0.91465 0.91235

Pan troglodytes (Common

chimpanzee)

0.91548 0.9146 0.91225

Alligator mississippiensis

(American alligator)

0.91704 0.91213 0.91343

Chelydra serpentina (Common

snapping turtle)

0.91732 0.9142 0.91211

Crocodylus niloticus (Nile

crocodile)

0.91653 0.91448 0.91326

Crotalus horridus (Timber

rattlesnake)

0.91366 0.91336 0.91345

Naja naja (Indian cobra) 0.91379 0.91192 0.913

variance; thus, the coefficient of complexity can be interpreted as
a measure of dispersion within the information stored in a system
(López-Ruiz et al., 1995).

TABLE 3 | Results of the DFA exponent for all groups and each of the three

random-walk rules.

Scientific name (common

name)

βRY βSW βKM

Ambystoma tigrinum tigrinum

(Eastern tiger salamander)

0.67836 0.90728 0.71664

Bufo gargarizans (Chusan Island

toad)

0.75691 0.76766 0.76934

Rana plancyi (Eastern golden

frog)

0.78803 0.74711 0.74653

Ara ararauna (Blue-and-yellow

macaw)

0.74963 0.65734 0.86363

Archilochus colubris

(Ruby-throated hummingbird)

0.74416 0.6971 0.86625

Columba livia (Rock pigeon) 0.76494 0.67966 0.86371

Gallus gallus (Red junglefowl) 0.7581 0.66958 0.87402

Ninox strenua (Powerful owl) 0.75282 0.6407 0.88804

Carcharodon carcharias (Great

white shark)

0.74703 0.80776 0.79693

Cyprinus carpio (Common carp) 0.67192 0.75648 0.8331

Dicentrarchus labrax (European

seabass)

0.75312 0.73671 0.72254

Poecilia reticulata (Guppy) 0.73809 0.78308 0.78935

Didelphis virginiana (Virginia

Opossum)

0.70386 0.90263 0.7744

Macropus giganteus (Eastern

gray kangaroo)

0.73178 0.8363 0.84188

Vombatus ursinus (Common

wombat)

0.72691 0.83327 0.85255

Bos taurus (Cattle) 0.69678 0.84215 0.82662

Canis lupus familiaris (Dog) 0.71743 0.84081 0.79415

Capra aegagrus (Wild goat) 0.69553 0.84634 0.83395

Felis catus (Domestic cat) 0.70012 0.82755 0.82021

Mus musculus musculus (House

mouse)

0.68457 0.87555 0.82526

Oryctolagus cuniculus (Common

rabbit)

0.7394 0.82727 0.80349

Rattus rattus (House rat) 0.70334 0.85943 0.82893

Gorilla gorilla gorilla (Western

lowland gorilla)

0.76455 0.7491 0.85718

Homo sapiens (Human) 0.76264 0.73476 0.8657

Lemur catta (Ring-tailed lemur) 0.72169 0.86066 0.81856

Pan paniscus (Bonobo) 0.76222 0.75973 0.86114

Pan troglodytes (Common

chimpanzee)

0.76283 0.75342 0.86122

Alligator mississippiensis

(American alligator)

0.74351 0.76308 0.84625

Chelydra serpentina (Common

snapping turtle)

0.68238 0.85194 0.83671

Crocodylus niloticus (Nile

crocodile)

0.69992 0.75112 0.83504

Crotalus horridus (Timber

rattlesnake)

0.70735 0.75833 0.86203

Naja naja (Indian cobra) 0.69597 0.79567 0.85368

C = HD =

(

−

N
∑

i=1

pi log2(pi)

)(

N
∑

i=1

(

pi −
1

N

)2
)

. (13)

The coefficient of complexity may thus be regarded as the
Shannon entropy weighted by the coefficient of disequilibrium,
which can be interpreted as the tendency of a random sequence.
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TABLE 4 | New variables.

Scientific name (common

name)

v1 v2 v3

Ambystoma tigrinum tigrinum

(Eastern tiger salamander)

−4.31380 −1.10950 −2.39820

Bufo gargarizans (Chusan Island

toad)

−4.23240 −1.35480 −2.26260

Rana plancyi (Eastern golden

frog)

−4.09750 −1.29530 −2.25390

Ara ararauna (Blue-and-yellow

macaw)

−4.23570 −1.83360 −2.19300

Archilochus colubris

(Ruby-throated hummingbird)

−4.27030 −1.84760 −2.21910

Columba livia (Rock pigeon) −4.21960 −1.84640 −2.20990

Gallus gallus (Red junglefowl) −4.17150 −1.91490 −2.17750

Ninox strenua (Powerful owl) −4.21900 −2.02220 −2.21770

Carcharodon carcharias (Great

white shark)

−4.18720 −1.46250 −2.31750

Cyprinus carpio (Common carp) −4.47010 −1.58480 −2.28400

Dicentrarchus labrax (European

seabass)

−4.35900 −1.18640 −2.12810

Poecilia reticulata (Guppy) −4.20920 −1.42200 −2.30390

Didelphis virginiana (Virginia

Opossum)

−4.29970 −1.33300 −2.40300

Macropus giganteus (Eastern

gray kangaroo)

−4.28390 −1.68110 −2.34200

Vombatus ursinus (Common

wombat)

−4.31840 −1.74230 −2.33970

Bos taurus (Cattle) −4.37060 −1.56840 −2.34500

Canis lupus familiaris (Dog) −4.28210 −1.42680 −2.35010

Capra aegagrus (Wild goat) −4.35320 −1.60750 −2.34750

Felis catus (Domestic cat) −4.39050 −1.53750 −2.34000

Mus musculus musculus (House

mouse)

−4.33330 −1.55190 −2.37410

Oryctolagus cuniculus (Common

rabbit)

−4.24440 −1.48650 −2.33690

Rattus rattus (House rat) −4.33380 −1.58590 −2.35240

Gorilla gorilla gorilla (Western

lowland gorilla)

−4.16280 −1.80220 −2.27510

Homo sapiens (Human) −4.16480 −1.85860 −2.26910

Lemur catta (Ring-tailed lemur) −4.24340 −1.54580 −2.36720

Pan paniscus (Bonobo) −4.15450 −1.82670 −2.28690

Pan troglodytes (Common

chimpanzee)

−4.15590 −1.82770 −2.28130

Alligator mississippiensis

(American alligator)

−4.26190 −1.71650 −2.26170

Chelydra serpentina (Common

snapping turtle)

−4.37120 −1.61300 −2.35910

Crocodylus niloticus (Nile

crocodile)

−4.44740 −1.61700 −2.27800

Crotalus horridus (Timber

rattlesnake)

−4.31660 −1.78940 −2.27140

Naja naja (Indian cobra) −4.35360 −1.72560 −2.28610

3. RESULTS

The three DNA-walks for the 7 groups are depicted in Figures 2–
4. Results for the Chargaff ratio ξ and Shannon entropy H are
shown in Table 1, while Tables 2, 3 contain the Hurst and DFA
exponents for each type of random-walk and for each sequence.

In Figure 2, there is an initial upward trend that is present
irrespective of the species. The RY rule (Equation 2) implies that
a (local) inclination toward the positive direction of the vertical
axis corresponds to a (local) majority of purines (adenine or
guanine). Similarly, the downward trend in Figure 3 reflects a
consistent predominance of the weakly-pairing bases, adenine or
thymine (considering rule SW). Thus, adenine dominates within
the range 0− ∼ 3, 000 bp.

The Hurst exponents for the rules RY, SW, and KM
(Equations 2–4, respectively) fall in the range of 0.900 −

0.912 and imply a long-term positive autocorrelation. To put
it into perspective, a Hurst exponent value of 0.9 indicates
that, on average, the tendency of changes between nucleotides
varies slightly as the sub-sequence size is changed. Moreover,
the proximity of the Hurst exponent toward unity suggests
that either purines or pyrimidines are predominant; it cannot
distinguish, however, which one prevails. Similarly, the DFA
exponents fall within 0.64 − 0.91 which implies the existence
of strong long-range correlations in the sequences even after
detrending. Interestingly, neither the Hurst nor DFA exponent
values are near zero in any of the species considered. A
possible explanation is that the tendency of changes between
nucleotides does not vary randomly; i.e., mtDNA has an
informational structure.

For all the DNA sequences, the Chargaff ratio is positive with
ξ > 1, implying a larger amount of pyrimidines than purines.
This implication is visually reflected in the overall downward
tendency of the curves in Figure 2.

The disequilibrium coefficient takes values D ∈ (0.01− 0.03).
From Equation (12), values near 0 imply that the probabilities
pi ≈ 1

4 for any of the four nucleic bases. In other words, the
disequilibrium values obtained suggest that the four nucleotide
bases appear with almost the same proportion within each of the
32 mtDNA sequences. This is further supported by the Shannon
entropy values. In this case, Equation (10) and N = 4 yield
a (theoretical) maximum entropy value H = log2(4) = 2.
Hence, the empirical entropy values H ∈ (1.89 − 1.97) suggest
near-equiprobability among the nucleic bases.

A graph of D vs. the Shannon entropy H suggests a
linear relation. On this account, the disequilibrium coefficient
is omitted for the remainder of the study. In addition, the
complexity coefficient is omitted due to its direct proportionality
to D. See Figure S4 (Supplementary Material).

This work proposes three new evolutionary indices as
functions of Shannon entropy, the Chargaff ratio, and the fractal
dimensions derived from the Hurst and DFA exponents:

v1 = H ∗ log
[

α′
RY ∗ ξ ∗ log

(

α′
KM

)]

(14)

v2 = log
[

β
′

RY ∗ log
(

β
′

KM

)]

(15)

v3 = log
[

β
′

SW ∗ log
(

α
′

SW

)]

. (16)

These indices reflect the long-range correlations found in DNA-
walks and the information given by Shannon entropy and the
Chargaff ratio.

The fractal dimensions α′ and β ′ are derived from the
Hurst and DFA exponents, respectively, using Equation (5).
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FIGURE 5 | Hierarchical clustering of the 32 species using the Hurst exponent metric with and without tendency, weighted by the Chargaff ratio and Shannon entropy.

The natural logarithm can be seen as a transformation that
maximizes the differences between the coefficients. Equations
(14), (15), and (16) are defined from an evolutionary perspective,
while Equation (16) provides information on the energy content
of sequences.

In Equation (14), the logarithm of the fractal dimension
derived from the Hurst exponent using the KM rule provides
information regarding the transversions and transitions of the
entire DNA sequence. On the other hand, the Chargaff ratio is
used as a weighting factor for the fractal dimension derived using
the RY rule. The logarithm of the product of these quantities
provides an evolutionary measure related to the long-range
correlations. The last term in the equation (the Shannon entropy)
evaluates the probability of independent nucleotide changes for a
given DNA sequence.

Equation (15) uses the fractal dimensions of the DFA
exponents, which are computed using the detrended DNA-
walks. Therefore, it is not accurate to include the Chargaff
ratio or Shannon entropy as normalization parameters. Finally,
Equation (16) represents a measure of the natural selection
factors in relation to the environment. Results for v1, v2, v3 are
shown in Table 4.

Clustering algorithms may benefit from the proposal.
Preliminary results, shown in Figure 5, suggest a possible
application in studies centering on the evolutionary relations
among species. The proposed indices are used in the group-
average agglomerative clustering algorithm with Euclidean metric
and the sum of distances as the clustroid. Furthermore,
an additional grouping was constructed using a traditional
program, ClustalW, which is frequently applied to the study of
phylogenetic trees, as seen in Figure 6.

The implementation of the algorithm using the R
programming language is not computationally demanding,
with running times of about 15–20 min. In comparison,
ClustalW requires about 2 and a half hours for the construction
of the phylogenetic tree of 32 mtDNA sequences.

The comparative analysis between the two methods shows
consistency among the group of primates and other mammals
sharing a common ancestry of similar lineage to the lemur.
On the other hand, the marsupials and rodents (including the
common rabbit) are more closely grouped with the stochastic
algorithm and present a common ancestor, just as calculated by
the traditional method. Other groups that share proximity with
both methods are the reptiles and the birds, as well as the fish
group and some amphibians.

The most pronounced differences are found in certain
taxa. The proposed method relates the rabbit more closely to
rodents, with characteristics similar to marsupials. Meanwhile,
the traditional method positions the rabbit closer to primates.
Another interesting point is that the proposed stochastic method
shows that small reptiles and birds are more closely related, while
the traditional method relates the birds closer to large reptiles.

4. CONCLUSIONS

As has been suggested by other studies, Shannon entropy and
Hurst and DFA exponents provide insight into the properties
of DNA sequences (Peng et al., 1994; Oiwa and Glazier, 2004;
Melnik and Usatenko, 2014; Monge and Crespo, 2015; Namazi
and Kiminezhadmalaie, 2015; Salgado-Garcia and Ugalde, 2016;
Thanos et al., 2018). This exploratory analysis combines various
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FIGURE 6 | Hierarchical clustering of the 32 species using ClustalW https://www.ebi.ac.uk/Tools/msa/clustalo/.

measures utilized in the literature to establish a biologically
meaningful measure of distinction among species.

Our proposal defines new indices as functions of
Shannon entropy, the Chargaff ratio, and fractal dimensions
using rescaled-range analysis and DFA. These indices
can be employed to construct phylogenetic trees using
clustering algorithms.

Long-range correlations attributed to DNA-walks can
be identified during our study. These can represent
data with persistence in its evolutionary memory; i.e.,
that mtDNA sequences contain highly conserved regions
among similar species.

The comparison between the traditional and the proposed
clustering method shows clear agreements; however, there
are differences that must be analyzed under an evolutionary
perspective. For example, we notice that the mtDNA sequences
of the common rabbit and the common snapping turtle
show different properties in both methods. According to
the established phylogeny, the placement of the rabbit is
closer to the rodents. Interestingly, results of the stochastic
hierarchical clustering suggest a potential application for
phylogenetic studies.

Evolutionary processes are associated to an adaptive selection
of the species throughout millions of years. However, the
fluctuations of the changes in nucleotide bases could be
random in order to find new sequence combinations. The
proposed method attempts to measure the stochastic fluctuations
to yield indices that allow the observation of tendencies
and correlations in the mutations that produce new species
throughout evolutionary history.
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