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Pile foundations supporting large structures (such as high-rise buildings, oil drilling

platforms, bridges etc). are often subjected to eccentric lateral load (in addition to the

vertical loads) due to the action of wind, waves, high speed traffic, and ship impacts etc.

The eccentric lateral load, which is usually cyclic (repetitive) in nature, induces torsion in

the pile foundation. This paper presents a numerical model based on boundary element

approach to study the performance of a single pile subjected to the torsional cyclic load.

The model is initially validated by comparing it with the experimental data available from

the literature. Thereafter, the model has been utilized to conduct a parametric study

to understand the influence of the torsional cyclic loading parameters on the axial pile

capacity. The results indicated that the model is able to capture the degradation in

the axial pile capacity due to the torsional cyclic loading with a reasonable accuracy.

Moreover, the parametric study showed that the frequency, amplitude and number of

cycles play a significant role in the torsional cyclic response of the pile. The present study

is essential for the development of design guidelines for pile foundations subjected to

torsional cyclic load.

Keywords: piles and piling, lateral load, torsion, mathematical modeling, foundations

INTRODUCTION

The construction of large structures such as high-rise buildings, oil drilling platforms, electrical
transmission towers, wind turbines, bridges, and railway embankments over a soft compressible
clay poses a serious challenge to the design engineers. Therefore, a cost-effective foundation system
with an acceptable degree of safety is required and consequently, these structures are usually
supported by pile foundations. These piles are often subjected to cyclic (repetitive) lateral loads
in addition to the vertical loads, during their service life due to wind, sea waves, high speed train
traffic and ship impacts etc. (Arshad and O’Kelly, 2016; Haiderali and Madabhushi, 2016). The
cyclic lateral load often acts eccentrically and generates cyclic torsion on the pile foundation (Barker
and Puckett, 1997). The inadequate design of these piles against the cyclic torsional loading may
affect the safety and serviceability of the foundation, leading to disastrous consequences (Vickery,
1979; Barker and Puckett, 1997). Moreover, in case of foundations supporting offshore platforms,
the amplitude (magnitude) of the cyclic torsional load is high and is usually accompanied with low
frequency vibrations, while the reverse is true for onshore structures including railways (Nimbalkar
and Indraratna, 2016).
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The cyclic load initiates the reversal of soil-pile interface shear
stress, thus producing a progressive deterioration in strength
and stiffness of the surrounding soil and consequently, pile-
soil interactive performance undergoes significant degradation
(Basack, 2015). Such degradation may reduce the load carrying
capacity of the pile and increase the pile head displacement
(settlement). The primary reason for such degradation is the
gradual reorientation and rearrangement of the soil particles
adjacent to the pile-soil interface. The other reasons include the
generation of excess pore water pressure and the development of
irrecoverable plastic deformation of soil adjacent to the pile soil
interface (Basack and Dey, 2012).

Several theoretical, laboratory and field-based investigations
on the pile foundations subjected to vertical and lateral cyclic
loads have been conducted in the past (El Naggar et al., 1998;
Cavey et al., 2000; Taciroglu et al., 2006; Basack, 2010a; Jardine
and Standing, 2012). Moreover, the behavior of pile subjected
to static torsion has been investigated by several researchers
(e.g., Stoll, 1972; Poulos, 1975; Kong and Zhang, 2008; Misra
et al., 2014; Chen et al., 2016). However, the studies pertaining
to the influence of torsional cyclic load on the behavior of pile
foundation are rather limited. It has been found that the torsional
load can significantly influence the load carrying capacity of the
pile. The skin friction mobilized due to the axial load interacts
with the circumferential pile-soil interface shear stress (induced
due to the torsional load) and consequently, the axial pile capacity
decreases and the axial displacement increases (Basack and
Sen, 2014a). Therefore, the investigation of the behavior of pile
subjected to cyclic torsional loading becomes imperative for the
safe design and satisfactory long-term performance of the pile
foundations supporting the large offshore or onshore structures.

The behavior of pile foundation subjected to monotonic
and cyclic axial loading can be investigated by using several
numerical and analytical techniques available in the literature.
These include the dynamic response analysis, cyclic stability
analysis, finite element and boundary element analysis etc. to
name a few (Poulos, 1982, 1988; Bea, 1992; Basack and Dey,
2012; Fatahi et al., 2014). In the present paper, a novel numerical
methodology based on boundary element modeling (BEM) is
proposed to capture the response of a single, vertical, floating
pile subjected to combined axial, and torsional cyclic loads.
The non-linear stress-strain response of the soil is incorporated
in the model by using a hyperbolic function. Moreover, the
constitutive behavior of the pile material is assumed to be
elastic-perfectly plastic. The effect of progressive degradation of
soil strength and stiffness under interface shear stress reversal
(or simply cyclic loading) has been incorporated by using an
exponential correlation and a semi-logarithmic rate function.
The analysis could also have been conducted using finite element
method which might have required the use of three-dimensional
meshes to represent the pile, the interface and the surrounding
soil mass (Lebeau, 2008; Kim and Jeong, 2011). However, an
enormous computational effort is required in finite element
analysis to incorporate the non-linear stress-strain response of
soil and progressive slippage at the interface. Moreover, the
studies conducted by Poulos (1989), Basile (2010), and Fattah
et al. (2012) underlines several advantages of the use of boundary

element method as an alternative of FEM to solve the pile-soil
interaction problems.

The paper is presented in the following sequence: first, a model
is formulated using BEM approach followed by its validation
by comparing the BEM computed results with the available
field data. Such comparison indicates reasonable accuracy of the
proposed numerical solutions. Thereafter, a prototype parametric
study is conducted using the developed model to analyse the
influence of cyclic loading parameters on the soil-pile interactive
performance. Finally, the normalized soil-pile interface shear
stress profiles (predict using the proposed solution) are presented
to show the distribution of stresses along the length of pile for
static and post-cyclic condition.

NUMERICAL MODELING: MATHEMATICAL
FORMULATIONS

Problem Definition
Figure 1A shows a single, vertical, floating pile of diameter D
with embedded depth of L, subjected to an axial static load of
Vt and a two way symmetrical cyclic torsional load (given by
Equation 1):

τcyc = τmax
cyc sin 2π ft (1)

Where, τmax
cyc and f are the amplitude and frequency of the cyclic

torsional load, respectively. The imposed axial and torsional loads
induce the stresses τb and σb at the base of the pile, and shear
stresses τ tz and τ vz at the soil-pile interface along the length of the
pile in the horizontal and vertical directions, respectively (see
Figure 1A). The stresses τ vz and σbare primarily induced due to
the axial load and are static, whereas, the stresses τ tz and τb are
induced due to the torsional load and are cyclic. The primary aim
of this study is to evaluate these unknown interface shear stress
components and subsequently, determine the axial pile capacity
after completion of a certain number of load cycles (N).

The pile material in the present study has been idealized as
elastic-perfectly plastic. The stress-strain behavior of the soil in
shear is assumed to be non-linear up to the peak shear stress
(τu), followed by a perfectly plastic post-peak response (Basack
and Sen, 2014a). The non-linear pre-peak behavior has been
represented using a hyperbolic equation (Equation 2) with an
initial tangent modulus of Gi and a reduction factor of Rf
(Duncan and Chang, 1970). The value of the reduction factor, Rf
usually varies in the range of 0.8–1.0 (Randolph, 2003).

τ =
γ

1
Gi

+
Rf
τu

γ
(2)

Where, τ andγ are the shear stress and shear strain, respectively.
The post peak response can be mathematically represented as:

τ = τu (3)
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FIGURE 1 | Numerical modeling: (A), Idealized problem (B), BEM discretization of the pile.

Boundary Element Modeling
The pile-soil interaction in the present study has been analyzed
using the Boundary Element Modeling (BEM) following the
methodology of (Basack and Sen, 2014a,b). The pile is
longitudinally discretized into n cylindrical elements of equal
height (thickness), δ (see Figure 1B). The unknown pile-soil
interface shear stress components in the horizontal and vertical
directions in the ith element have been denoted as τ ti and
τ vi ,respectively. Moreover, the displacement components at the
central nodal plane (i.e., the central plane of each pile element)
have been denoted as ρi and θi corresponding to the vertical and
torsional modes, respectively.

Initially, the analysis has been performed for static loading
with subsequent extension for the cyclic loading by using
appropriate parameters for simulating the degradation of soil
strength and stiffness (under cyclic loading), and the influence
of the cyclic loading parameters. First, the static axial and
torsional loadings are analyzed separately, followed by a coupled
analysis to arrive at specific solutions. The governing differential
equations for the static torsion (Equation 4) and static axial load
(Equation 5) are given as (Basack and Sen, 2014a,b):

d2θ

dz2
=

πD2

2JpGp
τ tz (For static torsion) (4)

d2ρ

dz2
=

1

Ep

(

4τ vz
D

− γ ′
p

)

(For static axial load) (5)

Where, θ is the angle of twist; ρ is the vertical displacement;
z is the depth; Jp is the polar moment of inertia of pile cross
section; Gp is the modulus of rigidity of the pile; Ep is the Young’s

modulus of the pile; γ ′
pis the unit weight of the pile. For static

torsion, the governing differential equation is solved using the
finite difference technique by developing correlations between
the twist angle (θ) and some functions of D, δ, τ ti , Jp, Gp and pile
head torque (Tt). The correlations are then compiled together (in
a matrix form) and the resultant matrix is given by:

[CM]{θ} = {a} (6)

Where, [CM] is a coefficient matrix of order (n+1) x (n+1), {θ}
is a column vector of order (n+1) x 1 and {a} is augment vector of
order (n+1) x 1. The elements of the coefficient matrix, column
vector, and augment vector can be found in Basack and Sen
(2014a). There are two sets of unknown quantities in Equation
6, namely θi andτ

t
i . Therefore, an initial no-slip condition is

assumed and a correlation between θi and τ ti (given by Randolph,
1981) is used (Equation 7) to reduce the number of unknown
quantities in Equation (6).

θ =
τ ti

2Gs
(7)

Where, Gs is the soil secant modulus. Using the provided
correlation (Equation 7), the Equation (6) is modified to:

[DM]
{

τ ti
}

=
{

b
}

(8)

Where, [DM] and {b} are coefficient matrix and augment vector,
respectively and the elements of these matrices/vectors are
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functions of D, δ, Jp, Gs, Gp, and Tt . The initial values of
the unknown horizontal torsional interface shear stress (τ ti ) are
computed using Equation (8). The values of τ ti for each element
are then compared with the limiting values of interface shear
stress (τu) for each element. The elements are assumed to have
slipped if the value of τ ti exceeds theτu. The initial value of τ

t
i for

slipped elements is replaced by τu and appropriate adjustments
are made to the initial values of Gs to incorporate the soil non-
linearity. The entire computation procedure is then repeated for
the rest of the non-slipped elements until the desired convergence
is achieved.

The governing differential equation for the static axial
load is solved by using a similar procedure as described
above i.e., by utilizing the finite difference technique and a
correlation between ρ and τ vi given by Randolph and Wroth
(1978) (for no-slip condition). After evaluating the unknown
parametersτ ti andτ

v
i from the separate analyses for axial and

torsion loads, a coupled analysis is conducted by evaluating the
resultant interface shear stress for each element, through vector
addition of τ ti andτ

v
i (see Figure 2), given by:

τi =
[

τ ti + τ vi
]0.5

(9)

The resultant interface shear stress is then compared
with the ultimate shear stress and the values of τ ti are
recomputed (or adjusted). The procedure is repeated until
the desired convergence is achieved. Finally, the values of
twist angles are computed for each element using Equation
6. The detailed formulations for the analysis of static
load are published elsewhere (Basack and Sen, 2014a,b;
Basack and Nimbalkar, 2017).

The analysis for the torsional cyclic loading has been
performed by using a quasi-static method with a peak torsion of
τmax
cyc , wherein the elemental stress and displacement components
have been adjusted after the completion of a desired number
of load cycles. The application of cyclic loading influences the
strength and stiffness of the soil to a large extent. On one hand,
the cyclic loading leads to the degradation of shear strength and
stiffness of soil due to generation of excess pore-water pressure,
generation of irrecoverable plastic strain in soil around the pile
and rearrangement of soil particles in the vicinity of the pile

FIGURE 2 | Addition of interface stresses in coupled analysis.

(Poulos, 1981; Basack, 2015). However, on the contrary, the soil
strength and stiffness increase with an increase in the loading
rate (or frequency) (Poulos, 1989; Rodriguez and Alvarez, 2008).
The following mathematical expression (Basack and Nimbalkar,
2017) addresses the combined effects of these two phenomena on
the soil-pile interaction:

Ds
i =

[

1+ F log10

(

2fDθi

λr

)]

N−
γc

A+Bγc (10)

Where, Ds
i is the nodal soil degradation factor, F is a non-

dimensional rate factor, λr is a datum loading rate, γcis
the peak nodal shear strain and A and B are the non-
dimensional cyclic soil parameters. The soil degradation factor
(Ds

i) is defined as the ratio of the post cyclic to pre-cyclic
values of soil strength and stiffness. The derivation and
the details of the parameters for Equation 9 can be found
elsewhere (Basack and Nimbalkar, 2017).

FIGURE 3 | Flowchart for the FORTRAN program PTCYC.
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FIGURE 4 | Comparison of the results computed using BEM with Guo and Randolph (1996).

FIGURE 5 | Comparison of the results computed using BEM with field test data of Stuedlein et al. (2016).

The post cyclic axial pile capacity is then evaluated, based on
the degraded values of the shaft and end bearing resistance, using
the following expression:

Qc
u = πDδ

n
∑

i=1

Ds
iτui +

πD2

4
σbu −Wp (11)

Where, Qc
u is the post-cyclic axial pile capacity, δ is the height of

pile elements, τui is the elemental ultimate soil strength, σbu is the
ultimate base restraint andWp is the self-weight of pile.

Finally, the pile degradation factor (Dp) is evaluated. It
is defined as the ratio of the post-cyclic to static axial pile
capacities (Equation 12):

Dp =
Qc
u

Qs
u

(12)

where, Qs
u is the ultimate static axial pile capacity. A user-friendly

computer program PTCYC is written in FORTAN 90 language to
conduct the desired computations. Figure 3 shows the flowchart
of the computer program.

MODEL VALIDATION

The proposed solutions have been validated using the field test
results available in literature. The field investigation on piles
under composite torsional cyclic and axial static loading is
extremely difficult and expensive. In absence of such research
work, the authors have used the available laboratory and field test
data to validate their numerical model. Stoll (1972) conducted
a full-scale torsional load test on two concrete filled steel
pipe piles embedded in a soil with a linearly increasing soil
modulus. Guo and Randolph (1996) developed the analytical
and numerical solutions for the torsional response of piles
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embedded in heterogeneous soil and validated the model with
the field test results of Stoll (1972). The soil-pile interface shear
stress profiles computed using the present model have been
compared with the theoretical results of Guo and Randolph
(1996) to validate the model (refer to Figure 4). From Figure 4,
it can be observed that the results obtained using the present
model are in good agreement with the solutions developed
by Guo and Randolph (1996), with an average variation
of about 21%.

Stuedlein et al. (2016) conducted a field study to evaluate
the transfer of torsional load to soil along the soil-pile
interface for two drilled concrete shafts in a site consisting
of silty clay overlying a silty sand deposit. In addition to
static torsion, cyclic torsion tests were also conducted on
these shafts under one-way displacement-controlled mode
with 20 displacement cycles at a frequency of 0.57 cycles
per minute (cpm). The values of the resulting peak torsion
evaluated from the present BEM computation have been
compared with the field observations [for both the torsion
test drilled shaft with production base (TDS) and torsion
test drilled shaft with frictionless base (TDSFB)] of Stuedlein
et al. (2016) (Figure 5). It is clear from this figure that the
computed results are in acceptable agreement with the field
test data with an average deviation of about 6%. Thus, the
present numerical solutions are able to capture the soil-pile
interaction under both static and cyclic torsional loads with an
acceptable accuracy.

PARAMETRIC STUDIES: ANALYSIS AND
INTERPRETATION

The present boundary element model has been used to predict
the response of a prototype vertical concrete floating pile
embedded in soft clay subjected to a combined axial and
cyclic torsional loading. Table 1 shows the properties of the
soil and pile used (adopted from Basack, 2010a). The soil
unit cohesion and the initial tangent shear modulus at the
ground surface are 30 kPa and 300 MPa, respectively, which
are assumed to increase linearly with depth at a rate of 3
kPa/m and 30 GPa/m, respectively. Moreover, the key input
parameters to account for the strength and stiffness degradation
(or improvement) under cyclic loading are: A = 4.5, B = 2.5,
F = 0.1, λr = 0.11 mm/s. The axial load on the pile is assumed
to be 0.4 times the axial pile capacity (for pure axial load
condition) i.e., the load ratio (Vt/Vu0) is 0.4. The number of
pile elements are fixed at 100 after conducting a sensitivity check
(Basack and Nimbalkar, 2017).

In the present study, the variation of the pile degradation
factor (Dp) with cyclic loading parameters namely, number of
cycles (N), frequency (f ) and cyclic loading level (Lc) has been
investigated. The cyclic loading level Lc is defined as the ratio of
peak cyclic torsion to the static ultimate torsional pile capacity.
The number of cycles, frequency and cyclic loading level have
been varied in the range of 10–1,000 cycles, 5–30 c.p.m., and 15–
30%, respectively. Moreover, the analysis has been conducted for

TABLE 1 | Input parameters of soil and pile for the parametric study.

Item Parameter Value

Soil Unit weight (γ ’s), kN/m
3 18

Unit cohesion at ground surface (cu0), kPa 30

Adhesion factor (α) 0.8

Friction angle (φ’), deg. 0

Poisson’s ratio (µs) 0

Initial tangent shear modulus at ground surface (Gst0), MPa 300

Pile Length (L), m 15

Diameter (D), m 0.5

Unit weight (γ ’p), kN/m
3 25

Young’s modulus (Ep), GPa 20

Shear modulus (Gp), GPa 8.3

two values of reduction factor (0.85 and 0.95) to investigate its
influence on the soil-pile interactive performance.

Figures 6A–C show the variation of the Dp with N, f and Lc,
respectively. It can be observed that the parameter Dp decreases
with an increase in the number of loading cycles. However,
the trend shows an asymptotically stabilizing tendency, i.e., the
parameter Dp becomes almost constant after a certain number
of loading cycles. This may be attributed to the exponential
degradation of the soil strength and stiffness with N (Idriss
et al., 1978). Moreover, Dp increases with an increase in the
loading frequency. This is because the strength and stiffness
of the soil increases logarithmically with f (Poulos, 1989).
Furthermore, the pile degradation factor (Dp) decreases with an
increase in Lc following a curvilinear pattern with an increasing
slope. This observation is reasonable because an increase in
the value of the torsional cyclic amplitude or cyclic loading
level is likely to cause the failure of more number of elements
(which is initiated by the rapid yielding of soil adjacent to the
soil-pile interface) (Basack, 2010b). It must be noted that the
reduction factor Rf shows insignificant effect on the soil-pile
interactive performance.

Figure 7 shows the profiles for the soil-pile interface shear
stress (normalized by the product of unit cohesion and adhesion
factor) for both static and post cyclic condition. It can be
observed that the normalized shear stress attains a maximum
value at the pile head and reduces to aminimum value at the base,
in a curvilinear manner. It is interesting to note that the values
of the post-cyclic shear stress have decreased as compared to
the relevant value under static loading. Moreover, the percentage
reduction is higher in the pile head (15%) as compared to the
pile base (11%). The normalized shear stress values at the pile
head and base are 0.74 and 0.45, respectively for the static
condition while reduced to 0.63 and 0.4 after the application
of the cyclic loading. This reduction is due to the degradation
of the strength and stiffness of soil. Since, there is an overall
reduction in the pile capacity, therefore, the influence of soil
stiffness and strength degradation due to cyclic loading on the
pile capacity is much higher as compared to the influence of
loading frequency (which tends to enhance the soil strength
and stiffness).
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FIGURE 6 | Variation of pile degradation factor with: (A), N (B), f (C), LC.
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FIGURE 7 | Normalized interface shear stress profile of pile for static and

post-cyclic condition.

PRACTICAL APPLICATIONS

The present study attempts to investigate the effect of the cyclic
loading parameters namely, frequency, number of cycles and
the amplitude, on the axial load carrying capacity of the pile
foundation subjected to axial and torsional cyclic load. The
results from the present study show that the axial loading capacity
of the pile decreases with an increase in the number of loading
cycles up to a particular number of cycles, beyond which the
capacity becomes constant. Moreover, the pile capacity decreases
with an increase in the amplitude of the cyclic torsional loading
or the cyclic loading level. These findings can be used to predict
the in-situ load carrying capacity of the pile installed below
the offshore structures or transportation embankments in the
real field (for the pile and soil conditions used in the present
analysis) for the known amplitude and number of load cycles
(which can be evaluated through physical observation). Similarly,
the long-term performance of the pile foundations subjected
to axial and cyclic torsional loadings can be predicted for the
known values of the cyclic loading parameters. Nevertheless,
the pile foundations must be designed with adequate factor of
safety against the ultimate failure and acceptable displacement
at the pile head (serviceability criterion) (Basack, 2010a). For
the known cyclic loading parameters and ground conditions,
the factor of safety against ultimate failure can be evaluated by
computing the degraded pile capacity. Similarly, the variation of

twist angle with the loading parameters can be evaluated using
the present model and a permissible limit could be established.

Another practical aspect of the present study is the
proper assessment of the in-situ load carrying capacity of
the pile foundation subjected to cyclic torsional loading. This
assessment might help in the design of a suitable ground
improvement measure such as electro-osmosis and high-voltage
electro-kinetics, which could significantly improve the load
carrying capacity of the pile foundations subjected to cyclic
torsional loading.

CONCLUSIONS

In the present study, a numerical solution based on the boundary
element modeling has been developed for a single floating pile
subjected to combined axial and torsional cyclic loads. The
numerical model is successfully calibrated using appropriate
values of the key input parameters and is validated against
the field data published in the literature. The validation of the
computed results with available field data exhibits the accuracy of
the proposed solution. The results of numerical analysis indicate
that the cyclic loading parameters, viz. number of load cycles,
frequency, and cyclic loading level, significantly influence the
degradation of the axial pile capacity due to torsional cyclic
loading. Moreover, the interface shear stress has been found to
decrease in a curvilinear pattern from a maximum value at the
ground surface to aminimum value at the pile base. Furthermore,
the proposed numerical solution can be used to evaluate the
post-cyclic factor of safety relevant to the ultimate pile capacity.
Thus, the results of the present parametric studies (conducted
to investigate influence of key design parameters) can be utilized
for formulating the design criteria for pile subjected to axial and
torsional cyclic loads.
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LIST OF NOTATIONS (BASIC SI UNITS ARE
SHOWN IN PARENTHESES)

A & B Non-dimensional cyclic soil parameters (Dimensionless)
D Diameter of pile (m)
Ds

i Nodal soil degradation factor (Dimensionless)
Dp Pile degradation factor (Dimensionless)
Ep Young’s modulus of the pile (N/m2)
F Non-dimensional rate factor (Dimensionless)
f Loading frequency (Dimensionless)
Gi Initial tangent modulus (Dimensionless)
Gp Modulus of rigidity of the pile (N/m2)
Gs Secant modulus (N/m2)
Jp Polar moment of inertia of the pile (m4)
L Embedded depth of the pile (m)
Lc Cyclic loading level (N)
N Number of load cycles (Dimensionless)
n Number of pile elements (Dimensionless)
Qc

u Post-cyclic axial pile capacity (N)
Qs

u Ultimate static axial pile capacity (N)
Rf Reduction factor (Dimensionless)
t Time (s)
Tt Pile head torque (N.m)
Vt Axial static load (N)
Vu0 Pile capacity for pure axial load (N)
Wp Self-weight of pile (N)
z Depth (m)
δ Height of pile elements (m)
θ i Twist on the ith element (V́)
λr Datum loading rate (Dimensionless)
ρi Vertical displacement at the ith element (m)
τ Shear stress (N/m2)
τb Shear stress at the base of the pile (N/m

2)
τmax
cyc Amplitude of the cyclic torsional load (N)

τui Elemental ultimate soil strength (N/m2)
τ tz Interface shear stress component in horizontal direction at
depth z (N/m2)
τ ti Interface shear stress component in horizontal direction for ith

element (N/m2)
τ vz Interface shear stress component in vertical direction at depth
z (N/m2)
τ vi Interface shear stress component in vertical direction for ith

element (N/m2)
τu Peak shear stress (N/m

2)
σb Normal stress at the base of the pile (N/m2)
σbu Ultimate base restraint (N/m2)
γ Shear strain (Dimensionless)
γc Peak nodal shear strain (Dimensionless)
γ ′

p Unit weight of pile (N/m
3)

γ ′
s Unit weight of soil (N/m

3)
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