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Abstract

Venn diagrams with three curves are used extensively in various medical and scientific disciplines to visualize relationships
between data sets and facilitate data analysis. The area of the regions formed by the overlapping curves is often directly
proportional to the cardinality of the depicted set relation or any other related quantitative data. Drawing these diagrams
manually is difficult and current automatic drawing methods do not always produce appropriate diagrams. Most methods
depict the data sets as circles, as they perceptually pop out as complete distinct objects due to their smoothness and
regularity. However, circles cannot draw accurate diagrams for most 3-set data and so the generated diagrams often have
misleading region areas. Other methods use polygons to draw accurate diagrams. However, polygons are non-smooth and
non-symmetric, so the curves are not easily distinguishable and the diagrams are difficult to comprehend. Ellipses are more
flexible than circles and are similarly smooth, but none of the current automatic drawing methods use ellipses. We present
eulerAPE as the first method and software that uses ellipses for automatically drawing accurate area-proportional Venn
diagrams for 3-set data. We describe the drawing method adopted by eulerAPE and we discuss our evaluation of the
effectiveness of eulerAPE and ellipses for drawing random 3-set data. We compare eulerAPE and various other methods that
are currently available and we discuss differences between their generated diagrams in terms of accuracy and ease of
understanding for real world data.
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Introduction

Data is routinely generated and analysed. For instance,

relationships between groups of genes are studied to understand

biological processes, improve health care, find cures to illnesses,

and solve problems in agriculture. To aid analysis, Venn diagrams

are often used. Each data set is represented by a closed curve and

each set relation is represented by one of the spatial relationships

between the curves. Both the curves and their spatial relationships

are often easily visible, as closed curves are processed preatten-

tively and pop out as complete distinct objects [1], particularly

when the curves are smooth and have good continuation [2].

Closed curves also aid set analysis due to the perceptual grouping

principles of common regions [3] and closure [4].

A Venn diagram with n curves is referred to as an n-Venn

diagram and its regions depict all of the 2n different combinations

of the curve overlaps. A Venn diagram can also be area-
proportional, such that the area of each region in the diagram is

directly proportional to quantitative data corresponding to the

depicted set relation [5]. Size is processed preattentively [6] and is

easily noticeable due to its pop-out effect [7]. Thus, a Venn

diagram can easily depict the data set relations as well as their

cardinality or other associated quantitative data. Small multiples of

such diagrams can also facilitate the analysis of a collection of data

sets for different attributes (e.g., Venn diagrams depicting

overlapping disease symptoms for different countries [8]; [9,10]).

Consequently, area-proportional 3-Venn diagrams have been

used to, for instance: compare the cell-type of differentially

regulated genes after an anti-cancer drug treatment [11]

(Figure 1A); summarize prognostic indicators of severe malaria

[12] (Figure 1B); analyse differences and similarities between

chicken egg white proteome in three different studies [13]

(Figure 1C) and between gene libraries [14] (Figure 1D); study

transcriptome variation of different tissue types of the male field

cricket [15] (Figure 1E); summarize genes affecting DNA damage

in three different studies [16] (Figure 1F). Such diagrams have also

been used in various other disciplines, such as: neuroscience [17];

biosciences [18]; microbiology [19]; botany [20]; ecology [21];

public health [22]; museum conservation [23]; criminology [24];

information search and filtering [25]. Scientific work that

specifically focuses on the generation of an area-proportional

Venn diagram for the quantification of the relationships between

studied data sets is also available (e.g., [26–28]).

An informal study identified various area-proportional Venn

diagrams in the world’s most cited journals (e.g., Nature) [29].

Almost all of these diagrams have two or three curves and are

drawn using circles. Most of those with three circles are misleading

and depict the required data inappropriately, like Figure 1A–C.

For instance: in Figure 1A, the region with value 45 is bigger than

those with value 53 and 54; in Figure 1B, the region with value 25

is bigger than that with value 36; in Figure 1C, the region with
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value 3 is much smaller than that with value 4. In some cases, the

generated diagrams do not depict all the required overlaps

between the curves, as demonstrated in Section 4.3 and Section

4.4.

Such area-proportional Venn diagrams cannot be drawn

analytically using a specific curve shape and so numerical methods

or heuristics are required [30]. Circles can draw Venn diagrams

with region areas that are proportional to any data with two sets

[5], but not three [30] due to their limited degrees of freedom (i.e.,

a centre and a radius). Polygons can draw accurate area-

proportional Venn diagrams for any data with three sets [30],

but as shown in Figure 1D–F, their non-smooth and non-

symmetric curves are not easily distinguishable and impede

comprehension [31,32]. Despite these problems, current drawing

methods use either circles or polygons.

Ellipses have more degrees of freedom (i.e., a centre, two semi-

axes, an angle of rotation) than circles and are similarly smooth. So

diagrams drawn with ellipses are more likely to be accurate with

respective to the required quantitative data and easy to

comprehend due to their distinguishable curves. This is illustrated

in Figure 2 where the diagrams accurately depict the quantities

indicated by the numeric labels of the respective diagram in

Figure 1. The diagrams in Figure 2 were drawn using our novel

drawing method and software, eulerAPE, which is the first to use

ellipses.

The benefits of ellipses was noted earlier (in 2004 in the first

paper on area-proportional Venn diagrams [5] and later [29,30]),

but ellipses were never adopted due to difficulties in calculating the

area of the regions of overlapping ellipses and in adjusting the

various properties of the ellipses [5]. Thus, eulerAPE is the first to

Figure 1. Examples of area-proportional 3-Venn diagrams drawn with circles (A–C) and polygons (D–F) in literature. (A) Comparing
the cell-type of differentially regulated genes after an anti-cancer drug treatment [11]. The method used to draw the diagram has not been noted.
This diagram is a reprint of Figure 3B in [11], previously published under a CC BY license. (B) Summarizing prognostic indicators of severe malaria [12].
The method used to draw the diagram has not been noted. This diagram is a reprint of Figure 3 in [12] (with the N value and the percentages in
parenthesis removed), previously published under a CC BY license. (C) Analysing differences and similarities between identified chicken egg white
proteome in three different studies [13]. Drawn using Venn Diagram Plotter [http://omics.pnl.gov/software/VennDiagramPlotter.php]. This diagram is
a reprint of Figure 2A in [13], previously published under a CC BY license. (D) Analysing overlaps between gene libraries [14]. Drawn using DrawVenn
[5]. This diagram is a reprint of Figure 4B in [14] under a CC BY license, with permission from John Wiley and Sons, original copyright 2009. (E)
Studying transcriptome variation of different tissue types of the male field cricket, namely testis, accessory gland and the rest of the body [15]. Drawn
using Convex Venn-3 [51]. This diagram is a reprint of Figure 1 (left) in [15] under a CC BY license, with permission from Nathan Bailey, original
copyright 2013. (F) Summarizing genes affecting Top1-induced DNA damage identified in three different studies [16]. Drawn using DrawEuler [55].
This diagram is a reprint of Figure 3A in [16] (with added numeric labels indicating the quantitative data that according to the article each region in
the diagram should represent), previously published under a CC BY license.
doi:10.1371/journal.pone.0101717.g001
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address this well-known, difficult problem. It is also novel, in that it

is neither an extension nor an adaptation of any other previous

drawing method. The current applications of eulerAPE are

extensive and diverse. Diagrams generated by eulerAPE have

appeared in numerous journal articles from diverse disciplines

(e.g., [33–35]). A New York Times Science article (http://www.

nytimes.com/interactive/2013/04/16/science/disease-overlap-in-

elderly.html) cites eulerAPE, and the Pacific Northwest National

Laboratory recommends it on their Venn diagram drawing

software webpage (http://omics.pnl.gov/software/VennDiagram

Plotter.php). This work is also the first to assess the effectiveness of

ellipses in drawing accurate diagrams for the required set relations

and associated quantitative data. We discuss the availability of

eulerAPE in Section 3.5.

Our contributions include: (1) an optimization method to

automatically draw accurate diagrams with ellipses comprised of

(1a) a novel cost function to direct the optimization process

(Section 3.2), (1b) a method to generate a rational starting (Section

3.3), and (1c) a mechanism to adjust the properties of the ellipses in

search for a good solution (Section 3.4); (2) evaluation of (2a) the

effectiveness of eulerAPE in drawing an accurate diagram when

one is known to exist for the given 3-set data (Section 4.1), (2b) the

effectiveness of eulerAPE and ellipses in drawing an accurate

diagram for random 3-set data for which an accurate diagram

drawn with ellipses might not exist and the comparison of these

diagrams with those generated by a variant of eulerAPE that

restricts the ellipses to circles (Section 4.2), (2c) the effectiveness of

eulerAPE and venneuler [29] (the latest proposed circle-based

method) in generating accurate Venn diagrams for 3-set data

(Section 4.3), and (2d) the quality of the diagrams generated by

eulerAPE and various other drawing methods that use circles or

polygons in depicting real world medical data (Section 4.4).

All the experiments mentioned in this article were run on an

Intel Core i7-3770 CPU @3.4GHz with 8GB RAM, 64-bit

Microsoft Windows 7 Professional SP1 and Java Platform

1.7.0_10.

Current Automatic Drawing Methods and
Software

2.1. Circle-based
The first automatic drawing methods to use circles were

developed for area-proportional Venn diagrams with two [5] and

three [36] (known as 3 Circle Venn) curves. These were then used

in areas such as medicine and health care (e.g., Figure 3-D [37] or

Figure 3-C3). Various other methods were later developed. A few

of these methods and examples of diagrams drawn using them,

include: BioVenn [38] (e.g., Figure 3-C5, [39]); Venn Diagram

Plotter [http://omics.pnl.gov/software/VennDiagramPlotter.

php] (e.g., Figure 1C, Figure 3-C2, [13]); a module in PatternLab

for proteomics [40] (e.g., Figure 3-C4, [41]); R packages,

Vennerable [https://r-forge.r-project.org/projects/venerable] (e.g.,

Figure 3-C6, [42]) and venneuler [29] (e.g., Figure 3-C7, [43]);

GeneSpring [http://www.strandgenomics.com/GeneSpring] (e.g.,

[44]); Google Venn Charts [https://developers.google.com/chart/

image/docs/gallery/venn_charts] (e.g., Figure 3-C8); Stata’s PVENN

Figure 2. Accurate area-proportional 3-Venn diagrams drawn with ellipses and eulerAPE for the data in Figure 1. Each of these
diagrams depicts the sets and the quantitative data indicated by the numeric labels in the regions of the corresponding diagram in Figure 1. These
diagrams have been drawn with eulerAPE, but the labels have been added manually.
doi:10.1371/journal.pone.0101717.g002
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[http://ideas.repec.org/c/boc/bocode/s457368.html] (e.g., Figure 3-

C1); SAS macro [45] (e.g., [27]); Matlab’s VENN [http://

www.mathworks.com/matlabcentral/fileexchange/22282-venn] and

vennX [http://www.mathworks.com/matlabcentral/fileexchange/

6116-proportional-venn-diagrams]; a web application [http://

bioinforx.com/lims/cloud-based-free-research-tools-for-scientific-

Figure 3. Diagrams generated by various drawing methods for the same medical data from a journal article. All the diagrams are
meant to depict v = {A = 0.25, B = 0.01, C = 0.11, AB = 0.10, AC = 0.29, BC = 0.03, ABC = 0.15}, which represents the findings of a medical survey from a
journal article [37] that also included diagram D for v. The diagrams generated for v using circle-based drawing methods are marked as C, those of
polygon-based methods are marked as P, and the only diagram with ellipses, that by eulerAPE, is E. Green indicates accurate diagrams with diagError
#1026. Red indicates diagrams with inaccurate or missing regions. D is a redrawing of Figure 5 (bottom) in [37], previously published under a CC BY
license.
doi:10.1371/journal.pone.0101717.g003

eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using Ellipses

PLOS ONE | www.plosone.org 4 July 2014 | Volume 9 | Issue 7 | e101717

http://ideas.repec.org/c/boc/bocode/s457368.html
http://www.mathworks.com/matlabcentral/fileexchange/22282-venn
http://www.mathworks.com/matlabcentral/fileexchange/22282-venn
http://www.mathworks.com/matlabcentral/fileexchange/6116-proportional-venn-diagrams
http://www.mathworks.com/matlabcentral/fileexchange/6116-proportional-venn-diagrams
http://bioinforx.com/lims/cloud-based-free-research-tools-for-scientific-data-management-and-analysis/bxtoolbox
http://bioinforx.com/lims/cloud-based-free-research-tools-for-scientific-data-management-and-analysis/bxtoolbox


data-management-and-analysis/bxtoolbox] (e.g., [46]). Excluding

venneuler, all of these methods draw area-proportional Venn

diagrams with two or three circles and most are simple variants of

the first devised method for three curves [36]. Various methods (e.g.,

BioVenn, PatternLab for proteomics) were specifically designed for

biological data.

The latest proposed method, venneuler, is different from most

others as it uses a statistical model for fitting an area-proportional

diagram to the required quantitative data. The model is comprised

of a normalized loss function stress (defined as the sum of squared

residuals divided by the total sum of squares) and a mechanism to

minimize the function. Compared to 3 Circle Venn [36] and a

method VennMaster [47,48] that draws the diagrams with convex

regular polygons, venneuler is the most effective with respect to

both accuracy and generation time. However, venneuler still

generates inaccurate and misleading diagrams for most quantita-

tive data due to the limitations of circles.

An accurate area-proportional 2-Venn diagram can be drawn

for any quantitative data using two circles a and b. This is fully

constrained, as given a and b have radius ra and rb respectively and

distance dab between the centre of a and b, only one overlapping

region area exists. When a circle c is added, the overlapping region

of the 2-Venn diagram is split up into two and new regions are

introduced. So a 3-Venn diagram is made up of three 2-Venn

diagrams (i.e., 2-Vennab, 2-Vennac, 2-Vennbc). Thus, an area-

proportional 3-Venn diagram for the quantitative data indicated

by the numeric labels in Figure 4A can be constructed by first

drawing the accurate 2-Venn diagrams in Figure 4B (the numeric

values in the regions indicate their current area), whereby two

copies of circle c are drawn to ensure that both 2-Vennac and 2-
Vennbc are accurate. Then, rotate the left copy of c anticlockwise

about the centre of a and the right copy of c clockwise about the

centre of b. Only one circle c is required and thus, the two copies

of c must be rotated until they overlap completely (Figure 4C). At

this point, the overlapping regions in a 3-Venn diagram are

automatically formed (Figure 4D). However, the resulting region

areas (Figure 4E) are unlikely to be the same as those required (i.e.,

the numeric labels in Figure 4A) and yet, no changes can be made

to improve the accuracy of a region area without making others

less accurate.

2.2. Polygon-based
The first proposed method, VennMaster [47,48], uses convex

regular polygons. Such polygons are similar in shape to circles and

thus the generated diagrams are often inaccurate (e.g., Figure 3-

P1, [49]). Other methods use: triangles as in Vennerable [https://

r-forge.r-project.org/projects/venerable] (e.g., Figure 3-P2); rect-

angles (e.g., [50]); orthogonal rectilinear curves as in DrawVenn

[5] (e.g., Figure 1D, Figure 3-P3, [14]) and Vennerable [https://r-

forge.r-project.org/projects/venerable] (e.g., Figure 3-P4); 4-sided

and 5-sided convex polygons as in Convex Venn-3 [51] (e.g.,

Figure 1E, Figure 3-P5, [15]); parallelograms [52]; orthogonal

polyominoes [53]; a combination of convex and non-convex,

smooth and rectilinear curves as in VENNTURE [54] and in

Vennerable [https://r-forge.r-project.org/projects/venerable];

convoluted polygons as in DrawEuler [55] (e.g., Figure 1F,

Figure 3-P6, [16]) and Fan Diagrams [56]. A method that draws

diagrams with polygons for any number of curves has been

proposed but not implemented [57]. A recent method, Euler3, was

devised to use polygons only when circles cannot be used [58].

eulerAPE Method and Software

Our drawing method eulerAPE is based on the simple hill-

climbing optimization technique to draw an area-proportional

diagram with ellipses in a time that is relatively fast and that

Figure 4. A method for constructing an area-proportional 3-Venn diagram using circles. (A) The quantitative values in each region
indicate the required region areas, for which an area-proportional 3-Venn diagram should be drawn. (B) The first step of the construction whereby the
three accurate 2-Venn diagrams are drawn. (C) The second step of the construction whereby the identical copies of the circle labelled c are rotated
such that they overlap completely and only one circle labelled c is visible. (D) The instance when only three circles are visible, such that the regions of
the 3-Venn diagram are obtained. (E) The actual area of the regions in the constructed diagram D, which, as in most cases when these diagrams are
drawn with circles, do not correspond to the desired values in A. The numeric label in each region of this diagram indicates the regions’ actual area.
doi:10.1371/journal.pone.0101717.g004

Figure 5. The starting diagram generator bisecting the interval
along bisector line to position the third ellipse. The centre of
ellipse e3 is a point on the line L bisecting the angle y between the two
tangents T1 and T2. The bisection method is applied in the interval
indicated by the faded blue circles along L. The obtained centre should
minimize the discrepancy of the required and the actual area of the
region in exactly the three ellipses.
doi:10.1371/journal.pone.0101717.g005
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maintains users’ attention. The area of the regions of the three

intersecting ellipses is computed accurately and instantaneously

using an analytic method that is based on integral calculus ([59] -

Section 5.4).

Each of the quantities in the provided data, for which a diagram

should be drawn, is first scaled by a factor of (100 / smallest
quantity in the data), so the same diagram is generated for

quantitative data that is different but proportional. The scaled

quantity corresponding to a region is then the required area of the

region in the diagram to be generated. Later, the search for a

solution that satisfies our diagram goodness measure (Section 3.1)

commences, so that a diagram with region areas that are directly

proportional to the scaled quantitative data is generated. A cost

function directs the optimization process to a good solution

(Section 3.2), in that, starting with a rational diagram for the

required region areas (Section 3.3), the properties of the ellipses

are adjusted based on the cost of the modified diagram (Section

3.4). The software is online and free to use (Section 3.5).

3.1. The Diagram Goodness Measure
To verify whether the region areas of an area-proportional

diagram are accurately and directly proportional to the required

quantitative data, eulerAPE uses the following measure:

If

N v is the set of quantities for which a diagram had to be drawn,

N d is an area-proportional diagram generated for v,

N R is the set of labels describing the required set of regions

interior to the curves of the diagram,

N v (r) [Rz is the quantity assigned to r[R that should be

depicted by the area of r in d, and

N A (r) [Rz is the area of r[R in d,

then the error in each r [ R is defined as

regionError rð Þ~ v rð Þ
vS

{
A rð Þ
AS

����
����

where vS~
X
r[R

v(r)

and AS~
X
r[R

A(r)

ð1Þ

and the error in d is defined as

diagError~ max r[R regionError(r)½ � ð2Þ

so that d is a good, accurate diagram with respect to v, in that its

region areas are accurately and directly proportional to the

quantities in v, if and only if

diagErrorƒe where e?0 ð3Þ

In eulerAPE, e = 1026, which value is consistent with that of

other methods when defining a value for zero in their implemen-

tation (e.g., venneuler [29]). The value of regionError and

diagError is always in [0,1].

Rather than using the absolute region area, eulerAPE’s measure

considers the proportion of each region area to the area of the total

diagram. An inaccuracy in one region could make other accurate

regions or curves in the diagram seem erroneous, as regions and

curves might be compared for their area to be estimated. This can

be avoided by considering the area of the region with respect to

Figure 6. The different ways the ellipses’ properties are modified during the optimization search process. At every iteration of the
optimization algorithm, the (A) centre, (B) semi-axes and (C) angle of rotation of every ellipse are respectively modified by parameters pc, pab and ph
in search for other solutions. (A) The grey points indicate the new centres that are obtained when one or both coordinates of the centre of an ellipse
(solid black) are increasing or decreasing by pc. (B) A label +pab means that that semi-axis was increased by the pab percentage, while -pab means
that that semi-axis was decreased by the pab percentage. The dashed ellipses indicate how an ellipse (solid black) is changed when: (top, left) only
the semi-major axis is increased or decreased by pab; (top, right) only the semi-minor is increased or decreased by pab; (bottom, left) the semi-axes
are both increased or both decreased by pab; (bottom, right) one of the semi-axes is increased and the other is decreased by pab. (C) The dashed
ellipses indicate how an ellipse (solid black) is changed when its angle of rotation is increased or decreased by ph.
doi:10.1371/journal.pone.0101717.g006
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the total area of the diagram. A similar measure to the one used by

eulerAPE was considered by a previous drawing method [36].

3.2. The Cost Function
To obtain a good, accurate diagram with respect to the required

quantitative data (as defined in Section 3.1), our optimization

algorithm minimizes a cost function that takes into account the

accuracy of the diagram as well as paths that could lead to a local

minimum. In an informal experimentation, we observed that the

cost function of most of the current methods, such as venneuler’s

stress [29] and Chow and Rodgers’s ‘idealistic’ function [36], often

drive the optimization to a local minimum, as the overall error of

the diagram is reduced at the expense of diminishing a region to a

point where it is close to non-existent and its actual-to-required

area ratio is close to zero. In such cases, no further changes can be

carried out otherwise the diagram would no longer depict all of the

required regions. Following our observation, we devised the

following novel cost function:

If

N v is the set of quantities for which a diagram should be drawn,

N v9 is the set of scaled quantities of v (obtained as explained

earlier in Section ‘eulerAPE Method and Software’), indicating

the required region areas in the required good diagram for v,

N d is an area-proportional diagram that is explored for v during

the optimization,

N R is the set of labels describing the required set of regions

interior to the curves of the diagram,

N v9 (r) [Rz is the area that r[R should have in the required

good diagram, and

N A (r) [Rz is the area of r[R in d,

then the cost of d is defined as

1

Rj j
X
r[R

v0(r){A(r)ð Þ2

A(r)
ð4Þ

Thus, the cost of a diagram is the mean of the cost of all the

regions in that diagram. The sum could have been used since this

work focuses on 3-Venn diagrams. However, we used mean so this

function could be used in other future algorithms for diagrams

with any number of curves and overlaps.

A diagram is generated for the required region areas scaled (i.e.,

those in v9) and so, it is adequate to consider the absolute area of

the regions. A similar approach was adopted by previous

techniques, such as VennMaster [47,48]. If relative region areas

are considered as in our goodness measure, the search could be

restricted, particularly at the initial stages of the optimization when

a good but non-refined solution is adequate.

The denominator A(r) for r[R in our function prevents the

optimization from taking paths that reduce the overall error of the

diagram at the expense of diminishing the actual-to-required area

ratio of a region, leading to a local minimum. With our function, a

region with a very small actual-to-required area ratio will have a

very large cost and thus prevent the optimization from taking such

paths.

Though our cost function in Equation (4) is non-dimensionless,

it is still adequate as the provided quantitative data is scaled before

a diagram is generated for this data. However, we still considered

ways how to make Equation (4) dimensionless. The denominator

A(r) for r[R could be squared as in

1

Rj j
X
r[R

v0(r){A(r)

A(r)

� �2

ð5Þ

or the numerator could be the absolute difference between the

required and actual region area not squared as in

1

Rj j
X
r[R

v0(r){A(r)j j
A(r)

ð6Þ

However, these two dimensionless functions will have a different

effect from that intended by our non-dimensionless cost function,

as the cost of a region would be much smaller than that in

Equation (4) when the actual region area is greater than one and

much greater than that in Equation (4) when the actual region

area is less than one. This means that large errors would be less

easily identified and the actual region area would have a greater

impact on the cost than that intended to identify regions with a

very small actual-to-required area ratio. The cost of a region in

Equation (6) is the same as that in Equation (5) except that it is not

squared. Thus, if large errors in a region result in a smaller cost in

Equation (5) than in Equation (4), then in Equation (6) the cost

would be even smaller, making it more difficult to identify

inappropriate paths. So, we expect Equation (5) and Equation (6)

to be less effective than Equation (4), and for Equation (6) to

perform worse than Equation (5).

To choose the most effective cost function for eulerAPE, we

conducted an experimental comparison of the following cost

functions: F1, venneuler’s stress, using the source code of

venneuler version 1.1-0, but with v9 (r) and A(r) for the required

and the actual area of a region r[R; F2, the first component of

Chow and Rodgers’s ‘idealistic’ function, which is related to our

regionError; F3, the sum of the squared relative error of the

regions; F4, the maximum of the relative error of the regions; F5,

the sum of the relative error of the regions; F6, our non-

dimensionless cost function Equation (4); F7, our dimensionless

cost function Equation (5); F8, our dimensionless cost function

Equation (6).

The cost function of the optimization algorithm in Section 3.4

was replaced by one of F1–F8 and used to generate diagrams (with

the rerun option disabled) for two libraries of 10,000 random 3-set

data items each: L1 with quantitative data for which an accurate

3-Venn diagram with ellipses is known to exist; L2 with

quantitative data for which it is not clear whether an accurate 3-

Venn diagram with ellipses can be drawn. The details and results

of this evaluation are available in Micallef’s PhD thesis [59]

(Chapter 5 and Appendix A).

This evaluation and experimental comparison indicated that

our non-dimensionless cost function F6 is the most effective in:

N Generating good diagrams for quantitative data for which a

good diagram is known to exist;

N Converging to diagrams that have a low diagError even when

a good diagram cannot be drawn with respect to the given

data;

N Identifying and avoiding paths that lead the optimization to a

local minimum when the overall error of the diagram is

reduced at the expense of diminishing the area of a region to a

point where it is close to non-existent and its actual-to-required

region area ratio is close to zero;
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N Taking the least amount of the time and iterations to generate

a diagram, particularly for data for which a good diagram is

known to exist;

N Generating a large majority of the diagrams (97.3%,

N = 20000) within a time (1 second) that ensures that the

users’ train of thought is maintained, and generating nearly all

the diagrams (99.6%, N = 20000) within a time (10 seconds)

that ensures that the users’ attention is maintained.

The effectiveness of F6 over the other cost functions with respect

to the generation of good diagrams, the diagError of the non-good

diagrams, generation time and number of iterations was highly

evident for the diagrams generated for the data in L1, but less

evident for those of L2. The results for L1 could be more

important than those for L2, as an accurate diagram with ellipses

exists for all of the 10,000 data items in L1. There is 3-set data for

which an accurate diagram cannot be drawn with convex curves

[30] (and thus ellipses) and it is unknown how much of this data is

in L2. This evaluation also demonstrated that all of the cost

functions (F1–F5), except for those we devised (F6–F8), often direct

the optimization to a local minimum as the actual-to-required area

ratio of a region is reduced to a value close to zero. Thus the cost

function should heavily weight regions whose area is very small

with respect to that required, as done in F6–F8. However, as

expected, our dimensionless cost functions F7 and F8 were not as

effective as our non-dimensionless F6.

Following the results of this evaluation, eulerAPE uses our cost

function F6, as given in Equation (4).

3.3. The Starting Diagram
The optimization process has to commence with a solution.

This is often an arbitrary or an invariant solution. Both types of

starting diagrams were considered for eulerAPE. The arbitrary

starting diagram was a Venn diagram comprised of three ellipses

whose properties were assigned random values. The invariant

starting diagram was a Venn diagram with 3-fold rotational

symmetry, comprised of three equally-sized circles and regions

that were similar in size, except for those in only one curve that

were around three times as much as the rest. As expected, both

types of starting diagrams led to poor results in terms of generation

time and diagram quality, as such starting diagrams do not take

into account the data that the good solution must satisfy and are

more likely to direct the optimization to a local minimum [60,61].

We wanted eulerAPE to be deterministic and so an arbitrary

starting diagram was particularly inappropriate, as different

diagrams would be generated for the same data every time the

optimization is run (as in e.g., VennMaster [47,48]).

A rational starting diagram that is adapted to the required

quantitative data is more effective, as it reduces convergence time

and the likelihood of reaching a local minimum. Such a starting

diagram is used by for instance venneuler [29]. The starting

diagram used and generated by eulerAPE is drawn using three

ellipses with equal semi-axes, so the ellipses are depicted as circles.

An angle of rotation of 0, p/3 and 2p/3 is assigned to the three

respective ellipses to ensure that the entire space of possible angles

of rotation is considered during the optimization. Assigning an

appropriate centre for the ellipses is difficult and yet important as

this determines the accuracy of the region areas. The two largest

required ellipses, e1 and e2, in the diagram are chosen and an area-

proportional 2-Venn diagram that accurately depicts the data

corresponding to e1 and e2 and their overlap is drawn using Chow

and Ruskey’s bisection method [5]. This increases the likelihood

that the overall starting diagram is close to that required, as an

accurate area-proportional Venn diagram can be drawn with

circles for any data with two sets [5] and the 2-Venn diagram with

e1 and e2 covers a large portion of the starting diagram.

Changes to the ellipses during the optimization affect the area of

the region in exactly the three ellipses. So a starting diagram that

minimizes the error of this region seems helpful. To achieve this,

the centre for the third ellipse e3 is obtained by applying the

bisection method in an interval along a line L, as shown in

Figure 5. L is the bisector of the angle, y, between two lines, T1

and T2, that are respectively tangents to e1 and e2 at i1 (i.e., the

upper intersection point of e1 and e2). The interval along L is (u, l)
where u is a point that lies above another point l on L, such that,

as shown by the faded blue circles in Figure 5, the centre of e3

must be between u and l (but not equal to u or l) for e3 to intersect

each of e1 and e2 twice and form the seven regions interior to the

curves of a 3-Venn diagram. As illustrated by the faded blue circles

in Figure 5, the endpoints of the interval as well as any value that is

not in the interval will generate a diagram that is not a Venn

diagram.

Out of the starting diagrams generated for 10,000 random 3-set

data items for which an accurate Venn diagram with ellipses is

known to exist, 63% had diagError #0.05 (i.e., 5%). The value of

diagError is always in [0,1] and so, this result indicates that the

generated starting diagrams are relatively close to the required

solution. Also, the time to generate the diagrams is 10 times less

than the 0.1 second limit for an instantaneous response [62,63]

with a mean of 8 milliseconds for the 10,000 diagrams.

3.4. The Optimization Algorithm
Our simple hill-climbing algorithm commences with a rational

starting diagram and systematically adjusts the properties of its

ellipses to minimize our cost function, until a good diagram with

respect to the given quantitative data is obtained. Though simple

and a local search, it rarely encounters a local minimum and if it

does, our algorithm is capable of handling such cases and obtain a

good solution whenever an accurate area-proportional 3-Venn

diagram drawn with ellipses is known to exist for the given data (as

shown in Section 4.1).

Our optimization algorithm is characterized by the following

three parameters that determine how at every iteration, each

ellipse e is modified in search for other possible solutions:

N pc, the number of pixels by which one or both coordinates of

the centre of e are modified to explore eight new centres for

e—these are shown in Figure 6A, where the black ellipse and

black point are e and its centre prior to any change, and the

grey points are the eight new centres for e;

N pab, the scaling percentage by which one or both semi-axes of

e are modified to explore eight new semi-axes for e—these are

shown in Figure 6B, where the solid black ellipse is e prior to

any change and the dashed coloured ellipses are e with the

eight new semi-axes;

N ph, the number of radians by which the angle of rotation of e is

modified to explore two new angles of rotation for e—these are

shown in Figure 6C, where the solid black ellipse is e prior to

any change and the dashed coloured ellipses are e with the two

new angles of rotation.

Changes that lead to a reduced cost of the diagram are

accepted. At the start, pc = 10 pixels, pab = 5% and ph = 2p/3.

These values were chosen after the diagram generation for

different 3-set data was observed for different pc, pab and ph
values. If, at the end of an iteration, a property of the ellipses is not

changed, the value of the respective parameter is reduced linearly

(halved). This means that major changes only occur at the start
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when the search space is explored for a good yet non-refined

solution. As the values of pc, pab and ph are reduced further,

minor changes to the diagram are explored, so that the diagram is

refined to the required good solution. This cooling schedule,

similar to that used in the global optimization method of simulated

annealing, reduces the likelihood of converging to a local

minimum and the time required to converge to the good solution.

We halve the parameters as we observed that faster cooling rates

restrict diagram refinement, while slower cooling rates are

computationally expensive. This is the algorithm for the diagram

generation process given a set of quantities, v:

Algorithm eulerAPE (v)

Input: v is a set of seven quantities each corresponding to a

region interior to the curves of a 3-Venn diagram

Output: an area-proportional 3-Venn diagram drawn with

ellipses for v and whether the diagram is accurate

1: d r a rational starting diagram with respect to v
2: if d is a good diagram for v by Equation (3) then

4: end if
5: v9 r the set of scaled quantities of v
6: pc r10 pixels, pab r 5%, ph r 2p/3

7: do

e in d is c then

axes of e in d are s then

rotation of e in d is r then

44: loop

Step 38 is reached when a local minimum is encountered. To

handle such cases, eulerAPE has a rerun option which when

enabled, it reruns the optimization using starting values for pc, pab
and ph that are 20% larger than those used in the previous run.

eulerAPE then terminates either when a good diagram is found or

when 10 reruns are completed and a good diagram is yet not

found. In the latter case, the diagram with the lowest diagError
out of the 11 generated diagrams is returned. We opted for a 20%

increase in the parameter values following our information

experimentation of different parameter values when we observed

cases that could benefit from such an increase and extended

exploration of the search space.

3.5. Availability and How to Use
The software executable and the Java source code are freely

available under the GNU General Public License version 3 at

www.eulerdiagrams.org/eulerAPE. The latest release of eulerAPE
should be downloaded from the webpage and opened by clicking

on the downloaded jar file. Three steps are then required to use

eulerAPE:

1. enter the quantities to be depicted by the regions of the

diagram—these quantities should be typed in manually,

generated randomly or loaded from a file;

Figure 7. The number of reruns to generate a good diagram for 61 data items in L1. The number of reruns (1–10) that were required for
eulerAPE to generate a good diagram for the 61 data items in L1 for which a non-good diagram was generated during the first run.
doi:10.1371/journal.pone.0101717.g007
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3:    return d, accurate

8:    for every ellipse e in d do
9:       centres r the eight centres obtained by pc for e
10:     for each c in centres do

12:          Change the centre of e in d to c

11:         if the cost of d by Equation (4) is reduced when the centre of

13:       end if
14:    end for

17:       if the cost of d by Equation (4) is reduced when the semi-

16:    for each s in semiaxes do
15:    semiaxes r the eight semi-axes obtained by pab for e

18:         Change the semi-axes of e in d to s
19:      end if
20:    end for
21:    rotations r the two angles of rotation obtained by ph for e
22:    for each r in rotations do

23:       if the cost of d by Equation (4) is reduced when the angle of

24:        Change the angle of rotation of e in d to r
25:      end if
26:   end for

27:   end for
28:   if no ellipse in d had its centre changed then

30:   end if
29:      Divide pc by 2

31:   if no ellipse in d had any of its semi-axes changed then
32:      Divide pab by 2

33:   end if
34:   if no ellipse in d had its angle of rotation changed then

35:      Divide ph by 2

36:   end if
37:   if pc #e, pab #e and ph #e, where e = 1 0 26 then

38:      return d, inaccurate
39:   else

40:      if d is a good diagram for v by Equation (3) then

41:        return d, accurate
42:     end if

43:   end if

www.eulerdiagrams.org/eulerAPE


2. select preferences—including: whether the diagram should be

saved, how the diagram should be displayed (e.g., labels,

colours, ellipses or circles), whether to view the search process;

3. generate the diagram—by clicking on the ‘RUN’ button.

Further details, example how to load the required quantitative

data from a file or how to save the diagram, are available on

eulerAPE’s webpage. The latest release, v3.0.0, has been fully

tested on Windows and Mac OS X, is locale-independent,

supports command-line execution (details on eulerAPE’s web-

page), and exports diagrams in png and svg format as well as in

textual format with details about the properties of the ellipses in

the diagram.

Effectiveness of eulerAPE and Ellipses

To evaluate the effectiveness of ellipses in drawing accurate

area-proportional 3-Venn diagram for given data, we first

evaluated the effectiveness of eulerAPE in drawing good diagrams

for drawable 3-set data, that is data for which a good diagram is

known to exist (Section 4.1). Being able to handle such data means

that eulerAPE can avoid and handle local minima and if

eulerAPE cannot draw an accurate, good diagram for any

Figure 9. Examples of good diagrams generated after the first run for data in L1. (A) and (B) illustrate (i) the good diagram that was found
using (ii) the starting diagram generated for the data item in L1 ({a = 2273, b = 24458, c = 44454, ab = 7116, ac = 740, bc = 18807, abc = 12092} for A and
{a = 17033, b = 6248, c = 16230, ab = 615, ac = 289, bc = 840, abc = 922} for B) that was equal to the set of region areas of (iii) a randomly generated 3-
Venn diagram.
doi:10.1371/journal.pone.0101717.g009

Figure 8. Time and total number of iterations to generate good diagrams for data in L1. The log10 (time in seconds) and log10(total number
of iterations) taken to generate good diagrams for 9939 of the 10,000 data items in L1 during the first run (labelled as ‘Run 1’) and for 61 of the 10,000
data items in L1 during any of the one to a maximum of 10 reruns (labelled as ‘Reruns’).
doi:10.1371/journal.pone.0101717.g008
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random data in our second evaluation (Section 4.2), then it is

highly likely that a good diagram drawn with ellipses does not exist

for that data. In this way, we were able to identify characteristics of

3-set data that are drawable with ellipses (Section 4.2). In our

second evaluation, we also generated diagrams for the same

random data using a variant of eulerAPE that restricts the ellipses

to circles to identify whether in these cases an accurate diagram

could be drawn with circles (Section 4.2). We then compared these

results to the diagrams generated by the latest circle-based

method, venneuler [29], for the same random data (Section 4.3).

Finally, we compared the accuracy and the curve aesthetics of the

diagrams generated by eulerAPE and various other drawing

methods using circles or polygons for real world data in a medical

application area (Section 4.4).

The error of the diagrams generated by eulerAPE and other

drawing methods was measured by diagError in Equation (2)

whose value is in [0,1]. Good diagrams are those that satisfy our

diagram goodness measure in Equation (3) and are thus diagrams

that depict all the required regions and have diagError #1026. In

our experiments, the number of iterations and the time taken to

generate the diagrams were also recorded.

This evaluation focuses on 3-set data that associates a quantity

greater than zero to each of the seven regions interior to the curves

of a 3-Venn diagram. Diagrams with region areas that are zero

percent of the total area of the diagram can still be drawn with

eulerAPE, but further evaluation is required in the future.

In this section, L1 and L2 refer to two libraries each with

10,000 sets of seven numbers greater than zero. The numbers of a

set in L1 are the region areas of a 3-Venn diagram generated after

random values are assigned to the properties of three overlapping

ellipses. The numbers of a set in L2 are randomly obtained from a

uniform distribution in the interval [1,10000]. The data in these

two libraries is different from that used in the evaluation of

different cost functions in Section 3.2.

4.1. For Drawable Data
Diagrams were generated with ellipses by eulerAPE for the

10,000 drawable data items in L1. The rerun option of the

optimization algorithm (Section 3.4) was enabled to verify whether

eulerAPE still draws a good diagram if a local minimum is reached

in the first run.

By the first run, good diagrams were generated for 9939 of the

10,000 data items (i.e., 99.4%). Despite generating a non-good

diagram for the remaining 61 data items (i.e., 0.6%), the diagError
of these diagrams was relatively low (median 1.0661024, mean

2.3861023, minimum 1.0261026, maximum 3.0961022) and 54

of them (i.e., 88.5%) had diagError #0.01. Good diagrams were

generated for all of these 61 data items after the optimization

algorithm was rerun. For the majority (38/61, i.e., 62.3%), a good

Figure 10. Examples of good diagrams generated after the first rerun for data in L1. (A) An example of (i) a non-good diagram with a very
low diagError (6.5161024) generated during the first run and (ii) the good diagram generated during the first rerun for the data ({a = 10018, b = 27132,
c = 39737, ab = 9567, ac = 11454, bc = 3, abc = 668}) in L1 obtained from (iii) a random diagram. The good diagram in ii was generated in 1.2 seconds
and 86 iterations (including the first run and the one rerun). (B) An example of (i) a non-good diagram with a low diagError (8.3861023) generated
during the first run and (ii) the good diagram generated during the first rerun for the data ({a = 53804, b = 39550, c = 1256, ab = 15606, ac = 15,
bc = 29904, abc = 3597}) in L1 obtained from (iii) a random diagram. The good diagram in ii was generated in 2.9 seconds and 367 iterations (including
the first run and the one rerun).
doi:10.1371/journal.pone.0101717.g010
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diagram was generated after the first rerun (Figure 7; number of

reruns, median 1 and mean 2.1). Thus, with 99% confidence,

these results indicate that for 99.2% to 99.6% of drawable 3-set

data, eulerAPE draws a good diagram during the first run, and for

99.9% to 100.0% of the same type of 3-set data, eulerAPE draws a

good diagram after one to 10 reruns.

When the optimization algorithm is rerun, more time and total

number of iterations are required to generate a good diagram

(Figure 8). Even so, the generation of the 10,000 good diagrams

had an overall median and mean time of respectively 0.4 seconds

and 2.5 seconds, and an overall median and mean number of

iterations of respectively 32 and 273. Also, for 97.7% of the 10,000

data items, a good diagram was generated within 1 second (98.1%

and 34.4% of respectively the 9939 good diagrams generated

during first run and the 61 good diagrams generated during a

rerun), and for 99.7% of the 10,000 data items a good diagram

was generated within 10 seconds (99.9% and 62.3% of respectively

the 9939 good diagrams generated during first run and the 61

good diagrams generated during a rerun). So, with 99%

confidence, these results indicate that for 97.4% to 98.0% of

drawable 3-set data, eulerAPE draws a good diagram within 1

second, and for 99.6% to 99.8% of the same type of 3-set data,

eulerAPE draws a good diagram within 10 seconds. These results

are important as a response time of 1 second ensures the users’

train of thought is uninterrupted and a response time of 10 seconds

ensures the users’ attention is retained [62,63].

Figure 9A and Figure 9B illustrate (i) the good diagram obtained

from (ii) the starting diagram generated for the data item in L1

that was equal to the set of region areas of (iii) a randomly

generated diagram. These examples illustrate that whenever

possible eulerAPE draws circle-like curves (e.g., the semi-axes of

ellipses a, b and c in Figure 9Ai differ by 6.0%, 5.4% and 8%

Figure 11. Examples of diagrams generated by venneuler and eulerAPE (circles and ellipses) for data in L2. Examples of diagrams
generated with (i) circles by venneuler, (ii) circles by eulerAPE, and (iii) ellipses by eulerAPE for random 3-set data in L2. (A) Diagrams generated for
data {a = 3491, b = 3409, c = 3503, ab = 120, ac = 114, bc = 132, abc = 126}. Ai is missing region abc and has stress = 5.6961024 and diagError
= 1.1661022. Aii and Aiii have the required regions, one for every data set relation. Aii has stress = 8.3661023 and diagError = 2.6361022. Aiii has
stress = 3.96610212 and diagError = 6.5561027. (B) Diagrams generated for data {a = 45910, b = 3261, c = 45467, ab = 58845, ac = 3028, bc = 16406,
abc = 18496}. Bi is missing region ac and has stress = 3.1761023 and diagError = 2.0761022. There are two regions in Bi depicting only b. Bii and Biii
have the required regions, one for every data set relation. Bii has stress = 2.1361022 and diagError = 4.3661022. Biii has stress = 3.43610212 and
diagError = 6.8561027. (C) Diagrams generated for data {a = 3664, b = 46743, c = 59811, ab = 1742, ac = 2099, bc = 17210, abc = 24504}. Ci, Cii and Ciii
have the required regions, one for every data set relation. Ci has stress = 4.2761023 and diagError = 2.3061022. Cii has stress = 8.3161023 and
diagError = 2.4461022. Ciii has stress = 1.13610212 and diagError = 4.0361027.
doi:10.1371/journal.pone.0101717.g011
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respectively). In other cases, elongated ellipses are required to

accurately draw the desired region areas (e.g., in Figure 9Bi, the

required area for the regions located in only one of the curves is

large compared to that of other regions), but the curves are still

highly symmetric and distinguishable in shape from the regions,

thus facilitating diagram comprehension [32]. Also, the curves in

the diagrams are often evenly distributed, thus increasing the

likelihood that the curves are easily distinguishable.

The majority of the non-good diagrams generated during the

first run had a low diagError and just needed further refinement.

Figure 10Ai is an example of such a diagram generated during the

first run with diagError = 6.5161024. Figure 10Aii is the good

diagram that was generated after one rerun for the data in L1

obtained from the diagram in Figure 10Aiii. The area of region bc
is 0.003% of the area of the total diagram and yet eulerAPE was

still capable of accurately computing the region areas and generate

a good diagram. Figure 10Bii is an example of a good diagram

that was generated after the first rerun for the data in L1 obtained

from the diagram in Figure 10Biii. As shown in Figure 10Bi,
during the first run, the optimization was trapped in a local

minimum as ellipse b approached the edge of ellipse c (making

region c seem like it was made up of two regions). By rerunning the

optimization algorithm, different paths were explored and

Figure 10Bii was generated.

The results of this evaluation indicate the effectiveness of

eulerAPE in drawing good diagrams for drawable data. So, if

eulerAPE cannot draw a good 3-Venn diagram for a set of seven

quantities greater than zero, each corresponding to a region in the

diagram, then it is highly likely that a good 3-Venn diagram drawn

with ellipses does not exist for that quantitative data.

4.2. For Random Data
Since eulerAPE can generate good diagrams for drawable data

(Section 4.1), we used eulerAPE to evaluate the effectiveness of

ellipses in drawing accurate area-proportional 3-Venn diagrams

for any random 3-set data with values greater than zero. Diagrams

for the 10,000 data items in L2 were generated using eulerAPE.

The data in L2 is made up of random values and thus, it is

unknown whether an accurate diagram drawn with ellipses exists

Figure 12. Stress and diagError of all the diagrams generated by venneuler and eulerAPE (circles and ellipses). The (A) stress and (B)
diagError of all the diagrams generated with circles by venneuler, with circles by eulerAPE and with ellipses by eulerAPE for the 10,000 3-set data in L2.
The 10,000 diagrams generated with circles by venneuler had stress in [3.7761025, 6.1461021] with median 3.0461022 and mean 6.4161022, and
diagError in [1.5661023, 2.4661021] with median 4.5661022 and mean 5.7361022. The 10,000 diagrams generated with circles by eulerAPE had stress
in [1.91610210, 7.7961021] with median 7.0061022 and mean 1.1361021, and diagError in [3.3061026, 3.3161021] with median 6.2861022 and
mean 6.7361022. The 10,000 diagrams generated with ellipses by eulerAPE had stress in [3.98610214, 2.2461021] with median 7.59610212 and mean
1.17610210, and diagError in [6.0061028, 1.3961021] with median 8.0061027 and mean 2.9461023.
doi:10.1371/journal.pone.0101717.g012

eulerAPE: Drawing Area-Proportional 3-Venn Diagrams Using Ellipses

PLOS ONE | www.plosone.org 13 July 2014 | Volume 9 | Issue 7 | e101717



for this data (i.e., whether the data is drawable). The rerun option

of the optimization algorithm (Section 3.4) was enabled to ensure

that a good diagram is drawn for all drawable data. Diagrams with

circles are preferred and the most effective [32], so we also

evaluated whether an accurate, good diagram can be drawn using

a variant of eulerAPE that restricts the ellipses to circles for any of

the 10,000 data items in L2.

Good diagrams drawn with ellipses were generated for 8607 of

the 10,000 data items in L2 (i.e., 86.1%)—8372 after the first run

(i.e., 97.3% of the 8607) and 235 after one to a maximum of 10

reruns (i.e., 2.7% of 8607). More than half of the 235 good

diagrams (56.2%) were generated during the first rerun and only

one was generated after 10 reruns, as the diagError of the non-

good diagrams generated for these data items during the first run

was relatively low (diagError in [1.5161026, 3.2861022] with

median 1.8961023 and mean 3.7761023).

None of the diagrams drawn with circles for the 10,000 data

items in L2 were good, and the diagError of these diagrams was

greater than that of the non-good diagrams drawn with ellipses

(median, mean: 6.2861022, 6.7361022 for circles; 1.6561022,

2.1161022 for ellipses). With a 99% confidence, these results

indicate that for 85.2% to 86.9% of random 3-set data, a good

diagram can be drawn (using eulerAPE) with ellipses, and for

0.0% to 0.1% of random 3-set data, a good diagram can be drawn

(using eulerAPE) with circles. There are 3-set data for which an

area-proportional 3-Venn diagram cannot be drawn accurately

using convex curves [30] and so, drawing good diagrams with

ellipses for a large majority of the 10,000 random data items in L2

indicates great potential for using curves that are regular and

smooth as circles, but more general and with more degrees of

freedom like ellipses.

The time and number of iterations that were required for the

generation of the good diagrams using ellipses were similar to

those of our evaluation in Section 4.1 (this evaluation: medians 0.4

seconds and 35 iterations, means 1.9 seconds and 201 iterations,

N = 8607). Non-good diagrams with ellipses required more time

and iterations as the optimization algorithm was rerun a

maximum of 10 times (medians, 4.0 seconds, 586 iterations;

means, 25.9 seconds, 4417 iterations). Similarly, the diagrams

drawn with circles required more time and iterations (medians, 3.2

seconds, 500 iterations; means 3.4 seconds, 529 iterations), as none

were good.

The majority of the 10,000 diagrams with ellipses were

generated within 1 second (84.1%—8405/8607 good, 0/1393

non-good) and nearly all with ellipses within 10 seconds (96.9%—

8569/8607 good, 1119/1393 non-good). So similar to Section 4.1,

with 99% confidence, these results indicate that for 83.1% to

85.0% of random 3-set data, eulerAPE draws a diagram with

ellipses within 1 second, and for 96.4% to 97.3% of the same type

of 3-set data, eulerAPE draws a diagram with ellipses within 10

seconds. Out of the 10,000 diagrams with circles, none were

generated within 1 second, but 99.6% (9959/10,000) were

generated within 10 seconds.

This evaluation also revealed that data for which an area-

proportional 3-Venn diagram can be drawn with ellipses often has

larger areas for the regions in only one curve than those in only

two curves, and an area for the region in only the three curves that

is typically similar to those for the regions in only one curve.

4.3. Comparison with Circles and venneuler
Using a variant of eulerAPE, our evaluation in Section 4.2

indicates that it is highly unlikely that there is 3-set data for which

a good diagram can be drawn with circles. To verify this finding,

we used the latest circle-based method venneuler version 1.1-0 to

generate diagrams with circles for the 10,000 data items in L2.

This method is the first to take a statistical approach and differs

from eulerAPE in various ways. For instance, venneuler uses a

numerical approximation method to compute the region areas and

a steepest descent method with an approximate gradient to

minimize its loss function stress. The accuracy of venneuler’s

diagrams was then compared with that of the diagrams generated

by eulerAPE with circles and ellipses in Section 4.2.

For eulerAPE, a good diagram is a 3-Venn diagram with

diagError #1026 (Equation (3)). For venneuler, a good diagram is

one with stress #1026. Thus, to compare the accuracy of the

diagrams generated by eulerAPE and venneuler, we computed:

stress for the diagrams generated by eulerAPE using venneuler’s

version 1.1-0 source code, but eulerAPE’s analytic method to

compute the region areas; diagError for the diagrams generated

by venneuler using eulerAPE’s source code, but venneuler’s

numerical approximation to compute the region areas.

None of the diagrams generated by venneuler for the 10,000

data items in L2 had stress #1026 or diagError #1026. Thus,

none of the diagrams were good according to venneuler’s and

eulerAPE’s diagram error measures. Also, only 64.5% (i.e., 6453/

10,000) of the generated diagrams depicted all of the required

regions. The other 35.5% (i.e., 3547/10,000) had one or more of

the required regions missing.

Figure 11Ai and 10Bi are examples of the diagrams generated

by venneuler with missing regions. Both diagrams had a relatively

low stress (5.6961024 and 3.1761023 respectively), close to that of

a good diagram (i.e., stress #1026). However, Figure 11Ai was

missing region abc (despite that its required area was larger than

that of regions ab and ac and similar to that of region bc) and

Figure 11Bi was missing region ac (despite that its required area

was similar to that of region b). Such diagrams are more

misleading than ones with inaccurate region areas, as besides

showing incorrect quantities, not all the required set relations are

depicted. In contrast, the diagError for these diagrams was not so

low (1.1661022 and 2.0761022 respectively). Some of venneuler’s

diagrams also had aesthetic features that could impede diagram

comprehension [64]. For instance, Figure 11Bi has two regions

representing only b. These problems are not evident in eulerAPE’s

diagrams ii and iii in Figure 11, as the diagram goodness measure

and other checks during the optimization disallow the generation

of such diagrams. When venneuler generated a diagram with all

the required regions, the diagram was often misleading, as the

region areas were inaccurate due to the limited degrees of freedom

of circles. Figure 11Ci is an example of such a diagram. According

to the data for which this diagram was generated, region a had to

be 2.1 times larger than region ab and 1.7 times larger than region

ac. However, region a was smaller than both regions ab and ac.

The stress of the diagram was low (stress = 4.2761023, diagError
= 2.3061022), but greater than that of Figure 11Ai and

Figure 10Bi, despite that the latter had missing regions and were

thus more misleading.

The diagrams by eulerAPE with circles (ii in Figure 11) had

inaccurate and misleading region areas like those of venneuler, but

all depicted the required regions. All of eulerAPE’s diagrams with

ellipses (iii in Figure 11) had the required regions as well as stress #

1026 and diagError #1026 and were thus considered good by

both venneuler’s and eulerAPE’s error measures.

As shown in Figure 12A (for stress) and Figure 12B (for

diagError), the majority of venneuler’s diagrams had a lower stress
and diagError than those of eulerAPE’s diagrams with circles (a

lower stress for 8675/10,000 diagrams; a lower diagError for

6234/10,000 diagrams), but a greater stress and diagError than

those of eulerAPE’s diagrams with ellipses (a greater stress for
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9730/10,000 diagrams; a greater diagError for 9660/10,000

diagrams).

The differences between venneuler’s diagrams and eulerAPE’s

diagrams with ellipses were expected due to the limitations of

circles in generating accurate diagrams for most data [30]. None of

venneuler’s diagrams were considered good by stress and

diagError, but 8529 and 8607 of the 10,000 diagrams generated

by eulerAPE with ellipses were considered good by respectively

stress and diagError (the difference between the percentages of

good diagrams by stress and diagError for eulerAPE’s diagrams

with ellipse is not statistically significant—using R’s pro.test with

Yates’ continuity correction disabled, x2(1) = 2.48, p = 0.12).

The differences between venneuler’s and eulerAPE’s diagrams

with circles could be less expected. A Friedman rank sum test for

non-normal distributions and repeated-measure data revealed a

significant effect of drawing method on stress (x2(1) = 5402.3, p,

2.2610216) and diagError (x2(1) = 609.1, p,2.2610216). Post-hoc

tests using Wilcoxon tests with Bonferroni correction showed

significant differences between venneuler and eulerAPE with a

large effect size on stress (W = 1763624, Z = 280.50, p,

2.2610216, r = 0.57) and a medium effect size on diagError
(W = 14730686, Z = 235.58, p,2.2610216, r = 0.25). So accord-

ing to these measures venneuler’s diagrams were more accurate

than those of eulerAPE. However, while all of eulerAPE’s

diagrams depicted the required regions, 35.5% of venneuler’s

diagrams had missing regions and yet 83.5% of these diagrams

had a low stress (stress,1022). So, eulerAPE’s diagrams could still

be more helpful than those of venneuler as all the required set

relations are depicted. Also, out of the 10,000 diagrams drawn by

eulerAPE with circles, zero (i.e., 0%) had diagError #1026

(Section 4.3), but 28 (i.e., 0.3%) had stress #1026 (the difference

between these percentages is statistically significant—using R’s

pro.test with Yates’ continuity correction disabled, x2(1) = 28.04,

p = 1.1961027). Thus, with 99% confidence, these stress results

indicate that a good diagram with stress #1026 can be generated

with circles for 0.2% to 0.5% of random 3-set data by eulerAPE
and for 0.0% to 0.1% of the same type of data by venneuler. The

diagError of these diagrams that were considered good by stress
was still relatively low and close to diagError #1026.

This evaluation also revealed that if the required areas for the

regions in only one curve are around twice as large as those for the

regions in only two curves, and the area for the region in exactly

the three curves is larger or as large as the areas for the regions in

only one curve, then it is highly likely that a close to accurate area-

proportional 3-Venn diagram drawn with circles exists.

With respect to the time taken to generate each diagram,

venneuler was faster than eulerAPE. The median and mean

generation time of venneuler were 0.6 seconds each, with a

minimum of 0.4 seconds and a maximum of 1.0 second. The

median and mean times for eulerAPE to generate a diagram with

ellipses were 0.4 seconds and 5.3 seconds and with circles 3.2

seconds and 3.4 seconds. This could be due to the various

differences between venneuler and eulerAPE (e.g., the method to

compute the region areas; the way the optimization is run and

terminated after a maximum of 200 iterations). Despite this,

eulerAPE generates more accurate diagrams than venneuler and

within a time that ensures users’ attention is maintained (Section

4.2).

4.4. Comparison with Circles and Polygons, and Various
Drawing Methods

Area-proportional 3-Venn diagrams are used extensively in

various disciplines to facilitate data analysis, but often the diagrams

are more misleading than helpful due to the limitations of the

curve shapes used by current drawing methods. We investigated

this further using real world medical data obtained from a BMC

Medicine journal article [37]. Diagrams for this data were

generated using most of the current drawing methods (Section

‘Current Automatic Drawing Methods and Software’). These were

then analysed and compared with the diagram generated by

eulerAPE using ellipses.

The selected article discusses the results from a web-based

survey that assessed whether US trainees in family and internal

medicine are aware of the complications, screening methods and

therapy for chronic kidney disease (CKD). This survey data was

comprised of sets A, B and C: trainees who claimed that secondary

hyperparathyroidism is a complication of CKD (set A); trainees

who screened by stage 3 of CKD (set B); trainees who commenced

therapy or referred the patient to a specialist when parathyroid

hormone (PTH) reached a level of PTH.70 ng/ml (set C). The

set relations and associated quantitative data can be summarized

as v = {A = 0.25, B = 0.01, C = 0.11, AB = 0.10, AC = 0.29,

BC = 0.03, ABC = 0.15}. To raise awareness that current trainees

need further skills and guidelines to timely identify and manage

patients with CKD, an area-proportional Venn diagram with

respect to v (Figure 3-D) was included in the article.

Diagrams with respect to v were generated using eight circle-

based drawing methods (from those listed and cited in Section 2.1),

namely: C1, Stata’s PVENN; C2, Venn Diagram Plotter; C3, 3

Circle Venn; C4, a module in PatternLab for proteomics; C5,

BioVenn; C6, Vennerable circles; C7, venneuler; C8, Google

Venn Charts. Other diagrams with respect to v were generated

using six polygon-based drawing methods (from those listed and

cited in Section 2.2), namely: P1, VennMaster, with regular,

circle-like polygons; P2, Vennerable triangles, with triangles; P3,

DrawVenn, with rectilinear polygons; P4, Vennerable squares,

Figure 13. The figure in a medical journal article and the figure recreated with eulerAPE. (A) The figure with two Venn diagrams drawn
with circles in a medical journal article [37]. This is a redrawing of Figure 5 in [37], previously published under a CC BY license. (B) The figure as it
would have looked like if the diagrams were drawn with ellipses using eulerAPE. Labels for eulerAPE’s diagrams were added manually.
doi:10.1371/journal.pone.0101717.g013
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with rectangular polygons; P5, Convex Venn-3, with 4-sided and

5-sided convex polygons; P6, DrawEuler, with irregular, non-

convex polygons. All the diagrams are available in Figure 3,

together with the diagram generated by E, eulerAPE with ellipses.

The design of each diagram (e.g., labels, legend, colours, outlines,

background) is precisely the same as that generated by the drawing

method. Curve labels were only added to C2, P3 and P6 as no

labels or legend are provided with the diagram. The numeric

labels in eulerAPE’s diagram were added manually to illustrate

how the diagram in the article would have looked like if it was

drawn with ellipses.

The diagError was devised to compute the error of only those

diagrams that depict all the required set relations, as diagrams with

missing regions are more misleading than those with inaccurate

region areas and should not be accepted altogether. Thus, Figure 3

shows the diagError of only those diagrams with seven regions

interior to their curves as required by the data. For the other

diagrams, the missing regions are noted. To calculate diagError
using Equation (2), the region areas of the diagrams were

computed using eulerAPE’s analytic method for those drawn

with circles and standard geometry formulae for those drawn with

polygons.

In Figure 3, we note that all the diagrams drawn with circles

including D (the diagram in the article) have inaccurate region

areas and are misleading. For instance, region B (1% in v) is much

larger than region BC (3% in v), region C (11% in v) is larger

than regions AB (10% in v) and ABC (15% in v), and region A
(25% in v) in most diagrams is larger than region AC (29% in v).

Similar problems are also evident in C7, the diagram generated by

the latest method venneuler. C3, generated by the first circle-based

drawing method 3 Circle Venn, also has region ABC (15% in v)

similar in area to that of region AC (29% in v). The same is

evident in D, as D was generated by the method of C3. However,

C8 is the most misleading and inaccurate, as region BC is missing

and regions B and AB (respectively 1% and 10% in v) are much

larger than regions C, AC and ABC (respectively 11%, 29% and

15% in v). With respect to diagError, the most accurate are C4

and C7 (diagError = 0.03), followed by C2, C5, C6 (diagError
= 0.04) and C1 (diagError = 0.05), and finally C3 and thus D

(diagError = 0.14). Due to the regularity and good continuation of

circles, the curves are often easily distinguishable and identifiable.

In a few cases (e.g., C3 and D), it is difficult to comprehend in

which curves the regions are located. However, this is often down

to design as, for instance, different unrelated colours are used for

regions located in the same curve (e.g., C2, C3, C6).

In contrast, most of the diagrams with polygons are either

accurate with diagError #1026, as P3, P5, P6, or have region

areas that are less misleading than those of diagrams with circles,

as P2, P4. The latter is true as for instance, consistent with v,

region B is always the smallest and region AC is always the largest.

The only diagram with missing regions (regions C and BC) is P1

generated by the non-deterministic method VennMaster. Since

the curves are depicted as regular, circle-like polygons, Venn-

Master has the same limitations as others that use circles. Though

the diagrams with polygons are more accurate than those with

circles, the curves are non-smooth. So the curves are not easily

identified [65] and are less likely to pop out as discrete and

complete objects [2]. Curve identification is particularly difficult

when, for instance: the curves met at bending points, as P5 and P6;

the curves are partially concurrent, as P2, P3, P4; the curves are

non-convex, as P6. Such features impede diagram comprehension

[32,64], making these diagrams accurate but not usable. Thus, the

preference for the less accurate diagrams with circles instead of

polygons.

Using ellipses, diagram E has region areas that are accurately

and directly proportional to the quantities in v (diagError #

1026). It is also easy to comprehend, as the curves are regular and

have good continuation like circles. So ellipses can be more

effective than both circles and polygons. This was also demon-

strated with other real world data in Section ‘Introduction’, where

Figure 2 illustrates the accurate and easy to comprehend diagrams

generated by eulerAPE with ellipses as alternatives to the

respective misleading diagrams drawn with circles in Figure 1A–

C and the incomprehensible diagrams drawn with polygons in

Figure 1D–F. Being the only method that uses ellipses, the

effectiveness of ellipses could be the primary reason why eulerAPE
is being used in various areas and why its diagrams are appearing

in various journal articles (discussed in Section ‘Introduction’). The

design of the diagrams adopted by eulerAPE is also different from

that of other drawing methods, as eulerAPE uses a heterogeneous

channel-based approach [2] whereby different feature types (i.e.,

outline, colour, texture) that are perceptually processed in parallel

are used. In this way, none of the curve designs fuse perceptually at

overlaps, and the curves and the regions are easily identified.

Another area-proportional 3-Venn diagram for the same data

sets but for the management of anaemia rather than secondary

hyperparathyroidism (so set C was based on the haemoglobin level

rather than parathyroid hormone) was included in the article, as

shown in Figure 13. As explained earlier, Figure 13Aii (replica of

Figure 3-D) is misleading due to inaccuracies in the region areas.

Figure 13Ai could be more misleading as besides inaccuracies in

the region areas (e.g., region B with 3% is larger than region AC
with 4%; region A with 36% is larger than region AB with 41%),

seven regions are shown when according to the data (i.e.,

{A = 0.36, B = 0.03, C = 0.00, AB = 0.41, AC = 0.04, BC = 0.00,

ABC = 0.11}), regions C and BC should not be depicted.

Currently eulerAPE draws highly accurate 3-Venn diagrams even

when regions are very small and barely visible. So, Figure 13Bi,
generated by eulerAPE with respect to {A = 0.36, B = 0.03,

C = 0.00001, AB = 0.41, AC = 0.04, BC = 0.00001, ABC = 0.11},

could be used instead of Figure 13Ai. Looking at Figure 13Bi and

ii, we can easily note that though most participants claimed that

anaemia and secondary hyperparathyroidism were complications

of CKD (set A), timely screening (set B) was more common with (i)
anaemia than (ii) secondary hyperparathyroidism, while com-

mencement of therapy or referral to a specialist (set C) was more

often delayed when diagnosis was based on the (i) haemoglobin

level than on the (ii) parathyroid hormone level. Thus, Figure 13B

could have been more effective than Figure 13A in raising

awareness of the need for trainees to be provided with further

guidelines in managing CKD.

Conclusions

We have described eulerAPE, the first automated method for

drawing area-proportional 3-Venn diagrams using ellipses. Previ-

ous methods used either circles or polygons. Circles are smooth

and generate easy to comprehend diagrams, but are limited as

they cannot draw accurate diagrams for most 3-set data. Polygons

are flexible and generate accurate diagrams, but their non-smooth

curves produce difficult to comprehend diagrams.

Our evaluation indicates that using ellipses and eulerAPE,

accurate area-proportional 3-Venn diagrams can be drawn for a

large majority of random 3-set data (86%, N = 10000), far more

than is possible with the circles that are highly preferred over

polygons. So curves that are smooth like circles but more general

like ellipses should be considered whenever a diagram cannot be

drawn accurately with circles. This finding opens a wider research
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question as to whether curves with different degrees of freedom

such as circles, ellipses, ovals, n-ellipses, regular n-gons and

irregular n-gons could be considered progressively from the most

specific to the more general until a curve type that generates an

accurate diagram for the required region areas is found [30].

The results of our evaluation also indicate great potential for

using ellipses to draw area-proportional diagrams with more

curves. However, first, further evaluation should be conducted to

assess the effectiveness of ellipses and a method like eulerAPE in

handling 3-set data that requires an area of zero for various

regions in the diagram. Following this, characteristics of different

types of quantitative 3-set data that can or cannot be depicted

accurately with an area-proportional diagram drawn with ellipses

should be determined, and analytic methods that identify whether

a diagram can be drawn accurately for the given data should be

formalized.

Apart from the shape of the curves, diagram design features

(e.g., colours, labelling strategies) can also facilitate or impede

understanding of the diagram and the depicted data. The effect of

such features and the possible benefits of adding interaction should

be investigated. Other features that could aid understanding for

users with different abilities (e.g., spatial and numeracy abilities)

should also be identified.

A number of the studies could be conducted to understand: how

such diagrams are processed perceptually and cognitively; how

region areas are perceived; the effect of the shape of the regions

and curves on area judgement; what discrepancies in areas are not

noticeable; whether perceptual scaling measures like those

proposed for map symbols in cartography [66], but highly

criticized by Tufte [67], aid or hinder area judgement in these

diagrams. The findings of these studies will aid in the identification

of diagrams whose region area errors are not human detectable. In

this way, an inaccurate diagram drawn with ellipses for the

required data could be considered accurate for human use and

perception and so, it could be drawn with ellipses rather than other

more complex curves with less desirable features, such as irregular

and jagged polygons. A study should also determine whether

numeric labels in the regions could conceal errors in region areas,

thus allowing the use of smooth curves.

Following these studies, aesthetic criteria, metrics and cognitive

measures as well as perceptual and design guidelines defining an

effective, good diagram for human use that facilitates comprehen-

sion and reasoning should be formalized and prioritized. A variant

of eulerAPE should then be devised to optimize such measures,

such that a diagram that is the best compromise between region

area accuracy and aesthetics is generated. Such a diagram should

ideally have all the important aesthetic features and none of its

region area inaccuracies should be noticeable to the human user.

This would be particularly important for data for which an

accurate diagram with specific aesthetic features cannot be drawn.

With such a compromise, an inaccurate diagram with smooth

curves whose errors are not human detectable could be generated.

It might also be interesting to assess the effectiveness of allowing

users to select aspects of the diagram that they consider important

and they would like to optimize. Such aspects could include

aesthetic features, such as the shape of certain curves or the

accuracy of the regions.

Acknowledgments

We acknowledge Prof Leland Wilkinson (University of Illinois at Chicago)

for providing us the source code of venneuler [29]. We thank Angela

Morelli (Graphic and Information Designer, Central Saint Martins College

of Art and Design, UK) for her feedback on the diagram designs.

Author Contributions

Conceived and designed the experiments: LM PR. Performed the

experiments: LM. Analyzed the data: LM PR. Contributed reagents/

materials/analysis tools: LM. Wrote the paper: LM PR.

References

1. Treisman A, Souther J (1985) Search asymmetry: a diagnostic for preattentive

processing of separable features. Journal of Experimental Psychology: General

114: 285–310.

2. Ware C (2012) Information Visualization: Perception for Design, 3rd Edition.

Waltham, MA, USA: Morgan Kaufmann.

3. Palmer SE (1992) Common region: A new principle of perceptual grouping.

Cognitive Psychology 24: 436–447.

4. Koffka K (1935) Principles of Gestalt Psychology. New York, NY, USA:

Harcourt Brace.

5. Chow S, Ruskey F (2004) Drawing Area-Proportional Venn and Euler

Diagrams. Proceedings of the 11th International Symposium on Graph Drawing

(GD 2003), Lecture Notes in Computer Science 2912: 466–477.

6. Treisman A (1985) Preattentive Processing in Vision. Computer Vision,

Graphics, and Image Processing 31: 156–177.

7. Treisman AM, Gelade G (1980) A feature-integration theory of attention.

Cognitive Psychology 12: 97–136.
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