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Altered lung tissue bioenergetics plays a key role in the pathogenesis of lung diseases.

A wealth of information exists regarding the bioenergetic processes in mitochondria

isolated from rat lungs, cultured pulmonary endothelial cells, and intact rat lungs

under physiological and pathophysiological conditions. However, the interdependence

of those processes makes it difficult to quantify the impact of a change in a single

or multiple process(es) on overall lung tissue bioenergetics. Integrated computational

modeling provides a mechanistic and quantitative framework for the bioenergetic data

at different levels of biological organization. The objective of this study was to develop

and validate an integrated computational model of lung bioenergetics using existing

experimental data from isolated perfused rat lungs. The model expands our recently

developed computational model of the bioenergetics of mitochondria isolated from

rat lungs by accounting for glucose uptake and phosphorylation, glycolysis, and the

pentose phosphate pathway. For the mitochondrial region of the model, values of kinetic

parameters were fixed at those estimated in our recent model of the bioenergetics of

mitochondria isolated from rat lungs. For the cytosolic region of the model, intrinsic

parameters such as apparent Michaelis constants were determined based on previously

published enzyme kinetics data, whereas extrinsic parameters such as maximal reaction

and transport velocities were estimated by fitting the model solution to published data

from isolated rat lungs. The model was then validated by assessing its ability to predict

existing experimental data not used for parameter estimation, including relationships

between lung nucleotides content, lung lactate production rate, and lung energy charge

under different experimental conditions. In addition, the model was used to gain novel

insights on how lung tissue glycolytic rate is regulated by exogenous substrates such as

glucose and lactate, and assess differences in the bioenergetics of mitochondria isolated

from lung tissue and those of mitochondria in intact lungs. To the best of our knowledge,

this is the first model of lung tissue bioenergetics. The model provides a mechanistic
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and quantitative framework for integrating available lung tissue bioenergetics data, and

for testing novel hypotheses regarding the role of different cytosolic and mitochondrial

processes in lung tissue bioenergetics.

Keywords: thermodynamically-constrained modeling, cellular metabolism, glycolysis, mitochondrial

bioenergetics, isolated rat lungs

INTRODUCTION

Altered lung tissue bioenergetics (i.e., cellular capacity for ATP
production) is an important early step in the pathogenesis of

lung diseases (Bongard et al., 2013; Kallet and Matthay, 2013),
including acute lung injury (ALI), which is one the most frequent
causes of admission to medical intensive care units (Kallet and

Matthay, 2013). A wealth of information exists regarding the
bioenergetic processes in mitochondria isolated from rat lungs,

cultured pulmonary endothelial cells, and intact rat lungs under
physiological and pathophysiological conditions (Fisher et al.,

1976; Kerr et al., 1979; Fisher and Dodia, 1981, 1984; Fisher,
1984; Kallet and Matthay, 2013; Zhang et al., 2018). However, the
interdependence of lung cellular processes makes it difficult to
quantify the impact of a change in a single or multiple cellular

process(es) on overall lung tissue bioenergetics. Furthermore, it

is difficult to integrate bioenergetic data measured at different

levels of cellular organization. For instance, although ∼85% of

cellular ATP is produced in mitochondria under physiological
conditions (Fisher, 1984), glycolysis is important for lung tissue

bioenergetics since it can partially compensate for the decrease in
lung tissue ATP when mitochondrial ATP generation is impaired
(Tierney and Young, 2011).

Integrating bioenergetics data from isolated mitochondria,

cultured cells, and the whole-organ is necessary for determining
the functional significance of targeting a specific cellular

process for prognostic and/or therapeutic purposes. Integrated
computational modeling provides a mechanistic and quantitative

framework for doing that. Recently, we developed and validated
a thermodynamically-constrained integrated computational
model of the bioenergetics of isolated lung mitochondria

(Zhang et al., 2018). Simulations using that model provided

important insights into the bioenergetics and respiration of
mitochondria isolated from lung tissue and how they differ

from those of mitochondria isolated from other organs (Wu
et al., 2007; Bazil et al., 2010). The isolated perfused rat lung

preparation (Figure 1, top panel) allows us to control the
composition of lung perfusate and ventilation gas, and to directly
manipulate specific key cellular pathways pertinent to lung
tissue bioenergetics (Fisher et al., 1976; Kerr et al., 1979; Fisher
and Dodia, 1981, 1984; Fisher, 1984). Previous studies carried
out using an isolated perfused rat lung preparation provide
a wealth of information regarding lung tissue bioenergetics,
such as glucose uptake, lactate, and pyruvate production rate,
ATP content, surface NADH, oximetry, etc. (Bassett and
Fisher, 1976b; Fisher and Dodia, 1981; Fisher, 1984; Sepehr
et al., 2013). Again, the interdependence among cytosolic and
mitochondrial processes is not clear from those data, including

how a change in one or more cytosolic or mitochondrial
processes alters overall lung tissue bioenergetics. Moreover,
it is difficult to integrate mitochondrial data from isolated
lung mitochondria with data from intact lungs or lung
tissue homogenate.

The objective of this study is to develop and validate an
integrated computational model of intact rat lung tissue
bioenergetics using existing experimental data. The model
expands our recently developed integrated computational
model of the bioenergetics of isolated lung mitochondria
by accounting for glucose uptake and phosphorylation,
glycolysis, and the pentose phosphate pathway. To the best
of our knowledge, this is the first model for intact lung
tissue bioenergetics. The model provides important insights
into how different cellular pathways, such as glycolysis, are
regulated by different substrates. In addition, the model
provides a mechanistic and quantitative framework for
integrating available lung tissue bioenergetic data, and for
testing novel hypotheses regarding the role of different cytosolic
and mitochondrial processes in lung tissue bioenergetics
under physiological and pathophysiological conditions.

METHODS

Model Development
Our recently developed and validated integrated computational
model of the bioenergetics of mitochondria isolated from rat
lungs forms the foundation of the integrated computational
model of rat lung tissue bioenergetics (Zhang et al., 2018). The
model consists of five different regions (Figure 1, bottom panel):
The reservoir + tubing region, the lung vascular (blood) region,
the cytosolic region, inter-membrane space (IMS) region, and the
mitochondria matrix region. For all regions, the general forms of
the reaction and transport fluxes are identical to those developed
for the integrated computational model of the bioenergetics of
mitochondria isolated from rat lungs (Zhang et al., 2018) (see
Supporting Information).

Lung tissue is capable of oxidizing a wide range of
substrates, including glucose, fatty acids, amino acids, and
lactate (Kerr et al., 1979; Fisher, 1984; Fisher and Dodia,
1984). However, glucose is by far the major substrate under
physiological conditions (Fisher, 1984). Alanine, an amino
acid, can also be an important substrate, especially when
glucose is low (Kerr et al., 1979; Kadlecek et al., 2014). Thus,
glucose and alanine utilization and intermediary metabolism
are also accounted for. The model does not account for
glycogen, which is low and relatively constant in lung
tissue (Kerr et al., 1979).
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FIGURE 1 | (Top) Schematic of the isolated rat lung ventilation-perfusion system. (Bottom) Structure of the rat lung tissue bioenergetics model, which consists of five

regions: The reservoir + tubing region, the lung vascular (blood) region, the cytosolic region, the inter-membrane space (IMS) region, and the mitochondria matrix

region. Major reactions include glycolysis, pentose phosphate cycle, TCA cycle, and electron transport chain reactions. Major biochemical species include: GLC,

glucose; G6P, glucose 6-phosphate; F6P, fructose 6-phospate; F16BP, Fructose 1,6-biphosphate; GAP, Glyceraldehyde 3-phosphate; BPG, 1,3-Bisposphoglycerate;

PEP, Phosphoenolpyruvate; PYR, pyruvate; LAC, lactate; ALA, alanine; CoA, coenzyme-A; ACoA, acetyl-CoA; OXA, oxaloacetate; CIT, citrate; AKG, a-ketogluterate;

SCoA, succinyl-CoA; SUC, succinate; FUM, fumarate; MAL, malate, GLU, glutamate; and ASP, aspartate; NAD and NADH, oxidized and reduced form of

nicotinamide adenine dinucleotide, respectively; ADP and ATP, adenosine triphosphate and adenosine diphosphate, respectively; UQ and UQH2, oxidized and

reduced form of ubiquinone; respectively, CtyC3+ and CytC2+, oxidized and reduced form of cytochrome c, respectively. MA-shuttle, malate-aspartate shuttle (insert).

The model accounts for 70 state variables, including the
concentrations of key metabolites in the mitochondrial matrix
region and cytosol, as well as the mitochondrial membrane
potential. Volumes of each region and general model parameters
are listed in Table 1. Key reactions in the glycolysis pathway

and pentose phosphate pathway are also included (Figure 1,
bottom panel).

Thirteen trans-membrane transport processes are included in
the model to account for the exchange of key metabolic species
between the mitochondrial matrix and cytosol, and between
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TABLE 1 | General model parameter values.

Parameter Value (units) References

VOLUMES

Capillary vascular volume (Vb) 0.66 (ml) Crapo et al., 1980

Total tissue volume (Vc+Vm+Vi ) 0.67 (ml) Crapo et al., 1980

Total lung volume 1.33 (ml) Crapo et al., 1980

Lung tissue cytosolic volume (Vc) 0.66 (ml) Gan et al., 2011*

Mitochondria volume (Vm) 13.12 (µl) Gan et al., 2011*

Inter-membrane space volume (Vi ) 0.95 (µl) Wu et al., 2007*

Lung wet/dry weight ratio 5.87 ± 0.24 Bongard et al., 2013

Average rat lung dry weight 0.227 (g) Bongard et al., 2013**

METABOLIC POOLS

Total pyridine nucleotide content

(NAD+ + NADH) in mitochondria

1.73 (nmol/mg

mitochondria)

Fisher et al., 1973

Cytosolic NAD+ concentration 340 (µM) Kadlecek et al., 2014

*Calculated based on Vm/Vc = 1/50 (Gan et al., 2011), and Vi/Vm = 0.0724 (Wu et al.,

2007). Values are mean ± SE.

**Calculated from lung wet weight based on rat lung wet weight/ dry weight ratio = 5.87.

the blood region and cytosolic region. We used reaction and
transport flux expressions similar to those in our model of the
bioenergetics of isolated rat lung mitochondria (Zhang et al.,
2018). For instance, for the following general multi-substrate and
multi-product enzymatic reaction

Ns
∑

i=1

αiSi ↔

NP
∑

j=1

βjPj, (1)

the general form of the reaction flux, J, accounting for the
thermodynamic (Haldane) constraint, is given by:

J =

Vmaxf
∏Ns

i=1 K
αi
Si

(

∏Ns
i=1 [Si]

αi −

∏Np
j=1 [Pj]

βj

K′
eq

)

∏Ns
i=1

(

1+ [Si]
αi

K
αi
Si

)

×
∏Np

j=1

(

1+
[Pj]

βj

K
βj
Pj

) (2)

where Si is the ith substrate, Pj is the jth product, Ns and Np

are the number of substrates and products, respectively, αi

and βj are the corresponding stoichiometric coefficients, KSi

and KPj are the apparent Michaelis constants corresponding
to substrates and products, respectively; [Si]and[Pj] are the
concentrations of substrate i and product j, respectively;

Vmaxf is the maximum forward reaction rate; and K
′

eq is
the apparent equilibrium constant for the reaction, which
is the value of the equilibrium-state reaction quotient
(i.e., ratio of the product of product concentrations
over the product of substrate concentrations) at specified
thermodynamic conditions (i.e., temperature, ionic strength,
and pH).

The lung bioenergetics model accounts for the pH
dependence of the apparent equilibrium constants for proton-
releasing reactions (Equation 3a) and for proton-consumption

reactions (Equation 3b) (Alberty, 1998; Dash and Beard, 2008;
Bazil et al., 2010):

K ′
eq = K ′0

eq × 10pH−7
= e−1rG

′0/RT
× 10pH−7 (3a)

K ′
eq = K ′0

eq × 107−pH
= e−1rG

′0/RT
× 107−pH (3b)

where K ′0
eq is the reaction’s apparent equilibrium constant (K ′

eq)

at pH of 7, and 1rG
′0 R and T are the standard Gibbs

free energy of the reaction at pH = 7, gas constant, and
temperature, respectively. In the presence of cofactor pairs
(e.g., NADH and NAD+, ATP and ADP, GTP and GDP, CoA
and ACoA, or CoA and SCoA), the generalized reaction flux
Equation 2 was modified appropriately so as not to include
any interactive cofactor product terms (Wagner, 1976; Zhang
et al., 2018). The assumption is that the substrate and product
represented as a cofactor pair, bind with a given enzyme
at the same binding site, so that the resulting reaction flux
expression does not include the corresponding substrate and
product multiplication term in the denominator of Equation
2 (Zhang et al., 2018). Under such conditions, the form of
Equation 2 for a two cofactor pairs S1 and P1 and S2 and
P2 becomes Equation 4 instead of Equation 5 [see derivation
of Equations 4 and 5 on pages 6-8 of the supplement
for (Zhang et al., 2018)].

J =

Vmaxf

KS1KS2

(

[S1] [S2]−
[P1][P2]
K′

eq

)

(

1+ [S1]
KS1

+
[P1]
KP1

) (

1+ [S2]
KS2

+
[P2]
KP2

) (4)

J =

Vmaxf

KS1KS2

(

[S1] [S2]−
[P1][P2]
K′

eq

)

(

1+ [S1]
KS1

) (

1+ [S2]
KS2

) (

1+ [P1]
KP1

) (

1+ [P2]
KP2

) (5)

Furthermore, Equation (2) can be suitably modified to
account for other reaction kinetic mechanisms (e.g.,
sequential-ordered, ping-pong) (Zhang et al., 2018). All
the reactions and transport processes and the associated
flux expressions used in the model are listed in the
Supporting Information.

Several glycolytic reactions are regulated by specific activators
or inhibitors (Berg et al., 2002). For instance, hexokinase (HK)
is inhibited by its reaction product glucose-6-phosphate (G6P),
phosphofructokinase (PFK) is known to be activated by cytosolic
AMP and inhibited by cytosolic ATP and citrate (Heesbeen
et al., 1989; Berg et al., 2002). Those reaction fluxes are modified
to account for such regulatory effects as described in the
Supporting Information.

Governing Ordinary Differential Equations
for the Lung Tissue Bioenergetics Model
The governing ordinary differential equations (ODEs) describing
the dynamic changes in the concentrations (C) of various
chemical species in different regions (total 70 state variables) were
derived based on the principle of mass balance. The change in the

Frontiers in Physiology | www.frontiersin.org 4 March 2019 | Volume 10 | Article 191

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Zhang et al. Computational Modeling of Lung Tissue Bioenergetics

concentration of a given species within each of the five regions is
given by:

Vr
dCr,j

dt
= F

(

Cb,j − Cr,j

)

(6a)

Vb

dCb,j

dt
= F

(

Cr,j − Cb,j

)

−
∑

Jb−c,j (6b)

Vc
dCc,j

dt
=
∑

αc, jJc,j +
∑

Jb−c,j −
∑

Jc−m,j (6c)

Vm
dCm,j

dt
=
∑

αm, jJm,j +
∑

Jc−m,j (6d)

Vi
dCi,j

dt
=
∑

αi, jJi,j −
∑

Ji−m,j (6e)

where Cx,jis the concentration of the jth species in region x, F is

the flow rate, Jx,j is the j
th reaction flux in region x, and Jx−y,j is

the jth transport flux between region x and region y, and Vx is the
volume of region x. Subscripts r, b, c, m, and i denote reservoir
region, blood region, cytosolic region, mitochondrial region,
and inter-membrane space region, respectively. Detailed mass
balance equations are included in the Supporting Information.

The model accounts for both components (electrical gradient
and pH gradient) of the proton motive force (1GH) that drive
several reaction and transport processes in the mitochondria, as
established in our recently published article (Zhang et al., 2018)
and as described in the Supporting Information. In the model,
1GH is defined as:

1GH = F19m + (RT) ln
(

[H+
i ]/[H

+
m]
)

(7)

where19m is the mitochondrial membrane potential, and [H+
m]

and [H+
i ] are the proton concentrations in the mitochondrial

matrix and inner membrane space, respectively (Wu et al., 2007;
Dash and Beard, 2008; Zhang et al., 2018). The rates of change
in 19m and H+

m are described by equations A111 and A108
in the Supporting Information. The proton concentration in
the inner membrane space, [H+

i ], is assumed to be the same
as that in the cytosolic region, which in turn is assumed to
be constant because of the high proton buffering capacity of
the bicarbonate and phosphate buffering systems in the cytosol
(Li et al., 2009). It is worth noting that the above expression
for 1GH is used for all the reaction and transport fluxes
affected by it (e.g., ETC complexes I, III, IV, and IV, see
Supporting Information).

The model was implemented in MATLAB (MathWorks
Inc., Natrick, MA) and the MATLAB function “ode15s”
was used to solve the system of governing ODEs (see
Supporting Information). This MATLAB solver is appropriate
for solving stiff ODEs, which is usually a characteristics of
metabolic models due to the presence of a wide range of time-
scales for the reactions of the different enzymes and transporters
governing the dynamics of metabolites’ concentrations within the
different regions of the model.

Estimation of Model Parameters
For the mitochondria matrix and IMS regions, the
values of intrinsic (apparent Michaelis constants, K’s)

and all extrinsic model parameters (Vmaxf s and Tmaxf s),
except for the parameter descriptive of mitochondrial
membrane leakiness, were fixed to those estimated using
our model of isolated lung mitochondria bioenergetics
(Zhang et al., 2018). For these regions, the values of
the extrinsic model parameters, expressed in units of
nmol/min/mg mitochondria protein in the isolated lung
mitochondria model, were converted to nmol/min/lung for
the integrated lung model by multiplying each parameter
by total mitochondria protein mass (Mmito) in the rat
lung. The value of Mmito along with those for other
unknown model parameters (Table 2) were estimated
from the experimental data (Figures 2–4) described
below. For the lung model, the value of Tmaxf ,LEAK,the
parameter descriptive of mitochondrial membrane
leakiness, was assumed to be equal to or lower than that
estimated from isolated mitochondria (Zhang et al., 2018),
since the mitochondria isolation process could cause
damage to mitochondria membrane. Thus, Tmaxf ,LEAKwas
assumed to be an unknown parameter for the lung
model (Table 2).

For the cytosolic region, the values of the intrinsic model
parameters, such as apparent Michaelis constants (K’s) of
various substrates and products for different enzymes and
transporters, were set to previously published values (see
Supporting Information). The assumption is that since the
apparent Michaelis constants are intrinsic model parameters
their values are organ-independent (Zhang et al., 2018).
For a given enzymatic or transport reaction, the MATLAB
optimization toolbox function “fmincon” was used to estimate
the intrinsic parameters by fitting the reaction flux to pertinent
data (see Supporting Information). The values of the extrinsic
model parameters (i.e.,Vmaxf s, Tmaxf s) in Table 2were estimated
by fitting the model solution to experimental data (Figures 2–
4) from rat lung tissue bioenergetics using the MATLAB
optimization toolbox function “ga.” This function implements
a genetic algorithm, which is a derivative-free optimization
algorithm (Rios and Sahinidis, 2013) suitable for large-scale
metabolic models. For the “ga” function, the objective function
E optimized was:

E =
1

N

M
∑

j=1

N
∑

i=1

(

xi,j − Xi,j

Xi,j

)

2

(8)

where xi,j and Xi,j are the model solutions and the corresponding

experimental data at the ith time point and jth data set,
respectively. N is the number of data points and M is
the number of data sets used for the parameter estimation.
Experimentally measured maximal enzyme activities (Table 2)
were used as initial guesses for the Vmaxf values of corresponding
reactions in the glycolysis pathway (Pérez-Díaz et al., 1977).
A total of 17 unknown extrinsic parameters (Table 2) were
estimated from the experimental data in Figures 2–4 (Kerr
et al., 1979; Fisher and Dodia, 1981, 1984; Fisher, 1984;
Bongard et al., 2013).
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TABLE 2 | Estimated values of unknown model parameters (30◦C).

Parameters Definition Parameter value

(nmol/min/lung)

Experimentally measured value

(nmol/min/lung)

Pérez-Díaz et al., 1977*

GLYCOLYSIS PATHWAY REACTIONS

Vmaxf ,HK Maximum forward reaction rate of HK 279 705 ± 93.1

Vmaxf ,PGI Maximum forward reaction rate of PGI 3.70 × 104 4.2 × 104 ± 3.7 × 103

Vmaxf ,PFK Maximum forward reaction rate of PFK 1.47 × 103 8.3 × 103 ± 1.2 × 103

Vmaxf ,ALD Maximum forward reaction rate of ALD 1.43 × 103 5.72 × 103 ± 146

Vmaxf ,GAPDH Maximum forward reaction rate of GAPDH 6.35 × 104 5.53 × 103 ± 864

Vmaxf ,PGK Maximum forward reaction rate of PGK 2.00 × 105 8.15 × 104 ± 1 × 104

Vmaxf ,PK Maximum forward reaction rate of PK 1.89 × 104 1.83 × 104 ± 784

Vmaxf ,LDH Maximum forward reaction rate of LDH 3.92 × 105 4.74 × 104 ± 5.6 × 103

OTHER PARAMETERS

Vmaxf ,G6PDH Maximum forward reaction rate of G6PDH 2.82 × 103 NA

Vmaxf ,ATPase Maximum forward reaction rate of ATPase 2.54 × 104 NA

Vmaxf ,AA Maximum forward reaction rate of AA 409 NA

Tmaxf ,GLUT Maximum transport rate of GLUT 534.12 NA

Tmaxf ,PYRT Maximum transport rate of PYRT 185.08 NA

Tmaxf ,LACT Maximum transport rate of LACT 6.36 × 103 NA

Tmaxf ,MAS Maximum transport rate of MA shuttle 4.43 × 103 NA

Tmaxf ,LEAK Maximum rate of passive proton leak 15.98 NA

Mmito Average mass of mitochondria protein in rat lungs 16.44mg 13.12 mg**

*values are converted from µmol/g wet weight/min to nmol/min/lung.

**Mitochondrial protein content is 1 mg/1 µL mitochondrial volume. NA, Not available. Values are mean ± SE.

FIGURE 2 | Pseudo-steady state reaction fluxes used for parameter estimation. (A) Glucose (GLC) consumption rate (Kerr et al., 1979) and total lactate (LAC) and

pyruvate (PYR) production rates (Fisher and Dodia, 1981) of isolated rat lungs perfused with perfusate containing 5.5mM glucose. Red symbols are experimental data

(mean ± SE, n = 4). (B) Pseudo-steady state reaction flux of pentose phosphate pathway (PPP) measured at the end of 100min recirculation time (Fisher, 1984).

G6PDH: glucose 6 phosphate dehydrogenase. Red symbol is experimental data (mean ± SE, n = 4) calculated based on (Bassett and Fisher, 1976b; Fisher, 1984).

(C) Lung cyanide-sensitive oxygen consumption rate (OCR), calculated as lung OCR in the absence of potassium cyanide—OCR in the presence of potassium

cyanide (complex IV inhibitor, 2mM) of atelectatic isolated perfused rat lungs (Audi et al., 2003). Red symbol is experimental data (mean ± SE, n = 6). For the model,

lung OCR was calculated as half of reaction flux of complex IV. (D) Mitochondrial and cytosolic ATP production rate were estimated based on recovery of catabolic

products from glucose (Fisher, 1984). Units are converted from µmol/h/g dry weight to µmol/min/g dry weight. Red symbols are experimental data. In model

simulations, pseudo-steady state reaction fluxes are collected at the end of 100min simulation time. For all four panels, blue bars are model fits to the data.

RESULTS

Experimental Data Used for Estimating the
Unknown Model Parameters (Table 2)
The following existing experimental data sets (Figures 2–4) were

used to estimate the values of the unknown model parameters
(i.e., maximal reaction and transport velocities) related to

the cytosolic reactions and plasma membrane metabolite
transporters (Table 2).

Figure 2A shows the rates of glucose consumption rate (Kerr
et al., 1979), and the rates of production of pyruvate and
total lactate (Fisher and Dodia, 1981), for perfusate glucose
concentration of 5.5mM. The data in Figure 2B are the pseudo-
steady state reaction flux of the pentose phosphate pathway
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FIGURE 3 | (A) Effect of perfusate glucose (GLC) concentration on rat lung glucose consumption rate (Kerr et al., 1979). Lungs were isolated from male

Sprague-Dawley rats (200–260 g) and perfused with different concentrations of D-glucose plus 5-3H-glucose and U-14C glucose. The labeled glucose, 5-3H-glucose,

and U-14C glucose were used to measure glucose consumption and exogenous lactate production, respectively. The production rate of 3H2O was used as index of

glucose consumption since more than 90% of 3H from glucose was recovered as 3H2O (Kerr et al., 1979). Values are mean ± SE (n = 3 or more for each glucose

concentration). Lines are model fits to data. (B,C) Lung exogenous, endogenous, and total lactate (LAC) production rates as a function of perfusate glucose

concentration (Kerr et al., 1979). Isolated rat lungs were perfused with different concentrations of D-glucose plus 5-3H-glucose and U-14C glucose. Perfusate

samples were collected every 20min for LAC measurement. Labeled LAC concentrations were derived from U-14C glucose; unlabeled LAC concentrations were

derived from endogenous substrates such as amino acids (Kerr et al., 1979). In (B), total LAC production is plotted as a function of recirculation time. In (C),

exogenous, endogenous, and total LAC production rates are plotted separately as a function of buffer GLC concentration. Values are mean ± SE (n = 6 or more for

each GLC concentration). Lines are model fits to data. (D) Effect of perfusate LAC concentration on lung GLC consumption rate (Fisher and Dodia, 1984). Lungs were

isolated from male Sprague-Dawley rats (180–220g) and perfused with perfusate containing 10mM 5-3H-glucose and D-glucose. In addition, different concentrations

of LAC were added to perfusate before recirculation. 3H2O production rate was measured as an index of GLC consumption rate. 0.5mM LAC had no effect on GLC

consumption rate, but as buffer LAC concentration increased to 2mM, GLC consumption rate decreased to half as compared to that under baseline conditions (no

LAC). Symbols are mean of values from 4 to 10 lungs, and lines are model fits to data.

(Fisher, 1984). Audi et al. estimated the reaction flux of
mitochondrial complex IV as the cyanide-sensitive oxygen
consumption rate (OCR) calculated as the difference in isolated
rat lung OCR measured in the absence vs. presence of potassium
cyanide (complex IV inhibitor, 2mM) (Figure 2C) (Audi et al.,
2003). The data in Figure 2D show the rat lung cytosolic and
mitochondrial ATP production rates estimated by Fisher et al.
based on glucose-carbon recovery from glucose (Fisher, 1984).

Kerr et al. evaluated the effect of perfusate glucose
concentration on the glucose consumption rate as well as lactate
production rate in isolated perfused rat lungs (Kerr et al.,
1979). The lungs were perfused with different concentrations
of D-glucose along with labeled glucose (5-3H-glucose and
U-14C glucose, each with specific activity of 0.1 mCi/mmol).
The labeled glucose forms were used to measure lung glucose

consumption rate, and to distinguish lactate production rate
from glucose added to the perfusate (exogenous source) from
that derived from endogenous substrates such as amino acids
and glycogen (Kerr et al., 1979). Following the lung uptake
of 5-3H-glucose, tritium (3H) is liberated during glycolysis to
form 3H2O. Over 90% of the 3H from glucose was recovered
as 3H2O (Kerr et al., 1979). As such, the production rate of
3H2O was used as a measure of lung glucose consumption
rate (Kerr et al., 1979). For a given perfusate sample, 3H2O
was separated from 5-3H-glucose by evaporation of the sample
(Bassett and Fisher, 1976a). 14C labeled lactate measured in
perfusate was derived from U-14C glucose and is referred to
as exogenous lactate since it is derived from exogenous sources
(i.e., glucose added to the perfusate). Lactate derived from U-
14C glucose was separated from U-14C glucose by extraction with
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FIGURE 4 | Lungs were isolated from male Sprague-Dawley rats (200–250g) and perfused with 40ml Krebs-Ringer bicarbonate buffer containing 10mM glucose

(GLC) and 3% bovine serum albumin (Fisher and Dodia, 1981). Gas mixtures containing different % oxygen partial pressures (PO2; ranging from 0.006 to 95%) were

used to ventilate the lungs and aerate the perfusate. Perfusate sampled were collected for lactate (LAC) and pyruvate (PYR) measurements. Rat lung LAC production

rate (A,D), PYR production rate (B,E), and LAC/PYR ratio (C,F) are plotted as a function of %PO2 (top panels) or log (%PO2) (bottom panels) in gas mixture to show

the model fit to data at low %PO2 (Fisher and Dodia, 1981). Symbols are experimental data (Fisher and Dodia, 1981) and solid lines are model fits.

ether (Kerr et al., 1979). Endogenous lactate in a given perfusate
sample was then obtained as the difference between total lactate
in the sample, measured enzymatically, and labeled lactate (Kerr
et al., 1979). The resulting data are shown in Figures 3A–C.

The data in Figure 3 show the amount of glucose consumed
Figure 3A and total lactate produced Figure 3B as a function
of recirculation time over a range of perfusate glucose
concentrations. The results in panel C show a nonlinear
relationship between the perfusate glucose concentration and
the lung rate of glucose consumption, consistent with the
saturability of glucose transporters (Kerr et al., 1979). The results
in Figure 3C also show that the rate of endogenous lactate
production is saturable at low perfusate glucose concentrations,
whereas the rate of exogenous lactate production is relatively
linear over the range of perfusate glucose concentrations studied.
In the model, exogenous (LACexo) and endogenous (LACendo)
lactate production rates were calculated as

LACendo =
JAA

JPK + JAA
JLACT (9a)

LACexo =
JPK

JPK + JAA
JLACT (9b)

where JAA , JPK and JLACTare the reaction/transport rates of
alanine aminotransferase, pyruvate kinase, and lactate transport
between blood and cytosol, respectively.

Fisher and Dodia evaluated the effect of perfusate lactate
concentration on lung glucose consumption rate in isolated
rat lungs perfused with perfusate containing 5-3H-glucose and

different D-glucose concentrations (Fisher and Dodia, 1984).
3H2O production rate was measured as an index of glucose
consumption rate. The data in Figure 3D show that 0.5mM
lactate had no effect on glucose consumption rate, but as
perfusate lactate concentration increased to 2mM, the glucose
consumption rate decreased to half that measured under
baseline conditions (zero exogenous lactate). These data suggest
that exogenous lactate has a regulatory effect on rat lung
glycolytic rates (Wolfe et al., 1979; Fisher and Dodia, 1984;
Wang et al., 2004).

In another study, Fisher and Dodia measured the production
rates of lactate and pyruvate in isolated perfused rat lungs as a
function of O2 partial pressure (PO2) in lung ventilation/aeration
gas mixture (Fisher and Dodia, 1981). Gas mixtures containing

%PO2 ranging from 0.006 to 95% were used to ventilate the
lungs and aerate the perfusate. Perfusate samples were then
collected for lactate and pyruvate measurements. Figure 4 shows
that pyruvate production rate was not significantly altered over

the range of PO2 studied. Lactate production rate also was not
significantly altered for PO2 > 0.1% (0.76 mmHg) (Fisher and
Dodia, 1981). However, the lactate production rate increased by
∼40 and ∼80% for PO2 levels of 0.1 and 0.006%, respectively.
These results suggest that the rat lung can maintain normal
metabolism for PO2 ≥ 0.1% (Fisher and Dodia, 1981).

All of the extrinsic parameters of the model (Table 2) were
estimated by simultaneously fitting the model solution to the
experimental data in Figures 2–4 using the genetic algorithm as
above. Results are shown in Table 2, and bars in Figure 2 and the
lines superimposed on the data in Figures 3, 4 are the model fits.
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FIGURE 5 | Matrix of correlation coefficients between the extrinsic parameters of the model. Correlation coefficients range between −1 (perfect negative correlation)

and +1 (perfect positive correlation) and are estimated using Equation (11). A small positive or negative correlation coefficient between two parameters suggests small

interdependence between those parameters.

Measures of Identifiability and Estimability
of the Extrinic Parameters of the Model
To assess the identifiability and estimability of the extrinsic
parameters of this lung tissue bioenergetics model (Table 2),
we estimated the parameters’ normalized sensitivity coefficients
and a matrix of correlation coefficients between the estimated
model parameters. The normalized sensitivity coefficients
provide information about the contribution of each of the
extrinsic model parameters to the overall model solution,
whereas the correlation coefficient matrix provides information
about the degree of interdependence between the various
model parameters. For a given parameter, the normalized
sensitivity coefficient was determined using Equation 10
(Zhang et al., 2018):

Sθi =
θi

E

(

∂E

∂θi

)

(10)

where E is the sum of squared difference between experimental
data (Figures 2–4) and the model fit, as defined by Equation 8,
and θi is the estimated value of ith extrinsic model parameter. ∂E

∂θi
was approximated using the central difference method with 0.1%
change in θi.

The matrix of correlation coefficients between the model
parameters was evaluated at the estimated parameter values in
Table 2 that best fit the model to the available experimental
data. The correlation coefficient (CCij) between the ith parameter
and jth parameter was determined using Equation 11
(Audi et al., 2001):

CCij =
HHij

√

HHii ∗HHjj
for i, j = 1, . . . , np (11)

where np is the number of model parameters, HH is the inverse
of the product of the transpose of the Jacobian matrix and
the Jacobian matrix evaluated at the estimated values of the
model parameters in Table 2 that best fit the model to the data
in Figures 2–4.

Figures 5, 6 show the respective normalized sensitivity
coefficients and matrix of correlation coefficients for the extrinsic
model parameters. For most of the extrinsic model parameters,
the normalized sensitivity functions are relatively high, and
the correlation coefficients are relatively low, consistent with a
tight range of values for those parameters that provide a good
fit to the data in Figures 2–4. This suggests that the chosen
experimental data has enough information to estimate the values
of the unknown model parameters.
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FIGURE 6 | Normalized sensitivity coefficients of the extrinsic model

parameters. A parameter contribution to the model solution is proportional to

its normalized sensitivity coefficient estimated using Equation (10).

Model Validation
To validate or corroborate the model, we assessed its ability
to predict published experimental data that were not used
for model development, including estimating the values of the
unknownmodel parameters. To that end, we evaluated the ability
of the model to predict the experimental data in Figures 7–9
and Table 3.

Bongard et al. measured fractional ATP, ADP, and AMP
contents in isolated perfused rat lungs and calculated the energy
charge (EC).

EC =
ATP + 0.5ADP

ATP + ADP + AMP
(12)

following exposure to a single or combination of treatments,
including rotenone (complex I inhibitor, 20µM), ubiquinol
analog coenzyme Q1 (oxidized artificial electron donor, 50µM),
or antimycin A (complex III inhibitor, 3.6µM) (Bongard et al.,
2013). These treatments induced different degrees of change in
lung EC, adenine nucleotides contents, and lactate production
rates. Figure 7A shows that lung ATP content decreased as EC
decreased, whereas AMP content increased as EC decreased.
Lung ADP content shows a biphasic behavior as a function of EC.
As shown in Figure 7B, lung lactate production rate increased
as lung EC decreased. However, when EC dropped below 0.4,

lung lactate production rate did not increase further. The two
glycolytic enzymes HK and PFK require ATP as substrate. Model
simulations show that when EC falls below 0.4, ATP content
becomes too low for these two enzymes to proceed. Therefore,
under such conditions, most of the lactate produced by the rat
lung is from endogenous substrates such as alanine. As shown
in Figure 7, model predictions using the estimated values of the
model parameters in Table 2 are in good agreement with the
measured experimental data. For model predictions, the model
parameters descriptive of the activity of mitochondrial complex
I was gradually decreased to simulate the inhibitory effects of
rotenone on EC. Additional model simulations in Figure 7C

show that as cytosolic ATP concentration decreases (due to
decrease in complex I (CI) activity), cytosolic phosphate (Pi)
concentration as well as cytosolic ADP + AMP increase. Model
simulations in Figure 7D show mitochondrial concentration of
ATP, ADP, and Pi as a function of complex I activity.

The ATP hydrolysis potential, 1rGATPase, is a measure
of the energy released by ATP hydrolysis and is more
thermodynamically relevant than EC (Erecinska et al., 1977). We
calculated 1rGATPase using the following equation:

1rGATPase = 1rG
0
ATPase + (RT) ln

(

[ADPc][Pic]

[ATPc]

)

(13)

where [ATPc], [ADPc], and [Pic] are concentrations of ATP, ADP,
and inorganic phosphate (Pi) in the cytosolic region, respectively;
1rG

0
ATPase, R and T are the standard Gibbs free energy of the

reaction at pH = 7, gas constant, and temperature, respectively.
Model simulations in Figures 7E,F show that decreasing CI
activity leads to decrease in lung EC, decrease in cytosolic
1rGATPase, decrease in lung O2 consumption rate (OCR),
and increase in lung rate of lactate (LAC) production. The
simulations in Figure 7E suggests a high correlation between
EC and 1rGATPase, consistent with theoretical calculations by
(Erecinska et al., 1977).

Bongard et al. also evaluated the effect of the complex I
inhibitor rotenone (20µM) on lung ATP/ADP ratio and on
lactate/pyruvate ratio in perfusate recirculated through isolated
perfused rat lungs (Bongard et al., 2013). As shown in Figure 8,
model simulations are in good agreement with the measured
data. For model predictions, the rotenone inhibitory effect was
simulated by decreasing mitochondrial complex I activity by
85%, with the values of all the other model parameters set to
those in Table 3. The carbon monoxide (CO) inhibitory effect
on lung mitochondrial function was simulated by decreasing
mitochondria complex IV activity by 99.7% at 10min, with
the values of all the other model parameters set to those
in Table 2.

Table 3 shows experimentally measured (Bongard et al., 2013)
andmodel predicted lung tissue adenine nucleotide fractions and
contents under control conditions. Model predictions are within
the range of measured experimental data.

Staniszewski et al. and Sepehr et al. measured lung surface
NADH (top panels) emission signal in isolated perfused rat
lungs by placing a fiber optic probe against the pleural surface
of the right lobe (Sepehr et al., 2013; Staniszewski et al.,
2013). Signals were first obtained under resting condition, and
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FIGURE 7 | Lung fractional ATP, ADP, and AMP contents (A), lung lactate (LAC) production rate (B) as functions of energy charge (EC) defined in Equation 12

(Bongard et al., 2013). For the data (symbols) in (A,B), lungs were isolated from male Sprague-Dawley rats (n = 36) and perfused with perfusate containing 5.5mM

glucose and 5% bovine serum albumin at 37◦C. Isolated perfused rat lungs were exposed to single or combination of different treatments, including 20µM rotenone

(complex I inhibitor), 50µM CoQ1 (reduced to CoQ1H2, an artificial electron donor), or 3.6µM antimycin A (complex III inhibitor).These treatments induced different

degrees of change in lung EC, adenine nucleotides contents, and LAC production rates. For model predictions (solid lines), mitochondrial complex I activity was

incrementally decreased to simulate the inhibitor effects of rotenone on lung EC. In (A), lung ATP amount decreased as EC decreased, while AMP amount increased

as EC decreased. Lung ADP amount showed a biphasic behavior. In (B), lung LAC production rate increased as lung EC decreased. (C) Shows model predicted

relationships between CI activity and cytosolic concentrations of ATP, ADP, AMP, and Pi. (D) Shows model predicted relationships between complex I (CI) activity and

mitochondrial concentrations of ATP, ADP, and phosphate (Pi). (E) Shows model predicted relationships between CI activity and EC and cytosolic ATP hydrolysis

potential (1rGATPase ). (F) Shows model predicted relationships between CI activity, lung oxygen consumption rate (OCR) and lung lactate (LAC) production rate.

then following the addition of inhibitors to the recirculating
perfusate to induce changes in NADH redox status, and thus
fluorescence intensities. As shown in Figure 9, rotenone (ROT,
complex I inhibitor) caused a 20% increase in NADH intensity.
Potassium cyanide (KCN, complex IV inhibitor) caused 20%
increase in NADH intensity. The mitochondrial uncoupler
pentachlorophenol (PCP) caused a 20% decrease in NADH
intensity. For model predictions, the ROT effect was simulated
by decreasing mitochondrial complex I activity by 85%, KCN
effect was simulated by decreasing mitochondria complex IV

activity by 99.7%, and PCP effect was simulated by increasing the
proton leak activity (parameter Tmaxf ,LEAK) by 5 times. As shown
in Figure 9, model simulations are in good agreement with the
measured experimental data.

DISCUSSION

We developed and validated the first integrated computational
model of the bioenergetics of intact rat lungs. The model
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FIGURE 8 | Effect of complex I inhibitor rotenone (ROT, 20µM) on lung ATP/ADP (A) ratio and LAC, PYR production rates (B) in perfusate recirculated through isolated

perfused rat lungs (Bongard et al., 2013). Experimental conditions are the same as those for data in Figure 7. For model predictions, ROT effect was simulated by

decreasing mitochondrial Complex I activity by 85% at 10min, with all other parameters (Table 2) unchanged. Symbols are experimental data (Bongard et al., 2013),

values are mean ± SE (n = 4). Solid lines are model predictions. (C) Effect of complex IV inhibitor CO (carbon monoxide) on lung LAC, PYR production rates. At

control condition, the lung was ventilated with 95% O2 and 5% CO2. At 5min, the ventilation gas was changed to 95% CO and 5% CO2. For model predictions, CO

effect was simulated by decreasing mitochondria complex IV activity by 99.7%. Symbols are experimental data (Fisher et al., 1976) and solid lines are model

predictions. LAC production rate was multiplied by a factor of 2 since LAC production measured in Fisher et al. (1976) is 50% lower than in Bongard et al. (2013).

FIGURE 9 | Experimental data and model predictions of normalized lung surface NADH (Sepehr et al., 2013; Staniszewski et al., 2013). Lungs were isolated from

male Sprague-Dawley rats (300–350g) and perfused with perfusate containing 5.5mM glucose and 3% bovine serum albumin at 37◦C. NADH fluorescence intensity

was measured using fluorometer with fiber optic probe placed against the pleural surface of right lobe. Signals were first obtained under resting condition, and then

following the addition of inhibitors to the recirculating perfusate to induce changes in NADH redox status and thus fluorescence intensities. For (A–C), 20µM rotenone

(ROT, complex I inhibitor), 2mM potassium cyanide (KCN, complex IV inhibitor), or 3mM protonophore (PCP, uncoupler) was added to the recirculating perfusate at

3min, respectively. For model predictions, ROT effect was simulated by decreasing mitochondrial Complex I activity by 85%, KCN effect was simulated by decreasing

mitochondria complex IV activity by 99.7%, and PCP effect was simulated by increasing proton leak activity by 5 times. Symbols are experimental data (Sepehr et al.,

2013; Staniszewski et al., 2013), and solid lines are model predictions.

validation involved determining its ability to predict well a wide
range of published experimental data that were not used for the
development of the model. The model, which is an extension
of our previously developed integrated computational model of
the bioenergetics of isolated rat lung mitochondria (Zhang et al.,
2018), provides important insights into lung mitochondrial and
tissue bioenergetics, and allows us to predict system behavior
and changes in important system properties that are either
experimentally testable or technically difficult to measure.

Parameter Estimation Results and
Sensitivity Analysis
As shown in Figures 2–4, the model was able to fit a wide
range of published experimental data collected from isolated
perfused rat lungs under various experimental conditions,

including metabolic changes in response to different buffer
glucose concentrations, lactate concentrations, oxygen partial
pressures, as well as the effects of various metabolic inhibitors.

Except for the maximum mitochondria proton leak activity
(Tmaxf ,LEAK), the values of the model parameters for the
mitochondria matrix and IMS regions were set to those estimated
using our recent model of the bioenergetics of mitochondria
isolated from rat lungs (Zhang et al., 2018). Our estimate of
Tmaxf ,LEAK from isolated mitochondria ranged between ∼15
nmol/min/mg and 36 nmol/min/mg mitochondria protein,
depending on the quality of the isolated mitochondria, since
the isolation process could damage the mitochondrial membrane
(Zhang et al., 2018). For the whole lung, the value of Tmaxf ,LEAK

would be expected to be equal to or smaller than that estimated
from isolated mitochondria (Zhang et al., 2018). For the lung
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TABLE 3 | Model predicted and experimental lung tissue adenine nucleotide

fractions and content.

Model

predicted

Bongard et al.,

2013

Akai et al.,

1998

Fisher,

1978

ATP/(ATP+ADP+AMP) 0.78 0.79 0.83 0.83

ADP/(ATP+ADP+AMP) 0.19 0.16 0.12 0.12

AMP/(ATP+ADP+AMP) 0.03 0.04 0.05 0.05

ATP (µmole/g dry wt) 6.64 5.66 ± 0.46 6.8 ± 0.5 12.8 ± 0.1

ADP (µmole/g dry wt) 1.85 1.17 ± 0.14 0.95 ± 0.05 1.8 ± 0.2

AMP (µmole/g dry wt) 0.29 0.31 ± 0.06 0.41 ± 0.02 0.8 ± 0.1

For lung tissue content of adenine nucleotides, experimental values are mean ± SE.

model, the estimated value of Tmaxf ,LEAKwas ∼16 nmol/min/mg
mitochondria protein which is close to the low end of the range of
values estimated from isolated mitochondria (Zhang et al., 2018).

For glycolytic enzymes, we used experimentally measured
enzyme activities (Pérez-Díaz et al., 1977) as initial guesses
for the unknown extrinsic model parameters (Table 2), which
significantly improved the efficiency of the genetic algorithm
used for parameter estimation. Optimal parameter estimates
obtained using experimental data in Figures 2–4 show that most
of the estimated Vmaxf values are relatively close to the measured
activities of the corresponding enzymes (Table 2). This, along
with the ability of the model to predict quite well additional
experimental data (Figures 7–9, Table 3) that were not used for
model parameter estimation, serves as validation of this rat lung
bioenergetics model.

An activity parameter (i.e., Vmax’s or Tmax’s) with a relatively
high normalized sensitivity coefficient suggest that the enzyme
or transporter described by this parameter is likely to be the
rate limiting step, since a small change in that parameter
will result in relatively large change in the model output.
Model sensitivity analysis revealed key information regarding
the limiting step(s) in glycolysis. Consistent with enzyme
studies in isolated rat lung cells (Pérez-Díaz et al., 1977),
few glycolytic enzyme activities greatly exceeded the observed
rate of glucose utilization. As such, the calculated normalized
sensitivity coefficients (Figure 6) are low for the glycolytic
enzyme activity model parameters, including phosphoglucose
isomerase (PGI) and phosphoglycerate kinase (PGK). On the
other hand, glucose transporter (GLUT), phosphofructokinase
(PFK), and hexokinase (HK) have relatively high sensitivity
coefficients, and hence are probably the glycolysis rate limiting
steps in lung tissue.

Flux control coefficient for a given enzyme or transporter is
defined as the relative change in a pathway’s flux (e.g., glycolysis)
with respect to a change in the value of a model parameter
descriptive of the activity of that enzyme or transporter in that
pathway (Fell, 1997). To gain more insights into the rate limiting
step for glycolysis, we calculated the flux control coefficients (Fell,
1997; Liguzinski and Korzeniewski, 2006) for glycolytic enzymes
and for the transporters that are affected by glycolysis. The sum of
those flux control coefficients should be one, as predicted by the
metabolic control theory (Liguzinski and Korzeniewski, 2006).
The results shown in Figure 10 (left panel) suggest that under

basal condition, GLUT has the highest flux control coefficient,
and hence is the rate limiting step for glycolysis. However,
Figure 10 (right panel) shows that when lung EC decreases, the
flux control coefficients of the glycolytic enzymes HK and PFK
increase significantly since they use ATP as a substrate, whereas
that for GLUT decreases. Thus, under conditions of low EC, HK,
and PFK are potentially the rate limiting steps for glycolysis.

Differences Between the Bioenergetics of
Mitochondria Isolated From Lungs and
Mitochondria in Intact Lungs
The metabolic environment in isolated mitochondrial
experiments is different from that in isolated perfused lung
experiments. For instance, the environment in isolated
mitochondria experiments is quite stable since the buffer
volume is relatively large as compared to mitochondrial volume
(ratio of mitochondrial volume to buffer volume is ∼1/1000)
(Wu et al., 2007; Zhang et al., 2018). On the other hand, lung
bioenergetics are more sensitive to metabolic control in intact
rat lungs because of the relatively large mitochondria/cytosol
volume ratio (mitochondria to cytosol volume ratio of ∼1/50)
(Gan et al., 2011).

Mitochondrial respiratory substrates can inhibit glycolytic
rate via increased citrate production from mitochondria (Fisher
and Dodia, 1984). For this study, conditions of abundant
mitochondrial respiratory substrates were simulated using the
lung tissue bioenergetics model by elevating cytosolic pyruvate
concentration. The simulations in Figure 11 show that the fluxes
of three TCA cycle reactions (namely PDH, CITS, and MDH)
increased with increased cytosolic pyruvate concentration. The
fluxes of the other TCA cycle reactions actually decreased with
increased cytosolic pyruvate concentration. As a result, excessive
mitochondrial citrate produced by the TCA cycle is released to
the cytosol, which in turn inhibits glycolysis.

Previously we showed that the TCA cycle in mitochondria
isolated from rat lung tissue is functionally incomplete (Zhang
et al., 2018), with only half of the TCA cycle reactions (PDH,
CITS, MDH) active while the other reactions are apparently
inactive. However, as Figure 11 shows, a different TCA cycle
behavior was observed in simulations generated using the lung
tissue bioenergetics model. For such experimental conditions,
the TCA cycle is complete and all the reactions are running at
approximately equal rates. This difference in TCA cycle activity
is potentially due to differences between the mitochondrial
environment of the isolated mitochondria preparation and
the isolated perfused lung preparation. For instance, the
physiological pyruvate concentration in isolated perfused rat lung
is around ∼0.1mM under normal conditions (Kadlecek et al.,
2014), vs. a buffer pyruvate concentration of ∼5mM used in
isolated mitochondrial experiments to ensure enough substrate
availability for mitochondrial respiration (Fisher et al., 1973;
Evans and Scholz, 1975; Fisher, 1975; Zhang et al., 2018).

Simulations using the proposed integrated lung tissue
bioenergetics model provide a potential explanation for why the
TCA cycle is apparently incomplete in isolated mitochondrial
studies, but is complete in isolated perfused rat lung experiments.
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FIGURE 10 | (Left) Model predicted flux control coefficients for glycolytic enzymes and for the transporters that are affected by glycolysis under basal conditions.

(Right) Flux control coefficients as a function of energy charge (EC, defined in Equation 12). The flux control coefficient of the glucose transporter (GLUT ) decreased

as EC decreased, whereas flux control coefficients of the glycolytic enzymes phosphofructokinase (PFK) and hexokinase (HK) increased as EC decreased. For model

simulations, mitochondrial complex I activity was incrementally decreased to induce a decrease in EC.

FIGURE 11 | Model predicted mitochondrial TCA cycle fluxes as functions of cytosolic pyruvate (PYR) concentration using parameters in Table 2. When cytosolic

PYR concentration is clamped below 0.1mM, TCA cycle is seen to be functionally complete (equal fluxes at steady state). As cytosolic concentration increases, TCA

cycle becomes increasingly functionally incomplete. PDH, Pyruvate dehydrogenase; CITS, Citrate synthase; ICDH, Isocitrate dehydrogenase; AKGDH, α-ketoglutarate

dehydrogenase; SCAS, Succinyl-coenzyme A synthetase; SDH, Succinate dehydrogenase; MDH, Malate dehydrogenase.

A higher cytosolic pyruvate concentration, such as that used
in isolated mitochondrial studies, results in higher NADH
generation in mitochondria. Isocitrate dehydrogenase (ICDH)
is known to be inhibited by NADH (Qi et al., 2008;
Zhang et al., 2018), with the ICDH activity decreasing as
mitochondrial NADH/NAD ratio increases. As such, increased
amounts of citrate is released into the cytosol through the
mitochondrial transporter tricarboxylate carrier (TCC) resulting
in an incomplete TCA cycle.

Based on the calculated mitochondria volume (13.1 µL in
Table 2), the calculated mitochondria protein mass is around

13.1mg in intact rat lung. This value is close to the model-
estimated value (16.4mg). Based on our previous study [5],
mitochondria yield from lung tissue is around 2–3 mg/rat
lung. That suggests that 80–85% of rat lung mitochondria is
lost/inactivated during the isolation process.

Lactate Regulation of Glycolytic Rate
Experimental data showed that exogenous lactate has a regulatory
effect on glycolytic rate (Figure 3D) (Wolfe et al., 1979; Fisher
and Dodia, 1984). However, the underlying mechanism for such
an effect is not well understood. Different hypotheses have
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been proposed (Fisher and Dodia, 1984), including through
alternations in cellular redox state or cellular energy states.
However, mitochondrial control of the TCA cycle may also be
contributing to lactate’s regulation of the glycolytic rate.

In the cytosol, pyruvate is always in equilibrium with
lactate since the enzyme lactate dehydrogenase (LDH) activity
is much higher than that of other glycolytic enzymes. Thus,
increasing exogenous lactate concentration increases pyruvate
concentration in cytosol, which in turn inhibits glycolysis.
This is consistent with the data in Figure 3D, which show
that exogenous lactate has an inhibitory effect on rat lung
glycolytic rates (Wolfe et al., 1979; Fisher and Dodia, 1984;
Wang et al., 2004).

Even though the glucose utilization rate of rat lung is similar to
that of heart and brain (Fisher, 1984), isolated perfused rat lungs
produce significantly more lactate than hearts (Fisher, 1984) and
skeletal muscle (Li et al., 2009). Forty to fifty percent of glucose
consumed by lungs is released as lactate (Fisher, 1984). Thus, a
significant fraction of NADH produced in the glycolytic pathway
is consumed by lactate dehydrogenase. Only ∼10% of NADH
produced by glycolysis is transported into mitochondria by MA-
shuttle (Fisher, 1984). Previous modeling studies have suggested
that the MA-shuttle may have an important regulatory role on
the bioenergetics of skeletal muscle and heart (Wu et al., 2007; Li
et al., 2009). However, simulations using the proposed integrated
lung bioenergetics models suggest that the role of the MA-shuttle
may be less important in the intact rat lung.

Model Limitations
As shown in Figures 3B,C, model-simulated endogenous lactate
underestimates experimentally-measured lactate production
(Kerr et al., 1979) when perfusate glucose concentration is
low (0–0.5mM). The model predicts that when exogenous
glucose is low, lung mitochondria divert more pyruvate from
endogenous substrates (e.g., alanine), thus resulting in lower
endogenous lactate production. However, Figure 3C shows that
experimentally measured endogenous lactate production (Kerr
et al., 1979) is independent of perfusate glucose concentration.
One possible reason for this could be that experimentally
measured endogenous lactate production (Figure 3C) (Kerr
et al., 1979) is overestimated since pyruvate and lactate were
extracted using ion-exchange chromatography (Bassett and
Fisher, 1976a; Kerr et al., 1979). This method cannot differentiate
between lactate and other small anions potentially present in
the perfusate (Bassett and Fisher, 1976a). It is likely that the
production rate of those small anions is independent of perfusate
glucose concentration.

Another possible reason for the inability of the model to
account for the rate of lactate production under conditions
of low perfusate glucose concentration could be that the
activity of the enzyme alanine aminotransferase is dependent
on ATP level. The rationale is that when glucose is low,
protein degradation is stimulated in response to decreased ATP,
resulting in more pyruvate formation from alanine. However,
experimental data and model simulations in Figure 8 show that
pyruvate production is decreased in the presence of rotenone

(complex I inhibitor) which is known to decrease mitochondrial
ATP (Bongard et al., 2013).

Glucose and alanine are considered major metabolic
substrates for this rat lung bioenergetics model. Other substrates
such as fatty acids and glycogen are not accounted for. Under
normal conditions, fatty acid production accounts for <5%
of glucose consumption in isolated perfused rat lungs (Fisher,
1984). Thus, the contribution of fatty acid is considered
insignificant. However, under low energy conditions, fatty
acid could become a significant alternative energy source.
For example, fatty acid oxidation may be activated by AMPK
(AMP-activated protein kinase) when glucose is low (Connolly
et al., 2016). Fatty acids were not accounted for in the present
model due to the scarcity of experimental data regarding fatty
acid as a source of energy in intact lungs.

Another limitation of the lung model is that it does
not account for all ATP consumption processes, including
consumption by active transporters, due to the scarcity of
experimental data (Fisher et al., 1976; Kerr et al., 1979; Fisher
and Dodia, 1981, 1984; Fisher, 1984; Kallet and Matthay,
2013; Zhang et al., 2018). Instead, the ATP consumption
rate is modeled as a passive process whose rate is only
dependent on the concentrations of ATP, ADP, and inorganic
phosphate. Accounting for all ATP consumption processes
and their regulatory effects could improve the ability of the
model to simulate experimental data under conditions of low
glucose concentration.

Another limitation of the lung model is that it does not
account for metal ions, including calcium (Ca2+). Accounting
for Ca2+ and other ions in the model would require adding
transporters and buffering mechanisms for those ions, and
accounting for their interactions with other metabolites in the
different regions of the model. This would require experimental
data about those processes from lungs and lung mitochondria
to estimate the relevant model parameters descriptive of those
processes. Such data are not currently available, and collecting
such data is beyond the scope of this study.

CONCLUSION

We have developed and validated an integrated mechanistic
computational model of intact rat lung tissue bioenergetics by
extending our recently developed integrated thermodynamically-
constrained computational model of the bioenergetics of
mitochondria isolated from rat lungs. The model was used to
gain insights on how lung tissue glycolytic rate is regulated
by exogenous substrates, such as glucose and lactate, and to
assess differences in the bioenergetics of mitochondria isolated
from lung tissue and those of mitochondria in intact lungs. To
the best of our knowledge, this is the first model for intact
lung tissue bioenergetics. The model provides a mechanistic
and quantitative framework for integrating available lung
bioenergetics data, and for testing novel hypotheses regarding the
role of different cytosolic and mitochondrial processes in lung
tissue bioenergetics under physiological and pathophysiological
conditions. The MATLAB model code is available at the model
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sharing website (physiome.org) or upon request submitted to the
corresponding author.
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