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Based on body mass index (BMI), body weight has been classified into overweight (25–29.9
kg/m2), obesity (≥30 kg/m2), and severe obesity (≥40 kg/m2) (1). BMI >30 has been classified
as a disease state by the American Medical Association (AMA) (2). According to the World
Health Organization (WHO), the worldwide prevalence of obesity almost tripled between 1975
and 2016. Overall, 1.9 billion (39%) and 650 million (13%) of adults aged 18 years and over
were overweight and obese, respectively, in 2016 (3). From 2007–2016 in the US, middle-aged
obese adults (40–59 years old) were more prevalent than obese young adults (4). These statistical
data identified middle-aged obese adults as a high-risk population vulnerable to obesity-related
metabolic syndrome.

Visceral obesity, also known as abdominal, central, or ectopic obesity, was defined as a waist
circumference ≥102 cm in men and ≥88 cm in women (5), or as a waist-to-hip ratio >0.9 for men
and>0.85 for women (6). Recently, 50% of men and 70% of women among US adults aged from 50
to 79 years were diagnosed with visceral obesity (7), which closely correlated with insulin resistance,
type 2 diabetes, and cardiovascular disease (8).

Neither BMI-defined obesity nor visceral obesity provides guidance on how to reduce weight
in young or elderly populations because the etiology of obesity in these populations is uncertain.
We suggest that weight loss would be more practical if obesity was simply classified into
inflammatory and non-inflammatory subtypes, regardless of race and gender. We believe that a
shift from non-inflammatory obesity to inflammatory obesity may be aging-dependent and adipose
depot-specific. As such, subcutaneous obesity in young individuals, with the exception of extreme
cases of adolescent obesity, would be generally non-inflammatory. In contrast, visceral obesity
frequently seen in elderly individuals is more likely to be inflammatory. However, inflammatory
obesity can also occur in young adults, adolescents, and children (see below).

This classification of obesity subtypes was suggested because we believe that
immunosurveillance determines conversion from non-inflammatory to inflammatory obesity
subtype. Aging-driven immunosenescence deteriorates innate and adaptive immunity, leading
to compromised elimination of pathogenic and opportunistic infections (9). Non-inflammatory
obesity equates to metabolically-healthy obesity, whereas inflammatory obesity equates to
metabolically-unhealthy obesity (10), with the latter associated with increased risk of cardiovascular
disease-related mortality (11).
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In general, visceral obesity is accompanied by infiltration
of activated macrophages and other immunocompetent cells,
as demonstrated by increased area, density, and presentation
of inflammatory markers in abdominal intramuscular adipose
tissue (12). Adipose inflammation is likely induced by either
the bacterial endotoxin lipopolysaccharide (LPS) (13), fatty acids
(14), or ceramides (15).

Visceral obesity could be conveniently measured using a
bioelectrical impedance analysis (BIA)-based electric meter
(16). Accordingly, lower basal metabolic rate (BMR) and
lower body water rate (BWR), which can be measured
using these meters, might be indicators of visceral obesity,
although this association requires further elucidation. However,
inflammation causes mitochondrial dysfunction, resulting in
disruption of fatty acid oxidation, and decreased ATP and
H2O production. For example, age-dependent obesity was
associated with decreased mitochondrial complex IV activity,
resulting in reduced fatty acid oxidation and subsequent
adipocyte hypertrophy (17).

Therefore, inflammatory obesity in immunocompromised
middle-aged and elderly adults is assumed to originate from
gut dysbiosis, colon damage, LPS leakage, and mitochondrial
depletion. This subtype of obesity, characterized by less fatty
acid degradation, may be ameliorated by anti-infection and anti-
inflammatory treatment.

In contrast, non-inflammatory obesity in adolescents or
children with competent immune systems may simply result
from excessive food intake and inadequate energy expenditure.
This subtype of obesity is characterized by increased fatty acid
and fat synthesis, and may be best treated by calorie restriction
(CR), intermittent fasting (IF), exercise training, or other weight-
reducing procedures.

GUT DYSBIOSIS INDUCES COLON
DAMAGE AND ENDOTOXIN LEAKAGE

Recent studies suggested that sensitivity of gut microbiota to host
genetic and dietary influences contribute to risk of development
of obesity and related metabolic disorders (18). A previous
study showed that 37.6% of obese children presented with
small intestine bacterial overgrowth (SIBO). Non-alcoholic fatty
liver disease (NAFLD), hypertension, and metabolic syndrome
accounted for 59.5, 23.4, and 44.6% in the SIBO positive
group, compared with 10.2, 5.1, and 9% in the SIBO negative
group (19), implying that intestinal infection was a major
contributor to NAFLD, hypertension, and metabolic syndrome
in obese children.

A common ingredient in livestock and poultry products,
chondroitin sulfate (CS), increases abundance of Bacteroides
thetaiotaomicron, a species of sulfatase-secreting bacteria that
degrades mucins to supply sulfate to Desulfovibrio piger,
a species of sulfate-reducing bacteria (20). Heme, a rich
component in red meat, contributes to increased abundance of
Akkermansia muciniphila, a species of mucus-degrading bacteria,
and further facilitates aberrant colon epithelial proliferation
through consumption of mucins (21). Beneficial or harmful

effects of A. muciniphila have been shown to be abundance-
dependent. Colon integrity and barrier function were reinforced
by adequate mucin-consumer residence, but compromised by
excessive mucin consumption (22).

High-fat diet (HFD) led to increased secretion of bile
acids (BAs), followed by alterations in microbial compositions.
Feeding mice BAs with a normal diet induced an obese
phenotype, similar to that seen in HFD-fed mice. Interruption
of BA biosynthesis attenuated HFD-shaped plasticity of the
gut microbiome (23). HFD increased oxidative stress and
disrupted intestinal gap junction proteins, increased membrane
permeability, and contributed to endotoxemia, inflammation,
and intestinal tumorigenesis (24).

GUT DYSBIOSIS TRIGGERS ADIPOSE
INFLAMMATION AND
MITOCHONDRIAL DYSFUNCTION

Mice fed an obesogenic but non-inflammatory diet developed
metabolically-healthy obesity, but fed a Paigen diet developed
metabolically-unhealthy obesity. This study showed that T
lymphocyte infiltration occurred in response to obesogenic and
Paigen diets, but CD4+ and CD8+ cells were increased only in
Paigen-fed mice, and showed increased expression of interleukin
1 (IL-1), IL-4, IL-6, IL-17, and interferon γ (IFN-γ). Accordingly,
the colon-destroying bacteria Bacteroidia, Deltaproteobacteria,
and Verrucomicrobia dominated the gut lumen of mice fed
a Paigen diet (25). These results provided direct evidence
supporting classification of obesity into inflammatory and non-
inflammatory subtypes.

As brown adipose tissue (BAT), which contains a large amount
of mitochondria, converts to white adipose tissue (WAT), which
contains relatively fewer mitochondria, many degenerating
mitochondria containing activated inflammasome NLR family
pyrin domain containing 3 (NLRP3) were observed in whitened
adipocytes (26). Upon activation of hypoxia-inducible factor
1α (HIF-1α), palmitate-induced pro-inflammatory cytokine IL-
1β and macrophage Janus kinase-p38 mitogen-activated protein
kinase (JNK-p38 MAPK) were upregulated and activated (27).
Activity and assembly of mitochondrial complex IV were
repressed in adipocytes of middle-aged mice and human visceral
adipose tissue in a HIF-1α-dependent manner (28).

When mitochondrial density becomes scattered and
dysfunctional as an outcome of inflammation, fatty acids from
fat digestion cannot be appropriately converted to adenosine
triphosphate (ATP), CO2, and H2O. Because of mitochondrial
dysfunction, inflammatory obesity should be characterized
by incomplete fatty acid oxidation. Indeed, knockout of the
anti-inflammatory cytokine IL10 resulted in an inflammatory
state, which lowers body temperature in newborns due to
impaired UCP1-dependent mitochondrial respiration in BAT
(29). As further evidence, anti-inflammatory effects induced by
antibiotics or non-steroidal anti-inflammatory agents (NSAIDs),
such as aspirin, showed better weight-reducing effects (30).

In turn, water deficits increase serum levels of antidiuretic
hormone (ADH), vasopressin, and glucocorticoids, resulting
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in activation of serum- and glucocorticoid-inducible kinase
1 (SGK1), adipose deposition, and obesity-related disorders.
Accordingly, water insufficiency also augmented nuclear factor
of activated T-cells 5 (NFAT5) effects that could stimulate SGK1
activation and induce fat deposition (31).

AN ANTI-INFLAMMATORY HIGH-FAT AND
LOW-CARBOHYDRATE DIET MIGHT BE
EFFECTIVE FOR ADIPOSE WEIGHT LOSS

Anti-obesity effects exerted by a high-fat and low-carbohydrate
ketogenic diet (KD) have been extensively debated (32–34)
because the ketogenic diet has been shown to contribute to
gut dysbiosis. Recent clinical trial data have indicated that KD
represents a healthy diet for weight loss (35). A meta-analysis
of 13 randomized controlled trials over 1 year indicated that
volunteers on a very low carbohydrate KD tended to lose more
weight than those on a low-fat diet in five trials (36). In an 8-
week randomized trial that included 34 obese men and women
aged 60 to 75, those on the KD lost 9.7% of body fat, while those
on a low-fat diet lost only 2.1% of body fat, and those on the
KD lost three times more visceral adipose weight than those on a
low-fat diet (37).

In a 3-month prospective observational study of glucose
transporter 1 (GLUT1) deficiency syndrome, a disorder in which
individuals cannot utilize glucose, KD significantly increased
Desulfovibrio spp., a bacterial group linked to gut mucosa
inflammation and animal fat consumption (38). Akkermansia
and Parabacteroides enriched by KD provided protection from
seizure in a mouse seizure model (39). Interestingly, KD reversed
overgrowth of A. muciniphila and elicited an anti-microbial-
like effect in mice (40). β-hydroxybutyrate, a major ketone
body (KBs) derived from fatty acid degradation in the liver,
could block NLRP3-mediated inflammation and attenuate IL-
1β secretion (41), implying that KD might modulate host
inflammatory responses through high fat content leading to
inflammation and β-hydroxybutyrate production leading to anti-
inflammatory effects.

The low carbohydrate effects of KD could mimic CR
to activate adenosine monophosphate-activated protein kinase
(AMPK) after an increase in AMP, leading to activation
of silent mating type information regulation 2 homolog-1
(SIRT1) after an increase in nicotinamide adenine dinucleotide
(NAD+). AMPK and SIRT1 cooperatively activate peroxisome
proliferator activated receptor γ coactivator 1α (PGC-1α) to
induce mitochondrial biogenesis, fatty acid oxidation, and
adipose weight loss (42, 43). Crosstalk between KD-mediated
histone deacetylase (HDAC) inhibition and mechanistic target
of rapamycin catalysis subunit 1 (mTORC1) signaling has been
shown to contribute to lifespan extension in mice (44, 45).

Peroxisome proliferator activated receptor α (PPARα), a
key transcription factor in regulation of ketogenesis, has been
shown to participate in signaling driven by AMPK, PGC-1α,
and mTORC1. PPARα also induced the hormonal mediator
fibroblast growth factor 21 (FGF21) to activate hepatic lipolysis
and ketogenesis (46). Therefore, a KD-like diet can prompt fatty

acid conversion to anti-inflammatory KBs in the liver when
glucose supply is insufficient.

AN ANTI-INFECTIOUS FIBER-RICH DIET
MIGHT CONTRIBUTE TO ADIPOSE
WEIGHT LOSS

Gut microbial fermentation of vegetables and fruits produces
short-chain fatty acids (SCFAs) including acetate, propionate,
and butyrate. SCFAs contributed to a healthier gut microbial
ecological system and ameliorated type 2 diabetes (47).
Furthermore, butyrate protected mice against methionine–
choline-deficient diet-induced non-alcoholic steatohepatitis
(NASH) by improving gut barrier function, attenuating
inflammation, and reducing endotoxin levels (48). Butyrate
also activated G protein-coupled receptor 43 (GPR43) and
suppressed insulin signaling in adipocytes, thereby inhibiting
fat accumulation and promoting lipid metabolism (49). Hepatic
mitochondria served as the main targets of butyrate in reversing
insulin resistance and blocking fat accumulation in diet-induced
obese mice (50). Therefore, fiber-rich diets have anti-infectious
properties, and components of these diets can be fermented into
anti-infectious SCFAs by gut bacteria.

Due to being structurally related, butyrate and β-
hydroxybutyrate should be functionally redundant. A recent
study demonstrated that several four-carbon organic molecules,
including butyrate and β-hydroxybutyrate, favored energy
expenditure and alleviated oxidative stress (51). Additionally,
acetate showed anti-inflammatory and oxidative stress-
modulating properties in different immune cells (52), suggesting
that a diet that contains vinegar may help to prohibit
bacterial overgrowth, maintain gut microbiota homeostasis,
and contribute to adipose weight reduction.

AN INNOVATIVE ADIPOSE
WEIGHT-REDUCING DIET FOR
MIDDLE-AGED OBESE ADULTS

We strongly recommend a convenient and practical “farmer-
hunter” diet, or a modified fiber-rich KD, as an ideal weight-
reducing dietary option for middle-aged obese adults. This diet
includes a high-fiber vegetarian breakfast and lunch (07:00–
19:00 for 12 h duration) supplemented with tea and coffee, and
a KD-like carnivorous dinner (19:00–07:00 for 12 h duration)
combined with wine or vinegar. First, carnivorous food (meat,
fish, and sea food)-derived KBs prevent chronic inflammation
and mimic CR to enhance mitochondrial biogenesis for effective
fatty acid oxidation and energy expenditure (53). Second,
vegetarian food (cereals, legumes, vegetables, and fruits)-derived
SCFAs mitigate meat-induced gut opportunistic infection and
maintain gut ecological homeostasis (54). Third, tea, coffee, and
wine, rich in polyphenols, can serve as anti-oxidants or can be
fermented to SCFAs to prevent infection (55). Finally, acetate in
vinegar can mimic SCFAs to exert anti-infectious effects (56).

Our recommendation is that rice, bread, and other starchy
foods must be consumed separately from meat, fish, and
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FIGURE 1 | A mechanistic outline of the interactions between a modified fiber-rich ketogenic diet with multiple signaling pathways associated with weight loss. A

ketogenic diet mimics calorie restriction to improve mitochondrial function via ketone bodies, resulting in anti-inflammatory effects, and a fiber-rich diet maintains gut

homeostasis via short-chain fatty acids, which exert anti-infectious effects. A red arrow represents positive regulation (upregulation/increase); and a black arrow

represents negative regulation (downregulation/decrease). CR, calorie restriction; KBs, ketone bodies; KD, ketogenic diet; SCFAs, short-chain fatty acids.

seafood to avoid conversion of excess glucose to lipids. Without
worrying about meat and oil-induced gut dysbiosis (21–24),
those above described anti-inflammatory and anti-infectious
dietary components should ensure sustainable availability of
active and functional mitochondria for fatty acid metabolism and
adipose weight loss (31–36).

CONCLUSION

Maintenance of gut microbiota homeostasis is the most
critical factor in eliminating inflammatory obesogenic drivers,
particularly with regard to gut opportunistic infection and
endotoxin-triggered inflammation. SCFAs and KBs, which
are structurally and functionally similar, are complementary
in restoring gut homeostasis and rectifying mitochondrial
dysfunction. An integrative signaling framework responsible for
weight loss is summarized in Figure 1. This scheme illustrates a
primary effect of CR/KD on mitochondrial biogenesis, fatty acid
oxidation, and ketogenesis, as well as concurrent effects of a fiber-
rich diet on the integrative colon and low-level LPS and effects of
a high-fat diet on the permeable colon and high-level LPS.

Briefly, KD can mimic CR to activate AMPK, SIRT1, PGC-
1α, and PPARα to enhance mitochondrial biogenesis, fatty acid
oxidation, and ketogenesis. These processes can inhibit NLRP3

and IL-1β that promote weight gain and repress weight loss.
Butyrate from a fiber-rich diet can mimic the effects of β-
hydroxybutyrate produced by a high-fat diet to inhibit HDAC,
promote lipolysis, and repress lipogenesis, resulting in mTORC1
inactivation and FGF21 activation.
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