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ABSTRACT
In this study, we demonstrated the successful transformation of two pea (Pisum sativum
L.) cultivars using Agrobacterium rhizogenes, whereby transgenic roots in the resulting
composite plants showed expression of the gene encoding the green fluorescent
protein. Subsequent to infection with A. rhizogenes, approximately 70%–80% of pea
seedlings developed transgenic hairy roots. We found out that the transgenic roots
can be efficiently nodulated by Rhizobium leguminosarum bv. viciae and infected by
the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis. The morphology of
nodules in the transgenic roots was found to be identical to that of nodules observed
in wild-type roots, and we also observed the effective induction of markers typical of
the symbiotic association with AM fungi. The convenient protocol for highly efficient
A. rhizogenes-mediated transformation developed in this study would be a rapid and
effective tool for investigating those genes involved in the development of the two types
of symbioses found in pea plants.

Subjects Agricultural Science, Microbiology, Plant Science
Keywords Agrobacterium rhizogenes, Composite plants, Mycorrhizae, Pea transformation,
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INTRODUCTION
Pea (Pisum sativum L.) is one of themost agriculturally important legumes and is a potential
target for crop improvement. In addition, large collections of pea mutants are available for
the elucidation of gene function in the regulation of many processes in this plant (Jacobsen
& Feenstra, 1984; Postma, Jacobsen & Feenstra, 1988; Kneen, Weeden & Larue, 1994; Borisov
et al., 2007; Yang et al., 2017). The experimental approaches for such analyses are mainly
based on complementation tests for mutants, as well as ectopic expression of transgenes or
gene silencing mediated via the expression of hairpin RNA. However, in comparison with
other legumes such as Lotus japonicus and Medicago truncatula (Schauser et al., 1999; Ané
et al., 2002; Limpens et al., 2003; Madsen et al., 2003; Arrighi, 2006; Gonzalez-Rizzo, Crespi
& Frugier, 2006; Heckmann et al., 2006; Tirichine et al., 2006; Smit et al., 2007; Floss et al.,
2013; Yano et al., 2017), the technique of transformation necessary for such experiments,
as well as for crop improvement, has not been widely applied for pea plants.
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Since pea plants are involved in symbiotic associations with rhizobial bacteria and
mycorrhizal fungi, they potentially constitute a source for addressing important questions
relating to plant–microbe interactions. Previous investigations based on the analysis
of pea mutants impaired in symbiosis development have yielded new insights into the
role of individual genes regulating this process in legume plants, and the ongoing rapid
development of methods for large-scale gene expression analyses has resulted in the
identification of multiple genes, the expressions of which are specific for, or substantially
enhanced by, symbiosis. Accordingly, analysis of these genes in transgenic plants may
considerably enhance our understanding of the regulatory mechanisms controlling
symbiosis. Currently, pea is again becoming an object of increasing research activity, and
thus there is heightened demand for an efficient transformation protocol for this plant.

Although a few attempts using Agrobacterium tumefaciens have succeeded in
transforming pea plants, these approaches still require further improvement due to
the duration of these procedures, low efficiency, and the frequent fertility of transformed
plants (De Kathen, 1990; Puonti-Kaerlas, Eriksson & Engström, 1990; Schroeder et al., 1993).
In order to address these problems, one potential approach is the development of hairy
root transformation procedures using Agrobacterium rhizogenes to generate composite
plants that are characterized by transformed roots but unaltered shoots (Jensen et al.,
1986; Hansen et al., 1989). This type of transformation is particularly useful for generating
genetically transformed roots in a short period of time and for studying processes involved
in the development of symbiotic structures on roots. The approaches used for this type of
transformation are mainly based on the application of A. rhizogenes to wounded epicotyls
or hypocotyls, with subsequent co-cultivation with bacteria.

Indeed, there have been a few previous studies in which the successful production of
hairy roots in composite pea plants has been reported (Hohnjec et al., 2003; Clemow et
al., 2011); however, in all cases, the most critical step is the efficiency of Agrobacterium
infection resulting in callus formation and the subsequent generation of transformed roots.
In this study, we describe a convenient protocol for highly efficient A. rhizogenes-mediated
transformation of P. sativum. The composite pea plants generated using this procedure are
characterized by transformed roots that are morphologically similar to those of normal
roots and can be successfully nodulated by the bacterium Rhizobium leguminosarum bv.
viciae or infected by the fungus Rhizophagus irregularis.

MATERIALS & METHODS
Plant material and bacterial strains
Surface-sterilized seeds of the Pisum sativum cultivars Finale and Frisson were treated with
concentrated sulfuric acid for 5 min, washed five times with a large volume of sterile water,
and then germinated on agar plates in the dark at 21–23 ◦C. After germination for 4 days,
the seedlings were transferred to the light and placed into sterile plastic containers filled with
Jensen medium and subsequently grown for further 3–4 days in a growth chamber at 21 ◦C
and 60% humidity under 16 h/8 h light/dark cycle. The Agrobacterium rhizogenes strains
ARqua1 (Quandt, 1993) and AR1193 (Hansen et al., 1989) and the RCAM1026 (WDCM
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966) strain of Rhizobium leguminosarum bv. viciae were grown at 28 ◦C in Tryptone Yeast
medium (Sambrook et al., 1989) containing the appropriate antibiotics.

Transformation procedure
In order to induce the formation of hairy roots, the roots of P. sativum seedlings were
excised in the hypocotyl region (3–4mmbelow the point of cotyledon attachment). The root
hypocotyls were then treated withA. rhizogenesARqua 1 or AR1193 containing appropriate
plasmids. For plant transformation, we used the pB7WGD plasmid carrying the gusA/GFP
reporter gene construct driven by the CaMV35S promoter, which was introduced into the
A. rhizogenes strains by electroporation. Electroporation of A. rhizogenes was performed
using GenePulser Xcell (Bio-Rad Laboratories, Hercules, CA, USA) in 1 mm cuvette with
voltage −2,500 V, capacitance 25 µF, resistance 200 ohms. The wounded root tip of the
seedling was touched to the A. rhizogenes growing on a plate. Plants were placed on Jensen
agar in plastic jars (Duchefa, Haarlem, The Netherlands), and the cut root tips were covered
with wet wool and foil. The seedlings were co-cultivated with A. rhizogenes for 10–14 days
at 21 ◦C (16 h/8 h light/dark) until a visible callus had developed. Emerging roots were
examined using an epifluorescence stereo microscope, and transformed hairy roots were
identified and selected based on GFP expression. Following the removal of primary roots,
the seedlings were transferred to Emergence medium containing 150 mg/mL of cefotaxime
and incubated for 3–4 days. Thereafter, the plants were transferred into pots of vermiculite
saturated with Jensen medium containing 1.5 MM NH4NO3, grown for 2 days in a growth
chamber at 21 ◦C and 60% humidity under a 16 h/8 h light/dark cycle, and then inoculated
with Rhizobium strains (OD600 = 0.5). The pots were then placed in large plastic bags and
plants were incubated under high humidity conditions for at least 1 week and then under
normal conditions. The plants were watered as needed by adding the Jensen solution with
1.5 MM NH4NO3.

RNA extraction and quantitative reverse transcription PCR (qRT-PCR)
RNA extraction was performed as described previously (Leppyanen et al., 2017). RNA
(from 1 to 2.5 µg) was used for cDNA synthesis with the RevertAid Reverse Transcriptase
(Thermo Scientific, Waltham, MA, USA) for 1 h at 42 ◦C followed by heating to 95 ◦C,
5 min. Aliquots of the cDNA were diluted 1:10 for qPCR analysis. qRT-PCR analysis
was performed using a CFX-96 real-time PCR detection system incorporating a C1000
thermal cycler (Bio-Rad Laboratories). All reactions were done in triplicate and averaged.
Cycle threshold (CT) values were obtained with the accompanying software and data were
analyzed with the 2−11Ct method (Livak & Schmittgen, 2001). The relative expression
was normalized against the constitutively expressed Ubiquitin gene. RT-PCR for GFP gene
expression analysis was performed using Phusion Flash High-Fidelity PCR Master Mix
(Thermo Fisher Scientific). All primer pairs (Table S1) were designed using Vector NTI
program and produced by Evrogen (Moscow, Russia; http://www.evrogen.com).

Mycorrhizal colonization
Rhizophagus irregularis (BEG144, International Bank of Glomeromycota (Dijon, France))
was kindly provided by Prof. Dirk Redecker as a soil–root-based inoculum from onion

Leppyanen et al. (2019), PeerJ, DOI 10.7717/peerj.6552 3/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.6552#supp-2
http://www.evrogen.com
http://dx.doi.org/10.7717/peerj.6552


(Allium cepa L.) pot cultures. To obtain mycorrhizal pea plants, pea seedlings were placed
in a nurse pot system with chives (Allium schoenoprasum L.) as nurse plants and grown in a
growth chamber under conditions as previously described (Shtark et al., 2016). A mineral
substrate, silica-rich marl, was used as the growth substrate. Mycorrhizal colonization was
determined according to (Trouvelot, Kough & Gianinazzi-Pearson, 1986). Three parameters
were considered: M%—intensity of internal colonization of the root system (reflects the
proportion of the root length colonized by the fungus), A%—arbuscule abundance in
mycorrhizal root fragments (characterizes the functional state of the fungus), V%—vesicle
and/or spore abundance in mycorrhizal root fragments. 150 random root pieces (1 cm)
were scored per replicate (not less than 750 cm/genotype).

Histochemical staining and microscopy
The root segments and nodules were collected and stained with X-Gluc (0.2 M Na2PO4,
pH7.0; 0.5 M EDTA, pH8.0; 20 mMK ferricyanide; 20 mMK ferrocyanide; 20 mMX-Gluc;
0.01% Triton X-100) for GUS staining. Tissues were incubated in staining due overnight at
37 ◦C. In order to assess roots mycorrhizal colonization, roots were stained with Sheaffer
Black Ink at room temperature as described previously (Vierheilig et al., 1998). Photographs
were obtained using an Olympus BX51 microscope (Olympus Optical Co. Europa GmbH,
Hamburg, Germany) equipped with a ColorView II digital camera and analySIS FIVE
analytical software (Olympus Soft Imaging Solution GmbH, Hamburg, Germany).

RESULTS
Generation of pea composite plants and subsequent nodulation
In order to select for transformed hairy roots and quantify the efficiency of transformation,
we introduced a plasmid carrying a fusion with the gusA/GFP reporter gene driven by
the CaMV35S promoter and subsequently examined hairy roots and nodules for green
fluorescent protein (GFP) or β-glucuronidase (GUS) staining.

To obtain the composite plants, young etiolated seedlings of the two cultivars Finale and
Frisson were used for transformation with the ARqua1 or AR1193 strain of Agrobacterium
rhizogenes carrying the gusA/GFP reporter construct. Using both A. rhizogenes strains,
root transformation was induced with satisfactory efficiency, although differences were
observed in number of induced roots (Table 1). Consistent with the findings of Clemow et
al. (2011), we found that AR1193 was a more effective strain for hairy root transformation.
In the procedure used in the present study, the plants were incubated in containers filled
with Jensen medium placed within ventilated plastic box (Fig. 1A). Seedlings with one to
two internodes are quite susceptible to transformation and were freshly sectioned in the
hypocotyl region to remove the remainder of the root. In our transformation protocol,
the wounded root tip of each seedling was touched to growing on a plate A. rhizogenes
containing a plasmid that harbored the gusA/GFP reporter. Following transformation, the
pea seedlings were incubated in jars and the root tips weremaintained under high-humidity
conditions (Fig. 1B).

After 10–14 days, calli started to develop at the wound sites in seedling of the cultivar
Frisson (Fig. 1C), whereas the initiation of callus development was slightly more prolonged
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Table 1 Agrobacterium rhizogenes-mediated transformation of Pisum sativum cv. Frisson using the ARqua 1 and AR1193 strains of
A. rhizogenes.

Total amount
of plants

Number of
transformed
composite plantsa

Total number
of hairy roots

Number of hairy
roots per transformed
composite plant

Agrobacterium rhizogenes Arqua1 114 (10)b 80 (10)b 130 1,6
Agrobacterium rhizogenes AR1193 62 (5)b 50 (5) 88 1,8

Notes.
aTransformed composite plants that gave rise to at least one hairy root per plant.
bThe number of independent experiments is indicated within brackets.

(16–18 days) for seedlings of the Finale cultivar. Approximately 70%–80% of the wound
sites gave rise to callus formation and the subsequent development of transformed roots. At
this stage, a number of primary roots appeared (Fig. 1C). These primary roots were removed
prior to antibiotic treatment in order to stimulate development of the transformed roots.
We found that incubation on an antibiotic-containing medium prevented excessive growth
of A. rhizogenes and the development of root abnormalities (Fig. 1D). After incubation, the
plants were subsequently transferred to pots saturated with a low-nitrate nutrient solution
to prevent nitrogen starvation (Figs. 2 and 3A). Since the seedlings were cultivated under
axenic conditions, they may also be used to obtain the cultivated hairy roots at this stage.

After transferring to pots and cultivating for a few days, the plants were inoculatedwithR.
leguminosarum bv. viciae RIAM1026 and we observed that root nodules generally appeared
after 2–3 weeks. In order to maintain high humidity conditions after transfer, we placed the
pots into large plastic packages in which they were retained for at least 1 week, because it
was easy to ventilate the plants during cultivation (Fig. 3A). After 2–3 weeks, we were able
to visualize the emergence of nodules on transformed roots using an epifluorescence stereo
microscope (Fig. 3B). We found that the efficiency of nodule formation varied depending
on the cultivar used, with cv. Finale showing a high level of nodule formation, whereas
comparatively fewer nodules developed on the transformed roots of cv. Frisson plants. GFP
staining was used as a simple marker to score for transformed roots 3 weeks after infection
with R. leguminosarum. We found that approximately 70% of the inoculated plants had
at least one transformed root, and that composite plants had an average of two to three
such roots, thereby indicating the high frequency of transformation achieved using this
protocol, which will greatly facilitate studies involving gene function analysis.

Studying the possibility of mycorrhization for transformed roots
in pea
In the present study, we also developed approaches for inoculation of transgenic hairy
roots with the AM fungus R. irregularis using a nurse-plant system. As nurse plants, we
used four young onion seedlings grown in pots containing Hoagland medium-saturated
substrate for 4 weeks. After cultivation on antibiotic-containing medium, the transformed
pea seedlings were transferred to the pots containing these nurse plants.

In order to maintain the high humidity conditions after transfer, we placed the pots
into large plastic packages for at least 1 week, similar to the procedure used for rhizobial
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Figure 1 Procedure of transformation. (A) Pea seedlings were incubated in containers filled with Jensen
medium placed within ventilated plastic box. (B) Incubation of pea seedlings in jars after transformation.
(C) Callus formation on wounded sites of young cv. Frisson pea seedlings treated with A. rhizogenes. (D)
General view of pea seedling after incubation on an antibiotic. The arrows indicate the callus formation.

Full-size DOI: 10.7717/peerj.6552/fig-1

inoculation (Fig. 4A). After 4 weeks of growth, we assessed the efficiency of symbiosis
development with AM fungi and detected highly effective inoculation (Figs. 4B and 4C).
Expression levels of marker typically associated with AM fungus symbiosis development,
namely, the PT4 gene encoding the mycorrhiza-inducible inorganic phosphate transporter,
confirmed induction of the symbiotic association (Fig. 4D). These findings indicate that
the protocol we describe here may be useful for the analysis of another type of symbiosis
in composite pea plants with transformed roots.

Leppyanen et al. (2019), PeerJ, DOI 10.7717/peerj.6552 6/14

https://peerj.com
https://doi.org/10.7717/peerj.6552/fig-1
http://dx.doi.org/10.7717/peerj.6552


Figure 2 Scheme of A. rhizogenes-mediated transformation of pea plants.
Full-size DOI: 10.7717/peerj.6552/fig-2

Figure 3 Analysis of transformed pea plants after R. leguminosarum inoculation. (A) Pea plants incu-
bated under high humidity conditions following their transfer to pots. (B) The plant marker GFP was vi-
sualized in transgenic roots and nodules using an epifluorescence microscope. (C) Non-transformed roots
of pea plants. (D) The expression of GFP gene in transgenic nodules of P. sativum cv. Frisson using RT-
PCR (1–3), as a control the nodules of non-transformed plants were used (4–6).

Full-size DOI: 10.7717/peerj.6552/fig-3

DISCUSSION
In recent years multiple studies have led to the development of sufficiently effective
approaches for pea transformation using A. tumefaciens (Bean et al., 1997; Polowick,
Quandt & Mahon, 2000; Wisniewski & Brewin, 2000; Schneider et al., 2002; Pniewski &
Kapusta, 2005; Svabova, Smykal & Griga, 2005; Krejčí et al., 2007; Sehgal, Bhat & Raina,
2008; Aftabi, Teressa Negawo & Hassan, 2017). However, due to the duration of these
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Figure 4 Inoculation of pea plants with the AM fungus R. irregularis using a nurse-plant system. (A)
General view of pea plants in a nurse-plant system during mycorrhizal colonization. (B) Arbuscular my-
corrhizal fungi colonize efficiently GUS-transformed pea roots in a nurse plant system. White arrows in-
dicate cells with arbuscules, white arrowheads point at vesicles. Scale bars: a = 50 µm. (C) Three param-
eters were considered: M%, intensity of internal colonization of the root system, A%, arbuscule abun-
dance in mycorrhizal root fragments and V%, vesicle and/or spore abundance in mycorrhizal root frag-
ments. (D) Expression of PT4 gene encoding mycorrhiza-inducible inorganic phosphate transporter in
non-inoculated (control) and inoculated (Myc) transgenic roots (28 days after inoculation). mRNA levels
were normalized against Ubiquitin, and values were calculated as ratios relative to non-inoculated root ex-
pression level.

Full-size DOI: 10.7717/peerj.6552/fig-4

procedures, the alternative hairy root transformation approaches using A. rhizogenes
require further development.

A. rhizogenes- mediated transformation has previously been described for a few legume
species, initially being applied for the expression of soybean genes in Lotus corniculatus
(Jensen et al., 1986; Jørgensen et al., 1988; Hansen et al., 1989). Subsequently, approaches
were described for transformation and regeneration of the model legume plant Lotus
japonicus (Handberg & Stougaard, 1992; Stiller et al., 1997). Hairy root transformation
was also developed for another model legume, Medicago truncatula (Boisson-Dernier et
al., 2001; Gourion et al., 2013), and protocols for hairy root transformation have been
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adapted for other legume plants, including Vigna aconitifolia (Lee et al., 1993), Trifolium
repens and Trifolium pratense (Díaz et al., 1989; Díaz, Spaink & Kijne, 2000), Glycine max
(Cheon et al., 1993), Vicia hirsute (Quandt, 1993), Phaseolus vulgaris L. (Estrada-Navarrete
et al., 2006) and peanut Arachis hypogea (Sinharoy et al., 2009). Furthermore, previous
studies have also reported the successful production of hairy roots in composite pea plants
(Hohnjec et al., 2003; Clemow et al., 2011).

In an effort to develop approaches for highly efficient A. rhizogenes-mediated hairy root
transformation in pea, we have previously treated the needle-wounded hypocotyls of peas
with an inoculum of A. rhizogenes (Osipova et al., 2012) as it was described (Hohnjec et al.,
2003). However, although transformed pea roots and nodules were obtained and enabled
us to investigate certain pea transgenes, this approach did not result in highly efficient
transformation. Accordingly, in the present study, we sought to enhance the efficiency of
transformation by inducing callus formation on the wounded sites of freshly sectioned
hypocotyls of pea seedling via incubation with A. rhizogenes.

Using our novel methodology for hairy root induction in pea, we demonstrate the
successful transformation of P. sativum by the ARqua 1 and AR1193 strains of A.
rhizogenes, whereby transgenic roots in the composite plants showed expression of the
genes encoding the green fluorescent protein and GUS under the control of the CaMV35S
promoter. Subsequent to infection with A. rhizogenes, approximately 70% to 80% of pea
seedlings developed transgenic hairy roots. Since the seedlings were cultivated under axenic
conditions, they may also be used to obtain the cultivated hairy roots.

We observed that these transgenic roots can be efficiently nodulated by the rhizobial
bacteriumR. leguminosarum and infected by the AM fungusR. irregularis.Morphologically,
the nodules that developed on transgenic roots were found to be identical to those
characterizing wild-type roots. We also demonstrate that a supply of nitrogen is important
for enhancing the growth of transformed plants following their transfer from rich media to
pots. Furthermore, we also verified the development of a symbiosis with AM fungi via the
effective induction of markers typically associated with this process. We thus demonstrate
an approach for the comparatively rapid generation of symbiotic structures on transgenic
pea roots, and accordingly consider that our protocol can be employed as a rapid and
efficient tool for studying the genes involved in plant–microbe interactions in P. sativum.

CONCLUSIONS
A convenient protocol for highly efficient A. rhizogenes-mediated transformation of pea
P. sativum has been developed. In pea composite plants, the hairy roots can be nodulated
successfully by R. leguminosarum bv. viciae bacteria or infected by R. irregularis fungi.
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