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Abstract 

This article addresses the application of modern methods and algorithms for the 

optimal control of technological processes and the efficient design of grinding 

process for low rigidity shafts. The investigation of the dynamic processing 

characteristics of the system identifies the influence of disturbing and regulatory 

influences on the amount of elastic deformation of the details in the transient and 

steady modes in order to minimize shape error of the shafts. The necessary 

conditions for optimal control of the technological systems under consideration 

are investigated using the Pontryagin maximum principle. The components of the 

cutting forces and the optimal values of the geometric, structural and functional 

parameters of the work-in-process parts are determined. 

Keywords: Grinding, Low rigidity shaft, Mathematical modelling Optimal control, 

Technological process. 
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1.  Introduction 

The investigation of the whole process of the outside grinding of round surfaces 

allows the detection of conditions for avoiding or mitigating negative influences in 

the quality of the processed surface. Particularly, it refers to investigations with a 

simulation of a surface grinding process, such as fluctuations from the 

surroundings, undulations, etc. The most important aspect of these investigations 

is the possibility to observe grinding transient processes and dynamic effects of the 

whole operation cycle, and modeling them allows finding the analytical aspects for 

all of its stages and the choosing of the rational structure and parameters. The 

purpose of this work is to develop the methods and algorithms for the control of 

accuracy in the rough grinding of shafts of low rigidity. The control criterion is the 

optimal operating speed to achieve transient processes control and to provide a 

productive technological process with an increase in the declared accuracy. 

2.  Construction of the Kinematic Scheme and Dynamic Models 

Grinding is used for treatment of various external cylindrical shapes, flat surfaces 

and also holes. Grinding of external cylindrical surfaces is the most common case, 

which is most often done on round grinding machines. The kinematic scheme and 

dynamic model of grinding is shown on the Fig. 1: here is the grinding cycle 1 goes 

round at high speed, and the processable roll 2 goes round with speed less than the 

grinding cycle speed 60-100 times [1-3]. 

 
Fig. 1. Kinematic scheme of the round outside grinding: 

 1- grinder; 2 - processable shaft. 

To meet the goal objective using the second kind Lagrange equation the 

mathematic model of the technological system for the rough-grinding processing 

of small rigidity details was established [4-7]. 
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where  2 2shМ j  , Nm. 
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For round outer grinding with longitudinal feed, the roughness parameter 

Ra=0.4 µm, construction hardened steel HRC45 to accept the grinding wheel with 

feature 24 А401К, index of grain N, structure 5, class A 

According to Zil [3], the total cycle identification is PP24 А40NS15КА - 35 m/s. 

The grinding wheel dimensions: Dg=600 mm; Bg=63 mm (under the machine chart) [3]. 

Cutting force (mode of operation) 

(i) The grinder speed Vg =35 m/s [3]. Rotation frequency of the grinding wheel 

head spindle (rev/min) 

1000 60 1000 35 60
1114.65

3.14 600

g

g

g

V
n

D

   
  

 
. 

Correcting under the machine chart, it is established as ng = 1114 rev/min (it is 

corrected to a lower value only). Cutting parameters of structural steels supply the 

final outside round grinding as defined by [3]. 

(ii) Rotary velocity of a workpiece shaft is accepted as Vsh=30 m/min. Rotation 

frequency of the headstock spindle, correspond to the accepted rotator velocity 

(rev/min) of the workpiece.  

1000 1000 30
367.467

3.14 26

sh
sh

sh

V
n

d

 
  

 
. 

As rotation frequency of the workpiece is regulated continuously (without 

steps), it is accepted as nsh = 370 rev/min. 

(iii)  Grinding depth. Taking into account the stepless regulation of grinding wheel 

transverse motion on the desk travel, it is accepted as t = 0.005 mm. 

(iv) Line feed. It is accepted as Sf = 0.25∙Bg = 0.25∙63 = 15.75 mm/rev. 

(v) The velocity of the longitudinal stroke of the table (m/min) 

15.75 370
5.83

1000 1000

f sh

t

S n
V

 
    

Taking into account the machine chart (stepless regulation of the table 

longitudinal stroke velocity) it is accepted as Vt = 5.8 m/min. 

3.  Calculation of Cutting Force Components of the Grinding Processing 

The cutting force resistance in the cycle grinding process can be resolved into three 

components: tangential Рz, radial Py and axial Рx [2, 8-10].  

The cutting force component zР  influences the detail curl largely and its value 

applicable to the rough-grinding process velocity can be defined approximately as 

[1, 3, 5]: 

N, 74.4610005.075.153065.210 5.055.05.0  xy

f

z

shpz tSVCP
 

where the coefficient Ср depends on the grinding conditions. For tempered steels 

Ср=2.65 [3]. 

To determine the forces Py and Px there are similar empirical formulas. 

However, in order to simplify and accelerate the calculations, the values of the 

forces Py and Pх are recommended as per the following relations [1, 4-6, 8, 11]: 
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Py = (0.25,..., 0.5) Pz, Px = (0.1, ..., 0.25) Pz, 

0.375 0.375 46.74 17.53 N,y zP P     0.175 0.175 46.74 8.18 N.x zP P      

Determining the moment of resistance during the shaft processing  

9

0 0

9

sin sin 0.013 46.74 1.64 10 sin

0.6 1.64 10 sin38.726 ,

с z sh zМ М М t r P M t t
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  



         

   
 

М0 - mean values of the oscillation amplitude of the resistance moment.  

Cutting power 
0.5 0.55 0.5 02.65 30 15.75 0.005 0.3 4.74  kWt,z t x q

p р sh fN С V S t d            

where d is the diameter of the grinding wheel; x, y, z, q - exponents. 

For round external grinding of tempered steel with feeding for each stroke by a 

grinding wheel with grain 40, hardness СМ1 z=0.5; х=0.5; y=0.55; q=0. 

By elastic small rigidity details lines model developing and by their processing 

in the elastic deformed state bending moments on x-axis are taken in to account as 

more essential qualities, so as elastic deformations on this axis exert dominated 

influence to form an error in the longitudinal direction. 

Azimov and Sulyukova [5, 6] and , Preliminary necessary shaft rigidity in the 

corresponding moment of resistance is determined. 
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On the basis of the required rigidity, we determine the corresponding moment 

of inertia of the processed shaft by solving the conjugate system of the Pontryagin 

maximum principle. 

Further, according to the corresponding shaft parameters, we determine the 

shaft rigidity and the coefficient of viscous resistance at torsion and stretching:  

N m
3895 52857.37 56752.37 ,

rad
sh t sс с c


    

 

rad

Nms
 ,35.149

726.3814.32

4.4105564.0

2

64.0

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

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


sh

sh

c
b . 

4.  Solution of Optimal Control Problem and Determination of 

Optimal Parameters of the Shaft Grinding System Functioning 
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The main purpose of the technological system functional process control is to 

determine the best transient processes so that the energy, consumed during a 

transient process was minimum, that is, it is required choosing the control u(t), 

which transfer the trajectory parameters of a grinding wheel and processable shaft 

into the target value in the minimum time. Then, the main estimation criteria of the 

functioning process will be accepted as the periodical operating speed in the form 

of functional minimizing [5-7, 12-14]. 

0

0

0( , ( ), ( )) ( ( ), ( ), ) )

T

t

J u t t f t u t t dt     .                                                                (2) 

At conditions 

0 i 0(0) (0),         (0) (0).       i                                                                             (3) 

0 i 0( ) ( ),         ( ) ( ),    0 t T    ( 1, )i t t t t i n                                                  (4) 

( ) ( ( ), ( ), ),t f t u t t                                                                                (5) 

0, ,u U t t T                                                                                                        (6) 

where f(…) is continuously differentiable with its derivatives and u(t) is sectional 

continuous function on an interval [t0, T]. 

To research the necessary conditions to the considered technical system optimal 

control we shall use the maximum principle of Pontryagin [11, 12, 14]. 

To formulate this maximum principle Hamiltonian and Pontryagin for the 

technical system is entered into the function  

0

0( , , , , ) ( , , ) ,iH u t f u t u                                                                      (7) 
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with limited control 1.u   

For problem solving the following condition must be met: 

0 0( ( ), ( ), , , ) max ( ( ), , , ( ), )i i i i
u U
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                                        (9) 

Moving to the optimal control determination on the base of Eq. (7), the 

functions are:  
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So, if 0 1,f   so 0 0( , ( ), ( ))J u t t T t    . In this case, the task Eqs. (2) to (6) 

is called the problem of operating speed. 
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The object under consideration is a stationary system and problem Eq. (4) 

means that  and f U  do not depend explicitly on time, i.e., 

( , , ) ( , ),      ( )f t y u f y u U t U  .                                                                       (11) 

If the stationary problem Eqs. (4) and (11) has an optimal control u(t) and an 

optimal trajectory 0(t) then there exists a nonzero vector 1 2( ( ),  ( )),  ( ) nt t t R  

of conjugate variables satisfying conditions Eq. (9), that is the maximum condition 

Eq. (7) 

0 ( ) 0t const   .                                                                                              (12) 

So as the conjugate system Eq. (8) is congeneric in relation to i , constant in 

an equation (12) can be chosen liberally so that 

o(t) = -1               0 ≤ t ≤ T   .                                                                             (13) 

From the conditions 
1

max
u

H , it follows 2u sign  at 2 0.  Then the 

boundary problem of the maximum principle will be written as: 
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We compose the Hamilton-Pontryagin function, which has the form 

1 0 1 2 2 2

2 0 1 4 2 4

3 0 1 6 2 6

H y y
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 .                                                                                        (15) 

Hence, it is clear that the condition Eq. (9) separates the function

2 2,   0u sign   . The boundary problem Eqs. (10) and (14) consists of  

0

2 ( )i дH f u t u                                                                                          (16) 

In this case 

2

2

2

1, ( ) 1
( )

1, ( ) 1
i

t
u sign t

t







  

 
,     i = 2, 4,…, 2n ,                                (17) 

i.e., the control uk(t) can have one switch point only. 

5.  Discussion of Computing Experimental Results 

A conjugate system with a variation of design parameters bi, сi, ji was investigated 

by a numerical method to determining the conjugate functions (8) 

The systems Eqs. (1), (8) and (14) are solved using numerical Runge-Kutts 

method. Control uk(t), which gives the maximum of the function Eq. (9), is defined 

in the domain Eq. (17). 
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Table 1.The values of velocities, acceleration of transients,  

obtained by solving the conjugate system and the boundary 

 problem of the Pontryagin maximum principle, for the processed shaft 

Т, 

s 

3

1 10 ,  s-

1 
1 , 

s-2 

3

1 10 , 

s-1 
1 , 

s-2 

3

2 10 , 
 

s-1 
2 , 

s-2 

3

2 10 , 
 

s-1 

2 , 

s-2 

3

2 10 , 

s-1 
2 , 

s-2 

3

2 10 , 

s-1 
2 , 

s-2 

 u=+1 u=-1 u=+1 u=-1 u=+1 u=-1 

0 0 1 0 1 0 -1 0 1 0 1 0 -1 

0.1 -0.0012 -0.2 0.0012 0.2 -0.0013 0.2 0.0013 -0.2 0.099 1 -0.099 -1 

0.2 -0.0023 -0.2 0.0023 0.2 -0.0026 0.2 0.0026 -0.2 0.2 1 -0.2 -1 

0.3 -0.0036 -0.2 0.003 0.2 -0.0038 0.2 0.0038 -0.2 0.3 1 -0.3 -1 

0.4 -0.0048 -0.2 0.0048 0.2 -0.0052 0.2 0.0052 -0.2 0.4 1 -0.4 -1 

0.5 -0.0061 -0.2 0.0061 0.2 -0.0064 0.2 0.0064 -0.2 0.5 1 -0.5 -1 

0.6 -0.0074 -0.2 0.0074 0.2 -0.0076 0.2 0.0076 -0.2 0.6 1 -0.6 -1 

0.7 -0.0086 -0.2 0.0086 0.2 -0.0088 0.2 0.0088 -0.2 0.7 1 -0.7 -1 

0.8 -0.0098 -0.2 0.0098 0.2 -0.01 0.2 0.01 -0.2 0.8 1 -0.8 -1 

0.9 -0.0111 -0.2 0.0111 0.2 -0.0113 0.2 0.0113 -0.2 0.9 1 -0.9 -1 

1 -0.0123 -0.2 0.0123 0.2 -0.0126 0.2 0.0126 -0.2 1 1 -1 -1 

The processing of the results of the solution of system Eq. (8) showed that the 

change in the moments of inertia and elastic-dissipative forces abrupt changes the 

function of the variables 1 , 1 , 2 , 2 , that is movement of the grinding shaft. 

Therefore, to increase the accuracy of the dimensions and shape of the shafts to 

be processed, it is necessary to determine the variables of the conjugate system, 

which provided the normal functioning of the TS. 

The results of numerical solutions of the system Eq. (1), presented in Tables 1-

3 and Figs. 2 and 3, make it possible to determine the following optimal values of 

the low-rigid shaft grinding parameters, presented in Table 4. 

Table 2. The values of velocities, acceleration of the transient processes  

of the grinding wheel and auxiliary functions of the shaft processing process.  

Т, s   1                  

 u=+1 u=-1 u=+1 u=-1 

0 0 -1 0 1 0 -1 0 1 

0.1 -0.1 -1 0.1 1 -0.1 -1 0.1 1 

0.2 -0.2 -1 0.2 1 -0.2 -1 0.2 1 

0.3 -0.3 -1 0.3 1 -0.3 -1 0.3 1 

0.4 -0.4 -1 0.4 1 -0.4 -1 0.4 1 

0.5 -0.5 -1 0.5 1 -0.5 -1 0.5 1 

0.6 -0.61 -1 0.61 1 -0.6 -1 0.6 1 

0.7 -0.71 -1 0.71 1 -0.7 -1 0.7 1 

0.8 -0.82 -1 0.82 1 -0.8 -1 0.8 1 

0.9 -0.92 -1 0.92 1 -0.9 -1 0.9 1 

1 -1 -1 1 1 -1 -1 1 1 
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Fig. 2. Graphs of the motion parameters change for the processed shaft and the 

grinding wheel in the transient process: 1, 5, 9 - angular velocity 1 2 3, ,   , 2, 6, 10 

- angular accelerations 1 2 3, ,    and auxiliary functions 13-
1 ,14-

1 17-
2 , 18-

2
  

by u(t)= +1; 3-
1

 , 7-
2 ,  11-

3 - angular velocity, 4- ,
1

  8-
2

 , 12-
3

 - angular 

accelerations and auxiliary functions - 15-
1 ,16-

1 19- ,
2

 20-
2

 by u(t)= -1. 

Table 3. Parameter of the processing shaft function. 

Т, 

s 
1,  

s-1 
1 , 

s-2 

dМ , 

Nm 
2 ,  

s-1 
2 , 

s-2 

shМ , 

Nm 

,3  

s-1 
3 , 

s-2 

gМ , 

Nm 

nsh, 

rev/min 

ng, 

rev/min 

0 0 40.47 22.97 0 -60.76 -0.6 0 117.22 66.93 0 0 

0.1 3.87 38.33 21.75 3.87 60.49 0.6 11.65 118.33 67.57 36.99 111.34 

0.2 7.74 38.33 21.75 7.74 60.48 0.6 23.3 118.33 67.57 73.98 222.68 

0.3 11.61 38.33 21.75 11.61 60.52 0.6 34.96 118.33 67.57 110.97 333.98 

0.4 15.48 38.33 21.75 15.48 60.48 0.6 46.6 118.33 67.57 147.97 445.15 

0.5 19.36 38.33 21.75 19.36 60.38 0.6 58.25 118.33 67.57 184.96 556.52 

0.6 23.23 38.33 21.75 23.23 60.38 0.6 69.2 118.33 67.57 221.95 668.01 

0.7 27.1 38.33 21.75 27.1 60.38 0.6 81.6 118.33 67.57 258.95 779.54 

0.8 30.97 38.33 21.75 30.97 60.38 0.6 93.26 118.33 67.57 295.94 891.06 

0.9 34.86 38.33 21.75 34.86 60.53 0.6 104.93 118.33 67.57 333.06 1002.6 

1 38.75 38.33 21.75 38.75 60.53 0.6 116.61 118.33 67.57 370.24 1114.11 

 
Fig. 3. The characterization of the changing  

parameters of the TS in the shaft grinding process. 
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Table 4. Meanings and indexes of in-processing puller  

shaft geometrical, constructive and functional parameters. 

Parameters Meaning Index 

Geometric dimensions of the in-processing shaft   

Length of the in-processing shaft 950 mm 

Diameter of the in-processing shaft 26 mm 

Processing conditions:   

Grinder speed -Vg 35 m/s 

Rotation frequency of the grinding wheelhead spindle- ng 

 
1114 rev/min 

Rotary velocity of a workpiece shaft - Vsh 30 m/min 

Rotation frequency of headstock spindle - nsh 370 rev/min 

Grinding depth - t 0.005 mm 

Line feed - Sf 15.75 mm/rev 

Velocity of the longitudinal stroke of the table -Vt 

 
5.8 m/min 

Constructive characteristics of the in-processing shaft   

Material - steel 35  

Permissible stress by stretching - р 900 kgs/mm2 

Solidity limit - 0.35HB kgs/mm2 

Total coefficient of the in-processing shaft rigidity - сsh 56752.37 Nm/ rad 

Coefficient of the in-processing shaft rolling rigidity -сt 2799.63 Nm/ rad 

Coefficient of the in-processing shaft rigidity by 

stretching -сs 
52885.514 Nm/ rad 

Generalized coefficient of tensile resistance of the shaft - 

bsh 
149.35 Nms/ rad 

Inertion moment of the headstock- j1 0. 56752 Nms2 

Inertion moment of the tailstock - j2 0.01 Nm.s2 

Inertion moment of the grinding wheel - j3 0.571 Nms2 

Eccentricity -е 0.001 mm 

Parameters of TS functioning   

Driving moment - Мd 22.97 Nm 

Driving moment on the grinding wheel - Мg 66.93 Nm 

Force in direction of cutting speed - Pz 46.74 N 

Resistance moment - Мz= rsh ·Pz 0.6 Nm 

Calculation value of axis stretching force - Px1 46.74 N 

Absolute shaft extension by stretching - l  11.49·10-6 m 

 

6.  Theoretical Conformities, Deflection and Accuracy 

In order to evaluate the possibilities of the method and establish the theoretical 

regularities of the behavior of the part in longitudinal-transverse bending, the 

equation of the elastic line of a low-rigid shaft was solved on the basis of the 

calculation scheme in Fig. 4. 
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Fig. 4. Calculation scheme of stresses and elastic line of the shaft by 

stretching: е =0.001- eccentricity of stretching force putting; Мsh- cutting 

forces moment; Mx=Px1∙e=34.822·0.001=0.034822 Nm -tensile stress moment. 

Azimov and Sulyukova [6] commented that description of low rigged shaft 

elastic line by longitudinal-transverse bend can be represented in the form of fourth 

order differential equations with the constant coefficients. 

4 2 0i iy k y  .                                                                                                     (18) 

This equation gives the total elastic line equation for stretching and carrying an 

arbitrary transverse loading beam 

0 0 0 0(1 cos ) ( sin ) ( )y y y kx y kx y kx kx f x          

where 0
48

уP l
y

EI


  , 0 0 0, , y y y    - accordingly deflection, turn corner, the second 

and the third derivates in the coordinates beginning; 3...102k   - coefficient 

determining the details fixing method; f(x) - function of transverse loading 

influence [6]. 

Elastic line equations on segments I and II (calculation scheme Fig. 4) are 

0 0 0

0 0 0

(1 cos ) ( sin )

(1 cos ) ( sin ) ( )

I

II

y y kx y kx y kx kx

y y kx y kx y kx kx f x

       


                                                    

(19) 

The initial parameters are determined by the following: 

1

0

1

[ ( 1 cos ) sin ](1 cos )
(1 cos )

cos sin

( sin cos 1)(1 cos )
               sin ,

cos sin

y

x

х

P kl kl kl kl
y kl

kP kl kl kl

М kl kl kl kl
kl

Р kl kl kl

 


    
      

  

   
   

 

1

0

1

( 1 cos ) sin sin cos 1

cos sin cos sin

y

x х

P kl kl kl М kl kl kl
y

kP kl kl kl Р kl kl kl

         
         

, 

where 
l a

l



 . 

Taking into account that the stretching moment was put at the coordinates 

beginning it is necessary to determine the initial parameter
0

y  . We find it by 

differentiation of Eq. (19) 

'' '' 2 2

0 0cos sinIIy y k kx y k kx     .                                                                       (20) 
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After the multiplication of Eq. (20) to bending and stretching rigidity we will 

get the equation of bending moment on segment I, taking into account 

''

2

b
x

M
EJ

y
 ; 

''

2

cosbM
EF

y


 ; then 

'' ''

2 2( ) ; ( ) cosb bEI y M x EF y M x      .                                                         (21) 

If by х=0, МI(0)=M, so from Eq. (21) is [13] 

12

0

xy
P eP y

y
EI EF


    ,  

where
2 sh tу r   . 

Take into account the transverse load influence function 

1 1

( )
( ) sin ( )

y y

x x

P x a P
f x k x a

P kP


    . 

Finally, deflection equations on the segments will be 

 
1 1

1 1 1

1 1

( ) (1 cos ) (1 cos ) [ (1 cos ) sin ]

            (1 cos ) ( sin ),

( ) ( ) ( ) sin ( ).

у
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x x x

у у

II I

x x

P M
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P P

P AM M B
kx kx kx

P P P

P P
y x y x x a k x a

P k P




        

  
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where
( 1 cos ) sin

cos sin

kl kl kl
A

kl kl kl

    



; 

sin cos 1

cos sin

kl kl kl
B

kl kl kl

 



. 

On the base of the system numerical variables Eq. (1) and calculation scheme, 

the deflections and puller shaft processing accuracy were calculated and the results 

are represented in Table 5 and on Fig. 5. 

Table 5. The results of calculation of  

deflections and shaft processing accuracy. 

Т, s y0, μm yI, μm yII, μm ydef, μm 

0 -130 3230 3230 3100 

0.1 -0.2899 -2.12 -2.12 -2.4 

0.2 -0.301 -1.83 -1.83 -2.1 

0.3 -0.25 -2.97 -2.97 -3.23 

0.4 -0.29 -2 -2 -2.32 

0.5 -0.4 0.6 0.6 0.235 

0.6 -0.4 0.636 0.636 0.235 

0.7 -0.4 0.636 0.636 0.235 

0.8 -0.4 0.636 0.636 0.235 

0.9 -0.248 -3.166 -3.166 -3.41 

1 -0.248 -3.166 -3.166 -3.41 
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Fig. 5. The functional dependence of accuracy  

changes for the technological process of shaft grinding. 

7.  Experimental Researches 

To perform empirical studies of the influence of the grinding process with the use 

of an elastically deformed state of the shaft and with standard grinding on the 

geometric form accuracy, a circular geometry gage "MMQ 400 CNC" model was 

used to estimate the form error. The polar-recording charts of details transverse 

sections were constructed with device. Transverse sections were used as base 

surfaces. 

Analysis of the results on the roundness accuracy of the detail was carried out 

in five sections. Visualization of the process of the measuring of inaccuracy 

roundness form is shown in the form of the polar-recording charts in Fig. 6. 

The analysis of experimental dependences showed that the value of the axis 

offsetting in grinding depends on the process character and increases with the 

occurrence of self-oscillations. With the increase of the bending rigidity of the 

workpiece the offsetting of the axis decreases and its shape changes. 

 
                            (1)                                                                 (2) 

Fig. 6. Deviations from the roundness of the shaft-swivel part,  

where: 1 - machining with the use of a tensile force shaft; 

 2 - without stretching, during standard processing. 
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The forms of the low-rigid shaft rolling oscillations, obtained during grinding 

without the tensile system and with the system are shown in Fig. 7. The values 

obtained are shown in Table 6. 

 
Fig. 7. Oscillogram of the deflection of the machined shaft:  

without stretching (a), with stretching (b). 

Table 6. Deflection of the shaft at machining. 

Grinding modes Mean value of deflections, μm 

c
V , 

m/min 

Sf, 

mm/rev 

 

t, 

mm 

with stretching without stretching 

5.8 15.75 0.005 13.3 200 

The experimental data show that for any part point, in particular the processing 

point directly below the grinder, the size of deflections for low-rigid shafts for the 

indicated diameter ranges can be substantially reduced through selecting the 

appropriate tensile force.  

The results of the experiments showed that the maximal axis offsetting of the 

shaft at grinding in the elastically deformed state decreased. 

The analysis of the polar-recording charts showed that the deviation from the 

roundness of the base surface after stretching decreases, but the main thing is that the 

profilograms show a significant approximation of the detail shape to the cylindrical.  

The carried out tests made it possible to establish a decrease in the deviation 

from the accuracy of the shaft shape compared to standard grinding. 

8.  Conclusion 

The influence of inertia moments and elastic and dissipative forces to changing of 

in-processing moving shaft were investigated. Changing of TS headstock and 

tailstock inertia moment influences essentially the in-processing shaft angular 

velocity and accelerations. The variation of in-processing shaft coefficients of 

rigidity, viscous resistance and stretching forces were performed to reduce the 

range of angular velocity and accelerations change. Rigidity increase at the expense 

of stretching led to reduction of in-processing shaft deformation and reduction of 

transition process. The amplitude of angular velocity fluctuations is reduced 

considerably by the increase of in-processing shaft viscous resistance coefficient. 

It confirms that the amplitude and frequency of in-processing shaft angular velocity 

and accelerations fluctuations depend on the inertia moment and elastic and 

dissipative forces. Thus, corresponding meanings of driving moment, stretching 
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force and cutting forces moments were determined for a set of in-processing shaft 

inertia moments of rotating masses, rigidity, and viscous resistance coefficients.  

By solving the boundary-value problem of the Pontryagin maximum principle, 

transient processes for the in-process shaft are obtained. As a result, optimal values 

of constructive and technological parameters were obtained, which ensure 

uniformity of shaft motion during processing. 

Mathematical models are developed for accuracy control of shaft processing 

and optimization of parameters for longitudinal-transverse bending. The 

regularities of the change in the elastic axis of the shaft under the action of tensile 

forces and bending moments are established. The values of tensile forces, bending 

moments and deflections of the shaft along the sections in process are determined. 

The developed methods of shaft processing due to the eccentric stretching by 

longitudinal force and due to the application of the bending moments provide an 

increase in processing accuracy by an order of magnitude in comparison with the 

previous developments. 

 

Nomenclatures 
 

a Coordinate of application of the transverse loading 

bsh Coefficient of viscous resistance of the processed shaft, Nms/rad 

сsh Coefficient of processed shaft rigidity, Nm/rad; 

е Eccentricity, m 

G, E shear and elasticity modules of the shaft material, N/m2 

Ip Polar moment of inertia, m4 

j1, j2, j3 Inertial moments of rotating mass of TS, Nms2 

l Length of the shaft, m 

Мd Driving moments of the processed shaft, Nm 

Мg Driving moments of the grinding wheel, Nm 

MR Moment of resistance in the process of shaft grinding, Nm 

rsh Radius of the shaft; m. 

ydef Elastic deformation, μm 
 

Greek Symbols 

1 2,   Angular displacements of TS rotating mass in the processing, rad 

1 2 3, ,    Angular rates of TS rotating mass in the processing, s-1 

1 1 3, ,    Angular accelerations of TS rotating mass in the processing, s-2; 

  Frequency of the process, s-1 

1 ,
2  Auxiliary functions 

 

Abbreviations 

MM Journal of Engineering Science and Technology 

TS International Standard Atmosphere 
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