
Journal of Engineering Science and Technology 
Vol. 13, No. 12 (2018) 4206 - 4225 
© School of Engineering, Taylor’s University  

4206 

RESERVOIR INFLOW SIMULATION USING 
MIKE NAM RAINFALL-RUNOFF MODEL:  

CASE STUDY OF CAMERON HIGHLANDS 

AZWIN Z. ABDUL RAZAD1,*, LARIYAH M. SIDEK2, 
KWANSUE JUNG3, HIDAYAH BASRI2 

1Researcher, TNB Research Sdn Bhd, No 1, Lorong Air Hitam, 

Kawasan Institusi Penyelidikan Bangi, 43000 Kajang, Selangor, Malaysia 
2Sustainable Technology and Environment Group, Institute of Energy Infrastructure, 

Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia 
3International Water Resources Research Institute, Chungnam National University, 

Daejon, Republic of Korea 

*Corresponding Author: azwinabdrazad@gmail.com 

 

 

 

 

 

 

 

 

 

 

 

Abstract 

Ringlet Reservoir in Cameron Highlands impounds water mainly from four main 

rivers namely Sg. Telom, Sg. Habu, Sg. Ringlet and Sg. Bertam. Due to the 

absence of gauge flow data, MIKE NAM rainfall runoff model was used to 

simulate inflow for short term and long term prediction. Peak flow is sensitive 

towards any changes in Umax, TG, CQOF, CKBF, CKIF and CK1,2. All parameters 

except CK1,2 are sensitive in calculation of total volume. Model was calibrated 

for the period from 1999 to 2006 and validated for the period from 2010 to 2012 

at two streamflow locations. The model is reliable to simulate flow satisfactorily 

especially during flood events. Model shows good agreement between the 

simulated and observed flow in terms of low flow, peak flow and total volume. 

Good calibration results were achieved for all scenarios, with NSE > 0.66, RSR 

< 0.6, R2 > 0.74 and PBIAS (%) < 15%.  

Keywords: Calibration, MIKE NAM, NSE, Rainfall-runoff modelling, Reservoir, 

Statistical, Sensitivity analyses. 
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1.  Introduction 

As part of reservoir management, prediction of total inflow on daily, monthly, 

annual and on seasonal basis is important to prepare schedule of releases and usage 

of water resources. Most reservoirs are equipped with lake level gauge, however, 

not streamflow gauge at the main feeder rivers. Some gauges were located further 

upstream of the reservoir. In the absence of comprehensive gauging data at main 

rivers flowing into a reservoir, rainfall-runoff model is useful to simulate inflow 

time series based on rainfall and weather data. Simulation of inflow into reservoirs 

allows flood analyses, sediment inflow and design of hydraulic structures to be 

carried out. For instance, sediment inflow into a reservoir can be estimated using 

rating curves and flow duration curve; or using integrated runoff to sediment-

discharge. This highlights the importance of inflow simulation into a reservoir. 

To determine inflow into the reservoir, hydrological modelling can be used to 

simulate runoff generation from the sub-catchments. Hydrological modelling is 

used to describe the relationship between the various hydrological components in 

a hydrologic cycle. Rainfall-runoff modelling describes the process of generating 

streamflow hydrograph resulted from the excess rainfall onto the catchment, after 

taking into account various hydrological processes such as precipitation, 

evaporation, transpiration, groundwater, and interflow.  

Gosain et al. [1] commented Rainfall-runoff modelling can be categorized into 

three categories namely; black-box (or stochastic), deterministic and conceptual 

model. Black box model describes the input and output data in mathematical terms 

without considering the physical processes involved, using mathematical equation 

and statistical concepts [2]. According to Abd and Sammen [3], the artificial neural 

network is considered as an efficient tool for modelling and prediction purposes, 

however, the quality of available data would greatly determine the accuracy of 

black box models.  

Deterministic model or physically based model characterizes the physical 

processes in the catchment and requires large data including topography, soil, 

rainfall, vegetation, land use, geological and meteorological information such as 

humidity, temperature, wind speed and others, which often lacking and consume 

large computation time. SWAT is an example of the physically distributed 

hydrological model, which can simulate sediment and runoff in a catchment [4, 5]. 

SWAT was utilised for rainfall-runoff modelling in Langat River Basin [6], Upper 

Bernam [7] and also for sediment yield study such as in central Iran [8], Chesapeake 

Bay [9], northeast Ethiopia [10], Blue Nile [11], Bukit Merah, Malaysia [12].  

Conceptual models are most commonly used due to its simplified computation 

and user-friendly approaches. It can be divided into semi-distributed and lumped 

model [13]. Lumped conceptual type of models simplifies the catchment to contain 

several storages and assigning the relevant parameters by ignoring the spatial 

variability of the catchment characteristics. Refsgaard and Knudsen [14] explained 

that most physically based models (deterministic) are distributed model while most 

conceptual are either semi-distributed or lumped model. Amir et al. [15] explained 

that despite the distributed model is physically based, there is no clear proof of its 

improved accuracy and efficiency, hence the conceptual lumped model is still 

preferred. MIKE NAM [16], HEC - HMS, Sacramento model and Tank model [17], 

Runoff Routing Model (RORB) [18] are the examples of the conceptual lumped 

model. HEC-HMS was used for hydrological modelling in oil palm catchment [19], 
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flood estimation in Johor [20], in Kayu Ara river basin [21] and in many other areas 

worldwide. Tank Model was used for Kelantan flood study [22].  

Although data-driven method especially Artificial Neutral Network (ANN) has 

gained interests in predicting inflow [23, 24], it requires extensive dataset covering 

all range of hydrological events to ensure the mathematical relationships derived 

among the factors are valid. This is usually unavailable for certain region. 

Distributed models are time-consuming and require complex datasets such as 

topography, weather, land use and soil type. Lumped model is usually the best 

choice for simulating inflow into the reservoir.  

MIKE NAM has been used widely in Malaysia and other countries reservoir 

inflow simulation, flood forecasting, flood study, watershed management and 

decision support system. For example, MIKE NAM forms part of real-time 

streamflow forecasting and reservoir operation system in Maharashtra, India [25], 

Ho Ho Reservoir [26] and Upper Maule River Basin [27]. MIKE NAM were used 

in simulating flow into reservoir [28], prediction of daily runoff in Bina Basin, India 

[29], Lower Rideau River in Australia [30], Fitzroy basin [15], Vinayakpur [31], 

Layang-layang river [32] and forms part of simulation of sediment inflow in 

Cameron Highlands [33] and in various other studies.  

Despite MIKE NAM being used in many areas, the calibration and sensitive 

parameters would vary from one study area to another, depending on the land use 

activities. Most studies illustrate limited information on the sensitivity analyses and 

none mentioned on how the land use variation affects the MIKE NAM parameters 

for calibration and simulation.  This study investigates the impact of land use on 

the MIKE NAM parameters.  

In this paper, MIKE NAM was used in to simulate inflow into Ringlet 

Reservoir. To ensure model’s reliability for simulating continuous runoff or flood-

based runoff, calibration was conducted multiple times at two locations to 

determine the best calibration parameters such that the model is robust to handle 

various scenarios. Model performance was assessed based on the overall pattern of 

hydrograph, the agreement to low and high flows and total volume. Additional 

statistical parameters were used to gauge model performance to guarantee the 

model is acceptable.  

2.  Study Area and Data Input  

Cameron Highlands is located in the state of Pahang, West Malaysia as shown 

in Fig. 1. It is an active highland agriculture area and famous tourist spot. There 

are two major catchments namely Bertam and Telom. There have been a lot of 

issues related to Cameron Highlands, such as flood, water quality, water 

quantity, and sedimentation over the past decades. Cameron Highlands is also 

home to seven hydropower stations owned and operated by the national utility 

company Tenaga Nasional Berhad (TNB). Table 1 summarises the details of 

Cameron Highlands catchment.  

Sg. Bertam, Sg. Ringlet and Sg. Habu drain directly into Ringlet Reservoir. The 

reservoir is a multipurpose reservoir and it is used for hydropower generation at Jor 

Power Station. In addition to that, water from Telom is diverted into Ringlet 

Reservoir via transfer tunnel. The reservoir has the original design storage of 6.7 

million m3, of which, 2 million m3 is dead storage and 4.7 million m3 is live storage. 
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The reservoir and its Sultan Abu Bakar Dam also serves as flood control in the 

densely populated Bertam Valley. The average elevation of the catchment is 

approximately 1180 m. Owing to its topography, 26% of the terrain is steeper than 

25º and 60% of the land is steeper than 20° [33]. Average annual rainfall for 

Cameron Highlands and Batang Padang is 2,8000 m with average daily evaporation 

of 1.8 mm/day. Throughout the year, the catchment is subjected to two rainy 

seasons; from April to May and from September to November. Monthly rainfall 

ranges from the minimum of 100 mm in January and maximum of 300 mm in 

October to November. Mean annual temperature is 18 °C. 

To ensure sufficient water for hydropower generation, TNB as the operator and 

owner of the power plants has installed and maintained a hydrological network for 

the area, consists of rain gauges and streamflow stations. In addition, rainfall and 

meteorological information such as evaporation were also obtained from 

Department of Irrigation and Drainage (DID) and Meteorological Department 

(MET). Availability of hydrological data for the catchment is shown in Table 2.  

The catchment is also subjected to dynamic land use changes since 1960s 

whereby forest was converted to agricultural plots and urban area to support the 

increasing demand. Land use changes from 1947 to 2010  in the catchment according 

to category were plotted as in Fig. 2, summarized based on the information obtained 

from the Department of Agriculture. Land use differences within the sub-catchments 

shows that Lower Bertam has the highest percentage of agricultural activity while 

Ringlet has the most urban area, as summarised in Table 3.  

 

Fig. 1. Location of Cameron Highlands catchment and Ringlet Reservoir. 
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Table 1. Summary of Cameron Highlands Catchment. 

Catchment Sub-catchment Area (km2) Cumulative area 

(km2) 

Bertam Upper Bertam 21  

 Lower Bertam 50 71 

Telom Telom 78  

 Kial & Kodol 22  

 Plau’ur 9.8 110 

Table 2. Data availability for Cameron Highlands. 

No Station no. Name GPS coordinate Type of data 

1 4513033 Gunung Brinchang 4.517, 101.383 Rainfall 

2 9004 Sg. Palas Tea Estate 4.517, 101.417 Rainfall 

3 9009 Kajiiklim Habu 4.418, 101.383 Rainfall 

4 6003 Sg. Bertam 4.465, 101.387 Streamflow 

5 1030 Kaji Iklim Tanah Rata 4.467, 101.383 Weather 

6 9001 Blue Valley 4.586, 101.419 Rainfall 

7 9002 Kg Raja 4.551, 101.417 Rainfall 

8 9003 Telom Intake 4.542, 101.425 Rainfall 

9 6002 Sg. Telom 4.543, 101.424 Streamflow 

 

 

Fig. 2. Land use variation in Cameron Highlands. 

Table 3. Land use differences (in %) within 

sub-catchment of Cameron Highlands. 

Catchments Bareland Forest Grassland Agriculture Urban Water 

body 

Upper 

Bertam 

9.30 57.93 19.11 5.79 7.87 0.11 

Middle 

Bertam 

4.72 62.63 20.38 9.14 3.05 0.08 

Lower 

Bertam 

8.72 18.32 42.82 21.25 8.62 0.00 

Habu 4.92 43.75 28.99 19.24 3.08 0.03 

Ringlet 18.58 26.88 31.02 10.98 12.29 0.24 

Reservoir 3.56 49.02 13.46 18.29 3.03 12.84 
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3.  MIKE NAM 

Rainfall-runoff model (MIKE NAM) is part of MIKE 11 model used by many 

researchers worldwide. It is deterministic, lumped conceptual rainfall-runoff 

model, which is originally developed by the Technical University of Denmark [34]. 

The model uses the hydrological cycle to quantify water storage and flows in the 

watershed. The general structure of the model contains three interrelated storages, 

categorized as overland flow, interflow and base flow, as shown in Fig. 3. 

Traditional applications of the rainfall-runoff model include an extension of stream 

flow series for design purposes, flood modelling, water quantity simulation, flood 

forecasting, and prediction of reservoir inflow. 

In general, there are nine (9) parameters in MIKE NAM, representing a surface 

zone, root zone, and groundwater storage. Snow storage is applicable to certain 

areas applicable to this. The upper and lower boundary is defined by default values 

in the manual and can be altered depending on the catchment characteristics itself 

[34]. Description of each parameter and its range of values is shown in Table 4.  

 
Fig. 3. MIKE NAM model structure [34]. 

Table 4. NAM parameters. 

Parameters Description Lower 

bound 

Upper 

bound 
Umax (mm) Maximum water content in surface 

storage 

10 20 

Lmax (mm) Maximum water content in the root 

zone storage 

100 300 

CQOF Overland flow runoff coefficient 0.1 1 
CKIF (hr) Time constant for interflow 200 1000 

CK1,2 (hr) Time constant for routing interflow 

and overland flow 

1 50 

TOF Root zone threshold value for 

overland flow 

0 0.99 

TIF Root zone threshold value for 
interflow 

0 0.99 

TG Root zone threshold for 

groundwater recharge 

0 0.99 

CKBF (hr) BASEFLOW TIME CONSTANT 1000 5000 



4212       A. Z. A. Razad et al. 

 
 
Journal of Engineering Science and Technology    December 2018, Vol. 13(12) 

 

4.  Methodology 

Rainfall-runoff model for Cameron Highlands was developed by delineating the 

catchment in Geographical Information System (GIS) software to obtain the 

catchment area. Thiessen polygon was utilized to generate the areal rainfall for the 

catchment. Rainfall, evaporation and observed flow on daily time series for a period 

of 1999 to 2012 were used.  

Sensitivity analyses were first conducted to determine the most sensitive 

parameters of the factors affecting the model accuracy, such as peak flow, low flow 

and total volume. By varying one parameter within the upper and lower range and 

keeping the remaining eight (8) parameters constant, flow simulated from 1999 to 

2006 was compared with the observed flow in terms of total volume and peak flow. 

From the sensitivity analyses, the most sensitive parameters were finalized and 

further adjusted during the calibration.  

Calibration was conducted by adjusting the most sensitive parameters such that 

the simulated flow matches the recorded flow. MIKE NAM used multi-objective 

calibration aims to satisfy four objective functions; total volume, root mean square 

error (RMSE), RMSE for peak flows and RMSE for low flows. In MIKE NAM, 

calibration was first done automatically followed by manual fine-tuning of the 

value of parameters within a small range. Validation was conducted by using the 

calibrated parameters for different simulation period.  

Separate calibration and validation period were chosen for Sg. Bertam and Sg. 

Telom, based on data availability and continuity. Sg. Telom has more missing 

streamflow data especially in 2008 and 2000. For long-term simulation, calibration 

of Sg. Bertam was conducted using data for period from 1999 to 2006, while the 

validation was conducted using data for period from 2010 to 2012. Daily data for 

period from 2004 to 2006 was used for calibration of Sg. Telom, while data for 

period from 2009 to 2010 was used for validation. For flood event at Sg. Bertam, 

peak flows in January 2009 and March to May 2011 were used for calibration, 

while peak flows in February 1999 were used validation. For Sg. Telom flood 

event, peak flows in January 2002, December 2006 and January 2011 were used 

for calibration and validation.  

This study focuses on sensitivity analysis and adjustment of the calibration 

parameters based on land use difference within the sub-catchments. Typical flow 

simulation using lump model applies the calibrated parameters onto the other sub-

catchments without taking into account the differences in land use. Since the study 

area is subjected to highly varied land use, the parameters were adjusted based on 

differences in the percentage of forest cover between sub-catchments.  

Summary of the methodology used in this study is illustrated in Fig. 4. Model 

performance during calibration and validation period was assessed based on the overall 

agreement of the hydrographs, especially on the peak values and total volume.  

Nash and Sutcliffe [35] commented, in addition, the model performance was also 

assessed based on seven (7) statistical parameters such as Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), Relative Root Mean Square Error 

(RRMSE), Nash-Sutcliffe Efficiency Index (NSE), %Bias (PBIAS), Regression 

coefficient (R2) and Ratio of RMSE (RSR). Most models are calibrated to achieve 

the smallest possible value of MAE, RMSE and RRMSE.  
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Models that achieve NSE > 0.75 is considered very well, good if NSE is between 

0.65 and 0.75 and satisfactory is NSE is between 0.5 and 0.65. For the model with 

absolute PBIAS of less than 15%, the model is good and if absolute PBIAS is between 

15% and 25%, the model performs satisfactorily. Another quantitative measure is 

RSR. If RSR is less than 0.6 the model is good and if RS is between 0.6 and 0.7, the 

model performs satisfactorily [36].  

R2 between 0.5 and 1 indicates acceptable model performance. These 

indicators were used in analysing the calibration results and the calibration 

parameters were adjusted until the model achieves results that satisfy the 

requirement of all statistical parameters. 

 

Fig. 4. Methodology used in the study. 
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5.  Results and Discussion 

5.1.  Sensitivity analyses 

From the sensitivity analyses, all parameters except CK1,2 are sensitive in calculation 

of total volume. Peak flow is sensitive towards any changes in Umax, TG, CQOF, 

CKBF, CKIF and CK1,2. Increase in CQOF and CKIF would increase the peak runoff, 

however, reduction of CK1, 2 increase the peak runoff. Results of the sensitivity 

analysis is summarised in Table 5. According to Shamsuddin and Hashim [32] and 

Loliyana and Patel [37], this result is slightly different to study in Johor and 

Chattisgarh. Study in Yerli highlighted three parameters namely CQOF, Umax and 

TOF that are sensitive to the total volume and R2 value [38]. Another study in Purna 

River basin highlighted that Lmax and Umax is sensitive towards total volume while 

CQOF influences the peak runoff. The significant influence of Lmax on runoff volume 

and peak runoff is due to existence of major crop land affecting the root zone storage 

in the catchment. This indicates that sensitivity analysis depends on land use activities 

within the study and it is site specific [39]. Another reference also highlighted CQOF 

is sensitive towards the peak runoff values [29].  

5.2. Calibration parameters 

As presented by Madsen [40] and Abdul Razad et al. [41], MIKE NAM auto-

calibration was implemented by giving all objectives equal weightage and by 

searching the solution by the shuffled complex evolution algorithm. Based on the 

results of auto-calibration, the parameters were further adjusted to achieve final 

calibration results. Table 6 summarises the final values of the calibration parameters. 

Table 5. Summary of sensitivity analysis on MIKE NAM parameters. 

Parameters 
Range of 

change 

Effect of total runoff 

volume if increase 

Effect of peak 

flow if increase 

Umax 10 - 19 Increased Reduced 

Lmax 102 - 299 Decreased No Effect 

CQOF 0.05 - 0.8 Increase Increase 

CKIF 200 - 980 Decrease Increase 

*CK1,2 5 - 50 No effect Decrease 

TOF 0.2 - 0.9 Reduced No effect 

TIF 0.09 - 0.9 Increased No effect 

TG 0.1 - 0.97 Decrease Reduced 

CKBF 1100 - 3998 Increase Decrease 

Table 6. Calibrated NAM parameters. 

Parameters 

Sg. Bertam Sg. Telom 

Continuous Flood event Continuous 
Flood 

event 

Umax (mm) 12.3 16.5 13.4 18 

Lmax (mm) 300 100 275 126 

CQOF 0.227 0.49 0.147 0.165 

CKIF (hr) 963.8 208.2 743.1 228.2 

CK1,2 (hr) 19.6 4.19 10.7 5.56 

TOF 0.00544 0.504 0.781 0.232 

TIF 0.284 0.263 0.522 0.0681 

TG 0.959 0.989 0.911 0.895 

CKBF (hr) 2521 4763 5952 3099 
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5.3. Model calibration and validation for Sg. Bertam 

The calibration results for a continuous period of 1999 to 2006 using streamflow 

data at Sg. Bertam is illustrated in Fig. 5. It is clear from Fig. 5 that the hydrograph 

pattern matches well for most low and high flows, except during February 1999 

and January 2000 where the observed peak flows were about 6 m3/s. This could be 

due to extremely high rainfall during that period, which does not occur on usual 

basis. Most peak flows occur in April, October and November each year. Figure 6 

illustrates the cumulative volume for observed and simulated, with a total 

difference (or PBIAS) of -6.94%. For absolute PBIAS<15%, model is considered 

as good. Calibration was also conducted during flood event in January 2009 and 

May 2011. Both results achieved NSE of more 0.70, indicating a good simulation 

accuracy, as shown in Figs. 7(a) and (b). 

Validation was carried out on daily basis from 2010 to 2012. The model is able 

to match the observed flow satisfactorily, with NSE value of 0.569 and PBIAS of 

4.85%, as shown in Figs. 8 and 9. Model validation during flood event in February 

1999 also indicated good performance with NSE value of 0.768.  

 

Fig. 5. Comparison between observed and simulated flow for Sg. Bertam.  

 

Fig. 6. Cumulative volume of observed and simulated flow.  
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(a) January 2009. 

 
(b) March to May 2011. 

Fig. 7. Daily flow during flood event. 

 

Fig. 8. Observed and simulated flow during validation period (2010-2012). 



Reservoir Inflow Simulation using Mike Nam Rainfall-Runoff Model . . . . 4217 

 
 
Journal of Engineering Science and Technology    December 2018, Vol. 13(12) 

 

 
Fig. 9. Cumulative volume of observed and 

simulated flow during validation period (2010-2012). 

5.4.  Model calibration and validation for Sg. Telom 

The calibration results for continuous period of 2004 to 2006 using stream flow 

data at Sg. Telom is illustrated in Fig. 10, showing good agreement between the 

recorded and simulated flow for both low and high flow. Observed peak flows in 

2005 are much lower compared to 2004 and 2006 due to less rainfall amount in 

Telom catchment in 2005. Figure 11 illustrates the cumulative observed and 

simulated volume, with total difference (or PBIAS) of 0.052%. Good calibration 

for flood events as shown in Figs. 12(a) and (b) at Sg. Telom in January 2002 and 

December 2006 were achieved, with NSE values of more than 0.79. Calibration 

results for both continuous simulation and during flood events at Sg. Telom are 

good whereby the simulated flow matches with observed flow in terms of timing, 

rate and volume.  

 
Fig. 10. Comparison between observed and 

simulated flow for Sg. Telom (2004-2006). 
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Fig. 11. Comparison between observed and simulated  

accumulative volume of flow for Sg. Telom (2004 - 2006). 

 

 
a) January 2002. 

 

b) December 2006. 

Fig. 12. Daily flow during flood event. 
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For Sg. Telom, model validation using the daily flow from 2009 to 2010 

performed satisfactorily with NSE > 0.5, as shown in Fig. 13. Validation for flood 

event in January 2011 performed better, with NSE value of 0.843. The peak flow 

matches well with the recorded flow on 30th January 2011, as shown in Fig. 14. 

Based on calibration and validation results for both Sg. Bertam and Sg. Telom, 

MIKE NAM is reliable to model the rainfall - runoff process under long-term 

period and during flood event in Cameron Highlands catchment. NSE values during 

calibration and validation for continuous simulation are NSE > 0.65 and NSE > 

0.52 respectively. In modelling the flood event, NSE values for both calibration 

and validation are well above 0.7, indicating good model performance.  

 
Fig. 13. Comparison between observed and simulated  

flow for Sg. Telom during validation period (2009-2010). 

 

 

Fig. 14. Daily flow during flood event in January 2011. 

 

5.5. Statistical evaluation of model performance 

Although the NSE and graphical plots are usually good to visualise the overall 

model results, models were further assessed using statistical parameters. Table 7 

shows the calibration and validation results for Sg. Bertam, for both continuous and 

flood event simulation, while Table 8 summarised model performance at Sg. 
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Telom. In general, both models achieve low values of RMSE, MSE, MAE and 

RRMSE, which indicate good model performance. NSE results are all above 0.66, 

R2 > 0.74, RSR<0.66 and average PBIAS is < 15%. The results clearly show that 

the model is well calibrated and satisfy all statistical parameters requirement. 

Based on the NSE, R2, PBIAS and RSR, model performance during flood events 

at both locations is better than for continuous simulation. This is because calibration 

during flood event is normally easier than for continuous simulation since smaller 

and shorter range of data input is involved. Based on almost similar values of NSE, 

R2, PBIAS and RSR at Sg. Bertam and Sg. Telom, model performance for 

continuous simulation are almost similar. However, model performance during 

flood event at Sg. Telom is better compared to that of Sg. Bertam.  

Table 7. Summary of statistical parameters  

assessed for calibration and validation at Sg. Bertam. 

Parameters 

Sg. Bertam 

Daily Flood 

Calibrati

on 

1999-2006 

Validation 

2010-2012 

Calibration 

in January 

2009 

Calibration 

May 2011 

Validation 

in February 

1999 

RMSE (m3/s) 0.359 0.571 0.997 0.729 0.556 

MSE 0.129 0.326 0.994 0.531 0.309 

MAE (m3/s) 0.243 0.339 0.612 0.456 0.358 

RRMSE (m3/s) 0.309 0.419 0.450 0.369 0.330 

PBIAS (%) -6.904 4.852 16.561 -10.386 -4.279 

NSE 0.663 0.569 0.712 0.696 0.768 

R2 0.826 0.776 0.877 0.863 0.892 

RSR 0.580 0.656 0.537 0.551 0.482 

Table 8. Summary of statistical parameters  

assessed for calibration and validation at Sg. Telom. 

Parameters 

Daily Flood 

Calibrati

on 

1999-2006 

Validation 

2010-2012 

Calibration 

in January 

2009 

Calibration 

May 2011 

Validation 

in February 

1999 

RMSE (m3/s) 0.986 0.969 1.416 1.315 1.041 

MSE 0.973 0.939 2.006 1.730 1.084 

MAE (m3/s) 0.683 0.664 0.833 0.894 0.778 

RRMSE (m3/s) 0.279 0.256 0.238 0.228 0.185 

PBIAS (%) 0.052 5.041 -1.638 0.523 -10.96 

NSE 0.650 0.523 0.794 0.803 0.843 

R2 0.813 0.744 0.892 0.910 0.954 

RSR 0.591 0.690 0.454 0.444 0.396 

5.6.  Reservoir inflow simulation 

Land use variations within the sub-catchments are considered before applying the 

calibrated parameters in Sg. Bertam and Sg. Telom basin. Each calibrated parameters 

are adjusted based on the ratio of forest cover of the sub-catchment to that of Sg. 

Bertam sub-catchment. For instance, Lower Bertam is assigned with lowest Umax and 
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Lmax as it is most developed sub-catchment with the least forest cover. Ringlet is 

assigned with highest CQOF as it has the highest percentage of urban area. Summary 

of the parameters used for each sub-catchment is shown in Table 9.  

Using the parameters as in Table 9, runoff is simulated from each sub-catchment 

to derive daily inflow at Sg. Ringlet, Sg. Habu and Sg. Bertam.  Simulated total 

inflow into Ringlet Reservoir as illustrated in Fig. 15. From the simulation, average 

daily inflow into Ringlet reservoir is 6.55 m3/s, with maximum of 21 m3/s.  

Table 9. Adjusted MIKE NAM parameters for other sub-catchment. 

Sub catchment Area (km2) Umax Lmax CQOF CKIF CK1,2 

Upper Bertam 20.98 12.3 300 0.227 963.8 19.60 

Habu 19.12 12.0 296.5 0.210 930.4 18.9 

Middle Bertam 13.44 12.3 297.7 0.161 813.7 16.5 

Ringlet 9.72 11.4 294.5 0.383 719.4 14.6 

Lower Bertam 4.34 11.3 294.1 0.316 529.6 10.8 

Reservoir 2.82 12.0 294.9 0.165 449.6 9.1 

 

 

Fig. 15. Simulated mean monthly flow into  

Ringlet Reservoir using MIKE NAM. 

6.  Conclusions 

Cameron Highlands is located in a highland area at elevation of more than 1000 m 

above sea level, surrounded by active agricultural and tourism activities. The 

catchment experiences average annual rainfall of 2800 mm with bi-annual heavy 

rainfall season. There are two main catchments, namely Telom and Bertam of 

which, major rivers of Sg. Telom and Sg. Bertam drain into Ringlet Reservoir. 

Hydrological modelling using MIKE NAM was conducted to simulate runoff in the 

catchment. Model was calibrated for continuous and flood event simulation. 

Performance of MIKE NAM was assessed based on overall pattern of the 

hydrograph, agreement to peak and low flows and using seven (7) statistical 

parameters such Root Mean Square Error (RMSE), Mean Square Error (MSE), 

Mean Absolute Error (MAE), Percentage of Bias (PBIAS), Nash-Sutcliffe 

Efficiency Index (NSE), Relative Root Mean Square Error (RRMSE), Regression 

(R2) and Ratio of RMSE (RSR). 
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The results indicate that MIKE NAM rainfall runoff model was good to 

simulate the rainfall runoff process in Cameron Highlands on continuous period 

and during flood event. The model is reliable to simulate flow satisfactorily 

especially during flood events. Model shows good agreement between the 

simulated and observed flow in terms of low flow, peak flow and total volume. 

Good calibration results were achieved for all scenarios, with NSE > 0.66, RSR 

<0.6, R2 > 0.74 and PBIAS (%) <15%. From the sensitivity analyses, all parameters 

except CK1,2 are sensitive in calculation of total volume. Peak flow is sensitive 

towards any changes in Umax, TG, CQOF, CKBF, CKIF and CK1,2. Increase in 

CQOF and CKIF would increase the peak runoff, however, reduction of CK1, 2 

increase the peak runoff. To reflect the land use difference between the sub-

catchments, each calibrated parameters are adjusted based on the ratio of forest 

cover of the sub-catchment to that of Sg. Bertam sub-catchment.  

Runoff is simulated from each sub-catchment to derive daily inflow at Sg. 

Ringlet, Sg. Habu and Sg. Bertam. From the simulation, average daily inflow into 

Ringlet reservoir is 6.55 m3/s, with maximum of 21 m3/s.  

To further improve reliability of this model for flash flood and sediment transport 

application, simulation of shorter runoff is recommended, in terms of hourly or sub-

hourly runoff simulation. MIKE NAM model can be used for event-based and flood 

forecasting, sediment transport and continuous simulation for water resources 

management purpose.  
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Nomenclatures 
 

CK1,2  Time constant for routing interflow and overland flow, hour 

CKBF Baseflow time constant, hour 

CKIF Time constant for interflow, hour 

CQOF Overland flow runoff coefficient 

Lmax  Maximum water content in the root zone storage, mm 

TG Root zone threshold for groundwater recharge 

TIF Root zone threshold value for interflow 

TOF Root zone threshold value for overland flow 

Umax Maximum water content in surface storage, mm 
 

Abbreviations 

GIS Geographical Information System  

MAE Mean Absolute Error 

NSE Nash-Sutcliffe Efficiency Index  

PBIAS Percent Bias 

R2 Regression coefficient  

RMSE Root Mean Square Error 



Reservoir Inflow Simulation using Mike Nam Rainfall-Runoff Model . . . . 4223 

 
 
Journal of Engineering Science and Technology    December 2018, Vol. 13(12) 

 

RORB Runoff routing model  

RRMSE Relative Root Mean Square Error 

RSR Ratio of RMSE 
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