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Blood pressure (BP) is a highly heritable trait and a major cardiovascular disease

risk factor. Genome wide association studies (GWAS) have implicated a number of

susceptibility loci for systolic (SBP) and diastolic (DBP) blood pressure. However, a large

portion of the heritability cannot be explained by the top GWAS loci and a comprehensive

understanding of the underlying molecular mechanisms is still lacking. Here, we utilized

an integrative genomics approach that leveraged multiple genetic and genomic datasets

including (a) GWAS for SBP and DBP from the International Consortium for Blood

Pressure (ICBP), (b) expression quantitative trait loci (eQTLs) from genetics of gene

expression studies of human tissues related to BP, (c) knowledge-driven biological

pathways, and (d) data-driven tissue-specific regulatory gene networks. Integration of

these multidimensional datasets revealed tens of pathways and gene subnetworks in

vascular tissues, liver, adipose, blood, and brain functionally associated with DBP and

SBP. Diverse processes such as platelet production, insulin secretion/signaling, protein

catabolism, cell adhesion and junction, immune and inflammation, and cardiac/smooth

muscle contraction, were shared between DBP and SBP. Furthermore, “Wnt signaling”

and “mammalian target of rapamycin (mTOR) signaling” pathways were found to

be unique to SBP, while “cytokine network”, and “tryptophan catabolism” to DBP.

Incorporation of gene regulatory networks in our analysis informed on key regulator genes

that orchestrate tissue-specific subnetworks of genes whose variants together explain

∼20% of BP heritability. Our results shed light on the complex mechanisms underlying

BP regulation and highlight potential novel targets and pathways for hypertension and

cardiovascular diseases.
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INTRODUCTION

Hypertension or elevated blood pressure (BP) is among the most
prevalent, treatable risk factors for coronary artery disease
(CAD), heart failure, and stroke. Systolic (SBP) and diastolic
blood pressure (DBP) traits are highly heritable, with the total
heritability for European/African ancestry individuals estimated
to be 20/27% and 39/50% for SBP and DBP, respectively (1).
Large-scale GWAS have successfully established ∼800 genetic
loci for SBP, DBP, and hypertension in multiple ethnic groups (2)
and the number will continue to rise as the sample size increases.
Some of the loci contain genes previously known or suspected
to regulate BP (such as ADM and NPPA) and the remaining loci
are novel.

Despite the successful identification of novel genetic loci
associated with BP regulation through GWAS, pinpointing
the causal genes and underlying mechanisms mediating the
effects of these loci is not straightforward (3). Integration
of genetic information with functional data, such as genetic
variants associated with altered gene expression, or expression
quantitative trait loci (eQTLs), is of critical importance to
pinpoint the causal genes and their associated pathogenic
mechanisms (4). Another critical gap is that the known ∼800
GWAS BP loci with significance together only explains a small
fraction of total BP heritability (2), a phenomenon called
the missing heritability or the dark matter. Recent evidence
suggests that the missing heritability can be explained by
numerous additional genetic loci with moderate or subtle effects
that are well under the genome-wide significance level in
GWAS as well as the interactions between multiple genetic
loci (5). Such multigenic interactions can be captured using
gene regulatory networks, and our recent modeling of blood
pressure networks using whole blood transcriptome data has
highlighted the importance of inflammatory pathways in blood
pressure regulation (6). However, BP regulation most likely
involves many more genes functioning in numerous biological
processes in diverse tissues such as kidney, heart, liver, and
the vasculature (2, 7). Systematic modeling of multidimensional
omics data that capture tissue-specific blood pressure networks
informed by genetic loci of strong, moderate, to subtle effects
will likely provide a more comprehensive understanding of
BP mechanisms.

Here we employed an integrative genomics strategy leveraging
multiple genetic and genomic datasets. Previous applications of
this strategy have successfully identified novel mechanisms of
CAD and other complex diseases (4, 8, 9). Once integrated, these
multidimensional datasets have the potential to delineate the
genes, pathways, and epistatic interaction subnetworks associated
with BP that are informed by genetic signals with a wide range of
effect sizes.

METHODS

Overall Analysis Design
Figure 1 shows the general flowchart of the study. First,
we utilized the human genetic association data (i.e., GWAS)
from the ICBP, which provides the full spectrum of statistical

associations between SNPs and clinically measured SBP and
DBP (not limiting to the top significant loci). Second, we
curated eQTLs (SNPs under eQTLs are defined as eSNPs) from
diverse tissues, which have been confirmed to be enriched
for complex disease loci (10) and provide functional support
for tissue-specific connections between SNPs and genes in a
data-driven manner. To further enrich functional annotation,
we incorporated information from the Encyclopedia of DNA
Elements (ENCODE) studies (11). Third, to provide a holistic
view of the organization of genes and reveal the most important
regulatory hubs in a given tissue, we included knowledge-
based metabolic and signaling pathways and data-driven gene
networks from various tissues to improve the detection of
multigenic disease processes. The general analytical pipeline,
Mergeomics, has been implemented as an open-access web-
server (http://mergeomics.research.idre.ucla.edu/) (12) as well as
an open-access R Bioconductor package (https://bioconductor.
org/packages/release/bioc/html/Mergeomics.html) (13). Ethical
standards and procedures were followed throughout the study.

GWAS of SBP, DBP, Hypertension, and CAD
The summary statistics of GWAS for SBP, DBP, and hypertension
was obtained from the ICBP, which was formed by two consortia,
the CHARGE-BP consortium (Cohorts for Heart and Aging
Research in Genomic Epidemiology—blood pressure) and
the GBPGEN consortium (Global Blood Pressure Genetics
Consortium) (14). (dbGaP accession: phs000585.v2.p1). The
study is comprised of 200,000 individuals of European descent
in a multi-stage design from 29 studies. More than 906,600
SNPs were genotyped using Affymetrix Genome-Wide Human
SNP Array 6.0. Imputation was further carried out to obtain
information for up to 2.6 million SNPs using the HapMap
CEU (Utah residents with ancestry from northern and western
Europe) panel. SNPs with minor allele frequency (MAF) <1%
were removed. Finally, a total of ∼2.5 million SNPs tested
for association with systolic and diastolic blood pressure
were used in our study. The 1,000 Genomes-based CAD
GWAS dataset was retrieved from CARDIoGRAMplusC4D
Consortium (http://www.cardiogramplusc4d.org/media/
cardiogramplusc4d-consortium/data-downloads/cad.additive.
Oct2015.pub.zip) (15). The hypertension and CAD GWAS
were used to connect the SBP/DBP related findings to
disease conditions. All statistical association p-values for
all SNPs, regardless of significance level, were used in our
downstream analysis.

Mapping SNPs to Genes and Removal of
SNPs in Linkage Disequilibrium (LD)
We used different mapping methods that are based on (a)
chromosomal distance, (b) eQTLs, or (c) ENCODE to link
GWAS SNPs to their potential target genes.

(a) We used a standard distance-based approach where a SNP
was mapped to a gene if within 50 kb of the respective
gene region.

(b) The expression levels of genes can be seen also as quantitative
traits in GWAS. Hence, it is possible to determine eQTLs
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FIGURE 1 | The integrative genomics framework for identifying genetically informed biological processes and networks and for prioritizing key drivers of BP regulation.

and the expression SNPs (eSNPs) within the eQTLs that
provide a functionally motivated mapping from SNPs to
genes. Moreover, the eSNPs within the eQTL are specific
to the tissue where the gene expression was measured
and can therefore provide mechanistic clues regarding
the tissue of action when intersected with BP-associated
SNPs. Results from eQTL studies in human adipose tissue,
artery, liver, brain, and blood (16–28) were combined with
the eQTLs from the same tissues in the GTEx database
(29). In addition, we included eQTLs from 44 additional
tissues from studies with smaller sample sizes including the
GTEx (30) (https://storage.googleapis.com/gtex_analysis_
v7/single_tissue_eqtl_data/GTEx_Analysis_v7_eQTL_all_
associations.tar.gz) and eQTLs in kidney at FDR<5% (Kim
et al., unpublished data) but the statistical power of these
eQTL sets was limited. We included both cis-eSNPs (within
1Mb distance from gene region) and trans-eSNPs (beyond
1Mb from gene region), at a false discovery rate (FDR)
<5%. However, for these tissues, the number of eSNPs after
LD trimming was small and lacked power to detect BP-
associated signals. To improve statistical power, we included

eSNPs at P < 1.0E-5 from these 44 tissues as “suggestive”
eQTL sets.

(c) In addition to eQTLs and distance-based SNP-gene mapping
approaches, we integrated functional data sets from the
Regulome database (11) which annotates SNPs in regulatory
elements in the Homo sapiens genome based on the results
from the ENCODE studies (31).

Using the above mapping approaches, the following sets of SNP-

gene mappings: eSNP adipose, eSNP artery, eSNP liver, eSNP
blood, eSNP brain, eSNP all (i.e., combing all the tissue-specific

eSNPs above), Distance (chromosomal distance-basedmapping),

Regulome (ENCODE-based mapping), Combined (combing all
the above methods), and 44 suggestive eQTL sets.

We observed a high degree of LD in the eQTL, Regulome, and

distance-based SNPs, and this LD structure may cause artifacts
and biases in the downstream analysis. For this reason, we

devised an algorithm to remove SNPs in LD while preferentially
keeping those with a strong statistical association with SBP/DBP.

We chose a LD cutoff (r2 < 0.7) to remove redundant SNPs in
high LD.
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Knowledge-Based Biological Pathways
We included 1,827 canonical pathways from the Reactome
(Version 45), Biocarta, and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) databases (32, 33). In addition to the curated
pathways, we constructed two positive control BP pathways
based on known BP loci (p < 1.0E-5) and candidate genes from
the GWAS Catalog (GWAS p < 5.0E-8) (34) for SBP and DBP
separately. We also curated hypertension/CAD positive control
gene sets based on GWAS Catalog (p < 1.0E-5). In addition,
the CAD positive control genes were complemented with the
CADgene V2.0 database, which contains 583 CAD related genes
and detailed CAD association information from about 5,000
publications. These gene sets serve as positive controls to validate
our computational method.

Data-Driven Modules of Co-expressed
Genes
Beside the canonical pathways, we used co-expression modules
that were derived from a collection of genomics studies of
liver, adipose tissue, aortic endothelial cells, brain, blood,
kidney, and muscle (GEO accession numbers: GSE7965,
GSE25506, GSE9588, GSE24335, GSE20142, GSE20332,
GSE22070, GSE2814, GSE3086, GSE2814, GSE3086, GSE3087,
and GSE3088, and GSE30169) (16–19, 21, 22, 35–38). For each
dataset, we extracted the normalized gene expression profile
and reconstructed co-expression networks using the established
WGCNA R package (39). Modules with size smaller than 10
genes were excluded to avoid statistical artifacts, yielding a
total of 2,705 co-expression modules in this study. We included
these tissue-specific co-expression networks to confirm whether
known tissue types for BP could be objectively detected and
whether any additional tissue types are also important for
BP regulation.

These data-driven modules along with the knowledge-driven
pathways in the previous section were used together to capture
gene sets containing functionally related genes in a wide variety
of tissue and functional settings.

Marker Set Enrichment Analysis (MSEA)
We applied MSEA (13) to identify pathways/co-expression
modules that demonstrate enrichment for genetic association
with SBP, DBP, hypertension, or CAD using the same parameters.
MSEA employs a chi-square like statistic with multiple quantile
thresholds to assess whether a pathway or co-expression
module shows enrichment of disease SNPs compared to
random chance based on the full spectrum of association
statistics for each GWAS dataset. For each pathway or co-
expression module, 10,000 permuted gene sets were generated,
and enrichment P-values were determined from a Gaussian
distribution approximated using the enrichment statistics from
the permutations as detailed in Shu et al. (13). Benjamini-
Hochberg FDR was estimated across all pathways and modules
tested for each GWAS. Pathways or co-expression modules with
FDR < 5% in at least one SNP-gene mapping were considered
statistically significant.

Construction of Independent Supersets
and Confirmation of BP Association
Because the significant pathways or co-expression modules
were from multiple sources, there were overlapping or nested
structures among the gene sets. To make the results more
meaningful, we constructed independent supersets that captured
the core genes from groups of redundant pathways and co-
expression modules (Figure 1). We merged the 42 common
pathways associated with SBP/DBP using a merging algorithm
in Mergeomics (13). After merging, we annotated each superset
based on function enrichment analysis of the known pathways
from the Gene Ontology and KEGG databases (Bonferroni-
corrected P< 0.05 in Fisher’s exact test). The supersets were given
a second round of MSEA to confirm their significant association
with BP using Bonferroni corrected P < 0.05 as the cutoff.

Key Driver Analysis (KDA)
We used a KDA algorithm (40) to identify potential key
driver (KD) genes of the BP-associated supersets. KDA overlays
BP-associated gene sets that were discovered by MSEA onto
graphical network models detailing molecular interactions
among genes to see if a particular subnetwork was significantly
enriched for disease genes, using a chi-square like statistic
analogous to the one used for MSEA. Statistical significance
of KDs was estimated by permuting the gene labels in the
network for 10,000 times and estimating the P-value based
on the null distribution. To control for multiple testing,
stringent adjustment (FDR < 1%) was used to focus on the
top robust KDs. Graphical networks used sources including
tissue-specific Bayesian regulatory networks available for seven
tissues (including cardiac muscle, artery, adipose, blood, liver,
brain, and kidney, described previously (7) and a protein-protein
interaction network from Human Protein Reference Database
(HPRD) database (41).

To cross-validate the top ranked KDs in silico, we used
literature-mining methods (PolySearch, COREMINE, and
T-HOD), searched mouse phenome database (http://www.
informatics.jax.org/), and examined their association with BP
in the latest GWAS to assess supporting evidence for their
role in BP regulation. We also retrieved gene essentiality
information (42) from an exome sequencing study of 60,706
humans (Supplementary Table 5) (42) to evaluate the biological
importance of the predicted KDs. This study considered genes
with a probability of being loss-of-function (LoF) intolerant
>= 0.9 to be essential genes, where counts of the observed
and expected variants were utilized to predict whether a given
gene is significantly intolerant to LoF. Genes were classified
into three groups within the context of tolerance to LoF,
null/complete toleration, recessive/heterozygous toleration,
and haploinsufficient/intolerant.

Heritability Estimates of GWAS Hits and
KD Subnetworks
We used the Heritability Estimator from Summary Statistics
(HESS) (43) to estimate the total genome-wide SNP heritability
(h2) as well as the portion explained by the KD subnetworks
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of SBP/DBP. We define GWAS hits as SNPs with p < 5.0E-8.
To correct for any potential bias in the large numbers of KD
subnetwork genes for SBP/DBP, we implemented a permutation
strategy by generating 10,000 random gene sets of matching sizes
for the top KD subnetworks of SBP/DBP to derive permutation-
based significant P-values for the heritability estimates, where
PKD = (number of h2

g,random
> h2g,KD)/10000. The reference

heritability of SBP/DBP was reported by a recent study (44),
which studied 2,889 twin pairs not on any BP-lowering therapy
from the Twins UK cohort, and estimated the additive genetic
variance for baseline BP, long-term average BP, BP trajectory (rate
of change of BP in mmHg/year) and BP variability (coefficient
of variation and average real variability over an h2g average of
3.2 visits).

RESULTS

Identification of BP-Associated Pathways
and Co-expression Network Modules
Out of the 4,532 gene sets (1,827 canonical pathways and 2,705
data-driven co-expression modules), we identified 96 and 78 that
were significantly associated with SBP and DBP, respectively,
in at least one SNP-to-gene mapping approach (FDR < 5%;
Supplementary Table 1). As expected, the predefined positive
controls based on GWAS catalog for SBP and DBP were among
the top signals for their corresponding traits.

Among the significant signals, 42 gene sets were shared
between SBP and DBP (Table 1). These included the previously
documented hypertension processes, such as angiotensin II (45),
cell-cell junction organization (46), and muscle contraction
(47). Other plausible pathways included NOTCH signaling,
platelet production, insulin secretion/signaling, immune and
inflammation, corticosteroids, and cell cycle pathways (Table 1).
Among the gene sets unique to either SBP or DBP were
“Wnt signaling” and “mammalian target of rapamycin (mTOR)
signaling” for SBP, and “cytokine network” and “tryptophan
catabolism” for DBP (Supplementary Table 1).

The use of tissue-specific eQTLs allowed us to implicate the
potential tissues where the BP-associated processes may function
(Supplementary Table 1). Out of the 44 tissue-specific eQTL
sets, those from the adipose, liver, blood, and brain tissues
appeared to be more informative, although this could be due
to the higher statistical power resulting from the abundance
of eQTLs from these well-studied tissues. Adipose eQTLs were
shown to be informative for the majority of the pathways or co-
expression modules identified, and insulin secretion/signaling,
autophagy, cell cycle and protein modification processes were
mainly identified when adipose eQTLs were used. Use of smaller
eQTLs datasets such as those from heart and kidney tissues,
which were previously implicated in BP (7), did not yield
significant BP-associated pathways. This is likely due to the
limited statistical power instead of lacking biological relevance.
Indeed, by lowering the stringency of eQTLs from FDR<5%
to P < 1.0E-5 to include more eQTLs from these tissues, we
found suggestive pathways (e.g., response to wounding, cell-cell
adhesion, and G-protein coupled receptor signaling) informed by

eQTLs from artery, heart, pancreas, and testis tissues (FDR< 5%;
Supplementary Table 2).

Construction of Supersets for SBP/DBP
and Functional Annotation
We next focused on the 42 significant gene sets (pathways/co-
expression modules) shared between SBP and DBP as they
reflect reproducible signals for BP regulation. To minimize
redundancy in the biological processes captured in these gene
sets, we merged 35 overlapping gene sets into 12 independent
supersets and kept the other 7 non-overlapping gene sets intact
(Table 1). The resulting 19 non-overlapping gene sets represent
a diverse range of molecular pathways, including NOTCH
signaling, protein catabolism, cell adhesion and junction,
cardiac and smooth muscle contraction, phosphatidylinositol
signaling, insulin secretion/signaling, immune/inflammation,
integrin signaling, gene expression regulation, cell cycle,
angiotensin II-induced JNK activation, platelet, autophagy, and
corticosteroids and cardioprotection. We confirmed that these
merged supersets still captured the BP-relevance demonstrated
by their subcomponents by performing a second round of
MSEA (Supplementary Table 3).

Identification and Prioritization of key
Regulators in the BP-Associated Supersets
To identify and prioritize the central regulatory components
(termed as key drivers, KD) among the large number of genes
in the BP supersets, we performed a key driver analysis (KDA;
details in Methods) (13) on the 19 supersets shared between SBP
and DBP using 8 graphical networks including 7 tissue-specific
Bayesian networks [cardiac muscle, artery, adipose, blood, liver,
brain, and kidney, as these tissues have been implicated in BP
by previous (7) and our studies] and a PPI network. For each
superset in each network, we focused on the top five ranked
KDs satisfying FDR < 1%, yielding 295 unique KD genes,
among which 29 were shared by >=2 supersets and 6 (COX5B,
FN1, COL4A2, COX4I1, NDUFS3, and HLA-C) were shared
in >=3 networks (Supplementary Table 4). The low number
of shared KDs for the BP-associated gene sets between tissue-
specific networks suggests tissue-specific regulation of BP genes
and pathways.

We cross-checked these top KD genes for their role in BP
and functional significance through a comprehensive in silico
analysis using multiple literature mining tools, databases of
gene knockout and mutation mouse models, and recent GWAS
findings (Supplementary Table 5). Our search revealed both
known KDs showing connections to hypertension or relevant
conditions in one or more types of studies (99 KDs; such as
GNAS, SLC2A3, IRS1, ADM, and SERPINE1) and relatively novel
KDs in BP studies (such as SPTBN1 and GNB1). Moreover, the
top KDs were significantly enriched with essential human genes
(41) (Supplementary Table 5; Fisher Exact test P = 5.12e-7).

Additionally, a number of suggestive genes arose from
the vascular tissue data, most notably those implicated in
extracellular matrix (ECM) homeostasis and smooth muscle
contraction with emphasis on angiotensin signaling. The genes
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TABLE 1 | Shared pathways or co-expression modules between SBP and DBP.

Gene set ID Descriptions Informative

eQTLs/mapping
†

Supersets Top KDs

SBP Positive Positive controls for SBP 1,2,3,4,5,6,7,8,9 S1: positive controls (197) PON1, PTK2, HIPK2, SPTBN1,

IRS1DBP Positive Positive controls for DBP 1,2,3,4,5,6,7,8,9

rctm1133 Signaling by NOTCH 1,5,6,7,8,9 S2: NOTCH signaling (122) NOTCH2, NOTCH1, RBPJ,

HDAC3, NOTCH3rctm0893 Pre-NOTCH expression and processing 1,3,5,6,7,9

Co:4279 (Protein modification, catabolism)* 1,6,8,9 S3: protein catabolism (129) PYGL, NAMPT, SLC2A3, ZFP36,

AQP9Co:4964 (Protein modification, catabolism)* 1,6,8,9

Co:4610 (Carbohydrate metabolism)* 1,3,4,6,8,9

M2164 Leukocyte transendothelial migration 1,4,5,6,8,9 S4: cell adhesion and junction (219) MSN, FYN, RAC2, ARHGDIB,

LCKrctm1276 Tight junction interactions 1,5,6,7,8,9

rctm0225 Cell-cell junction organization 1,5,6,7,9

M16476 Cell adhesion molecules (CAMs) 1,5,6,8,9

M8728 Hypertrophic cardiomyopathy (HCM) 1,7,8,9 S5: cardiac muscle contraction (146) COX5B, COX4I1, NDUFS3,

COX7B, COX6B1M17673 Cardiac muscle contraction 1,3,4,5

M835 Dilated cardiomyopathy 1,3,5,6,7,8,9

rctm0731 Muscle contraction 1,3,4,5,6,7,8,9 S6: smooth muscle contraction (49) CALD1, TTN, ACTA1, MYLPF,

KBTBD10rctm1162 Smooth muscle contraction 1,4,6,7,8,9

M3896 Inositol phosphate metabolism 1,3,6,7,8,9 S7: phosphatidylinositol signaling (82) BTK, TRPC3, KIT, EGFR, GRM5

M9052 Phosphatidylinositol signaling system 1,3,6,7,8,9

rctm0996 Regulation of Insulin Secretion 1,3,6,7,8,9 S8: insulin secretion (199) GNB1, PRKACA, GNAS, VIPR1,

GNB2rctm0449 G alpha (s) signaling events 6,8,9

rctm0598 Integration of energy metabolism 7,8,9

M18155 Insulin signaling pathway 1,6,8,9 I1: insulin signaling (137) GRB2, HRAS, INSR, AKT1, IRS1

M16004 Antigen processing and presentation 1,2,3,5,6,7,8,9 S9: immune and inflammation (398) HLA-C, ZC3H7B, PPP3R1,

MIDN, CREBL1M917 Complement pathway 1,3,6,8,9

Co:4555 (Adaptive immune system)* 1,3,5,6,7,8,9

Co:black (Immune system)* 1,5,6,7,9

M3342 Integrin signaling pathway 1,3,6,7,8,9 S10: Integrin Signaling (111) FN1, COL4A1, ITGB3, PTK2,

PXNrctm0602 Integrin cell surface interactions 1,6,7,8,9

Co:4818 (Gene expression)* 1,4,5,6,7,8,9 S11: Gene Expression (313) PPP3R1, CCBL2, ZC3H7B,

MAFG, MIDNCo:4261 (Gene expression)* 1,6,7,8,9

Co:4603 (Gene expression)* 1,6,7,8,9

rctm1391 mRNA Decay by 5′ to 3′ Exoribonuclease 6,7,8,9

Co:cyan (RNA processing)* 7,8,9

rctm0622 Intrinsic pathway for apoptosis 2,3,6,7,8,9 S12: Cell Cycle (109) HIST1H2BC, HIST1H2BM,

HIST1H2BK, MDM4, AKT1rctm0676 Meiotic Recombination 1,6,7,8,9

M10145 PTEN dependent cell cycle arrest and

apoptosis

7,8,9

M14899 Angiotensin II mediated activation of JNK

Pathway via Pyk2 dependent signaling

1,3,6,7,8,9 I2: Angiotensin II-induced JNK

activation (36)

PIK3R1, RAF1, EGFR, MAPK14,

MAPK1

rctm0411 Factors involved in megakaryocyte

development and platelet production

7,8,9 I3: Platelet Production (125) EP300, AURKA, PML, KIF2C,

AKAP1

M6382 Regulation of autophagy 1,6,7,8,9 I4: Autophagy (35) MAP1LC3B, GABARAP,

GABARAPL2, IFNAR2

M17400 ALK in cardiac myocytes 7,8,9 I5: ALK in Cardiac Myocytes (37) BMPR1A, TGFBR1, BMP2, ENG,

TGFBR2

M10066 Corticosteroids and cardioprotection 7,8,9 I6: Corticosteroids and

Cardioprotection (20)

ESR1, HSP90AA1, NR3C1, INSR,

AR

Co:5504 (Small molecule metabolic process)* 1,3,4,6,7,8,9 I7: Small Molecule Metabolism (114) AGPAT2, MECR, AKR1C3, GPX4,

FAH

*The coexpression modules were annotated using MSigDB pathways (www.broadinstitute.org/msigdb) with FDR < 5%.
†
Number 1 to 9 represent: Adipose eSNP (1), Artery eSNP (2),

Blood eSNP (3), Brain eSNP (4), Liver eSNP (5), all eSNP (6), Distance (7), Regulome (8), and Combined (9), respectively.
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highlighted as having specific effects on the ECM are TIMP2,
PSAP, FN1, VCAN, and LOX. Those implicated in smoothmuscle
contraction include CALD1, DUSP5, and TAGLN.

Top KD Subnetworks of BP Regulation
We retrieved the top KD subnetworks in BP-relevant tissues
including cardiac muscle, artery, adipose, blood, liver, brain,
and kidney, as well as in the PPI network. As shown in
Supplementary Figure 1, BP-associated processes are closely
orchestrated by KDs in the adipose, artery, blood, and liver
subnetworks. The top KD subnetworks demonstrated high
tissue specificity, for example, subnetworks involved in insulin
secretion/signaling were only overrepresented in adipose and
liver tissues (Supplementary Figure 1). Similar results were
found for the BP subnetworks from the other tissues (the
detailed interactions in the eight KD networks are listed in
Supplementary Table 6).

BP Heritability Explained by the KD
Subnetworks
We estimated the total genome-wide SNP heritability (h2)
and the fractions of heritability explained by the top KD
subnetworks using HESS (43) based on the ICBP GWAS
summary statistics. We found that while the significant GWAS
SNPs (14) can only explain 4.82% and 4.46% of trait variance
in SBP and DBP, respectively, which agreed with the estimates
from a recent BP GWAS study (2), KDs and genes in the
top KD subnetworks in the various tissues explained much
higher proportions of heritability (Table 2). For example, the
top 54 KDs and their subnetwork genes in the adipose tissue
(Supplementary Figure 1) can explain 19.8% and 21.8% of the
heritability of SBP and DBP, respectively. This increase in
heritability estimates for the KD subnetworks over GWAS top
hits is less likely to be driven by the number of network genes,
as random subnetworks containing matching numbers of genes
explained much lower proportions of heritability (P < 0.0001).

Overlap of BP Pathways/Networks With
Those of Hypertension and CAD
We explored the relationship between BP-associated
pathways/networks with those for hypertension and CAD.
Out of the 42 SBP/DBP common pathways (Table 1), five
showed significant enrichment for hypertension GWAS (14)
signals (FDR < 0.05), including “Antigen processing and
presentation,” “Insulin signaling pathway,” and “Integration
of energy metabolism,” and the two positive control sets for
SBP and DBP. Six of the SBP/DBP common pathways also
showed significant enrichment for CAD GWAS (15) signals,
including “ALK in cardiac myocytes,” “Factors involved in
megakaryocyte development and platelet production,” “Integrin
cell surface interactions,” “Meiotic recombination,” and “Antigen
processing and presentation”. In addition, 19 out of the top BP
KDs (Supplementary Table 5; e.g., SHC1, FN1, APOB, COL4A1,
RELA, and ADM) were CAD susceptibility genes based on
GWAS studies (8, 48). Notably, 10 KD genes highlighted by our
analysis ( e.g., TGFBR2, LAMC1, KIF15, and RBPMS) have only
just been implicated as causal genes by the most recent blood

pressure GWAS study (2). Moreover, many hypertension/CAD
genes (Supplementary Table 7) are in the subnetworks of the top
KDs (Supplementary Table 6). These molecular level overlaps
support the strong mechanistic connections between BP and
incident diseases.

DISCUSSION

While elevated BP has a significant genomic contribution,
this phenotype has been historically multidimensional in its
physiological induction. Previous high-throughput GWAS and
transcriptome studies have revealed a plethora of genomic
changes contributing to BP in different populations. However, an
integrative systems analysis fully utilizing the complementarity
of diverse omics data has not been conducted to capture a
comprehensive, tissue-specific view of BP regulation. Due to
the highly interconnected nature of the genome and molecular
regulatory systems, finding the gene sets most relevant in
pathogenesis through the inherent noise of each expressed gene is
challenging. Based on the predictions made via the “omnigenic”
model, the vast majority of heritability arises from the multitude
of genes which have indirect effects on disease through their
association with central regulators (49). Our previous studies on
other complex diseases indeed support that GWAS genes are
mostly peripheral genes in gene networks that are regulated by
key driver genes (8, 9).

Here, to investigate the gene regulatory networks and
pathways governing BP regulation, we integrated the full
association spectrum of BP GWAS (not limited to top GWAS
hits, but included moderate and subtle signals as well), functional
genomics information (eQTLs and ENCODE), knowledge-
driven pathways, and data-driven networks to uncover biological
processes and tissue-specific networks mediating the actions of
BP GWAS signals. Our study revealed a diverse set of pathways
significantly associated with SBP/DBP based on genetic evidence.
These pathways are connected in tissue-specific networks via
central regulators, both known (e.g., GNAS, SLC2A3, and
IRS1) and novel (e.g., SPTBN1 and GNB1), revealing critical
interactions and regulatory cascades underlying BPmaintenance.
The KDs and subnetworks collectively explain ∼20% heritability
for SBP/DBP, substantiating the much improved power of our
network approach in capturing key BP genes and processes
compared to conventional approaches. Furthermore, many of
the BP pathways and networks were shared with CAD, thus
shedding light on themechanistic connections between CAD and
its clinical risk factor hypertension.

Compared to several previous integrative network studies of
BP involving whole blood transcriptome and BP GWAS, (20, 33)
our study incorporated eQTL and network information from
a comprehensive list of tissue types that capture pathways or
networks that are either systemic or tissue-specific, revealing
complex, systems-level regulation of BP (summarized in
Figure 2). The detected processes can be categorized into
a number of general classes, such as muscle contraction,
immune and inflammation, cell adhesion and junction,
protein catabolism, and angiotensin pathway. Therefore, our
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TABLE 2 | Estimates of BP heritability explained by tissue-specific KD subnetworks.

Traits h2g(%SE)* h2
pub

(95% CI)
†

h2
GWAS

(%SE)‡ Networks h2
KD_sub

(%SE)§ h2
random

(%SE) || P-values of top KD subnetworks

SBP 45.5 (0.82) 56 (53, 59) 1.36 (0.20) Adipose 19.76 (0.61) 5.12 (0.76) <1.0e-4

Artery 16.66 (0.37) 4.61 (0.82) <1.0e-4

Blood 18.24 (0.51) 4.82 (0.81) <1.0e-4

Brain 8.36 (0.35) 3.74 (0.66) <1.0e-4

Cardiac Muscle 13.32 (0.34) 3.95 (0.76) <1.0e-4

Kidney 7.65 (0.67) 3.80 (0.72) <1.0e-4

Liver 17.35 (0.40) 4.67 (0.65) <1.0e-4

PPI 22.65 (0.57) 5.10 (0.65) <1.0e-4

DBP 62.3 (0.81) 61 (58, 64) 1.49 (0.28) Adipose 21.75 (0.28) 7.42 (0.89) <1.0e-4

Artery 17.07 (0.21) 5.25 (0.76) <1.0e-4

Blood 23.34 (0.35) 8.37 (0.75) <1.0e-4

Brain 15.06 (0.24) 4.65 (0.63) <1.0e-4

Cardiac Muscle 15.55 (0.36) 4.45 (0.67) <1.0e-4

Kidney 8.90 (0.56) 4.60 (0.65) <1.0e-4

Liver 18.39 (0.45) 4.67 (0.83) <1.0e-4

PPI 24.73 (0.41) 6.26 (0.75) <1.0e-4

*Total SNP heritability estimated by HESS;
†
heritability of SBP/DBP based on reports by a recent study detailed in Methods; ‡heritability explained by GWAS hits (P<5.0E-8); §heritability

explained by the subnetworks of the top KDs in each tissue network (the tissue-specific subnetworks were listed in Supplementary Table 6); ||average values of heritability explained

by subnetworks of random genes that are not KDs; and P-values represent comparisons between top KD and random gene subnetworks.

omics-driven systems biology study depicts a much more
comprehensive landscape for BP regulation that includes
both known processes targeted by antihypertensive drugs (50)
(angiotensin II receptor blockers targeting the angiotensin
pathway) and additional processes that may lead to novel
therapeutic strategies for hypertension and CAD.

The use of tissue-specific functional genomics information
allowed us to detect potential tissue specificity in the BP processes
identified in our study. For example, autophagy regulation
and insulin signaling showed genetic association with BP traits
when adipose tissue eQTLs were used (Table 1); our network
models also suggest that the insulin signaling pathway in adipose
tissue closely connects with other critical BP processes, such
as cell-cell adhesion and cell junction organization (Figure 2,
Supplementary Figure 1). The link of adipose tissue biology
and insulin resistance to blood pressure homeostasis has been
noted before (51, 52). Our results suggest that autophagy
and insulin signaling are adipose pathways contributing to
BP regulation. The connection between autophagy and insulin
signaling is supported by previous evidence that adipose-specific
deletion of autophagy modulators (e.g., ATG7) reduces white
adipose mass, increases the proportion of brown adipocytes
and subsequently promotes the oxidation of free fatty acids,
leading to enhanced insulin sensitivity (53). A recent study
unraveled that spermidine, an anti-aging molecule, reduced
SBP and prevented cardiac hypertrophy and a decline in
diastolic function through autophagy-related protein ATG5 (54).
Another study identified autophagy modulators as potential
therapeutic targets of FDA-approved antihypertensive drugs,
such as the imidazoline receptors and l-type Ca2+ channels
(55). These lines of evidence substantiate that autophagy and

insulin resistance processes in adipose may contribute to
BP regulation.

Beside the common pathways between SBP and DBP
discussed above, the trait-specific processes are also of value to
help understand the differential regulatory mechanisms between
the two traits. For instance, we found that Wnt signaling is
more associated with SBP while tryptophan catabolism tends to
be more involved in DBP regulation (Supplementary Table 1).
In the central nervous system of spontaneously hypertensive
rats, Wnt signaling regulates SBP by downregulating a glycogen
synthase kinase 3β-mediated pathway to enhance insulin
signaling (56). As for DBP-specific tryptophan catabolism,
the central enzyme indoleamine 2,3-dioxygenase (IDO) in the
pathway metabolizes the essential amino acid tryptophan to
kynurenine. There was an inverse association between IDO
activity and DBP but no association with SBP (57). Further
investigations of these trait-specific pathways are warranted.

In addition to retrieving BP-relevant processes and pathways
in a tissue-specific fashion, our network modeling detected
potential KDs of these processes. These KDs include both known
BP genes (e.g., GNAS, SLC2A3, and IRS1) and novel genes (e.g.,
SPTBN1 and GNB1). The KD SPTBN1 in “Positive Control,”
is associated with multiple BP GWAS susceptibility genes
(including CPEB4, FBXL19, NPR3, and HIPK2) in the adipose
network (Supplementary Figure 1). It encodes βII-spectrin,
which has been proven to play an essential role in the regulation
of bone mineral density (58). On the other hand, bone mineral
density was significantly lower in hypertensive subjects compared
with normotensive subjects and was inversely correlated with
SBP (59). Another novel KD GNB1 in “Insulin regulation”
encodes a G protein β subunit, multiple mutations of which

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 March 2019 | Volume 6 | Article 21

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zhao et al. Genetic Regulatory Networks of Blood Pressure

FIGURE 2 | Pathways associated with systolic and/or diastolic blood pressure with FDR determined by MSEA analysis from various tissues: (A) Adipose. (B) Blood.

(C) Brain. (D) Liver (E) Artery.

were found to affect the protein interface that binds Gα subunits
(GNAS), which has been genetically and clinically associated with
hypertension (60). These lines of evidence support the potential
importance of the novel KDs in BP regulation.

Several interesting observations emerged from relationship
between the top KDs we found and BP GWAS signals. First,
we observed a lack of GWAS signals in the predicted KDs for
direct genetic association with BP, with only 22 (e.g., PTPN11,
INSR, SLC2A4, and GNAS) out of the 295 predicted KDs to
be candidate BP GWAS genes (2, 61). This may be a result of
negative selection pressure because of the critical roles of the
KDs in tissue-specific networks. In support of this hypothesis,
the top KDs we found were significantly overrepresented within
biologically essential genes which demonstrates few protein-
truncating variants due to the critical nature of their functions
(42). This helps explain why KDs are commonly missed in
GWAS and the power of our network approach in uncovering
potential missing disease genes and processes. The lack of KD
signals in GWAS does not undermine their critical regulatory
role in disease processes, as the KD subnetworks collectively

explain significantly more heritability than the subnetworks of
random genes as well the top BP GWAS loci for both SBP and
DBP (Table 2). These results substantiate the improved ability
of network approach in capturing key BP genes and processes
compared to conventional approaches (Table 2). Additionally,
these data indicate that the KDs regulate both the significant
BP GWAS genes which likely have stronger influence on
pathophysiological outcomes and the genes with more subtle
effects which account for the missing heritability. Furthermore,
our KD subnetworks retrieved based on a previous BP GWAS
meta-analysis with a smaller sample size, was able to predict
causal BP genes such as KIF15, LAMC1, TGFBR2, and RBPMS
which hadn’t been highlighted until the latest BP GWAS (2)
with a larger sample size and power. This strongly supports the
accuracy and predictive power of our computational pipeline.
These genes are linked to pathways potentially associated with
mechanisms modulating blood pressure. Particularly, LAMC1
coding for Laminin Subunit Gamma 1, has been implicated
in the regulation of vascular lumen development (62). Also,
proteomic analysis suggests this subunit is involved in ECM
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remodeling during venous hypertension in varicose veins
(63). Furthermore, TGFBR2 and RBPMS show a high degree
of expression in smooth muscle cells, the former heavily
implicated with predisposition for arterial aneurysms which
suggests dysfunctions of the arterial wall, while the latter
is involved in regulation of smooth muscle plasticity during
development (64, 65).

Moreover, we had a number of suggestive genes arise from
our vascular tissue data, highlighted as having specific effects on
the ECM including TIMP2, PSAP, FN1, VCAN, and LOX, each of
which have been previously implicated in hypertension (63, 66–
68). With the ECM being crucial for maintaining the structural
integrity of the vessel wall, it seems intuitive that genes affecting
ECM homeostasis may contribute to hypertension. One such
gene is TIMP2, coding for tissue inhibitor of metalloproteinases
2, which is part of a peptidase family involved in the degradation
of the ECM, linked with resistant hypertension and arterial
stiffness (66). Additionally, our vascular tissue data suggested
genes implicated in smooth muscle contraction such as CALD1,
DUSP5, and TAGLN (69–72).

Despite the comprehensive data integration and discoveries
discussed above, there are limitations in our study. First,
mapping GWAS SNPs to candidate genes is not straightforward.
Chromosome location-based mapping lacks direct evidence for
the functions of the reported genes, whereas functional data-
supported mapping suffers from incomplete coverage of tissue
and lack of power in identifying weak cis-association and trans-
regulation. To address these issues, we incorporated different
SNP-gene mapping approaches (i.e., chromosomal location vs.
eQTLs) and prioritized the tissue-specific pathways shared by
SBP and DBP. Second, although we collected eQTL datasets
from >40 unique tissues/cells from the GTEx database and
other studies, the sample sizes for certain tissues or cells are
small, resulting in small numbers of eQTLs for these cells to
tissue types to be incorporated in our analysis. This limits
the statistical power when used separately and most likely
contributes to the lack of significant signals from many of the
eQTL sets used. To alleviate this power issue, we pooled the
eQTLs from related tissues or cell types in pathway analysis,
which may mask certain tissue-specific signals. Third, although
our findings provide multiple lines of in silico evidence to
support the importance of the KDs (e.g., literature mining and
BP phenotypes from mouse models), experimental validation
of the novel KDs for their roles in regulating the BP GWAS
genes, networks, and disease development is necessary in
future studies.

Overall, high BP is a major risk factor for cardiovascular
disease and has a substantial genetic contribution. Our
integrative approach utilizing GWAS, functional genomics, and
network modeling revealed a comprehensive system view of
biological processes, tissue-specific networks, and regulators that
contribute to BP regulation. The common pathways between
SBP and DBP are significantly enriched for hypertension/CAD
GWAS signals and the top KD subnetworks contain numerous
candidate CAD causal genes (Supplementary Table 7).
Collectively, these findings provide molecular level mechanistic
support for the tight connection between BP and CAD risk. The
processes and regulators identified from our study may open
new avenues for BP-lowering and CAD therapeutics.
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