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Imbalances in C:N:P supply ratios may cause bacterial resource limitations and constrain
biogeochemical processes, but the importance of shifts in soil stoichiometry are
complicated by the nearly limitless interactions between an immensely rich species pool
and a multiple chemical resource forms. To more clearly identify the impact of soil C:N:P
on bacteria, we evaluated the cumulative effects of single and coupled long-term nutrient
additions (i.e., C as mannitol, N as equal concentrations NH4

+ and NO3
−, and P as

Na3PO4) and water on communities in an Antarctic polar desert, Taylor Valley. Untreated
soils possessed relatively low bacterial diversity, simplified organic C sources due to the
absence of plants, limited inorganic N, and excess soil P potentially attenuating links
between C:N:P. After 6 years of adding resources, an alleviation of C and N colimitation
allowed one rare Micrococcaceae, an Arthrobacter species, to dominate, comprising
47% of the total community abundance and elevating soil respiration by 136% relative to
untreated soils. The addition of N alone reduced C:N ratios, elevated bacterial richness
and diversity, and allowed rare taxa relying on ammonium and nitrite for metabolism to
become more abundant [e.g., nitrite oxidizing Nitrospira species (Nitrosomonadaceae),
denitrifiers utilizing nitrite (Gemmatimonadaceae) and members of Rhodobacteraceae
with a high affinity for ammonium]. Based on community co-occurrence networks,
lower C:P ratios in soils following P and CP additions created more diffuse and less
connected communities by disrupting 73% of species interactions and selecting for
taxa potentially exploiting abundant P. Unlike amended nutrients, water additions alone
elicited no lasting impact on communities. Our results suggest that as soils become
nutrient rich a wide array of outcomes are possible from species dominance and the
deconstruction of species interconnectedness to the maintenance of biodiversity.

Keywords: ecological stoichiometry, Lake Fryxell Basin, McMurdo Dry Valleys, network community modeling,
nutrient colimitation, Solirubrobacteriaceae
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INTRODUCTION

Environmental conditions dramatically structure soil bacterial
communities; however, only a few environmental variables
such as pH, salinity, and C substrate quality and quantity
are known to drive community assemblages (Lozupone and
Knight, 2007; Fierer et al., 2009; Baldrian et al., 2012).
Borrowing from foundations in plant community ecology,
following light and water, nutrient additions dramatically alter
species abundance within communities often allowing certain
species to dominate and biodiversity to decline (Bedford et al.,
1999; Bobbink et al., 2010). For example, in a grassland, even
low continual additions of N reduced species richness in just
2 years and depressed the number of species for as long as
20 years (Clark and Tilman, 2008). Classically, soil bacterial
metabolism and growth is limited by water availability, then
the quality and quantity of C substrates, and finally nutrient
concentrations. But the role of major nutrients, such as N
and P, remains incomplete even though changes in nutrient
availability shape the responses of specific bacterial species
or species interactions within soil communities (Marschner
et al., 2003; Ramirez et al., 2010). Unlike plants, bacterial
responses to resource constraints are complicated by interactions
within consortia or communities where functionally disparate
taxa (e.g., decomposers, nitrifiers, and methanogens) potentially
dictate the form and availability of specific C substrates and
nutrients necessary for other bacteria to become metabolically
active and grow. In most soil communities such interactions
are further complicated because soil organic C substrates are
extremely numerous and diverse, containing both labile and
more recalcitrant sources structuring the availability of N and P
(Orwin et al., 2006; Hernandez and Hobbie, 2010). Furthermore,
the C, N, and P requirements of bacterial biomass differ
among species and ecosystems, and are not homeostatic through
time (Cleveland and Liptzin, 2007; Hartman and Richardson,
2013).

Ecological stoichiometry is a unifying body of theory
in ecology predicting relationships between the organismal
biochemistry of plants, invertebrates, and microorganisms
and the availability and recycling of nutrient elements in
the environment (Elser and Hamilton, 2007). Ecological
stoichiometry may also help identify the resource requirements
of bacterial taxa and the conditions allowing certain bacteria
to become metabolically active. Ecological stoichiometric theory
was developed in aquatic ecosystems, but is universally valid,
and over the last decades was also successfully applied to
terrestrial systems (Redfield, 1958; Reiners, 1986; Cleveland
and Liptzin, 2007; Austin and Vitousek, 2012). Soil (186:13:1)
and soil microbial (60:7:1) C:N:P stoichiometry, like Redfield
ratios for planktonic biomass (C:N:P = 106:16:1) (Redfield,
1958), are well-constrained across multiple biomes (Cleveland
and Liptzin, 2007) offering incredible utility in understanding
bacterial resource limitations and constraints on biogeochemical
processes (Tian et al., 2010; Xu et al., 2013). The C:N:P
stoichiometry of plant residues, soil organic matter, and bacterial
biomass influence litter decomposition rates (Aneja et al., 2006;
Zechmeister-Boltenstern et al., 2015), N and P mineralization

rates (Mooshammer et al., 2012), and C-use-efficiency of bacteria,
determining metabolic activity and trace gas flux (Keiblinger
et al., 2010). Community structure is intimately connected
to C:N:P ratios (Elser et al., 2000). Specifically, soil C:N:P
stoichiometry sheds light on the potential for N and P availability
to influence bacterial community structure. For example, higher
N:P ratios in afforested soils of the Loess Plateau in China
reflected P deficiencies among bacteria, leading to lower diversity
but a higher abundance of Proteobacteria, Acidobacteria, and
Nitrospirae (Ren et al., 2016). Further, a decrease in soil
C:P ratios caused Gram-positive bacterial biomass to increase
by 22% and the abundance of arbuscular mycorrhizal fungi
to increase by 46% in a pasture following slash-and-burn
agriculture in the South Ecuadorian Andes (Tischer et al.,
2015). Taken together, investigating soil C:N, C:P, and N:P
ratios are instrumental in identifying patterns of ecological
coherence among responding bacteria under varying resource
conditions.

Soil ecosystems of the McMurdo Dry Valleys, Eastern
Antarctica are a model system for investigating stoichiometric
controls over soil communities and ecosystem processes
(Barrett et al., 2006). The extreme environment limits
biota to cryptogrammic vegetation, a few taxa of metazoan
invertebrates, and microbial dominated food webs. Phylum-
level bacterial diversity in Antarctic soils is surprisingly
high considering the environmental extremes and dearth
of resources, i.e., organic matter and available nutrients
(Cary et al., 2010; Lee et al., 2011). However, these soils
host comparatively low diversity at the family or genus level
relative to other biomes (Fierer et al., 2012), attenuating
the nearly limitless possibilities of links between C:N:P
stoichiometry and communities potentially present in high
diversity ecosystems. Further, soil C:N:P ratios in most
systems are necessarily complicated by plant residues with
multiple different stoichiometric ratios that may mask
links between C sources and release rate of N and P (Elser
et al., 2000). Alternatively, due to the absence of vascular
plants, Antarctic Dry Valley soils have some of the lowest
soil organic matter concentrations on Earth (Burkins et al.,
2000; Jobbagy and Jackson, 2000) with much of the soil
organic matter being “legacy” C accumulated over thousands
of years by cryptoendolithic bacteria, paleolake deposition,
and minor inputs of contemporary algae and cyanobacteria
from lakes, intermittent streams and saturated zones (Burkins
et al., 2000). The concentrations of inorganic N and P are
relatively low with N entering the system via atmospheric
deposition (Michalski et al., 2005), endolithic and hypolithic
cyanobacterial N2 fixation over millions of years (Cowan
et al., 2014), and from dust, while P enters soils through
mineral weathering (Barrett et al., 2007; Heindel et al., 2017).
Both N and P concentrations vary among soils occurring on
glacial tills with distinct exposure age and mineralogy (Barrett
et al., 2007). Accompanying nutrient limitations, water is a
universal resource essential for polar bacteria. In the McMurdo
Dry Valleys, low precipitation inputs and sublimation and
ablation processes (Fountain et al., 1999) cause dehydration
stress and limit substrate diffusion to bacterial cells (Stark
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and Firestone, 1995). Water additions to Antarctic soils do
create higher bacterial growth rates, elevate soil respiration,
and decrease soil community diversity (Schwartz et al.,
2014; Buelow et al., 2016). Therefore, water, in addition to
nutrients, may have direct and indirect effects on community
composition.

In this study, we explored the effects of long-term, coupled
resource additions and water on bacterial species responses
and ecosystem processes in a cold desert of Antarctica. After
treating soils with six different resource additions including
combinations of water, C as mannitol, N as equal NH4

+

NO3
−, and P as Na3PO4 annually over 6 years in the

field, we evaluated shifts in bacterial community composition
metrics such as richness, alpha diversity and evenness, taxa co-
occurrence patterns, and soil respiration. Based on polar desert
resource conditions, our initial soil C:N:P ratio (mean = 167:8:1,
n = 8; more initial soil chemistry data is provided in the
first section of the “Materials and Methods”), and the modal
C:N:P ratio of soils (186:13:1, Cleveland and Liptzin, 2007), we
hypothesized that C, N, CN, and CP additions will alleviate
resource limitations and provide organic C and inorganic N
for a subset of the community to exploit, while P is not
limiting and adding more inorganic P will not alter community
composition.

MATERIALS AND METHODS

Study Site and Initial Soil Chemistry
Our study was conducted in a polar desert of the McMurdo Dry
Valleys (76◦30′ – 78◦00′S, 160◦00 – 165◦00′E) at the McMurdo
Long Term Ecological Research (LTER) site in Antarctica. The
site was located in the Lake Fryxell basin (77◦36.5′S, 163◦14.9′E)
of Taylor Valley, on Ross Sea drift soils (late-Quaternary)
(Bockheim et al., 2008).

Dominant soil microflora include multiple species of
algae from the division Chlorophyta and Heterokontophyta;
microfauna comprised of nematodes, tardigrades and rotifers;
and cyanobacteria, such species as, Leptolyngbya frigida and
Nostoc commune in aquatic and terrestrial habitats (Adams
et al., 2006). The basin experiences fewer than 50 days where
average temperatures exceed 0◦C within the summer months of
December, January, February when mean annual temperature
is −4.21◦C ± 0.80 SD (n = 24). Soils receive less than 10 cm
per yr−1 of effective mean annual precipitation falling as
snow (Doran et al., 2002). Soils are Typic Haploturbels with
shallow surface layer (≈0–10 cm depth), which experience
continual cryoturbation, and a perennial permafrost layer
(≈30–300 cm depth) (Bockheim and McLeod, 2008; Bockheim
et al., 2008). All soils are poorly developed silty-loams with
an average pH of 9.69 ± 0.12 SEM (n = 8) and an electrical
conductivity of 258± 115 µS cm−1 (n = 8). Initial soil chemistry
demonstrated that soils were generally extremely low in organic
C (organic C = 0.03% ± 0.003, total soil C = 0.13% ± 0.01,
n = 8) and possessed relatively high soil P (2.35 ± 0.18 µg
g−1 soil, n = 8) but low levels of soil N of (0.003% ± 0.0004,
n = 8).

Stoichiometry and Water Long-Term
Manipulations
To gain insights into the resource controls on microbial
community assembly, we conducted a 6-year field stoichiometry
experiment (austral summer field season 2006 – 2007 to 2011 –
2012) altering the stoichiometry of major nutrients (i.e., C, N,
and P) and water availability. The experiment was a randomized
block design with plots (1 m × 1 m) consisting of six treatments
and an un-amended control: water only (W); C as mannitol
and water (C); N as equal concentrations NH4

+ and NO3
−

with water (N); P as Na3PO4 and water (P); C, N, and water
(CN); C, P, with water (CP); and the untreated control (U). The
C additions, as mannitol, mirrored nutrient inputs from more
contemporary algae and cyanobacteria. The N and P additions
closely followed the Redfield ratio (106:16:1) to mimic new
biomass from photosynthetic organisms entering organic matter-
impoverished soils (Hecky et al., 1993). Annually, all nutrients
were delivered as aqueous solutions to bring the soils to field
capacity with concentrations of 15.3 g C m−2, 2.69 g N m−2

as NH4NO3, and 0.37 g P m−2 as Na3PO412H2O and water of
12.7 L H2O m−2. For more information on the treatments and
treatment application in the field see Ball et al. (2018). The present
study comprises an analysis of the Fryxell basin site only.

Soil C:N:P and Chemistry
To measure post-amendment changes in C:N:P stoichiometry we
calculated C:N:P ratios from total C and N, and extractable P, and
measured soil organic C and inorganic N. Soils were collected
from all treatments (5 nutrient additions with water, 1 water
addition, and a control × 8 replicates = 56) with a plastic scoop
to a soil depth of 10 cm (approximately 500 g), sieved (2 mm
sieve), and frozen until processing. Total C and N were measured
on a Elantech Flash EA 1200 (CE Elantech, NJ, United States).
Extractable soil P, as phosphate, was measured in 10 g soil with
0.5 M NaHCO3 (1:5 w/v) at pH 8.5, acidified with 3 mL of 6
N HCl, and analyzed on a Lachat Autoanalyzer (Barrett et al.,
2007). We measured dissolved organic C on a Shimadzu TOC-
5000A (Shimadzu Corporation, Columbia, MD, United States).
Inorganic N (µg N-NH4

+ g soil−1, µg N-NO3
− g soil−1) was

evaluated from 20 g of soil extracted with 2 M KCl extraction
(1:2.5 w/v), passed through a Whatman #1 filter, and measured on
an a Lachat Quikchem 8500 (Lachat Instruments, Loveland, CO,
United States). We tested for the effect of the additions on our
response variables and soil C:N:P ratios using one-way ANOVA
and Tukey’s HSD test to identify significant differences among
the treatments in R (R Development Core Team, 2013). For
stoichiometric analyses data were converted into molar ratios.

Bacterial Community Responses to
Changes in Soil C:N:P and Water
After maintaining the treatments for more than half a decade, we
characterized soil communities in treatment soils using barcoded
sequencing of the 16S rRNA gene. Soils were collected from
three randomly selected replicates in all treatments (5 nutrient
additions with water, 1 water addition, and a control × 3
replicates = 21) to a depth of 10 cm using sterile plastic scoops.
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All soils were transported from the field in an insulated chest,
sieved to 2 mm, and stepped-down to −20◦C over 24 h. Nucleic
acids were extracted from 1.5 g of soil using a PowerSoil DNA
Isolation Kit (Mo Bio Corporation, Carlsbad, CA, United States).
We PCR amplified the V4 region of the16S rRNA gene using
bacterial specific primer set 515F and 806R with unique 12-nt
error correcting Golay barcodes (Caporaso et al., 2010; Aanderud
et al., 2013). The thermal cycle conditions consisted of an
initial denaturing step at 94◦C for 3 min followed by 35 cycles
of denaturing at 94◦C for 45 s, annealing at 50◦C for 30 s,
and amplifying at 72◦C for 90 s. After purifying (Agencourt
AMPure XP PCR Purification Beckman Coulter Inc., Brea, CA,
United States) and pooling PCR amplicons at approximately
equimolar concentrations, samples were sequenced at the
Brigham Young University DNA Sequencing Center1 using a
454 Life Sciences genome sequencer FLX (Roche, Branford,
CT, United States). All sequences were trimmed and cleaned
using mothur [v. 1.31.2; All sequences were trimmed and
cleaned using mothur (v. 1.31.22; Schloss et al., 2009)]. After
removing barcodes and primers, we eliminated sequences that
were <250 bp in length or possessed homopolymers longer than
8 bp. We then denoised the sequences with AmpliconNoise
(Quince et al., 2011), removed chimeras using UCHIME (Edgar
et al., 2011), and eliminated chloroplast, mitochondrial, archaeal,
and eukaryotic 16S rRNA gene sequences based on reference
sequences from the Ribosomal Database Project (Cole et al.,
2009). We aligned the sequences against the SILVA database
(Pruesse et al., 2007) with the SEED aligner, created operational
taxonomic units (OTUs) based on uncorrected pairwise distances
at 97% sequence similarity, and determined the phylogenetic
identity of OTUs using the SILVA database.

To assess the effects of resources on soil bacterial communities,
we first visualized differences in community composition
using Principal Coordinates Analysis (PCoA) based on a
Bray–Curtis distance matrix with the ‘vegan’ package in R
(R Development Core Team, 2013). We then quantitated the
effects of the different resource treatments [i.e., W, C, single
nutrients N and P, and combined C and nutrients (CN
and CP)] on community compositions using permutational
multivariate analyses of variance (PERMANOVA) (Anderson,
2001) performed with the adonis function in the vegan package in
R (Oksanen et al., 2013). Second, we quantified and constructed
95% confidence intervals for estimated richness as the total
number of OTUs, alpha diversity as the inverse Shannon
index, and taxa evenness using Pielous’s evenness based on
1000 iterations of 900 random resampled seqeunces from each
replicate (Muscarella et al., 2014). Last, we calculated the
relative recovery of nine phyla and three subclasses to identify
differences in the distribution of major taxonomical groups
(recovery ≥ 1.0%) due to the resource additions. Taxonomic
trends of 24 families (recovery ≥ 1.0% in at least one replicate)
were visualized in a heat map with hierarchal clustering using
the heatmap function in the ‘gplot’ package in R (Warnes et al.,
2014).

1http://dnac.byu.edu/
2https://www.mothur.org/wiki/454_SOP

Bacterial Community Network Models
To assess changes within communities at the OTU taxonomical
level, we created network co-occurrence models for combinations
of resources based on maximal information coefficient (MIC)
analysis. We calculated all possible linear and non-linear
associations between OTUs using the mic function and the
‘minerva’ package in R (Filosi et al., 2017), which belongs to a
class of maximal information-based non-parametric exploration
statistics for identifying and classifying relationships (Reshef
et al., 2011). The nodes in the networks represented individual
OTUs at 97% identity, while edges corresponded to valid
or significant co-occurrence connections that occurred in at
least 75% of all samples and had a MIC that was both
>0.7 and statistically significant (P-value = 0.01) (Barberan
et al., 2012). This filtering facilitated the determination of the
OTUs interacting within the treatments and removed poorly
represented OTUs reducing network complexity (Barberan et al.,
2012). We described the network through a series of topological
parameters: mean path length, mean degree, mean clustering
coefficient, density, and modularity (Freedman et al., 2016).
Network graphs in the graphml format were generated using
‘igraph’ package in R (Csardi and Nepusz, 2006) and visualized
with the interactive platform Gephi (v. 0.8.2-beta) (Bastian
et al., 2009). To identify the taxonomy of bacteria within the
networks, we elevated nodes at the order taxonomical rank. We
calculated the node number as the total number of nodes within
each of the nineteen orders comprising the networks, and the
relative recovery of nodes as the summation of the mean relative
recoveries of the nodes within an a given order from P and CP or
U and W communities.

Soil Respiration
To investigate the links between microbial communities and
ecosystem processes, we measured soil respiration (µmoles
C-CO2 m−2 soil sec−1) in all resource treatments (5 nutrient
additions with water, 1 water addition, and a control × 8
replicates = 56). Within 1 week of resource additions, soil CO2
flux in the field was evaluated using a Li-COR 8100 (LI-COR
Biosciences, Lincoln, NE, United States) with a 10-cm diameter
PVC ring inserted 2 cm into the soil at least 1 h prior to
measurement (Ball et al., 2018).

RESULTS

N and P Additions Altered Soil C:N:P
Resource additions clearly altered soil C:N:P leading to increases
in N and P availability. Following multiple years of N additions,
C:N were lower and N:P were higher in N and CN than P
and CP soils (Table 1). The shifts in ratios were highlighted by
inorganic NH4

+ (one-way ANOVA, df = 6, F = 39.1, P < 0.001)
and NO3

− (one-way ANOVA, df = 6, F = 14.9, P < 0.001)
concentrations being at least forty-four- and nine-times higher,
respectively, in N and CN than all other soil treatment (Table 2).
Accompanying soil P additions, C:P were lower in P and CP
soils than all other treatments besides CN (Table 1). Similarly,
extractable P increased more than 53.0% in P and CP relative to
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TABLE 1 | Molar C:N:P ratios of soils following 6 years of six resource additions in
Fryxell lake basin of the Taylor Valleys in Antarctica.

C:N:P C:N C:P N:P

U 182:7:1 28.2 ± 2.69 ab 182 ± 29.7 ab 6.85 ± 1.01 bcd

W 247:8:1 31.6 ± 5.76 ab 247 ± 45.4 a 8.28 ± 0.768 bcd

C 218:8:1 30.0 ± 4.82 ab 218 ± 21.0 ab 8.43 ± 1.31 bc

N 223:16:1 14.4 ± 1.17 b 223 ± 30.8 a 15.5 ± 1.89 a

P 90:3:1 33.0 ± 49 a 90.3 ± 4.65 c 3.02 ± 0.400 d

CN 165:12:1 14.4 ± 1.68 b 165 ± 26.5 abc 11.9 ± 1.85 ab

CP 108:3:1 37.8 ± 6.00 a 108 ± 5.93 bc 3.47 ± 0.675 cd

Treatments abbreviations include: un-amended control (U); water only (W); C as
mannitol and water (C); N as equal concentrations NH4

+ and NO3
− with water (N);

P as Na3PO4 and water (P); C, N, and water (CN); C, P, with water (CP). Data are
mean (±SEM, n = 8) with different letters indicating differences among treatments
(P < 0.05) from ANOVA and Tukey’s HSD.

W, C, and N (one-way ANOVA, df = 6, F = 6.26, P < 0.001,
Table 2). Conversely, the additions of C had no apparent effect
on total soil C only slightly increasing SOC in the C compared
to P and W treatments (one-way ANOVA, df = 6, F = 3.80,
P = 0.004, Table 2). The C:N:P ratios for each treatment are listed
in Table 1.

CN Reduced Evenness and Diversity but
N Alone Enhanced Richness and
Diversity
Bacterial evenness and diversity was reduced following CN
additions, while diversity and richness was enhanced by N
additions (Figure 1). Specifically, the addition of CN dramatically
depressed taxa evenness by at least 20.1% relative to all other
treatments, and alpha diversity by at least 24.5% relative to the C,
N, and CP treatments. In contrast, N additions stimulated OTU
richness by 48.4 and 38.9% relative to bacterial communities in C
and P soils, respectively. Diversity also increased by more than
13% in N compared to C, P, and CN treatments. In general,
all resource additions reduced the variability surrounding
richness and diversity metrics. All community inferences were
based on the recovery of 138,458 quality sequences and 1,450
unique OTUs with samples possessing an average sequencing
coverage of 98.4% ± 0.21 (mean and SEM). All sequence
data were submitted to NCBI and are available as BioProject
PRJNA476992.

All Nutrient Additions Created Distinct
Communities, Especially CN
The CN treatment dramatically influenced bacterial
communities, most notably by the separation of communities
along axis one, which explained 31.6% of the variation among
communities (Figure 2). Further, the addition of any nutrient
(i.e., C, N, P, and CP) reduced the variability among communities
compared to the untreated control and water only addition along
axis 2, which explained 19.6% of the variation. PERMANOVA
results supported these interpretations, as communities were
distinct among treatments (F = 3.5, R2 = 0.60, P < 0.001, df = 6). TA
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FIGURE 1 | Only the addition of CN and N altered bacterial OTU richness and
(A), diversity (B), or evenness (C). Treatments include: carbon as mannitol (C),
nitrogen as equal concentrations NH4

+ and NO3
- (N), phosphorus (P), C and

N (CN), C and P (CP), water only (W), and an un-amended control (UN).
Values are means (n = 3) shown with accompanying 95% confidence intervals
based on 16S rDNA community libraries (97% similarity cut-off).

Family-Specific Responses to Nutrients
All resource additions, except water, promoted taxonomic shifts
in bacterial OTU abundance in 11 families across five phyla
(Figure 3). The most pronounced increase in relative recovery
occurred in the Micrococcaceae (Actinobacteria) in CN soils
where a single bacterium, an Arthrobacter species, was relatively
rare (0.06% ± 0.05) in untreated soils but constituted 47% ± 5.6
of the community in CN-amended soils. The only other bloom
occurred in the Trueperaceae (Deinococcus), where one OTU was
classified as intermediate (0.42%± 0.09) in untreated but became
abundant (9.6% ± 3.8) in CP soils. In general, Actinobacteria
were abundant in all soils and accounted for at least 36% of
the community composition in all treatments (Supplementary

FIGURE 2 | The addition of resources contributed to shifts in bacterial
composition with the most dramatic change occurring in CN soils. For
treatment abbreviations see Table 1. Treatments abbreviations include: C as
mannitol (C), N as NH4

+ and NO3
- (N), P as Na3PO4 (P), C and N (CN), C and

P (CP), water only (W), and an un-amended control (U). The multivariate
ordination was generated using principle coordinate analysis (PCoA) on a
sample × OTU matrix of 16S rDNA community libraries (97% similarity cut-off).

Figure S1), but not all Actinobacteria responded positively to CN.
For example, three Actinobacteria families, Solirubrobacteracea,
Solirubrobacterales unclassified, and Rubrobacteriaceae,
decreased from 2.1- to 4.9-fold in CN compared to all
other treatments (Figure 3). CN additions also stimulated
Xanthomonadaceae (2.7% ± 1.2, Gammaproteobacteria) and
Sphingobacteriaceae (1.8% ± 0.48, Bacteroidetes). With the
addition of N, the Nitrosomonadaceae (Betaproteobacteria)
increased in recovery 5.2-times allowing the N treatment to have
the highest recovery of Betaproteobacteria (3.1%± 0.17). Annual
N additions also enhanced the recovery of Rhodobacteraceae
(0.51% ± 0.16, Alphaproteobacteria) and Gemmatimonadaceae
(2.7% ± 0.27, Gemmatimonadetes) by at least 1.8-times relative
to all other treatments. Both CP and P additions enhanced the
recovery of Chitinophagaceae (Bacteroidetes) and Spartobacteria
unclassified (Verrucomicrobia) in particular. The recovery of
these families was at least 1.5-times higher in P and CP than all
other soils and caused the recovery of Bacteroidetes to increase
upward of 100% (P = 6.3% ± 2.2, CP = 6.8% 1.8) in both
treatments.

Deinococcus-Thermus were present in all soils
(Supplementary Figure S1), but the addition of CP, C, and P
stimulated the recovery of these taxa causing the Deinococcaceae
to range from 5.3 to 11% (Figure 3). The addition of C
alone promoted different families with Sphingomonadaceae
(Alphaproteobacteria) and the Geodermatophilaceae
(Actinobacteria) increasing upward of 3.0- and 39-times,
respectively, but combined these two taxa only accounted for less
than 4.1% of the community in C-amended soils.

Network Community Modeling
Nutrient additions disrupted interactions among community
assemblages. Due to the requirement of more than three samples
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FIGURE 3 | All resources, except water, promoted different taxonomical
shifts. Heat map showing the distribution of OTUs for fourteen families that
contributed ≥0.5% to the total recovery of communities. Treatment
abbreviations are described in Figure 1. Values are based on means with
hierarchal clustering of resource treatments (bottom) and family (left).

to create reliable community network models with MIC, we
only created community network models for two combined
treatments (U and W, and P and CP) that were relatively
similar (PERMANOVA: U and W, F = 5.8, R2 = 0.59, P = 0.1,
df = 1; PW and CPW, F = 1.2, R2 = 0.22, P = 0.5, df = 1).
After years of P and CP additions, multiple aspects of the
community broke down relative to the untreated and water
only soils (Figure 4 and Table 3). For example, the number of
significant nodes or taxa, and edges or connections between taxa
was 51 and 73% lower, respectively, in P and CP networks. The
mean degree (number of connections per node to other nodes)
declined twofold from U and W to P and CP networks, and
mean path length (number of nodes needed to link any one
node to any other in the network) decreased from 3.5 in the U

and W to 2.8 in P and CP models. Within the two networks,
specific orders were favored and the nodes were often major
contributors to the recovery of the community. For example,
the Trueperaceae represented 3 nodes in the combined P and
CP network and 7.7% relative recovery in the P and the CP
communities, but only 1 taxon in U and W network and 0.61%
of the recovery in U and W communities. Alternatively, in the
U and W network, Phycisphaerae (unclassified; 10 nodes, 2.1%
relative recovery), Intrasporangiaceae (2 nodes, 0.13% relative
recovery), and Xanthomonadaceae (2 nodes, 0.55% relative
recovery) were present but completely absent from the P and
CP network. The Spartobacteria (unclassified), Micrococcaceae,
and Chitinophagaceae had similar numbers of nodes in all
models, but contributed substantially more in abundance in
the P and CP communities, 14, 3.2, and 3.1%, respectively.
The Solirubrobacteriaceae and Solirubrobacterales (unclassified)
consistently contributed to both models with 14 and 10 nodes
in the P and CP, and the U and W networks, respectively, and
comprised no less than 20% of the relative recovery from either
community.

CN Elevated Soil Respiration
Only the CN resource addition elevated soil respiration 1 week
following the nutrient additions. As a result, we observed a
114–234% increase in soil respiration in CN soils compared
to all other treatments (one-way ANOVA, df = 6, F = 11.6,
P < 0.001, Figure 5). The soil treatments exhibited no differences
in temperature at the time of sampling (one-way ANOVA, df = 6,
F = 1.46, P = 0.24). The mean temperature of all treatments was
7.2◦C± 0.32 SD (n = 56).

DISCUSSION

Stoichiometric shifts of C:N:P in the coldest and driest
soils on Earth (Virginia and Wall, 1999) alleviated resource
limitations, created species-specific bacterial responses, and
altered ecosystem processes. Our long-term coupled resource

FIGURE 4 | Community interactions among bacterial species deteriorated with the addition of P and CP. The two network models are based on OTUs from two 16S
rDNA community libraries of Control and W, and P and CP treatments.
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TABLE 3 | Community network model characteristics for soil bacteria in P-amended and control soils.

Network topographical parameters U and W P and CP

Nodes, edges (#) 113, 1321 75, 433

Mean path length 2.8 3.5

Mean degree 23 11.5

Mean clustering coefficient 0.84 0.74

Density 0.21 0.16

Modularity 0.54 0.51

U and W P and CP

Network taxonomy (order) Node # Relative recovery Node # Relative recovery

of nodes (%) of nodes (%)

Acidobacteriaceae 10 14 7 13

Intrasporangiaceae 2 0.13 0 0

Micrococcaceae 1 0.06 1 3.2

Nocardioidaceae 1 0.10 0 0

Rubrobacteriaceae 4 1.0 3 0.83

Conexibacteraceae 1 0.40 1 0.16

Solirubrobacteriaceae 2 1.3 4 2.0

Solirubrobacterales Unclassified 8 22 10 18

Chitinophagaceae 5 0.32 4 3.1

Sphingobacteriaceae 0 0 1 0.90

Caldilineaceae 1 0.28 1 1.5

Trueperaceae 1 0.51 3 7.7

Gemmatimonadaceae 1 0.65 1 0.16

Phycisphaerae unclassified 10 2.1 0 0

Sphingomonadaceae 1 0.98 2 1.8

Alcaligenaceae 1 0.12 1 0.14

Oxalobacteraceae 1 0.18 1 0.50

Xanthomonadaceae 2 0.55 0 0

Spartobacteria unclassified 4 7.3 4 14

For treatment abbreviations see Table 1 and for an explanation of network topographical parameters see network community modeling in the results section. For network
taxonomy, node # is the total number of nodes or OTUs in a given order for a network. The relative recovery of nodes is the summation of mean relative recoveries of the
nodes within the order from P and CP or U and W communities.

additions dramatically altered soil C:N:P leading to increases
in inorganic N and P availability, but only a slight increase
in soil organic C content, which was presumably consumed
by bacteria. As hypothesized, C, N, CN, and CP additions
created unique communities, relative to untreated soils, with CN
and N having the most pronounced effect on bacterial species
responses. We found that the alleviation of a C and N co-
limitation facilitated the dominance of an Arthrobacter species
(family, Micrococcaceae) that ultimately elevated soil respiration,
and that shifts in C:N ratios may remove nutrient constraints
on bacteria enhancing species richness and diversity. Contrary
to our hypothesis, the addition of P, even to our relatively
P-rich soils (Aislabie et al., 2006; Barrett et al., 2007), helped
create unique communities for all single and coupled resource
additions.

Colimitation of CN Facilitates Species
Dominance and Enhanced Respiration
The colimitation of organic C, N, and/or P are common
in marine and freshwater systems where the abundance of

photoautotrophs to organoheterotrophs is often influenced by
two or more nutrients (Bouvy et al., 2004; Howarth and
Marino, 2006; Cherif and Loreau, 2007; Saito et al., 2008).
In soils, co-limitation exists but is harder to identify due
to the high levels of bacterial diversity and the wide variety
of resource substrates for species to exploit, from extremely
labile C substrates to recalcitrant soil organic matter. Over
the 6 years of the present study, as CN limitations were
eased, (e.g., C:N decreased and N:P increased in CN amended
soils), an Arthrobacter species (family = Micrococcaceae,
Actinobacteria) went from being rare (0.06% ± 0.05) to
dominant (47% ± 5.6). Arthrobacter species are common
psychrotrophs found in Adelie penguin guano (Zdanowski
et al., 2004) and Antarctic epilithic lichens (Selbmann et al.,
2010) seeming to capitalize on the localized nutrient-rich
penguin feces in the otherwise nutrient poor landscape.
Arthrobacter strains can respond quickly to changes in nutrient
conditions by breaking dormancy and growing within an
hour of the removal of starvation stress (Solyanikova et al.,
2017). Compared to temperate Arthrobacter species, Antarctic
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FIGURE 5 | Soil respiration dramatically increased following CN additions.
Values are means ± SEM (n = 8) with letters indicating differences (P < 0.05)
based on a one-way ANOVA and Tukey’s HSD test.

Arthrobacter possess lower metabolic versatility (Dsouza et al.,
2015) but similar genes to many psychrophilic/psychrotolerant
species (e.g., cold active hydrolytic enzymes; sigma factors;
signal transduction pathways; carotenoid biosynthesis pathway;
and genes induced by cold-shock, oxidative, and osmotic
stresses (Dsouza et al., 2015; Singh et al., 2016). Further,
our unclassified Arthrobacter OTU falls within a genus
whose members readily decompose almost any algal and
cyanobacterial bioproducts, from cyanotoxins (Lawton et al.,
2011) to cellobiose, the final derivative of cellulose utilization
(Schellenberger et al., 2011). Thus, the Arthrobacter we
recovered is likely a well-adapted psychrophile poised to exploit
common bacterial and algal derived C sources when N is
available.

The functional consequences of Arthrobacter dominance
were easily distinguishable. Often the functional consequences
of soil bacterial community change is exceptionally difficult
due to discern due to levels of functional redundancy (Yin
et al., 2000; Miki et al., 2014) and large fractions of bacterial
diversity being dormant or metabolically inactive at any
given time (Lennon and Jones, 2011). In contrast, only
in soils where Arthrobacter bacteria achieved dominance
did soil respiration dramatically increase (114–234%).
Our results are consistent with the findings of Hopkins
et al. (2006) who showed that the addition of glucose,
glycine, and ammonium stimulated the mineralization of
lacustrine detritus and soil organic matter across different
geomorphically defined landscapes in Garwood Valley,
Antarctica. Even though the link between our dominant
species and respiration is implied rather than explicit, dominant
or abundant bacteria often contribute proportionally to
universal soil processes such as respiration (Pedros-Alio,
2012). Thus, Arthrobacter most likely exploited mannitol
and ammonium or nitrate to a greater extent than other
species to become more metabolically active. Bacterial
competition for essential resources may loosely be classified
into two competition categories, scramblers and contesters

(Hibbing et al., 2010). Scramble competition or exploitation
competition involves rapid utilization of resources without
directly interacting with other bacteria, while contest
competition or interference competition involves direct
antagonistic interactions between competitors. While both
scramblers and contesters occur in most soils, the effects of
competition for resources on bacterial taxa are often only
implied (Zhou et al., 2002; Freilich et al., 2011) and potential
interactions among limiting nutrients are often neglected
(Fanin et al., 2015). In our CN-enriched soils, Arthrobacter
is most likely a scrambler, better suited to capitalize on
emerging resources. Its rise to dominance resulted in a
decline in bacterial evenness and diversity while allowing
for the persistence of rare taxa, as evidenced by similar
species richness levels exhibited among the different resource
treatments.

Inorganic N Opened New Bacterial
Niches for Rare Taxa
The removal of ammonium limitations opened new niches
for once rare taxa to exploit. With the immense elevation
of ammonium levels following N additions, bacterial richness
increased upward of 48% in comparison to soils that receive only
C or P additions. Higher levels of ammonium increased bacterial
richness directly and indirectly by potentially stimulating
nitrifying bacteria relying on ammonium and nitrite. We found
that ammonium additions enhanced the abundance of two nitrite
oxidizing Nitrospira species from the family Nitrosomonadaceae.
Antarctic Nitrospira species may also contain amoA sequences
(Magalhaes et al., 2014) and participate in complete nitrification
(Daims et al., 2015). Our findings are consistent with the
suggestion that the extreme abiotic severity of the McMurdo
Dry Valley soil habitat drives the presence of ammonia oxidizing
bacteria (AOB) like Nitrospira (Geyer et al., 2014; Magalhaes
et al., 2014). Only after the soils became considerably less
harsh with N additions were AOB found in soils. Presumably
the increase in nitrite triggered certain species to increase
in abundance. For example, six Gemmatimonadaceae species
with the ability to reduce nitrite to nitric oxide via the
NirK gene (clade II) (Decleyre et al., 2016) increased in
abundance at least 1.8-fold under N additions relative to all
other treatments. Also, four Rhodobacteraceae taxa with a
high affinity for ammonium, characterized by high transcript
abundance for ammonium transporters (Pfreundt et al., 2016),
increased in abundance as N limitations were lifted. Many of
these taxa responding to ammonium and possibly nitrite were
rare (Sogin et al., 2006) with an abundance in untreated soils
<0.1% of the total recovery (Aanderud et al., 2015). Thus,
the enhanced availability of reduced forms of N following
N-amendments stimulates microbial biodiversity in Antarctic
soils.

CP and P Deconstructed Species
Assemblages
Lower soil C:P following P additions disrupted community
co-occurrence patterns and facilitated new nutrient-related
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interactions among taxa. Even an increase in soil P, a nutrient
that was not predicted to be limiting based on the initial
soil C:N:P ratios, influenced species interactions. Excess
soil P disrupted potential interactions among community
assemblages, as evidenced by more than 50% of the network
(i.e., significant species and interactions) disappearing and
14 taxa from three families (i.e., Phycisphaerae unclassified,
Intrasporangiaceae, and Xanthomonadaceae) vanishing
from the co-occurrence network. However, as P limitations
were alleviated a more diffuse and less connected network
potentially centered on P availability emerged. For example,
two new Trueperaceae species (Deinococcus) were incorporated
into the model and the collective abundance of the three
Trueperaceae species was 13-times higher in P amended
soils. Members of the Trueperaceae family are remarkably
resistant to ionizing radiation and able to grow under
multiple extreme conditions, including alkaline, moderately
saline, and high temperature environments (Ivanova et al.,
2011). Deinococcus-Thermus taxa in general possess a
remarkable number of genes encoding for catabolic enzymes
including phosphatases (Daly et al., 2010), suggesting that
the access to P is potentially linked to radiation resistance
and/or helps boost the survival of Trueperaceae in extreme
soils. Additionally, multiple shared taxa between our two
networks [i.e., Spartobacteria unclassified (Verrucomicrobia),
Micrococcaceae (Actinobacteria), and Chitinophagaceae
(Bacteroidetes)] increased in abundance under P additions.
The abundance of taxa within these families may track the
availability of P in soils and water (Johnson et al., 2017;
Wang et al., 2017). Even with P additions communities
seemed to remain partially reliant on Solirubrobacteriaceae
taxa. Members of the Solirubrobacteriaceae family may
enhance the weathering of volcanic rocks, which are common
in soils occurring on Ross Sea Till (Cockell et al., 2013).
Despite P additions, Solirubrobacteriaceae taxa were integral
to all models constituting upward of 10% of species and
20% of the recovery suggesting that mineral weathering is
essential to enhance micronutrient availability under both
high and low nutrient conditions. As soils transition from
a nutrient-poor to a nutrient-rich state, the excess soil P
potentially disrupted interactions among bacterial taxa.
For example, the addition of water and organic matter
in McMurdo Dry Valley soils caused certain bacteria
(members of the and Actinobacteria, Proteobacteria, and
Firmicutes) to become active demonstrating a potential
taxonomical shift from species adapted to dry oligotrophic
to moist copiotrophic conditions (Buelow et al., 2016).
Thus, future climate-driven changes that ameliorate the
current stoichiometric imbalances of the dry valley soils
(Nielsen and Ball, 2014; Gooseff et al., 2017), may deconstruct
current bacterial communities and reorganizing them into
communities dominated by more copiotrophic taxa. Co-
occurrence networks do provide insights into potential
interactions among taxa within a community (Freilich et al.,
2011; Freedman and Zak, 2015), but to fully understand
interactions among bacteria a more direct approach is
needed.

Annual Water Additions Failed to Elicit
Bacterial Response
Water is necessary for imbalances in stoichiometric nutrient
ratios to influence communities; however, our one-time water
addition alone was not enough to create lasting effects on
bacteria community structure. Frequent water additions do
influence bacterial activity across Dry Valleys (Schwartz et al.,
2014; Buelow et al., 2016) where soil moisture is ephemeral
and extremely patchy. Surface hydrogeological features such
as water tracks in soils (Levy et al., 2014), lateral margins
of stream and lake margins (Zeglin et al., 2011), and
discontinuous patches of soils often form in the same location
due to wind sheltering and microtopography (Gooseff et al.,
2003) enhance bacterial metabolic activity and alter species
distributions.

CONCLUSION

Stoichiometric additions of C, N, and P reduced resource
limitations, created species-specific bacterial responses, and
in one case altered a fundamental ecosystem process. The
most dramatic effects of changes in ecosystem stoichiometry
occurring around C and N additions in our initially N limited
soils. C as mannitol and N as equal molar concentrations
ammonium and nitrate induced an almost twofold reduction
in C:N ratios; caused bacterial evenness and diversity to
decline; allowed one rare Micrococcaceae, an Arthrobacter
species, to dominate community abundance; and elevated
soil respiration by 136% compared to untreated soils. N
additions alone also reduced C:N ratios, and in contrast
to CN-additions, increased species richness and diversity
by at least 48 and 13%, respectively, compared to soils
receiving a single resource as C or P, and enhanced the
abundance of rare taxa dependent on N for metabolism and
growth. The addition of P to levels well below the C:P ratio
necessary for balanced microbial growth also influenced
soil microbial communities. Based on community co-
occurrence networks, lower C:P ratios in soils following P
and CP additions reduced the number of taxa interacting
with one another by 51% and the number of interactions
among taxa by 73% relative to untreated and watered
soils. Our results suggest that the alleviation of C and N
co-limitation facilitated the dominance of single species
ultimately altering ecosystem processes; the reduced
forms of inorganic N open multiple niches for bacteria
to exploit, and excess soil P disrupted interactions within
communities.
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