ИНДИВИДУАЛИЗИРОВАННАЯ ОЦЕНКА РИСКА ВНЕЗАПНОЙ СЕРДЕЧНОЙ СМЕРТИ У ПАЦИЕНТОВ С ДИЛАТАЦИОННОЙ КАРДИОМИОПАТИЕЙ

Вайханская Т.Г. 1 , Сивицкая Л. Н. 2 , Курушко Т.В. 1 , Даниленко Н.Г. 2 , Мельникова О.П. 1 , Фролов А.В. 1

Поиск эффективных методов стратификации риска для выявления пациентов с высоким риском жизнеопасных желудочковых тахиаритмий (ЖТА) и внезапной аритмической смерти является актуальной задачей практического здравоохранения и приоритетным научным направлением.

Цель. Целью исследования явилась разработка математической модели и алгоритма индивидуализированной оценки риска развития внезапной сердечной смерти (ВСС) у пациентов с дилатационной кардиомиопатией (ДКМП). Материал и методы. В исследование включили 165 пациентов с верифицированной ДКМП (средний возраст 49.2±11.5 лет: 135/81.8% мужчин: ФК NYHA 2,67±0,45; фракция выброса ЛЖ 26,7±10,1%; период наблюдения 46,7±12,5 месяцев). С помощью оригинальной компьютерной программы "Интекард 7" по данным 7-мин регистрации ЭКГ-12 оценивали маркеры электрической нестабильности миокарда — микровольтную альтернацию Т волны (мАТВ), турбулентность сердечного ритма (TCP), дисперсию интервалов QT и JT, ускорение и замедление сердечного ритма. В качестве первичных конечных точек для многофакторного анализа Кокса были приняты: устойчивая желудочковая тахикардия (ЖТ) или фибрилляция желудочков, шоковые разряды имплантированных устройств и документированная ВСС. Анализировали клинические, электрокардиографические, эхокардиографические данные и результаты молекулярно-генетического исследования гена ламина A/C (LMNA).

Результаты. В результате многофакторного регрессионного анализа выявлены 2 кумулятивных независимых предиктора (НВ 5,23; 95% ДИ 1,45-16,9; р=0,013) жизнеугрожающих ЖТА событий у пациентов с ДКМП: пароксизмы неустойчивой ЖТ (≥5 желудочковых комплексов с ЧСС ≥150 уд./мин) и изменения гена LMNA (миссенс мутации и полиморфизм 10 экзона rs4641). С помощью бинарного логит-регрессионного анализа независимых факторов риска (ЖЭС. нЖТ, мАТВ, TCP, JTd и GLS ЛЖ) построена модель бинарной регрессии (F=31,2; χ^2 =143,2; p=0,0000) и разработан алгоритм оценки риска ВСС, позволяющие с высокой прогностической значимостью (OR 470; чувствительность 80,8%, специфичность 99,1%) корректно классифицировать до 93,9% случаев ДКМП. Заключение. Предложенный алгоритм оценки риска ВСС является неинвазивной, индивидуализированной, доступной в выполнении и в интерпретации технологией, позволяющей стратифицировать пациентов с высоким риском жизнеопасных ЖТА с помощью стандартных клинико-инструментальных метолов исследований (ЭКГ, Эхо-КГ и ХМ, ЭКГ). Применение оригинальной модели риск-стратификации позволит оптимизировать тактику лечения пациентов с ДКМП и стратегию выбора потенциальных кандидатов для имплантации кардиовертер-дефибриллятора с целью первичной профилактики ВСС.

Российский кардиологический журнал 2016, 11 (139): 27–35 http://dx.doi.org/10.15829/1560-4071-2016-11-27-35

Ключевые слова: внезапная сердечная смерть, дилатационная кардиомиопатия, маркеры электрической нестабильности миокарда, мутации гена ламина A/C. риск-стратификация.

¹ГУ Республиканский научно-практический центр Кардиология, Минск; ²ГНУ Институт генетики и цитологии Национальной академии наук Беларуси, Минск, Беларусь.

Вайханская Т. Г.* — к.м.н., в.н.с. лаборатории медицинских информационных технологий, Сивицкая Л. Н. — к.б.н., с.н.с. лаборатории нехромосомной наследственности, Курушко Т. В. — врач отделения функциональной диагностики, Даниленко Н. Г. — к.б.н., в.н.с. лаборатории нехромосомной наследственности, Мельникова О. П. — с.н.с. лаборатории медицинских информационных технологий, Фролов А. В. — профессор, д.б.н., к.тех.н., зав. лабораторией медицинских информационных технологий.

*Автор, ответственный за переписку (Corresponding author): tat_vaikh@mail.ru

ВСС — внезапная сердечная смерть, ДКМП — дилатационная кардиомиопатия, DC/AC — торможение/ускорение сердечного ритма, QTd — дисперсия интервала QT, JTd — дисперсия интервала JT, GLS — глобальная продольная деформация, ЖТ — желудочковая тахикардия, ЖТА — желудочковые тахиаритмии, ЖЭС — желудочковая экстрасистолия, КВД — кардиовертер-дефибриллятор, ЛЖ — левый желудочко мАТВ — микровольтная альтернация Т волны, нЖТ — неустойчивая желудочковая тахикардия, РКИ — рандомизированные клинические исследования, уЖТ — устойчивая желудочковая тахикардия, TCP — турбулентность сердечного ритма, ТО — начало турбулентности (Turbulence Onset) , TS — наклон турбулентности (Turbulence Slope), ФВЛЖ — фракция выброса левого желудочка, ХМЭКГ — холтеровское мониторирование ЭКГ, ЧСС — частота сердечных сокращений, ЭКГ — электрокардиография, Эхо-КГ — эхокардиография.

Рукопись получена 14.09.2016 Рецензия получена 28.09.2016 Принята к публикации 05.10.2016

AN INDIVIDUALIZED RISK ASSESSMENT OF SUDDEN CARDIAC DEATH IN DILATION CARDIOMYOPATHY PATIENTS

Vaykhanskaya T. G. ¹, Sivitskaya L. N. ², Kurushko T. V. ¹, Danilenko N. G. ², Melnikova O. P. ¹, Frolov A. V. ¹

Search for effective methods of risk stratification in patients with higher risk of life-threatening ventricular tachyarrhythmias (VTA) and sudden cardiac death is important task for applied healthcare and a priority scientific field.

Aim. To invent a mathematic model and algorithm of individualized risk assessment for sudden cardiac death (SCD) in dilation cardiomyopathy patients (DCMP).

Material and methods. Totally, 165 patients included, with verified DCMP (mean age 49,2±11,5 y; 135/81,8% males; NYHA class 2,67±0,45; LV ejection fraction 26,7±10,1%; follow-up 46,7±12,5 months). With an original software "Intecard 7", with the data of 7-minute ECG-12 registration, we evaluated markers of electrical instability of myocardium — microvoltage alternans of T-waves (mATW), turbulence of cardiac rhythm (TCR), intervals QT and JT dispersion, acceleration and deceleration of cardiac rhythm. As primary endpoints for multifactorial Cox-analysis we used sustained ventricular tachicardia (VT) or ventricular fibrillation, shocks of implanted devices and documented SCD. We analyzed clinical, electrocardiographic, echocardiographic data and results of molecular-genetic study of lamin A/C gene (*LMNA*).

Results. As result of multifactor regression analysis we found 2 cumulative independent predictors (HR 5,23; 95% CI 1,45-16,9; p=0,013) of life-threatening VTA events in DCMP patients: paroxysms of non-sustained VT (\geq 5 ventricular complexes with HR \geq 150 bpm) and changes in *LMNA* gene (missense mutations and polymorhpism of 10 exon of rs4641). With binary logit-regression analysis of independent risk factors (VES, sVT, mATW, TCR, JTd and GLS LV) we built-up a model of binary regression (F=31,2; χ^2 =143,2; p=0,0000) and developed an algorithm of SCD risk evaluation that make it to classify with high prediction power up to 93,9%, cases of DCMP (OR 470; sensitivity 80,8%, specificity 99.1%)

Conclusion. The invented algorithm of SCD risk is non-ivasive, individualized, easily applicable and interpretable technology that makes it to stratify patients with higher risk of life-threatening VTA with standard clinical and instrumental methods of investigation (ECG, EchoCG, Holter ECG). Implementation of the oroginal risk-stratification model makes it to optimize tactics of DCMP patients treatment and

strategy of selection of potential candidates for cardioverter-defibrillator implanting for primary SCD prevention.

Key words: sudden cardiac death, dilation cardiomyopathy, markers of electrical instability of myocardium, lamin A/C genes mutation, risk stratification.

Russ J Cardiol 2016, 11 (139): 27-35

http://dx.doi.org/10.15829/1560-4071-2016-11-27-35

¹SI Republic Scientific-Practical Center of Cardiology, Minsk; ²SSI Institute of Genetics and Cytology of National Science Academy of Belarus, Minsk, Belarus.

Актуальность проблемы внезапной сердечной смерти (ВСС) обусловлена тем, что несмотря на прогрессивное развитие новых технологий диагностики и лечения сердечно-сосудистых заболеваний, отмечается тенденция роста ВСС в структуре общей смертности. Максимальная доля ВСС регистрируется у лиц молодого возраста (35-44 лет), составляющих социально активный слой населения [1].

Известно, что имплантация кардиовертера-дефибриллятора (КВД) в настоящее время является достоверно эффективным методом профилактики ВСС у пациентов с высоким риском жизнеопасных тахиаритмий. Рандомизированные клинические исследования (РКИ) продемонстрировали значимую эффективность имплантации КВД у пациентов с устойчивой желудочковой тахикардией (уЖТ) и фибрилляцией желудочков (ФЖ) [2-5]. Так, в результате анализа одного из масштабных исследований MADIT-II (Multicenter Automatic Defibrillator Implantation Trial-II), было установлено снижение смертности от всех причин на 31% у пациентов с имплантированными КВД по сравнению с контрольной группой. Показатели были так существенны, что исследование остановили уже через 20 мес. наблюдения за выжившей группой пациентов с имплантированными КВД. Позже, в результате субанализа данных MADIT-II, было установлено, что для сохранения одной жизни понадобилось имплантировать 15 КВД, а с учетом позитивности теста микровольтной альтернации Т волны (мАТВ) — 7 КВД [5]. Таким образом, при решении важной проблемы профилактики ВСС возникли другие, не менее важные концептуальные вопросы: 1) можно ли выявить потенциально аритмогенный статус пациента до первого эпизода устойчивой желудочковой тахиаритмии (ЖТА); 2) для какой группы пациентов, потенциальных кандидатов, будет наиболее эффективным применение имплантируемого КВД; 3) как оптимизировать стратификацию риска ВСС? Традиционные показания (высокий класс сердечной недостаточности и снижение фракции выброса левого желудочка <40-35%) для первичной профилактики ВСС предполагают проведение превентивной имплантации КВД у значительного числа пациентов с дилатационной кардиомиопатией (ДКМП). С практической точки зрения, как продемонстрировали исследования MADIT-II и SCD-HeFT, этот подход требует больших экономических затрат, так как у 70-90% пациентов с ДКМП при обследовании (в т.ч. и на фоне оптимальной медикаментозной терапии) определяется ФВЛЖ <35-40% и ФК ІІ-ІІІ по NYHA; однако для большинства из них необходимость имплантации КВД является сомнительной [3, 6].

Поэтому поиск новых неинвазивных маркеров жизнеопасных тахиаритмий у данной категории пациентов является актуальной и важной задачей. Генетические, электрокардиографические и другие (лучевые методы, тканевое допплеровское картирование, магнитно-резонансная томография с отсроченным контрастированием) предикторы опасных для жизни ЖТА активно изучаются в большинстве стран мира. Но из-за отсутствия общепринятых четких критериев "аритмогенности" у пациентов с ДКМП (в особенности при отсутствии семейного анамнеза внезапной смерти и признаков сердечной недостаточности или значимой систолической дисфункции ЛЖ), у клиницистов возникают немалые трудности при отборе кандидатов для первичной профилактики ВСС.

Уже более двух десятилетий выраженная дисфункция ЛЖ используется как критерий и основной прогностический маркер ВСС во множестве проспективных РКИ. Достаточно хорошо изучены и электрокардиографические (ЭКГ) предикторы ВСС, отражающие электрическую нестабильность миокарда, дисфункцию автономной вегетативной регуляции и изменение реполяризации. Среди них микровольтная альтернация T волны, дисперсия интервалов QT/JT, турбулентность сердечного ритма, фрагментированный комплекс QRS, индексы ускорения и замедления сердечного ритма (AC/DC). Эти показатели ассоциируются с каскадом пусковых аритмогенных механизмов от гетерогенности электрических процессов деполяризации и реполяризации миокарда до автономной вегетативной дисфункции и нарушения барорецепторной чувствительности.

Нередко диагностируется клиницистами и ламиновый фенотип ДКМП, обусловленный мутациями в гене ламина А/С (*LMNA*), который ассоциируется с ранними жизнеопасными аритмиями и очень высоким риском ВСС даже при умеренной или незначительной дилатации желудочков при отсутствии тяжелой систолической дисфункции [7]. Так, в период трёхлетнего наблюдения у носителей ламиновых мутаций, пациентов с брадиаритмиями, несмотря на наличие пейсмекеров, выявлено 46% случаев ВСС. В исследовании Pasotti M, et al. больше чем у половины пациентов с ламин-ассоциированной формой ДКМП наблюдались жизнеопасные ЖТА (55,1%),

в 24,5% случаев были имплантированы КВД, а у 32,7% носителей мутаций была документирована ВСС [8].

Поэтому исследования прогностических факторов, позволяющих оптимально идентифицировать не только пациентов с высоким риском фатальных аритмий, но и пациентов с ДКМП, которые не получат пользу от имплантации КВД, являются сегодня актуальными и востребованными.

Целью настоящего исследования явилась разработка метода индивидуализированной оценки риска ВСС у пациентов с ДКМП на основе комбинированного применения неинвазивных предикторов электрической нестабильности миокарда (микровольтная альтернация Т волны, турбулентность сердечного ритма, клинически значимая желудочковая эктопия) и генетических маркеров потенциальной аритмогенности (молекулярно-генетическое исследование гена LMNA).

Материал и методы

В исследование включили 165 пациентов с верифицированной ДКМП (семейная форма — 20; идиопатическая форма — 145; средний возраст 49.2 ± 11.5 лет; 135/81,8% мужчин; ФК NYHA 2,67±0,45; фракция выброса ЛЖ $26,7\pm10,1\%$). Всем пациентам проведен комплекс клинических исследований, включающих: физикальное обследование с детальным изучением семейного анамнеза и построением генеалогических древ; нейромышечное исследование; определение уровней сывороточной креатинфосфокиназы (КФК); эхокардиографическое исследование (ЭхоКГ); 24 часовое холтеровское мониторирование ЭКГ (ХМ-ЭКГ); 6-минутный тест ходьбы (6-МТХ); кардиореспираторный тест (Спиро-ВЭП); 7 мин регистрацию ЭКГ в 12-и отведениях (Интекард-7, Беларусь) — при физической нагрузке (25 Ватт) 2 мин и 5 мин отдыха с идентификацией турбулентности сердечного ритма (ТСР), дисперсии интервала QT (QTd), дисперсии интервала JT (JTd), микровольтной альтернации Т-волны (мАТВ), индексов замедления (DC — deceleration capacity) и ускорения (AC — acceleration capacity) сердечного ритма. Интактность коронарных артерий была верифицирована с помощью рентгенконтрастной селективной коронароангиографии у 80% пациентов старше 35 лет. Всем пациентам (с предварительным письменным информированным согласием) проведено молекулярно-генетическое исследование; поиск мутаций в гене *LMNA* осуществляли с использованием метода SSCP и последующего секвенирования 1, 3, 5, 8-10 экзонов и интронных регионов для определения типа мутаций. Исследование одобрено местным этическим комитетом.

Клинико-инструментальная и морфо-функциональная характеристика пациентов, включенных в исследование, представлены в таблице 1.

Таблица 1
Клинико-инструментальная характеристика включенных
в исследование 165 пациентов с ДКМП

Клинико-инструментальные параметры	M±sd, n (%)		
Возраст, годы	49,2±11,5		
ФК по NYHA, класс	2,67±0,45		
Пол (муж), n (%)	135 (81,8%)		
Тест 6-минутной ходьбы, м	397±121		
Фибрилляция предсердий, n (%)	54 (32,7%)		
Атриовентрикулярная блокада 1-3 ст., n (%)	29 (17,6%)		
Полная блокада левой ножки пучка Гиса, n (%)	70 (42,4%)		
Имплантированные устройства (ЭКС, СРТ, КВД), n (%)	51 (30,9%)		
Желудочковая экстрасистолия (ЖЭС) в сутки, количество ЖЭС/сут.	1597±3013		
Максимальная длительность QRS комплекса в отв. V1-V3, мс	136±25,9		
Желудочковые куплеты, триплеты и ЖТ (уЖТ и нЖТ)	95 (57,6%)		
по данным ХМ-ЭКГ и телеметрии устройств, n (%)			
Длительность интервала PR, мс	218±48,2		
Дисперсия интервала QT, мс	75,3±11,2		
Дисперсия интервала JT, мс	70,3±31,3		
Индекс замедления сердечного ритма (deceleration capacity, DC)	12,8±11,5		
Индекс ускорения сердечного ритма (acceleration capacity, AC)	11,1±10,3		
Турбулентность сердечного ритма ("начало" — ТО), %	17,4±25,2		
Турбулентность сердечного ритма ("наклон" — TS), мс/RR	35,1±29,0		
Микровольтная альтернация Т волны (мАТВ), ср. знач., мкВ	52,1±41,4		
Микровольтная альтернация Т волны (мАТВ), макс. знач., мкВ	78,3±69,5		
Патологический тест альтернации Т волны (мАТВ ≥45 мкВ), %	27,9±25,1		
Глобальная продольная деформация ЛЖ ср.зн. (LVGLS mean), %	-14,1±3,41		
Фракция выброса ЛЖ в В-режиме, %	26,7±10,1		
Конечно-систолический объем ЛЖ, мл	201±79,3		
Конечно-диастолический объем ЛЖ, мл	270±87,8		
Конечно-диастолический размер ЛЖ, мм	72,7±9,87		
Глобальная продольная деформация ПЖ ср.зн. (RVGLS mean), $\%$	-12,7±3,44		
Фракция выброса ПЖ в В-режиме, %	43,6± 9,18		
Давление в легочной артерии среднее (ДЛАср), мм рт.ст.	36,4±11,2		
Кардиореспираторный тест (пик VO2), мл.кг.мин.	15,8±5,83		
Уровень сывороточной креатинфосфокиназы (КФК), МЕ/мл	137±185		
Аномалии гена <i>LMNA</i> (SNPs и миссенс мутации), количество нуклеотидных замен/пациентов, %	81/45 (27,3%)		

Период наблюдения составил 46,7 \pm 12,5 месяцев.

Анализ результатов исследования проводили с помощью биостатистических методов с использованием компьютерных программ Statistica для Windows (версия 8.0) и SPSS для Windows (версия 20.0) в соответствии с правилами вариационной статистики для парных и непарных величин, однофакторного и многофакторного регрессионного анализа, непараметрических методов определения доверительных интерва-

Таблица 2 Нуклеотидные замены, идентифицированные в гене *LMNA* у пациентов с ДКМП

Полиморфный локус	Нуклеотидная замена с указанием кодона	Локализация в гене	Замена аминокислотного остатка в белке ламина A/C	Число носителей (хромосом)
rs397517894	c.150 C>T	Экзон 1	Arg50Arg	1 (1)
rs267607571	c.569G>C	Экзон 3	Arg190Pro*	1 (1)*
rs12117552	c.612G>A	Экзон 3	Leu204Leu	2 (2)
rs11264442	c.639+56G>T	Интрон между экзонами 3 и 4	-	5 (5)
rs11264443	c.639+73C>T	Интрон между экзонами 3 и 4	-	5 (5)
rs538089	c.861 T>C	Экзон 5	Ala287Ala	16 (18)
rs553016	c.1489-41C>T	Интрон между экзонами 8 и 9	-	16 (18)
rs267607557	c.1558T>C	Экзон 9	Thp520Arg	2 (2)
rs57629361	c.1583C>G	Экзон 9	Thr528Arg	2 (2)
rs4641	c.1698C>T	Экзон 10	His566His**	25 (27)**

Примечание: * — новая мутация, ** — гетерозиготное носительство замены с.1698С>Т выявлено у 25 пациентов, у 2 — гомозиготное носительство.

лов, ROC анализа (построение характеристических кривых с использованием дважды отрицательной экспоненциальной модели распределения совокупностей), линейной и нелинейной корреляции.

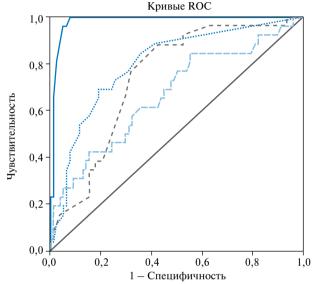
Количественные параметры представлены в виде среднего арифметического значения (M) ± среднеквадратичное отклонение среднего (sd). Для проверки статистических гипотез о виде распределения был применен критерий Shapiro-Wilk's W. Для анализа зависимости количественных признаков выборочных данных из совокупностей с нормальным распределением применяли ранговый коэффициент корреляции Спирмена (г). Статистически значимыми считали различия данных и корреляцию между данными при р<0,05, что соответствует критериям, принятым в медико-биологических исследованиях. При выполнении основной задачи сравнения двух независимых групп по одному качественному признаку были использованы методы непараметрической статистики (точный критерий Фишера, классический критерий χ^2 по Пирсону). При сравнении относительных частот в двух группах применяли процедуру "различие между двумя пропорциями". Сравнения двух групп из совокупностей с нормальным распределением проводили с помощью t-критерия Стьюдента для двух зависимых или двух независимых выборок. Для анализа выборочных данных из совокупностей, отличающихся от нормального распределения, использовали непараметрические методы (критерий Манна-Уитни). С помощью однофакторного анализа выделены признаки, имеющие наибольшее влияние на прогноз развития неблагоприятного события. Выявленные признаки по критерию значимости р<0,05 далее для определения независимых прогностических предикторов неблагоприятных событий (первичные конечные точки) анализировались с помощью однофакторного и многофакторного анализа в регрессионной модели Кокса. Для построения математической модели стратификации риска развития ВСС применили анализ бинарной логистической регрессии. Для оценки качества прогностической модели стратификации риска использовали следующие операционные характеристики: чувствительность, специфичность, отношение несогласия, анализ регрессионных остатков.

Результаты

В период 46.7 ± 12.5 месяцев динамического наблюдения эпизоды ЖТА (неустойчивая и/или устойчивая желудочковая тахикардия (нЖТ/уЖТ); желудочковая экстрасистолия (ЖЭС) ≥1500/24 ч; желудочковые куплеты ≥50/сут. выявлены у 95 (57,6%) пациентов. Пароксизмы устойчивой ЖТ, в т.ч. с синкопе и успешной легочно-сердечной реанимацией (ЛСР), зарегистрированы у 20 (12,1%) пациентов; в 8 (4,84%) случаев документирована ВСС. Ортотопическая трансплантация сердца (ОТС) выполнена 32 (19,4%) пациентам с резистентностью СН к медикаментозной терапии. У 45 (27,3%) пациентов в гене LMNA выявлены нуклеотидные замены (SNPs и миссенс-мутации, n=81), представленные в таблице 2. В том числе 16 (9,69%) носителей имели множественные изменения в гене LMNA (две и более нуклеотидные замены). У 5 пациентов (3 пробанда, двое родственников), наряду с ДКМП, выявлены скелетномышечные расстройства различной выраженности — от субклинической формы до тяжелой опорно-двигательной дисфункции (конечностно-поясная мышечная дистрофия Эрба-Рота и мышечная дистрофия Эмери-Дрейфуса).

В результате проведенного корреляционного анализа выявлены значимые положительные корреляции между ламин-позитивным генотипом и клиническими фенотипическими признаками ДКМП: дефекты LMNA (миссенс-мутации 1, 3, 5 и 9 экзонов) коррелировали с положительным тестом мАТВ (коэффициент корреляции Спирмена r=0,58; p=0,005), повышенным уровнем КФК (r=0,63;

Таблица 3


Результаты ROC анализа фенотипических признаков ламин-позитивной ДКМП

Показатели	Площадь под кривой	Пороговое значение	Значимость	Асимптотический 95% доверительный интервал		
(фенотипические предикторы)	(AUC)	предиктора	(p)	Нижняя граница	Верхняя граница	
Интервал PR, мс	0,987	≥220 мс	0,0001	0,973	0,999	
Патологическая (мАТВ ≥45 мкВ), %	0,775	≥25%	0,0001	0,701	0,848	
Ширина комплекса QRS, мс	0,773	≥122 мс	0,0001	0,689	0,857	
Уровень КФК, МЕ/мл	0,671	≥118 МЕ/мл	0,009	0,548	0,793	
Продольная деформация ЛЖ (GLS), %	-0,645	-	-0,092	-0,457	-0,803	

р<0,001) и синдромом Фредерика (АВ-блокада 3 ст., фибрилляция предсердий) — r=0.59; p<0,004. ЖТА (устойчивые и нЖТ) с r=0.52 (p<0.005) коррелировали с патологической ТСР (начало турбулентности, "turbulence onset — TO") и положительным тестом мАТВ (r=0.57; p<0.005). Положительная корреляция выявлена также между гипертрабекулярным строением ЛЖ и устойчивыми пароксизмами ЖТ (r=0,52; р<0,001), а также с изменениями в 10 экзоне гена ламина — нуклеотидными заменами с.1698С >Т (rs4641C/T: r=0,55; p<0,001). Различия по частоте выявления АВ-блокады (1-3 ст.), пароксизмальной ЖТ, гипертрабекулярного строения миокарда и скелетно-мышечных нарушений в группе *LMNA*-позитивных (n=45) и в группе ламин-негативных пациентов (n=120) были статистически достоверны по корректированному критерию χ^2 (p<0,013) и по точному одностороннему методу Фишера (p<0,017).

Для определения независимых клинических предикторов ламин-позитивной ДКМП проведен многофакторный ROC анализ количественных фенотипических признаков с построением ROC (receiveroperating characteristic curve) кривых. Результаты оценки площади под ROC кривыми (AUC — агеа under curve), с использованием дважды отрицательной экспоненциальной модели построения, представлены в таблице 3, а характеристические ROC кривые изображены на рисунке 1.

ЭКГ параметры (удлинение интервала PR: AUC 0.987,95% ДИ 0.973-0.999, p=0.0001, чувствительность 95%, специфичность 95%; процент патологического теста мАТВ: AUC 0,775, 95% ДИ 0,701-0,848, p=0,0001, чувствительность 70%, специфичность 80%; ширина комплекса QRS: AUC 0,773, 95% ДИ 0,689-0,857, р=0,0001, чувствительность 84%, специфичность 70%) и уровень сывороточной КФК (AUC 0,671, 95% ДИ 0,548-0,793, p=0,009; чувствительность 65%, специфичность 70%) продемонстрировали высокую информативность и значимость в прогностической оценке *LMNA*-позитивного фенотипа ДКМП (рис. 1). Эхо-КГ показатели, отражающие глобальную систолическую и контрактильную функции желудочков, не подтвердили прогностическую значимость (р>0,092) в качестве потенциальных предикторов ламин-позитивного

Источники кривых:

- Процент патологической мАТВ
- Интервал PR (AV блокада)
- - Ширина QRS комплекса
- -- Уровень сывороточной КФК
- Диагональная опорная линия (диагональные сегменты формируются совпадениями)

Рис. 1. Характеристические ROC кривые.

фенотипа ДКМП (глобальная продольная деформация миокарда ЛЖ — GLS: AUC 0,645, 95% ДИ 0,548-0,793, p=0,092; фракция выброса ЛЖ: AUC 0,473, p=0,75; фракция выброса правого желудочка (ПЖ): AUC 0,587, p=0,091).

Таким образом, нарушение АВ проводимости (удлинение PR интервала с пороговым значением PR ≥220 мс) как специфический предиктор ламин-позитивного фенотипа ДКМП, продемонстрировал самую высокую прогностическую значимость и информативность (AUC 0,987; 95% ДИ 0,973-0,999; p<0,0001; чувствительность 95%; специфичность 95%).

Для регрессионного анализа Кокса в качестве первичных конечных точек были приняты следующие аритмические события: внезапная сердечная смерть, устойчивые пароксизмы ЖТ/ФЖ (по данным ХМ-ЭКГ и телеметрии имплантированных устройств)

Таблица 4 Результаты анализа первичных конечных точек в регрессионной Кокс-модели

Параметры		Однофакторный анализ Кокса			Многофакторный анализ Кокса		
	HR	95% ДИ	р	HR	95% ДИ	p	
Неустойчивые ЖТ (≥5 комплексов с ЧСС ≥150 уд./мин)	5,88	2,82-13,9	0,001	3,24	1,29-9,25	0,007	
Патологический тест мАТВ (25% мАТВ ≥45 мкВ)	2,76	1,26-6,08	0,011	1,79	1,06-4,89	0,011	
ТСР, показатель ТО ≥0, %	2,67	1,19-5,16	0,017	1,13	0,85-1,61	0,051	
Продольная деформация ЛЖ (GLS ≥-6,5%)	2,43	1,21-5,02	0,020	1,32	1,01-3,03	0,045	
≥1500 ЖЭC/24 ч XM	1,91	1,10-3,98	0,032	1,93	1,03-3,12	0,045	
Мутации гена <i>LMNA</i> , миссенс	1,99	1,05-3,13	0,029	2,01	1,02-4,32	0,032	
Дисперсия JT (JTd ≥70 мс)	2,99	1,57-5,73	0,018	1,79	1,25-3,57	0,033	
Неустойчивые ЖТ (<5 компл. с ЧСС <150 уд./мин)	2,11	1,00-4,45	0,047	2,28	0,99-3,68	0,051	
Ширина QRS >122 мс в одном из грудных отведений V1-V3	1,73	0,94-3,96	0,046	1,54	0,74-3,01	0,053	
Замедление ритма, DC <4,5 мс	1,63	0,84-2,31	0,051	-	-	-	
Лисперсия ОТ (QTd >70 мс)	0.51	0.70-3.78	0.502	_		_	

Таблица 5

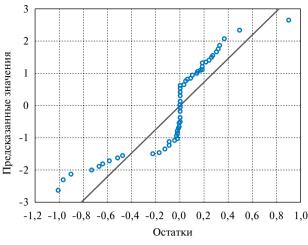
Оценка модели бинарной логистической регрессии

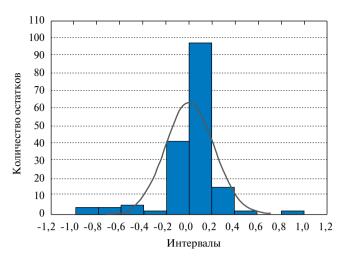
Параметры	Константа (b_o)	GLS ЛЖ ≥-6,5% (<i>b</i> ₁)	ЖЭС >1500/сут. (b ₂)	нЖТ* (<i>b₃</i>)	JTd ≥70 мс (<i>b</i> ₄)	TCP** (b ₅)	мАТВ*** (<i>b</i> ₆)
Оценка (коэффициенты $b_{_0}$ - $b_{_6}$)	7,25	-0,38	-0,76	-4,35	-1,46	-4,28	-5,03
Отношение шансов (ед. изм. χ^2)	1414,5	0,68	0,47	0,01	0,23	0,01	0,01

Примечание: * — нЖТ при условии ≥ 5 комплексов в ЖТ с ЧСС ≥150 уд./мин, ** — ТО ≥0% или TS <2,5 мс/RR, *** — ≥25% патологического теста мАТВ >45 мкВ.

и эпизоды терапии ЖТА устройствами (СРТ-Д, КВД) в виде шокового разряда. Регрессионная модель Кокса с предположением пропорциональности рисков была верифицирована с помощью теста Grambsch-Therneau [9]. В результате однофакторного анализа Кокса выявлены прогностические признаки, имеющие наибольшее влияние на риск развития анализируемых конечных точек (ВСС/уЖТ/ФЖ): пароксизмальная неустойчивая быстрая ЖТ (≥5 комплексов с ЧСС ≥150 уд./мин; р=0,001), позитивный тест мАТВ (25% патологического теста мАТВ ≥45 мкВ; p=0.011), показатель TO-TCP (TO $\ge 0\%$; p=0.017), параметр глобальной продольной деформации миокарда ЛЖ (GLS \geq -6,5%; p=0,02), патологическое количество желудочковой эктопии по данным 24 ч XM-ЭКГ (≥ 1500 ЖЭС/сут.; p=0,032), дисперсия интервала JT(JTd ≥70 мс; p=0,018), миссенс мутации гена *LMNA* (p=0,029). Параметры с прогностической значимостью р≤0,047 включили в многофакторный анализ Кокса для определения независимых предикторов риска ВСС. Результаты регрессионного анализа Кокса представлены в таблице 4.

В результате многофакторного регрессионного анализа Кокса определены высокие прогностические значения НК (Hazard Ratio) для следующих независимых предикторов фатальных желудочковых тахиаритмий (ЖТА) у пациентов с ДКМП: пароксизмы неустойчивой ЖТ (≥5 желудочковых комплексов в ЖТ с ЧСС ≥150 уд./мин; НК 3,24; 95% ДИ: 1,29-9,25; p=0,007); патологический тест мАТВ (25% мАТВ


≥45 мкВ; НК 1,79; 95% ДИ: 1,06-4,89; p=0,011); миссенс мутации гена *LMNA* (НК 2,01; 95% ДИ: 1,02-4,32; p=0,032). С целью кумулятивной оценки независимых факторов был проведен регрессионный Кокс-анализ с включением последовательных комбинаций выявленных предикторов. В результате анализа был выявлен аддитивный эффект двух независимых факторов, ламин-позитивного генотипа и быстрой неустойчивой ЖТ, с многократным повышением прогностической значимости риск-стратификации (НК 5,23; 95% ДИ 1,45-16,9; p=0,013).


Для разработки метода риск-стратификации и построения модели индивидуализированной оценки риска ВСС был проведен бинарный логитрегрессионный анализ данных с включением всех независимых предикторов ЖТА событий. Математическая модель бинарной регрессии (F=31,2; $\chi^2=143,2$; p=0,0000) продемонстрировала высокую прогностическую значимость классифицирующей функции, коэффициенты для независимых факторов в бинарной логит-регрессии представлены в таблице 5.

Полученные результаты позволили применить уравнение бинарной логистической регрессии для оценки вероятного риска развития ВСС в формулу расчета вероятности (Р):

$$P=\frac{1}{1+e^{-Z}},$$

где е — основание натурального логарифма (e=2,71828),

Ожидаемое нормальное распределение

A

Рис. 2 (А, Б). Резидуальные графики регрессии: А — нормальный вероятностный график остатков, Б — частотное распределение остатков.

Б

Z — уравнение бинарной логистической регрессии:

 $Z=b_0+b_1\times X_1+b_2\times X_2+b_3\times X_3+b_4\times X_4+b_5\times X_5+b_6\times X_6$ где переменные $X_1,\ X_2,\ X_3,\ X_4,\ X_5,\ X_6$ — показатели — предикторы, принимающие значение 1 или 0 при следующих условиях:

- X_i : значение 1 при GLS ЛЖ ≥-6,5%, значение 0 при при GLS ЛЖ <-6,5%;
- X_2 : значение 1 при ЖЭС ≥1500 в сутки, значение 0 при ЖЭС <1500 в сутки;
- X_3 : значение 1 при наличии нЖТ из ≥5 комплексов с частотой сердечных сокращений (ЧСС) ≥150 уд./мин, значение 0 при отсутствии пароксизмов нЖТ или при наличии нЖТ из 3-4 комплексов с ЧСС <150 уд./мин;
- X_4 : значение 1 при JTd ≥70 мс, значение 0 при JTd <70 мс;
- X_5 : значение 1 при патологических значениях показателей TCP: TO ≥0% или TS <2,5 мс/RR; значение 0 при непатологических значениях TCP (TO <0% или TS ≥2,5 мс/RR) или при не определенной TCP;
- X_6 : значение 1 при патологической мАТВ (≥25% теста мАТВ >45 мкВ; значение 0 при менее 25% патологического мАТВ теста, при непатологической или при не определенной мАТВ;
- $b_{\it o}$ - $b_{\it b}$ коэффициенты бинарной логистической регрессии (представлены в таблице 5): $b_{\it o}$ =7,25; $b_{\it j}$ =-0,38; $b_{\it j}$ =-0,76; $b_{\it j}$ =-4,35; $b_{\it d}$ =-1,46; $b_{\it s}$ =-4,28; $b_{\it b}$ =-5,03.

Величина расчетного значения вероятности Р≤0,6 означает низкий риск прогнозируемой ВСС, величина значения Р>0,6 соответствует высокому риску ВСС.

Прогностическую математическую модель оценки риска испытали на массиве из 224 пациентов

с ДКМП. В том числе в бинарную модель логит-регрессии включили данные 67 пациентов с фибрилляцией/трепетанием предсердий, для которых показатели ТСР и мАТВ, согласно общепринятым критериям анализа, не определялись и соответствовали условию не определенного параметра ($X_z = 0$; $X_z = 0$).

Диагностическую точность построенной модели оценки риска ВСС определили с помощью анализа "отношения несогласия (OR — Odds ratio)"; параметр OR (это отношение произведения чисел правильно классифицированных наблюдений к произведению чисел неправильно классифицированных) в представленной модели составил 470,4. Отношение несогласия больше 1 показывает, что построенная классификация лучше проведения классификации наугад. Чувствительность классификационной матрицы составила 80,8%, специфичность — 99,1%. Таким образом, метод индивидуальной оценки риска с применением формулы бинарной логистической регрессии:

$$P = \frac{1}{1 + e^{-(7,25 - 0,38 \times GLSJJW - 0,76 \times W \ni C - 4,35 \times HWT - 1,46 \times JTd - 4,28 \times TCP - 5,03 \times MATB)}}$$
 (1)

позволил корректно (верно) классифицировать 93,9% клинических случаев ДКМП. Для оценки (проверки) адекватности построенной модели логит-регрессии проведен анализ регрессионных остатков. Резидуальные графики наглядно демонстрируют корректность проведенной оценки риска аритмических событий/ ВСС: скатерограмма (рис. 2A) представляет регрессионные остатки, выстроенные вдоль диагонали, а гистограмма (рис. 2Б) распределения остатков регрессионной прогностической модели приближена к нормальному виду распределения.

Таким образом, весомая доказательная база высокой прогностической значимости логит-регрессион-

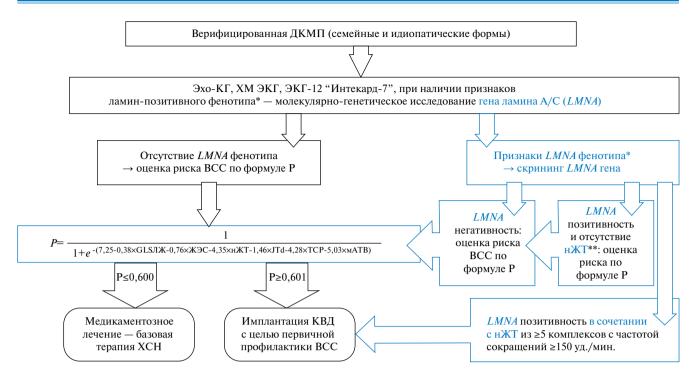


Рис. 3. Алгоритм выбора метода первичной профилактики ВСС с использованием индивидуализированной модели стратификации риска.

Примечание: * — признаки ламин-позитивного фенотипа: удлинение интервала PR ≥220 мс, ≥25% теста патологической мАТВ >45 мкВ; ширина комплекса QRS ≥122 мс; уровень сывороточной КФК ≥118 МЕ/мл, ** — неустойчивая ЖТ из 5 или более желудочковых комплексов с ЧСС ≥150 уд./мин.

ной модели стратификации риска ВСС позволила включить этот метод в алгоритм выбора своевременной оптимальной лечебной стратегии у пациентов с высоким риском жизнеопасных аритмий. В представленном алгоритме (рис. 3) предусмотрен индивидуализированный подход к генетической диагностике потенциально опасных аритмогенных мутаций LMNA у пациентов с признаками "ламинового" фенотипа. При выявлении двух (из 4 прогностически значимых) клинических признаков LMNA-позитивного фенотипа (удлинение интервала PR ≥220 мс; ≥25% патологического теста мАТВ >45 мкВ; ширина комплекса QRS ≥122 мс; уровень сывороточной КФК ≥118 МЕ/мл) целесообразно проведение генетического скрининга LMNA для раннего прогнозирования неблагоприятных клинических исходов. При выявлении двух кумулятивных независимых факторов, ламин-позитивности и быстрой неустойчивой ЖТ (HR 5,23; p=0,013), предполагается рассматривать таких пациентов в качестве потенциальных кандидатов для имплантации КВД. Расчетное значение величины Р>0,6, полученное в результате математического вычисления вероятности Р с применением формулы бинарной логит-регрессии (формула 1), соответствует высокому риску ВСС и предусматривает более активные лечебные мероприятия с целью первичной профилактики жизнеопасных ЖТА у пациентов с ДКМП, предпочтительно, с имплантацией КВД. Расчетное значение величины Р≤0,6 соот-

ветствует низкому риску BCC, что определяет необходимость базовой (стандартная) медикаментозной терапии XCH.

Обсуждение

Полученные нами результаты согласуются с клиническими данными исследователей Grimm W, et al., которые впервые обнаружили, что неустойчивые пароксизмы ЖТ с длительностью ≥10 желудочковых комплексов были связаны с повышением риска развития желудочковых фатальных аритмий и ВСС [10, 11]. В Марбургском исследовании (343 пациента с ДКМП) наблюдение проводилось более 4 лет; в результате многофакторного анализа показатель ФВЛЖ был определен в качестве единственно значимого независимого фактора риска фатального аритмического события (снижение ФВЛЖ на 10% было ассоциировано с увеличением риска ВСС в 2,3 раза). Но позднее, в результате субанализа этих данных, немецкие ученые обнаружили, что более длительные эпизоды неустойчивой ЖТ (≥10 комплексов) были достоверно связаны с повышением риска ВСС и серьезных аритмий (без нЖТ — 2% в год; с нЖТ длительностью от 5 до 9 комплексов — 5% в год; с нЖТ ≥10 комплексов — 10%; p<0,05) [10, 11]. В нашем исследовании также не выявлено значимой ассоциации между короткими и "медленными" пароксизмами неустойчивой ЖТ (нЖТ ≥3 комплексов с частотой сердечных сокращений ≤149 уд./мин) с повышением риска развития опасных для жизни аритмий и ВСС, в то время как более длительные и быстрые нЖТ (длительность ≥5 желудочковых комплексов с ЧСС ≥150 уд./мин) прогностически значимо (HR 3,24; p=0,007) ассоциировались с увеличением риска жизнеугрожающих тахиаритмических событий.

В результате проведенного исследования нами выявлены 2 независимых кумулятивных фактора: пароксизмы неустойчивой ЖТ (≥5 желудочковых комплексов с ЧСС ≥150 уд./мин) и *LMNA*-позитивность, позволяющие оптимально проводить раннюю стратификацию риска ВСС и отбор потенциальных кандидатов для имплантации КВД. Эти выводы согласуются с полученными результатами аналогичных европейских исследований. Так, в 2012г исследователи Van Rijsingen, E. Arbustini и P. Elliott предложили четыре независимых фактора риска развития жизнеугрожающих ЖТА событий: 1) ФВ ЛЖ <45% при первом обращении, 2) пароксизмальная неустойчивая ЖТ, 3) мужской пол и 4) нон-миссенс механизм мутаций гена *LMNA*. Авторами рекомендовано проведение имплантации КВД с профилактической целью при выявлении у пациентов с ДКМП двух и более вышеперечисленных факторов риска [12].

Заключение

- 1. Полученные нами данные подтвердили стратегическую важность генетического исследования и поиска мутаций *LMNA* у пациентов с "ламин-позитивным" фенотипом ДКМП для раннего прогнозирования неблагоприятных клинических исходов.
- 2. В результате ROC анализа выявлены доминирующие прогностические признаки *LMNA*-позитивного фенотипа, позволяющие выделить потенциальных носителей ламиновых мутаций из популяции споради-

ческой ДКМП для проведения генетического скрининга. При обнаружении двух и более фенотипических предикторов, таких как: удлинение интервала PR \geq 220 мс (AUC 0,987, 95% ДИ 0,973-0,999, p=0,0001); идентификация \geq 25% патологического теста мАТВ >45 мкВ (AUC 0,775, 95% ДИ 0,701-0,848, p=0,0001); увеличение длительности комплекса QRS \geq 122 мс (AUC 0,773, 95% ДИ 0,689-0,857, p=0,0001) и повышение уровня сывороточной КФК \geq 118 МЕ/мл (AUC 0,671, 95% ДИ 0,548-0,793, p=0,009), целесообразно проведение генетического исследования LMNA.

- 3. В результате многофакторного регрессионного анализа выявлены 2 кумулятивных независимых предиктора (HR 5,23; 95% ДИ 1,45-16,9; p=0,013) жизнеугрожающих ЖТА событий у пациентов с ДКМП: пароксизмы неустойчивой ЖТ (\geq 5 желудочковых комплексов с ЧСС \geq 150 уд./мин) и изменения гена LMNA (миссенс мутации и полиморфизм 10 экзона rs4641).
- 4. С помощью бинарного логит-регрессионного анализа независимых факторов риска (ЖЭС, нЖТ, мАТВ, ТСР, ЈТd и GLS ЛЖ) разработана математическая модель бинарной регрессии (F=31,2; $\chi^2=143,2$; p=0,0000), применение которой позволяет корректно классифицировать 93,9% клинических случаев ДКМП (OR 470; чувствительность 80,8%, специфичность 99,1%).
- 5. Предложенный метод оценки риска ВСС для пациентов с ДКМП является неинвазивной, индивидуализированной, доступной в выполнении и в интерпретации технологией, позволяющей стратифицировать пациентов с высоким риском жизнеопасных ЖТА с помощью стандартных базовых клинико-инструментальных исследований (ЭКГ, Эхо-КГ и ХМ ЭКГ).

Литература

- Hayashi M, Shimizu W, Albert CM. The spectrum of epidemiology underlying sudden cardiac death. Circ Res. 2015; 116: 1887-906. doi: 10.1161/CIRCRESAHA.116.304521
- Schliamser JE, Kadish AH, Subacius H, et al. Significance of follow-up left ventricular ejection fraction measurements in the Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation (DEFINITE) trial. Heart Rhythm. 2013; 10: 838-46. doi: 10.1016/j. hrthm.2013.02.017.
- Zecchin M, Merlo M, Pivetta A, et al. How can optimization of medical treatment avoid unnecessary implantable cardioverter-defibrillator implantations in patients with idiopathic dilated cardiomyopathy presenting with "SCD-HeFT criteria?" Am J Cardiol. 2012; 109: 729-35. doi: 10.1016/j.amjcard.2011.10.033.
- Kuruvilla S, Adenaw N, Katwal AB, et al. Late Gadolinium Enhancement on CMR Predicts Adverse Cardiovascular Outcomes in Non-ischemic Cardiomyopathy: A Systematic Review and Meta-analysis. Circ Cardiovasc Imaging. 2014; 7(2): 250-8. doi:10.1161/ CIRCIMAGING.113.001144.
- Kusumoto FM, Calkins H, Boehmer J, et al. HRS/ACC/AHA expert consensus statement on the use of implantable cardioverter-defibrillator therapy in patients who are not included or not well represented in clinical trials. Circulation. 2014; 130: 94-125. doi:10.1016/j. jacc.2014.04.008
- Bloomfield DM, Steinman RC, Namerow PB, et al. Microvolt T-wave alternans distinguishes between patients likely and patients not likely to benefit from implanted cardiac defibrillator

- therapy. A solution to the multicenter automatic defibrillator implantation trial (MADIT) II conundrum, Circulation, 2004; 110: 1885-9, DOI: 10.1161/01.CIR.0000143160.14610.53
- van Berlo JH, de Voogt WG, van der Kooi AJ, et al. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: do lamin A/C mutations portend a high risk of sudden death? J Mol Med. 2005; 83: 79-83. DOI: 10.1007/s00109-004-0589-1
- Pasotti M, Klersy C, Pilotto A, et al. Long-term outcome and risk stratification in dilated cardiolaminopathies. J Am Coll Cardiol. 2008; 52: 1250-60. doi: 10.1016/j. iacc.2008.06.044.
- Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994; 81: 515-26. DOI: 10.1093/biomet/81.3.515.
- Grimm W, Christ M, Maisch B. Long runs of non-sustained ventricular tachycardia on 24-hour ambulatory electrocardiogram predict major arrhythmic events in patients with idiopathic dilated cardiomyopathy. Pacing Clin Electrophysiol. 2005; 28 (suppl 1): S207-S210. DOI: 10.1111/j.1540-8159.2005.00035.
- Grimm W, Christ M, Bach J, et al. Noninvasive arrhythmia risk stratification in idiopathic dilated cardiomyopathy: results of the Marburg Cardiomyopathy Study. Circulation. 2003; 108: 2883-91. DOI: 10.1161/01.CIR.0000100721.52503.85
- van Rijsingen IA, Arbustini E, Elliott PM, et al. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol. 2012; 59: 493-500. doi: 10.1016/j.jacc.2011.08.078.