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Although humans, as placental mammals, possess a highly sophisticated system protecting the
embryo/fetus in uterus from the environment, prenatal development might still be negatively
affected via exposures to environmental factors (1–4). Many xenobiotic compounds in mothers’
circulation (e.g., toxicants, drugs) can cross the placental barrier and reach developing tissues
and organs, consequently altering cellular functions within the tissues. Among different
cellular functions, mitochondrial metabolism is thought to be particularly sensitive to various
stressors, including those produced by environmental toxicants (5, 6). Since mitochondria
play a central role in cellular energy homeostasis and apoptotic/stress responses, it is not
surprising that mitochondrial dysfunction is associated with numerous chronic diseases, such
as neurodegenerative diseases, obesity, type-2 diabetes, along with a variety of cancers—the
conditions which have been linked to environmental exposures (7–11). Many of the chronic
disease conditions occurring later in life were proposed to originate from in utero exposures
(1, 12). The proposed connections between in utero exposures to a wide variety of environmental
toxicants and mitochondrial dysfunction have been documented by multiple animal studies.
For example, maternal exposures to small-sized particulate matter and cigarette smoke were
associated with a reduction in the mitochondrial (mt)DNA copy number per cell and a lower
expression of oxidative phosphorylation proteins in the offspring (13). Exposure to cadmium, a
toxic component of cigarette smoke, has been shown to inhibit mitochondrial respiration while
simultaneously increasing reactive oxygen species (ROS) production (14). Prenatal exposure of
rats to perfluorooctane sulfonate (PFOS) induced apoptosis in offspring heart tissue through
the mitochondria-mediated apoptotic pathway (15). In utero exposure to arsenic impaired
mitochondrial respiration with subsequent cardiac myopathies (16) and neurotoxicity (11). It was
further shown that obesogens—chemicals that increase an offspring’s weight—may also act as
mitochondrial toxicants (10). Established obesogens, organotin compounds inhibit mitochondrial
ATP production (17). Early-life exposure to the endocrine disruptor bisphenol A (BPA) has been
linked with the development of obesity (18). At the same time, exposure to BPA has been associated
with hypermethylation of the master mitochondrial regulatory gene PGC-1α and reduced
mitochondrial respiration and ATP production (19). All these examples summarized in Table 1

corroborate the hypothesis that prenatal exposures to xenobiotics might influence post-natal
development, with mitochondrial metabolism playing an important role in such a connection.

The idea of a prenatal origin of childhood obesity attracts attention, because lifestyle
interventions implemented amongst this age group have not been effective in lowering adiposity
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TABLE 1 | Mitochondrial function impairment after prenatal exposure to

environmental toxicants in animal studies.

Toxicants Effect References

Cigarette smoke and

small-sized particulate

matter

Reduction in the mitochondrial (mt)DNA

copy number per cell and lower

expression of oxidative phosphorylation

proteins

(13)

Cadmium Inhibition of mitochondrial respiration,

increased ROS production

(14)

PFOS (perfluorooctane

sulfonate)

Mitochondria-mediated apoptosis heart

tissue

(15)

Arsenic Impairment of mitochondrial respiration (16)

Organotin compounds

(obesogens)

Inhibition of mitochondrial ATP

production

(17)

Bisphenol-A (BPA) Reduced mitochondrial respiration and

ATP production, hyper methylation of

the master mitochondrial regulatory

gene PGC-1α

(18, 19)

among corpulent children (20). If prenatal environment plays
an important role in inducing individual predispositions to
excessive adiposity, then typical postnatal interventionsmay have
little-to-no effect on obesity in both adults and children. Given
the rapid increase in childhood obesity prevalence, evaluation
of how prenatal xenobiotic exposures affect mitochondrial
metabolism in embryo-fetal development have become an
important focus of biomedical research. Some studies estimate
that in utero exposure to BPA alone may contribute to
12,404 cases of childhood obesity, with a U.S. societal cost of
$1.49 billion (21). Similarly, prenatal exposure to BPA in the
European Union has a 20–60% probability of initiating 42,400
cases of childhood obesity (22). However, the confirmatory
evidence from prospective human epidemiological studies that
link prenatal exposure to altered mitochondrial function is
currently lacking. In this opinion manuscript, we suggest that
the assessment of mitochondrial function at birth in cells
isolated from the umbilical cord blood might help to identify
prenatal exposures through their alteration of mitochondrial
bioenergetics in newborns, which can be subsequently linked
to postnatal health outcomes. Next, we will discuss both the
strengths and limitations of such an approach.

PROPOSED STRENGTHS

One of the important considerations in the human assessment
of mitochondrial health is accessibility to a sufficient amount
of biological material. This issue is especially pertinent to the
development of biomarkers in the pediatric population and is
even more challenging for epidemiological studies in human
embryos, fetuses, or neonates (23). Umbilical cord blood can be
obtained in an entirely non-invasive manner, and it represents
a rich source of fetal cells—especially the highly proliferative
stem and progenitor cells. Our previous work indicates that a
population-wide collection of donor-specific endothelial colony-
forming cells (or ECFC’s) is possible to obtain because ECFCs

can be isolated from cord blood with a high success rate
(>90%) (24). ECFCs can be expanded in vitro, thereby providing
sufficient amounts of biological material for multiple cell-
based assays, including those for mitochondrial function (25).
Moreover, a collection of donor-specific ECFCs can be viewed
as a panel of tissues representing human neonatal population
to enable assessment of individual variability in responses to
mitochondrial toxicants.

In the past, mitochondrial health was assessed indirectly from
changes in mtDNA and enzymatic activity related to different
mitochondrial functions. Suchmeasurements in peripheral blood
mononuclear cells provided the first evidence that mitochondrial
health can be associated with many chronic health conditions,
including but not limited to diabetes, cardiovascular disease,
and common neurodegenerative disorders (26–31). Donor-
specific cells isolated from cord blood provide an opportunity
to use the current high-resolution respirometry technology (32)
to directly assess mitochondrial bioenergetic profiles within
newborns. The sequential additions of different metabolic
modulators, known commonly as a “stress test,” determines
several parameters in one experiment: the glycolytic activity,
the ATP-linked respiration, proton leak, basal and maximal
respirations, and finally the non-mitochondrial respiration. Each
of these parameters presents interpretable measurements that are
the biomarkers of mitochondrial health (6). For example, when
cells are placed in identical experimental conditions, lower ATP-
linked respiration could indicate damage to substrate uptake or
oxidative phosphorylation. A greater proton leak could indicate
increased uncoupling protein (UCP) activity that has been related
to the “less economical” bioenergetics with a higher intensity of
fat oxidation and a lower predisposition to obesity and diabetes
(32). Alternatively, a high proton leak may indicate a response to
oxidative stress (32) or even damage to the inner mitochondrial
membrane. Furthermore, the difference between the basal and
maximal respiration presents the reserve bioenergetic capacity,
a sensitive parameter correlated to cellular stress (6). Recently,
a combination of these parameters were fused into a single
Bioenergetic Health Index (BHI), which has been proposed to
represent the donor’s composite mitochondrial profile. Such an
index could provide a dynamic indicator of bioenergetic health
measured in platelets and leukocytes. Ultimately, the BHI has
the potential to be a new biomarker in the assessment of patient
health via presentation of both the prognostic and diagnostic
values (6). However, even peripheral blood measurements that
are considered minimally invasive can be invasive for newborns.
Fortunately, using umbilical cord blood cells presents a non-
invasive alternative. Thus, using cord blood cells as a platform
to assess a newborn’s mitochondrial health provides the direct
measurements of mitochondrial bioenergetics in this otherwise
difficult-to-study population.

UNANSWERED QUESTIONS AND
LIMITATIONS

When assessing mitochondrial health, the major question
is as follows: which human cells should be used to assess
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mitochondrial function in an individual? It has been argued that
the mitochondrial respiration profile of circulating leukocytes
and platelets can serve to assess mitochondrial function in
other tissues, or more specifically, in that of a skeletal
muscle (33, 34). Similarly, it is not certain whether the
bioenergetic profile of umbilical cord blood cells correlates
with cells comprising other fetal/newborn tissues. In humans,
these correlations are practically impossible to assess due to
ethical barriers; however, such research can be conducted in
animal models.

Another question is whether a mitochondrial stress test
profile has the ability to measure an individual characteristic
that is stable over time. For epidemiological assessment, low
within-person variability of a biomarker is especially important
in evaluating its association with a disease of long latency
(35). If within-person variability is large compared to the
overall between-person variability, such a biomarker cannot
represent an individual characteristic, differentiating one study
participant from another. With respect to mitochondrial health,
within-person variability can be assessed by comparing cells
derived from the same donor vs. variability between cells
derived from different donors using a mitochondrial stress test
profiles, individual stress parameters and/or the composite BHI
measurements. With respect to peripheral blood cells, within-
and between-person variability can be assessed from blood
specimens obtained from the same donors procured at different
time points. One important caveat is that such an evaluation
must be performed carefully, especially considering the circadian
differences in circulating nutrients and/or physical activity that
may influence the bioenergetic profiles of cells isolated from
peripheral blood. Since peripheral blood cells cannot produce
viable primary in vitro cell lines, the omission of the confounding
effect of recent exposures would be problematic. In contrast,
using primary cultures of cord blood progenitor cells could
help to bypass the confounding influence of recent exposures,
as these cells produce viable donor-specific cell lines and can
be cultured in identical conditions. However, there is only one
chance to obtain a cord blood specimen—during a delivery.
How, then, will within-person variability of mitochondrial health
can be evaluated in cord blood-derived cells? To bypass such a
limitation, we propose to develop multiple cell lines from a single
donor/newborn for the assessment of within-person variability.

Finally, feasibility considerations for large-scale
epidemiological studies bring up a question of utilization
of the existing cord blood biobanks. The current cell isolation
methods do not consistently provide viable, proliferating cells

from either frozen whole blood or partially purified blood
samples. Therefore, fresh umbilical cord blood samples should
be used to isolate cells, which then can be stored for a long period
of time (several years in our experience) for cell-based assays.
Thus, the need to use fresh cord blood specimens considerably
limits the use of the existing children cohorts, for which the
frozen cord-blood specimens are available.

CONCLUSIONS

Mitochondrial health can be assessed at birth in cell-based assays
using cells that are isolated from umbilical cord blood. Animal
studies present enough evidence connecting prenatal exposure
to environmental toxicants and mitochondrial health in different
tissues of the offspring, demonstrating that such a connection
might play an important role in human health. Animal studies
can answer questions about correlations between mitochondrial
health biomarkers obtained from cord-blood cells and other
tissues in the offspring, ultimately proving or disproving that
the assessment of mitochondrial health in one tissue can be
extrapolated to the entire individual organism. However, only
human studies can characterize within- and between-person
variability of mitochondrial health biomarkers. With respect to
the hypothesis of mitochondrial involvement in early origins of
disease, using cord blood cells presents a unique opportunity
for studying the connections between prenatal exposures,
mitochondrial health, and long-term health outcomes.

FURTHER READINGS

For further readings on the topic, we suggest the following
references: (36–53).
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