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SHANK3 mutations, including de novo deletions, have been associated with autism
spectrum disorders (ASD). However, the effects of SHANK3 loss of function on
neurodevelopment remain poorly understood. Here we generated human induced
pluripotent stem cells (iPSC) in vitro, followed by neuro-differentiation and lentivirus-
mediated shRNA expression to evaluate how SHANK3 knockdown affects the in vitro
neurodevelopmental process at multiple time points (up to 4 weeks). We found that
SHANK3 knockdown impaired both early stage of neuronal development and mature
neuronal function, as demonstrated by a reduction in neuronal soma size, growth cone
area, neurite length and branch numbers. Notably, electrophysiology analyses showed
defects in excitatory and inhibitory synaptic transmission. Furthermore, transcriptome
analyses revealed that multiple biological pathways related to neuron projection, motility
and regulation of neurogenesis were disrupted in cells with SHANK3 knockdown. In
conclusion, utilizing a human iPSC-based neural induction model, this study presented
combined morphological, electrophysiological and transcription evidence that support
that SHANK3 as an intrinsic, cell autonomous factor that controls cellular function
development in human neurons.

Keywords: induced pluripotent stem cells, neural stem cells, SHANK3, electrophysiology, RNA-Seq,
autism, transcriptome

INTRODUCTION

Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by impairments
in social communication and interaction, and repetitive behaviors and restricted interests (Freitag
et al., 2010; State and Levitt, 2011; Lyall et al., 2017; Rubeis et al., 2018). Multiple studies have
indicated a strong connection between ASD and genetic variations of synapse-related genes and
proteins, including neuroligins (NLGNs), postsynaptic density protein 95 (PSD-95), and SH3 and
multiple ankyrin repeat domains proteins (SHANKs) (Xing et al., 2016; Nakanishi et al., 2017;
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Kathuria et al., 2018). In particular, genetic association studies
have identified a significant role for SHANK3, which encodes a
major scaffolding protein at postsynaptic densities (PSD). The
SHANK3 protein contains multiple structural domains including
ankyrin repeat, Src homologous, PDZ, proline-rich, Homer
binding site, sterile alpha motif (Du et al., 1998; Grabrucker et al.,
2011; Monteiro and Feng, 2017; Ponna et al., 2018), through
which other PSD proteins extensively interact to form the
post-synaptic protein signaling complex. Genomic sequencing
and exon sequencing from ASD patients have indicated a
strong connection between rare mutations in SHANK3 and ASD
(Durand et al., 2007; Nemirovsky et al., 2015).

Currently, it is unclear how SHANK3 mutations confer ASD
risks by affecting the developmental trajectory of the brain,
particularly the excitatory glutamatergic synapses. Several studies
have utilized mouse models (Peca et al., 2011; Wang et al., 2016,
2017; Chen et al., 2017; Harony-Nicolas et al., 2017; Luo et al.,
2017; Zhao et al., 2017; Amal et al., 2018; Kerrisk Campbell
and Sheng, 2018; Qin et al., 2018) and neuronal cell models
(Bidinosti et al., 2016; Lu et al., 2016; Bey et al., 2018; Taylor et al.,
2018) to explore the role of SHANK3 gene in synaptic function
and animal behavior. The variation of SHANK3 at different loci
resulted in distinct behavioral phenotypes when modeled in mice.
Most of these SHANK3 mutant mice showed deficits in social
interactions, with or without cognitive impairment, repetitive
behavior, anxiety and motor deficit. Abnormal cortico-striatal
circuits, disrupted excitability and inhibitory (E/I) balance, and
synaptic dysfunction have been identified to be associated with
the mechanism of ASD-like behavior (Bozdagi et al., 2010; Peca
et al., 2011; Wang et al., 2011; Mei et al., 2016; Vicidomini et al.,
2017; Bey et al., 2018). These analysis of synaptic physiology
and mice behavior revealed a strong causal connection between
SHANK3 mutations and ASD-like endophenotypes.

Despite the above cited studies, analyses on animal models
cannot completely simulate human genetic background on
neurodevelopment. In some cases, human brain tissue sample has
been collected for neural development disease study (Konopka
et al., 2012; Parikshak et al., 2016), however, the sample resource
is very limited. More than 10 years ago, Takahashi and Yamanaka
made a remarkable breakthrough in stem cell research when
they generated ES-like cells from adult somatic cells using a
cocktail of transcription factors (Takahashi et al., 2007). More
recently, new methods have been developed to reprogram adult
somatic cells (such as fibroblasts) into iPSC. Following the
discovery of iPSC, several studies have fueled enthusiasm for
their use in neurological disorders, and iPSC have been validated
to develop into many kinds of neural subtype cells (Chambers
et al., 2009; Shi et al., 2012; Kang et al., 2017; Lin et al.,
2018). Creating neuronal cultures from iPSC has received wide
attention for the potential to create translatable disease-in-a-
dish models. This development has made it possible to mimic
human neuron development defect following disease candidate
gene dysfunction. One advantage of iPSC is that the cells
possess genetic background that is distinctly human; the other
is that stem cells could mimic certain aspects of human neural
development courses in vitro. So far, iPSC have been increasingly
recognized as a significant in vitro cellular model to study

the function of susceptible genes in neurological diseases and
neurodevelopment diseases. iPSC have successfully used to model
the cellular physiology and guide therapeutic endeavors in Rett
syndrome, Alzheimer’s disease and schizophrenia by revealing
the functional effects of genetic mutations with single neuron
resolution (Marchetto et al., 2010; Mitne-Neto et al., 2011; Israel
et al., 2012). We have also previously used iPSC models to study
the functional effects of NRXN1 deletion and NLGN4X deletions
(Shi et al., 2013), in which we found that such synaptic genes as
NLGN4X/NRXN1 deletion directly impacts neurodevelopmental
process, synaptic adhesion and neuron differentiation during
the formation of neurons and their connections. NLGNs,
which bind presynaptic NRXNs, are anchored in scaffold
protein SHANK3 indirectly. SHANK3 interacts with multiple key
synaptic components including glutamate receptors and their
anchoring proteins, ion channels (Du et al., 1998), thus serves as
a master organizer of the PSD (Naisbitt et al., 2000; Hayashi et al.,
2009). NLGNs/NRXNs/SHANK3 gene complex play an import
role in synapse generation and neuron function formation.

To gain insights on the critical cellular and molecular effects
of SHANK3 in human neuron development, we generated
functional neurons derived from iPSC and transduced by
shRNA-based lentivirus against SHANK3, as well as a control
shRNA. Utilizing this iPSC-based in vitro model, we investigated
the transcriptome alteration, coupled with morphology and
electrophysiological analyses to determine the impacts of
SHANK3 knockdown in the developing human neurons.

MATERIALS AND METHODS

The Generation of iPSC-Derived Neural
Development Model
Human urine epithelium-derived cells were reprogrammed into
iPSC [generated by Dr. Pei’s lab (Zhou et al., 2011)]. The
iPSC were cultured in Matrigel (BD MatrigelTM, hESC-qualified
Matrix)-coated six-well plates. MTeSRTM medium (Stemcell
Technologies) was added to each well (2 ml per well) and
replaced once a day. After reaching 95% confluence, the cells were
passaged with EDTA (1:3) in Matrigel-coated 12-well plates. Once
the cells density reached almost 100%, the medium was switched
to neural induction medium (N2B27 + 2 inhibitors (5 µmol/L
Dorsomorphin and 5 µmol/L SB431542, Selleck). Dorsomorphin
and SB431542 effectively inhibit SMAD signaling pathway by
blocking phosphorylation of ALK4, ALK5, ALK7 receptors and
successfully improve the efficiency of neural induction. At day 8,
the cells were mechanically scraped to Matrigel-coated six-well
plates with neural proliferation system I (N2B27, Thermo-Fisher
Scientific) medium. At day 16, the cells in 6-well cell plates were
mechanically scraped to T25 flasks and were cultured with neural
proliferation system II (N2B27 + 20 ng/mL bFGF + 20 ng/mL
EGF, Thermo-Fisher Scientific). NPCs were expanded for three
passages with Accutase (StemPro Accutase cell dissociation
reagent), single cells of NPCs were directly plated at a density of
105 cells per well on glass coverslips coated with glial cell feeder
layer (prepared from rat astrocyte, P0–P3), and Matrigel in 24-
well plates for morphology analysis. At the same time, the single
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cells of NPCs were directly plated at a density of 2.5 × 10ˆ6/well
in Matrigel-coated 6-well plates for q-PCR and sequencing. The
medium was switched to neuron differentiation medium (N2,
B27, Thermo Fisher Scientific; 1 µM dibutyryl-cAMP, Sigma-
Aldrich; 20 ng bdnf, PeproTech). The plates were kept at 37◦C
thereafter in a humidified incubator with 95% air and 5% CO2.

Virus Transduction and Quantitative
Real-Time-PCR
Single cells of NPCs were directly cultured on Matrigel-coated
plates. The next day the cells were infected by shControl and
shSHANK3 lentivirus in proper titers. (TRIPZ Human SHANK3
shRNA, Dharmacon, Inc., ID: V2THS_264172, 1× 108 TU/mL).
Six hours after infection, the viruses were removed and
replaced with NPCs proliferation system containing doxycycline
(1 µg/mL). Three days after infection, medium was switch to
NPCs proliferation system containing doxycycline (1 µg/mL)
and puromycin (1 µg/mL). The cells were lysed with Trizol,
total RNA was extracted using an RNeasy mini kit. RNA
concentration (OD260/OD280) was measured using Nanodrop
2000C Spectrophotometer. Total RNA was reverse transcribed
into cDNA using the PrimeScriptTM RT reagent Kit with
gDNA Eraser (Perfect Real Time). Real-time quantitative PCR
was performed with SYBR Premix Ex TaqTM II detection
System and Inumin detection instrument. The primer sequences
are as follows:

Human SHANK3-F, CAGGACGCGCTCAACTATG;
Human SHANK3-R, GCATAAACTCGCCGCTTGTA;
Human GAPDH-F, CATGTTCGTCATGGGTGTGAA;
Human GAPDH-R, AGTGATGGCATGGACTGTGGT.
All data was normalized to the GAPDH mRNA level and
shSHANK3 knockdown efficiency were calculated.

Morphology Analysis
Neurons were sparsely infected with lentivirus (1 × 108 TU/mL)
packed with a tetracycline-controlled red fluorescent
protein (RFP) expression sequence to obtain fluorescent
images. Neurons plated on glass coverslips were used for
morphological construction at 3–28 days after plating. Standard
immunohistochemistry protocols were used. The neurons were
fixed using 4% paraformaldehyde for 30 min, washed with
PBS, permeabilized with 0.3% Triton X (Thermo Scientific)
in PBS and blocked with 1% BSA (VETECTM) in PBS. The
neurons were stained by double immunofluorescence with DAPI
(Thermo Scientific, D1306, 1:1000) and the following antibodies:
Mouse-Oct4 (BD Pharmingen, 6765-100, 1:200), Mouse-SSEA4
(Invitrogen, 41-4000, 1:100), Mouse-SOX2 (R&D Systems,
MAB2018, 1:500), Rabbit-Nestin (Millipore, ABD9, 1:1000),
Mouse-TBR1(Abcam, ab31940, 1:800), Mouse-TUJ1 (Covance,
Princeton, T8660, 1:1000), Tau1 (Millipore, MAB3420, 1:500),
Ribbat-Map2 (2a + 2b) (Millipore, AB5622, 1:1000), Mouse-
PSD95 (Thermo Fisher, MA1-045, 1:150), Rabbit-synapsin
I (Millipore, AB1543, 1:1000), secondary antibodies used
include: donkey anti-mouse Alexa-488 (Invitrogen, R37114,
1:1000), donkey anti-mouse Alexa-546 (Invitrogen, A10036,
1:1000). Images of neurons were visualized with 20, 40, and

60× objective (Imager Z2, Zeiss) and digitized using a Zeiss
camera (Axiocam 506 mono, Zeiss). The soma area, growth
cone area, neurite length and branches were analyzed and
quantified with ImageJ. The complexity of neurite arborization
was analyzed with the ImageJ/FIJI. Statistic results were analyzed
by two-way ANOVA with GraphPad Prism 5.01. Growth cone
was categorized into three types (blunt ended, filopodial and
lamellipodial) as described by Khazaei et al. (2014).

Electrophysiological Recording
The RFP-expressing iPSC-derived neurons were perfused with
artificial spinal cerebral fluid (pH 7.4, in mM: 126 NaCl, 2.5
KCl, 2 CaCl2, 2 MgCl2, 26 NaHCO3, 1.25 NaH2PO4 and 10 D-
glucose) bubbled with 95% O2 and 5% CO2 at RT (25 ± 1◦C).
The neurons were visualized with a 40× water objective on
an IR-DIC microscope (Nikon Eclipse FN-1 microscope) and
recorded using an amplifier (MultiClamp 700B, Molecular
Devices). Borosilicate microelectrodes with a resistance of 4–
8 M� were pulled using a pipette puller (Narishige PC10) and
the glass pipette was filled with filtered intracellular recording
solution (pH 7.3, 290–310 mOsm, in mM: 126 K-gluconate, 4
KCl, 0.3 Na2-ATP, 4 Mg-GTP, 10 phosphocreatine, 10 HEPES).
Recordings were filtered at 3 kHz (low pass) and digitized at
20 kHz (DigiData 1550A, Molecular Devices), and statistical
analysis of electrophysiology data was collected and analyzed
with pClamp10 (Molecular Devices). The input resistance of
the cells (Rin) was recorded as the slope of linear fits of
current-voltage plots responded to 1 s current injection steps
(−10, 2, or 3 pA steps) in current-clamp mode. Cells were
held at resting membrane potential (RMP), not corrected for a
liquid junction potential. Spontaneous excitatory (EPSCs) and
inhibitory (IPSCs) postsynaptic currents were recorded at a −70
and 0 mV, respectively, for 3 min in voltage-clamp mode. sEPSCs
and sIPSCs were verified by complete blockade of kynurenic acid
(KyA, 3 mM, Sigma-Aldrich) or SR95531 (10 µM, Tocris). The
sodium currents (INa) were recorded at−70 mV in voltage-clamp
mode and elicited by 200 ms voltage steps from −20 to 50 mV at
5 mV increments.

Illumina Transcriptome Library
Preparation and Sequencing
The total RNA was subject to RNA-Seq analysis. RNA
concentration was measured using Nanodrop 2000C
Spectrophotometer and Qubit 3.0 (Invitrogen). RNA integrity
number and the library length were detected by BioAnalyzer
2100 (Agilent). Library construction was performed with Truseq
RNA Access library Pre Kit (Illumina, RS-301-2001). The library
was sequenced on a HiSeq X platform (Illumina).

Western Blot Analysis
Cultured cells were washed twice with PBS (1 mL/well),
then 200 µl cell lysis buffer (RIPA buffer (Thermo scientific)
supplemented with protease inhibitor (Calbiochem, 50:1) were
added to each well. Cells were collected with a cell scraper (NEST
Biotechnology). Cell suspension was collected and allowed to
stand on ice for 30 min, and then centrifuged at 4◦C, 14,000 rpm
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for 15 min. After centrifugation, supernatant was transferred
to a new tube and protein concentration was quantified using
PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific).
Samples were mixed with 10× loading buffer (Takara) and boiled
for 10 min 20 µg proteins were loaded each lane and separated
by SDS-PAGE gel. The proteins were then transferred to PVDF
membranes (Millipore), incubated with an antibody against
SHANK3 protein (Santa Cruz Biotechnology), diluted in 5% BSA
overnight at 4◦C. The PVDF membranes were then washed three
times, and further processed with HRP-conjugated secondary
antibodies for 2 h at room temperature. Protein signals were
developed using ChemiDoc Touch Imaging System. The optical
density of immunoreactive bands was quantified by ImageJ.

Bioinformatics Analysis of RNA-Seq Data
All the sequencing data were obtained as FASTQ files for 16
samples with four different measurement times at days 0, 7, 9,
and 28. To improve the quality of alignment, we used FastQC
(Andrews, 2010) to investigate the quality of reads in the dataset
and Cutadapt (Martin, 2011) for removing adapter sequences.
The reads were then mapped to the reference human genome
(GRCh38) and gene count data were produced using STAR
(Dobin et al., 2013). Then, we proceeded with downstream
analysis after assuring that the rates of uniquely mapped reads
for all samples were higher than 80%.

Generalized linear model was used to identify differentially
expressed genes between SHANK3 knockdown group and the
control group over time using DESeq2 (Love et al., 2014).
MA-plot (Supplementary Figure S6) and dispersion estimate
plot (Supplementary Figure S7) were generated for quality
control before further analysis. After performing regularized-
logarithm transformation on the raw counts data using rlog
function in DESeq2, we plotted a sample hierarchical clustering
heatmap using Euclidian distance to assess the similarity among
samples. The limma R package (Ritchie et al., 2015) was
used for correcting batch effects among the samples produced
from two different sequencing experiments. Benjamini and
Hochberg correction methods (Benjamini and Hochberg, 1995)
for multiple-testing adjustment were adopted in moderated t-test
to identify differentially expressed genes. The genes with adjusted
p-value less than 0.05 were selected as differentially expressed
genes, which represent the ones at one or more time points with
a gene-specific difference accounting for the difference at time
0. Then Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways and Gene Ontology (GO) enrichment analysis were
performed for function annotation on WebGestalt (Wang et al.,
2013), and FDR < 0.01 was used as the threshold to examine
significant results.

RESULTS

Generation of Neural Development
Model in vitro
To study the effect of SHANK3 loss of function on
neurodevelopment, we generated iPSC-derived neural
development model in vitro with two-inhibitor culture system

(Dorsomorphin and SB4315242) and collected neural cells for
knockdown efficiency or morphology analysis at multiple time
points (days 3, 7, 9, 14, 21, and 28). The iPSC were induced into
neural progenitor cells (NPC), which were cultured in floating,
and then differentiated into neurons on coverslips. The 1st day
of induction on coverslip was defined as day 0 (D0).

The human iPSC used in this experiment were stained
positive with specific iPSC marker proteins (OCT4 and SSEA4)
(Figure 1A) and specific neural stem cells marker proteins
(SOX2, nestin) (Figure 1B), indicating that the cells have the
potential of differentiating into neurons. NPC were directly
plated on glass coverslips coated with rat glial cell feeder layer and
Matrigel in 24-well plates for sample collection in different time
points. The neuron-specific marker protein TUJ-1, Tau-1, Map2,
deep layer cortical neuron marker protein TBR1, and subtype
neuron marker protein VGLUT1, GABA, TH were detected
by immunohistochemistry (Figure 1C and Supplementary
Figure S1). The results showed that neurons derived from
iPSC could be differentiated into multiple CNS neuron types,
reflecting a highly induction efficiency (estimated > 90%) using
our method. We have further quantified that in this in vitro
induced neural model, the proportion of glutamatergic neurons is
about 10.7%, dopaminergic neurons is about 17.3%, GABAergic
neurons is approximately 54.9%.

SHANK3 expression pattern data from Allan Brain Institute
pointed to abundant expression in the developing brain at
very early development stage1 (Supplementary Figure S2A),
that is consistent with our Western blot result of SHANK3
(Supplementary Figure S2B). We also found that expression
of SHANK3 emerged in early neuronal development stages (P0-
7), and continue to increase into young adulthood (P42). This
increased levels of SHANK3 protein may reflect the time course
of cortical synapse maturation (Supplementary Figures S2A,B).

Morphological Effects of SHANK3
Knockdown on Neurodevelopment
We have generated two sets of neural induced model from
two separate iPSC lines in this whole project, and we used
one clone of each line to collect data for morphology
analysis (Supplementary Figure S3). To knockdown SHANK3
expression in NPC, we infected NPC with shRNA-based
lentivirus against SHANK3 or with a control lentivirus, here
after referred as shSHANK3 and shControl, respectively. RFP
signals were observed in 1 week post infection. Knockdown
efficiency was verified at multiple levels, including qRT-
PCR (Figure 2A), Western blot analysis (Figure 2B) and
immunocytochemistry staining of cultured neurons (Figure 2C).
These data suggest lentiviral-mediated SHANK3 knockdown was
highly effective.

We next investigated the impact of SHANK3 knockdown
on neurite length. Neuron morphology was traced and
reconstructed by ImageJ. Sholl analysis was used to quantify
neurite complexity. We further classified neurons into three
groups in our in vitro model, excitatory neurons (VGLUT1+),
inhibitory neurons (GABA+), and putative dopamine neurons

1http://developingmouse.brain-map.org/
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FIGURE 1 | Establishment of human iPSC model. The iPSC were induced into neural progenitor cells (NPC) and further differentiated into neurons. (A) iPSC used in
our experiment were OCT4, SSEA4 positive stain. (B) NPC induced form iPSC were SOX2, Nestin positive. (C) Neurons differentiated from NPC were TUJ-1 or
TBR1 positive, suggesting that NPC can be differentiated into multiple categories of neural cells. Scale bar: 50 µm.

(TH+) (Supplementary Figure S1). To distinguish axons
and dendrites, we used MAP2 and Tau1 antibody to co-
stain dendrites (MAP2+) and axons (Tau1+) (Supplementary
Figure S1). Neuronal morphology was constructed base on RFP
expression. We examined the effects of SHANK3 knockdown
on neurite development (e.g., length and the number of
branches) at different time points. We observed that, the
total dendrites length of VGLUT1 positive neuron decreased
significantly with SHANK3 knockdown on D14 (p = 0.0003),
D21 (p < 0.0001) (Figures 2D,E); GABA positive neuron
dendritic length decreased significantly on D9 (p = 0.0181),
D14 (p = 0.0219), D21 (p = 0.0037) (Figures 2H,I); while
TH positive neuron dendritic length decreased significantly
on D9 (p = 0.0159), D14 (p = 0.2482), D21 (p = 0.0035)
(Figures 2L,M). These results indicate that SHANK3 gene
is required for the development of neurite length in iPSC
derived human neurons.

To further assess of neurite complexity, Sholl analysis was used
to quantify neurite branches number. We observed that SHANK3
knockdown had significant effect on neurite complexity in
excitatory neurons at D21 (Figure 2F), especially on the neurite
branches number close to the cell body area within 100 microns,
while SHANK3 deficit had few effect on neurite complexity
of inhibitory neurons and dopamine neurons (Figures 2J,N).

These results indicate that SHANK3 gene is required for
the development of excitatory neuronal branches in iPSC-
derived human neurons.

We next investigated the morphological differences
following SHANK3 knockdown in iPSC-derived human
neurons, we analyzed soma and growth cone development
in shControl and shShank3 groups. We observed that soma
area of VGLUT1 positive neuron significantly decreased with
SHANK3 knockdown at D21 (p = 0.0097), the soma area of
GABA positive neurons decreased at D9 (p = 0.0254), D21
(p = 0.0108), the soma area of TH positive neurons decreased
at D9 (p = 0.0294), D14 (p = 0.0002) (Figures 2G,K,O). We
have identified TH and GABA positive neuronal soma size
in D9, as VGLUT1 antibody specifically stained excitatory
neuron at least in D14 in our study. The results indicate
that SHANK3 gene knockdown affects the development
of neuronal soma in early neuronal development of D9,
at least in GABA and TH positive neurons. In addition,
SHANK3 knockdown has a significant effect on VGLUT1
positive neuron in D21.

Next, we examined whether SHANK3 is required for growth
cone formation. We found that the area of the growth cone
significantly decreased with SHANK3 knockdown at all-time
points (days 9, 12, 15, and 21) (Figure 3). These results indicate
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FIGURE 2 | SHANK3 knockdown profoundly affects neurite length, complexity of neurite arborization and soma area. (A–C) The efficiency of SHANK3 knockdown
in iPSC-derived neurons was verified by qRT-PCR (D3, D7, and D28), Western blot (D7 and D21), and immunofluorescence staining (D28). (D,H,L)
Immunofluorescence staining of VGLUT1, GABA, TH, and MAP2 confirms generation of multiple types of differentiated neurons in our culture system. Scare bar:
50 µm. (E,I,M) Comparison of neurite length in neurons infected with shShank3 and shControl viruses. Data are shown as mean ± SEM. ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001. (D9: GABA: n = 33 control and 35 SHANK3 knockdown cells, p = 0.0181; TH: n = 33 control and 33 SHANK3 knockdown cells,
p = 0.0159); D14: VGLUT1: n = 22 control and 22 SHANK3 knockdown cells, (p = 0.0003), GABA: n = 33 control and 34 SHANK3 knockdown cells (p = 0.0219),
TH: n = 34 control and 37 SHANK3 knockdown cells (p = 0.2482); D21: VGLUT1: n = 22 control and 24 SHANK3 knockdown cells (p < 0.0001), GABA: n = 30
control and 29 SHANK3 knockdown cells (p = 0.0037), TH: n = 30 control and 30 SHANK3 knockdown cells, (p = 0.0035). (F,J,N) Analysis of the effect of SHANK3
gene knockdown on the complexity of neurite arborization. Statistical significance was evaluated by two-way ANOVA, p = 0.0038 (D21), p = 0.3765 (D21),
p = 0.6991 (D21), data are shown as mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. (G,K,O) Statistic analysis of the effect of SHANK3 knockdown on neuronal
soma area. Statistical significance was evaluated by two-way ANOVA, data are shown as mean ± SEM. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. (D21: VGLUT1:
n = 22 control and 24 SHANK3 knockdown cells, GABA: n = 30 control and 29 SHANK3 knockdown cells, TH: n = 30 control and 30 SHANK3 knockdown cells).

that SHANK3 knockdown affects the development of neuronal
growth cone area.

SHANK3 Knockdown Affects the
Electrophysiological Properties of
Developing Human Neurons
To investigate functional outcomes of SHANK3 knockdown, we
conducted whole cell patch clamp recording on RFP-expressing

neurons at 3.5 and 5.5 weeks (Figure 4). To determine if
excitatory synaptic transmission was altered in neurons with
SHANK3 knockdown, were recorded spontaneous excitatory
post-synaptic currents (sEPSCs). We found that the frequency of
sEPSC from SHANK3 knockdown neurons was reduced relative
to control neurons at 3.5 and 5.5 weeks (Figure 4C). In addition,
spontaneous inhibitory post-synaptic currents (IPSCs) were
recorded to determine the effect of SHANK3 down-regulation in
inhibitory synaptic transmission. We found that the frequency of
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FIGURE 3 | The effects of SHANK3 knockdown on neurons growth cone area. (A) Representative images of the growth cones of shControl and shSHANK3
transduced neurons. Scare bar: schematic diagram 50 µm; enlarged area 5 µm. (B) Analysis of the effect of SHANK3 knockdown on the growth cone area of
neurons. Statistical significance was evaluated by two-way ANOVA, date are shown as mean ± SEM. ∗p < 0.05, ∗∗p < 0.01. (D6: n = 57; D9: n = 67 control and 62
SHANK3 knockdown cells; D12: n = 64 control and 63 SHANK3 knockdown cells; D15: n = 65 control and 61 SHANK3 knockdown cells; D21: n = 67 control and
64 SHANK3 knockdown cells; D28: n = 65).

sIPSC recorded from SHANK3 knockdown neurons was reduced
relative to control neurons at 3.5 and 5.5 weeks (Figure 4D).
Taken together, these results suggest that both excitatory synaptic
transmissions and inhibitory synaptic transmission are impaired
in neurons with SHANK3 knockdown.

Next, we investigated sodium currents threshold (INa). The
results showed that neurons with SHANK3 knockdown exhibited
an increase in the threshold of sodium currents at 3.5 weeks and
increased significantly (p = 0.2245) relative to control neurons
at 5.5 weeks (Figure 4F), suggesting that down-regulation of
SHANK3 may extensively alter receptors for neurotransmission
and voltage gated ion channels.

Effects of SHANK3 Knockdown on
Transcriptome Regulation
We first examined the overall similarity between samples by
using hierarchical clustering. It can be seen from the heatmap
(Figure 5A and Supplementary Figure S8) that samples from the
same measurement time points were clustered together regardless

of the SHANK3 knockdown status. These results indicate that
time exerted more important influence in determining gene
expression variation comparing with SHANK3 knockdown.

Next, differentially expressed genes were estimated
between SHANK3 knockdown and control groups across
four measurement time points (Supplementary Table S1). The
main question is whether SHANK3 knockdown can alter gene
expression over time and which genes would show this gene-
specific differences. Considering the correlation of the response
variable among different measurement time points and batch
effects from two different experiments, we designed a generalized
linear model with independent variables of batch, time, SHANK3
knockdown and an interaction term with SHANK3 and time.
By testing the interaction term with likelihood ratio test, we
identified 1576 differentially expressed genes (Supplementary
Figure S5) over time with adjusted p-value less than 0.05
(p-adj < 0.05). Among those overall differentially expressed
genes, 1078 genes showed significant difference at day 28, which
can be seen obviously in the heatmap of differentially expressed
genes (Figure 5B). The down regulated expression level of
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FIGURE 4 | The effects of SHANK3 gene knockdown on neurons function. (A) RFP-expressing cell visualized under differential interference contrast microscopy.
(B) Sample recordings of sEPSC (top panel) and sIPSC (bottom panel). (C) Averaged frequency of spontaneous EPSCs at 3.5 and 5.5 weeks in culture (3.5 weeks:
n = 17 control and 12 SHANK3 knockdown cells; 5.5 weeks: n = 11 control and 15 SHANK3 knockdown cells). (D) Averaged frequency of spontaneous IPSCs
(3.5 weeks: n = 10 control and 7 SHANK3 knockdown cells; 5.5 weeks: n = 15 control and 13 SHANK3 knockdown cells). (E) Illustration of sodium currents elicited
by voltage step commands. (F) The threshold of sodium currents (3.5 weeks: n = 19 control and 12 SHANK3 knockdown cells; 5.5 weeks: n = 15 control and 15
SHANK3 knockdown cells). ∗p < 0.05. (G) Synapse number changes following SHANK3 knockdown: PSD95 (GFP) and Synapsin I (RFP) co-staining showed the
synaptic puncta was reduced after SHANK3 knockdown (n = 21, ∗∗∗∗p < 0.0001).

SHANK3 gene and 9 genes with smallest p-adj values are shown
in Supplementary Figure S5.

Next, we examined whether these top differentially expressed
genes shared common pathways or functional categories. We
performed over representation enrichment analysis for pathways
and gene ontology (Supplementary Figure S4). The results
showed that SHANK3 down-regulation led to hippo signaling
pathway (Hsa04390, FDR = 1.33e-05) and focal adhesion
(Hsa04510, FDR = 1.84e−08) abnormalities. In addition, terms

in GO analysis including neuron projection development (GO:
0031175, FDR = 0e+00, BP), regulation of neurogenesis
(GO: 0050767, FDR = 0e+00, BP), central nervous system
development (GO: 0007417, FDR = 0e+00, BP), focal adhesion
(GO: 0005925, FDR = 1.2e−09, CC) and calcium ion binding
(GO: 0005509, FDR = 4.7e−11, MF) were significantly enriched
(Table 1). These transcriptome data, in combination with the
morphological and functional alternations, suggest SHANK3
has a previously uncircumscribed role in developing neurons
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FIGURE 5 | Heatmap of differentially expressed genes associated with SHANK3 loss of function. (A) Euclidian distances were used for constructing sample distance
matrix. After eliminating batch effect that would separate the samples from two different experiments apart, samples measured at the same time points were
clustered together over influence of gene knockdown. (B) Heatmap for 1576 differentially expressed genes (p-adj<0.05) over time. It can be seen obviously that the
expression difference mainly occurred at day 28.

in addition to its function as a postsynaptic scaffold protein
in mature synapse.

DISCUSSION

In this study, we investigated the impact of SHANK3 loss
of function in neurodevelopment by combining morphology,
electrophysiology and transcriptomics analyses in neurons

derived from iPSC. SHANK3 is a PSD components of
glutamatergic synapses that plays a key role in excitatory
synaptic transmission in adult brain (Rubeis et al., 2018).
There is strong indication that SHANK3 gene mutations
or variations are associated with increased autism risks,
SHANK3 point mutations, truncations, and disruption by
chromosome translocation have been all reported in ASD
cases (Durand et al., 2007; Gauthier et al., 2009; Sykes et al.,
2009; Peca et al., 2011; Boccuto et al., 2013). Consistently, mice
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TABLE 1 | Affected signaling pathways and gene ontology categories.

GO Name FDR Observed counts Expected counts Enrichment ratio P-value

Has:04390 Hippo signaling pathway 1.33e−05 32 11.84 2.7 1.32e−07

Has:04510 Focal adhesion 1.84e−08 45 16.16 2.78 1.21e−10

GO:0031175 Neuron projection development 0e+00 132 62.24 2.12 0e+00

GO: 0050767 Regulation of neurogenesis 0e+00 119 51.79 2.3 0e+00

GO:0007417 Central nervous system development 0e+00 143 68.37 2.09 0e+00

GO: 0005925 Focal adhesion 1.2e−09 60 23.7 2.53 2.34e−11

GO:0005509 Calcium ion binding 4.7e−11 106 49.32 2.15 2.6e−14

mutant for SHANK3 display multiple neurological deficits
including compulsive and repetitive behaviors, that are associated
with deficits in corticostriatal circuits (Peca et al., 2011;
Xiaoming et al., 2011; Bariselli et al., 2016; Sebastiano and
Camilla, 2016; Zhou et al., 2016; Bariselli and Bellone,
2017; Jin et al., 2018). However, the molecular targets of
SHANK3 that are causally linked to the ASD-like behavioral
deficits, and how disruption of SHANK3 derails the normal
neurodevelopmental trajectory in human brain remain largely
unclear. In this study, we took advantage of an iPSC neuron
induction model, and used shRNA to induce SHANK3 loss of
function to investigate the neurodevelopmental role of SHANK3
protein in human neurons. Consistent with previous reports
(Durand et al., 2012), we found that synapse numbers were
reduced, and synaptic transmissions are impaired in SHANK3
knockdown neurons.

It’s worth noting that SHANK3 protein expressed in early
developing stage from NPC to mature neuron based on
our qRT-PCR and Western blot results. This is consistent
with the curated data on the Allen Brain Atlas, which
show that SHANK3 mRNA is abundant (Supplementary
Figure S2). This early SHANK3 expression suggests a
functional role in developing neuronal morphology and
emergence of function, in addition to being a postsynaptic
scaffold protein at the mature glutamatergic synapses at
later developmental stages. We also found that SHANK3
deficiency affects the morphology at early development
stages, before the synaptic transmission are established
and mature. Our results show that SHANK3 knockdown
reduces dendritic arborization in three major types of
differentiated neurons (glutamatergic/GABAergic/dopamine).
We also found that the soma size and growth cone area of
glutamatergic/GABAergic/dopamine neuron were reduced
as a result. We further confirmed SHANK3 protein did
localize in dendrite and soma by immunofluorescence staining
experiments. A few previous studies have reported that SHANK3
localization in neuron soma, dendrite, growth cone (Du et al.,
1998; Boeckers et al., 2002; Durand et al., 2012; Halbedl
et al., 2016) and the dendritic deficits (Durand et al., 2012)
following SHANK3 deficiency in human neurons. SHANK3
protein is found to be located at the tip of actin filaments
and promotes growth cone motility in developing neuron
by enhancing actin polymerization (Durand et al., 2012;
Halbedl et al., 2016). A de novo SHANK3 mutation in the
ankyrin domain (Q312R) is associated with growth cone

formation and motility in animal models (Durand et al.,
2012; Kathuria et al., 2018). Kathuria et al. (2018) uncovered
the SHANK3’s critical role in neuronal morphogenesis and
the early defects which are associated with ASD-associated
mutations. Our data are consistent with previous studies.
Morphology analyses indicates strong correlation between
SHANK3 knockdown and dendritic branching abnormalities;
neuron soma area, neurite number and length, complexity of
neurite arborization and growth cone area are all significantly
affected by SHANK3 knockdown.

Another important finding from this study is that SHANK3
knockdown changes the transcriptome landscape across the
time course of neural development. We identified genes with
temporal changes of expression patterns across four time
points between control shRNA and the shSHANK3 groups,
and performed pathway enrichment analysis. We showed that
even in early stage, the development-associated pathways can
be affected by SHANK3 knockdown, which is consistent with
the observed abnormality of neuronal morphology following
SHANK3 knockdown in early stage of neurodevelopment. The
PI3K associated pathway has been enriched in transcriptome
analysis in our study, which also support the hypothesis
that SHANKs mutation serves to cross-link further disease
related signaling cascades (mTOR/PI3K). Altogether, these
results indicate that SHANK3 has a previously unappreciated
role in early neuronal development, in addition to its well
established functional role as a postsynaptic scaffold protein in
the mature synapse.

Our electrophysiology results are generally consistent with
the morphological findings. We found that both excitatory
synaptic transmissions and inhibitory synaptic transmission
are impaired in SHANK3 knockdown neurons. However,
the underlying mechanism of the synaptic transmission
impairment in SHANK3 knockdown neurons should be
investigated in future studies. Taken together, our study
show SHANK3 loss of function profoundly derails the
developmental trajectory of human neurons. Many functional
domains of neural development are impaired, including
dysplasia of neuronal soma, stunted neurite and growth
cone, and altered of transcriptome. These changes suggest
SHANK3 loss of function as an intrinsic, cell autonomous
factor that impairs cellular development in human neurons
both in early and in mature stages, which may account
for the brain pathological changes in neurodevelopmental
diseases such as ASD.
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FIGURE S1 | Expression of MAP2 (GFP), Tau1 (RFP), VGLUT1 (GFP), GABA
(GFP), and TH (GFP) in D28 neurons in our in vitro model, further supporting
successful differentiation into various mature neuron types.

FIGURE S2 | Expression of SHANK3 mRNA and protein at very early
developmental stages in mouse brain. (A) SHANK3 mRNA is abundantly
expressed in the developing brain at early development stage (source: Allen Brain
Atlas). (B) SHANK3 protein can be detected by Western blot in developing mouse
cortex tissues as early as P0, but increase as the brain matures.

FIGURE S3 | Two sets of neural induced model from two separate iPSC lines
have been generated in this whole project, and we used one clone of each line to
collect data for morphology analysis. Both of these two clone showed significant
decrease on dendritic length and soma size after SHANK3 knockdown.
Comparison of neurite length in another iPSC line neurons infected with shShank3
and shControl viruses. Morphology reconstructed with ImageJ, statistical
significance was evaluated by T-test, data are shown as mean ± SEM. ∗p < 0.05.
(A) D9: GABA: n = 35 control and 33 SHANK3 knockdown cells, (p = 0.0037); (B)
D9: TH: n = 30 control and 31 SHANK3 knockdown cells, (p = 0.0340);
(C) Detailed Vector Map of the pTRIPZ lentiviral vector.

FIGURE S4 | Bar charts of gene ontology function categories.

FIGURE S5 | Effects of SHANK3 knockdown on gene expression levels.
Expression level were transformed into log10 scale. Green lines represent
SHANK3 knockdown group and red lines represent control group. (A) Expression
level of SHANK3 gene over time between knockdown and control group. (B)
Expression level of top 9 genes with smallest p-adj values.

FIGURE S6 | RNA sequence data MA plot. Each dot represents a gene. X-axis is
the average expression over all samples. Y-axis is the log2 fold change between
SHANK3 knockdown and control group. Genes with FDR<0.01 are shown in red.
This plot demonstrates that only genes with a large average normalized count
contain more information to yield a significant call.

FIGURE S7 | Dispersion estimation plot for raw counts data. The dispersion fit is
an exponentially decaying curve where dispersion decreased as the counts
increased of all genes. Each black point represents the dispersion estimates for
each gene across all the eight samples. The red line is fitted trend line, which
shows the dispersions’ dependence on the mean. Blue points are the final
estimates from black points shrunk to the red fitted line. The blue circles are genes
which are labeled as dispersion outliers and are not shrunk toward the fitted trend
line. X-axis is the average expression over all eight samples. Y-axis is the
dispersion value. The dispersion fit for all genes is an exponentially decaying curve
where dispersion decreased with the mean of normalized counts.

FIGURE S8 | The list of top 150 differentially expressed (DE) at each time point
between the knockdown and control samples.

TABLE S1 | Differential expression between SHANK3 knockdown and
control groups.
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