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Connectivity and biophysical processes determine the functionality of neuronal networks.

We, therefore, developed a real-time framework, called Neural Interactome1,2, to

simultaneously visualize and interact with the structure and dynamics of such networks.

Neural Interactome is a cross-platform framework, which combines graph visualization

with the simulation of neural dynamics, or experimentally recorded multi neural time

series, to allow application of stimuli to neurons to examine network responses. In

addition, Neural Interactome supports structural changes, such as disconnection of

neurons from the network (ablation feature). Neural dynamics can be explored on a single

neuron level (using a zoom feature), back in time (using a review feature), and recorded

(using presets feature). The development of the Neural Interactome was guided by

generic concepts to be applicable to neuronal networks with different neural connectivity

and dynamics. We implement the framework using a model of the nervous system

of Caenorhabditis elegans (C. elegans) nematode, a model organism with resolved

connectome and neural dynamics. We show that Neural Interactome assists in studying

neural response patterns associated with locomotion and other stimuli. In particular,

we demonstrate how stimulation and ablation help in identifying neurons that shape

particular dynamics. We examine scenarios that were experimentally studied, such as

touch response circuit, and explore new scenarios that did not undergo elaborate

experimental studies.

Keywords: C. elegans, brain simulation, connectome, neural dynamics, network visualization

INTRODUCTION

Modeling neuronal systems involves incorporating two modeling layers. The first fundamental
layer is of neuronal connectivity (connectome). The layer on top of it is of biophysical processes
of neural responses and interactions. In the recent years there has been significant progress in
resolving and modeling both layers. Connectomes of several organisms and systems, such as the
nematode Caenorhabditis elegans (C. elegans), the Drosophila medulla, the mouse retina, mouse
primary visual cortex, and others have been fully or partially mapped on various scales: frommacro
to single neuron level (White et al., 1986; Open Connectome Project, 2010; Van Den Heuvel and
Pol, 2010; Bock et al., 2011; Briggman et al., 2011; Haspel and O’Donovan, 2011; Varshney et al.,
2011). Also, decades of research in describing and modeling biophysical processes have provided
both experimental and computational foundations for modeling single neuron dynamics as well

1Web interface available at http://neuralcode.amath.washington.edu/neuralinteractome
2Source code available at https://github.com/shlizee/C-elegans-Neural-Interactome
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as synaptic and electric processes between neurons (Koch
and Segev, 1988; Wicks et al., 1996; Letinic et al., 2002;
Koch, 2004; Söhl et al., 2005; Briggman et al., 2006; Skinner,
2012; Druckmann et al., 2014; Kunert et al., 2014). Due to
these advances, models incorporating both layers have become
more detailed and realizable for several neuronal systems.
These models are called Dynomes as they correspond to
dynamical system acting on top of the static connectome
(Kopell et al., 2014).

Being closer to the realistic neuronal system, dynome studies
have more potential to reveal neural pathways and functionalities
of the network (Bargmann and Marder, 2013; Sporns and
Bullmore, 2014; Liu et al., 2018). However, they also introduce
challenges in finding appropriate methods for efficient studies of
network capabilities (Mucha et al., 2010). Brute force approaches
will typically produce formidable amounts of data, where
extraction or characterization of relevant neural patterns can be
cumbersome and time consuming. For that reason, collaborative
initiatives such as Brian introduced generic simulation engines
for neural dynamics and the OpenWorm project (incorporating
Geppetto engine) suggested to apply generic neural models to
C. elegans (Goodman and Brette, 2008, 2009; Raikov and De
Schutter, 2012; Szigeti et al., 2014; Chen and De Schutter, 2017;
Cantarelli et al., 2018; Sarma et al., 2018). Such frameworks are
advantageous and allow flexibility to simulate various dynamics
on top of generic connectomics.

Here, we have taken a complementary approach. We focus
on efficient simulation of the established connectome of C.
elegans somatic nervous system in conjunction with established
biophysical dynamics. We have accompanied the simulation
with interpretable visualization of dynamics-connectomics. The
visualization is designed in such a way that it incorporates
real-time interactive capabilities to investigate architecture and
observe neural activity at the same time. Such a framework
allows for a new way of investigating and simulating neuronal
systems and as far as we know has not been introduced for
any dynamic network, in particular nervous systems models.
In such a framework, the necessary components are (i) ability
to apply or modify stimuli to the network in real-time as in
experiments; (ii) being able to observe the neural dynamics
on various time and population scales, and (iii) allow for
network structural changes. Furthermore, the framework is
expected to perform seamless integration for such functions
and include review capabilities for exploration of the system
and dynamics in depth. In this work, we thereby develop
the Neural Interactome, which is a generalized visualization
framework incorporating such capabilities. The framework
employs a graph visualization layout to represent the static
connectome. On top of the layout, it incorporates dynamic visual
components to represent real-time neural responses according
to user interactions. These components are implemented via
synchronization between the backend neural integrator of the
dynome and the graph layout of the interactive interface. The
backend neural integrator is connected to neurons stimuli
panel, and permits setting external stimuli and changing
the structure of the graph on demand. The framework also

includes real-time plotting of neural activity as well as review,
preset and save modes that allow for further exploration of
simulated dynamics.

In this paper, we focus on applying the framework to the
nervous system of C. elegans nematode, which consists of 302
neurons with three types (sensory, inter, motor). Such a system
is thus relatively small to be fully reconstructed and analyzed.
Indeed, the near-complete connectome of the nervous system has
been resolved using serial section electron microscopy (White
et al., 1986; Chen et al., 2006; Varshney et al., 2011). The
connectome data includes enumeration of neural connections for
the complete somatic nervous system (279 neurons) of synaptic
type, where GABAergic neurons make inhibitory synapses, and
glutamergic and cholinergic neurons form excitatory synapses.
The connectome also enumerates gap junctions (electrical
connections) for each pair of neurons. The connectome data is
robust, since C. elegans neurons are recognizable and consistent
throughout individual worms (White et al., 1986). Furthermore,
C. elegans synaptic and gap connections are common across
animals with more than 75% reproducibility (White et al., 1986;
Durbin, 1987; Hall and Russell, 1991; Bargmann, 1993). In
addition to the anatomical structure of the nervous system,
biophysical in-situ recordings of membrane voltage response
to input current injected into each individual neuron in the
network have been performed (Wicks et al., 1996; Goodman et al.,
2012). These revealed that C. elegans neurons are of non-spiking
type with graded potential membrane voltage profile (Goodman
et al., 1998). Following these studies, a set of mathematical
models describing neural membrane voltage and interaction
between the neurons were developed (Goodman et al., 1998;
Kunert et al., 2014).

The availability of near-complete connectome data along
with experimental quantification of responses and interactions
provided a computational basis for reconstructing both static
and dynamic layers of C. elegans neuronal network. Combination
of these two layers was recently developed (Kunert et al.,
2014). When applied with prescribed input stimuli, C. elegans
dynome was capable of producing various forms of characteristic
dynamics such as static, oscillatory, non-oscillatory and transient
voltage patterns (Kunert-Graf et al., 2017). These dynamics
indicated that C. elegans dynome is a valuable model for the
worm’s nervous system, and patterns observed are suggested
to be consistent with the experimentally observed ones. In
particular, stimulation of sensory PLM neurons with constant
current resulted in a two-mode dominant oscillatory behavior
in forward locomotion motor neurons (Kunert et al., 2014).
The model is expected to include a variety of other additional
patterns, however, their full validation is formidable to perform,
as it requires many simulations with various stimuli amplitudes
and combinations. For instance, in the context of touch response,
it would be valuable to examine stimulation of ALM and
AVM sensory neurons, which in experiments was identified
as associated with anterior touch response and expressed as
backward crawling (Chalfie et al., 1985; Driscoll and Kaplan,
1997). Furthermore, transitions from one type of dynamics
to another (e.g., from oscillatory to non-oscillatory) are also
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expected to exist when input stimuli shift from one value to
another. It is thereby introduction of a framework that facilitates
these studies can assist in such goal.

DESIGN AND IMPLEMENTATION

Wefirst describe themain components of theNeural Interactome
framework, and then continue to demonstrate its application to
the nervous system of C. elegans worm for stimulation scenarios.

INTERACTIVE INTERFACE FOR
NEURONAL NETWORK

The frontend of Neural Interactome is an interactive interface
consisting of (i) neural stimulation/ablation interface,
(ii) visualization of dynamics, (iii) control of simulation
timescale, and (iv) review system.

Neural Stimulation and Ablation
Neural stimuli are controlled by stimulation panel located on
the left side of the screen. The panel enslists and categorizes all
neurons in the network into three group types (sensory, inter,
motor). Each group type is given a characteristic color (sensory:
blue, inter: green, motor: red). Each individual neuron on the
panel is a clickable button with a scrollable bar, which allows
setting amplitudes of constant stimulus, i.e., inject current to
the neuron (of nA nano-ampere unit). The amplitude of the
stimulus can be adjusted prior to running a simulation (as initial
condition), or at any time during the simulation. When stimulus
is being adjusted during the simulation, it effectively imitates
“clamping” of neurons in the network. In addition, to allow
for testing various structural configurations for the network,
the panel is designed to support neural ablation of neurons. By
clicking on a neuron while holding the shift key, the neuron
is grayed-out in the interface. Such operation disconnects the
neuron from all of its respective connections (both receiving
and outgoing) in both synaptic and gap type and thus effectively
removes it from the network. The ablation can also be undone
(reinsertion) by repeating the operation of shift key + clicking
on the ablated neuron. Similar to neural stimulation, both
ablation and reinsertion can be performed prior and during
network simulation.

Dynome Visualization
Connectivity Representation
Visualization of the dynome is on the right side of the interactive
interface, with the connectome of the network represented as
a graph (Figure 1). The nodes of the graph represent neurons,
whereas the edges represent connections (either gap or synaptic)
between each pair of neurons. The top panel of Figure 2 shows C.
elegans’ synaptic connectome (left) as well as its gap connectome
(right), where each node represents an individual neuron and
colored according to its group type. Initially, prior to displaying
the dynome dynamics, the radii of the nodes are set according
to in/out synaptic degree of the respective neuron (i.e., the
amount of synaptic connections of a neuron). Such visualization
emphasizes neurons with higher degree (hub neurons) by

displaying them with larger radius and de-emphasizes neurons
with lower degree with smaller radius. The width of the edge
between a pair of neurons is set according to maximum synaptic
weight, such that for a pair of neurons A and B, widthedge(A,B) =
max(nSyn(A→B), nSyn(B→A)), where nSyn(A→B) is the number of
synapses from neuron A to B.

In addition, we use force-directed graph algorithm to arrange
the nodes and edges in optimal positions (Bostock et al., 2011).
The algorithm visualizes graphs by assigning forces to nodes
and edges based on their relative positions and routings. For
edges, spring-like attractive forces based on Hooke’s law are
used to attract pairs of endpoints toward each other. For the
nodes, repulsive forces, e.g., Coulomb’s law forces, are used
to separate all pairs of nodes. Once forces are assigned, the
algorithm minimizes the total energy potential of the system
(i.e., equilibrium states for the system of forces) and displays
optimal nodes and edges configuration. In this representation,
the edges tend to have uniform lengths (due to spring forces)
and the nodes not connected by an edge tend to be drawn further
apart (due to repulsive forces) (Kobourov, 2012). We found such
graph visualization more advantageous for neuronal networks
than the anatomy based visualization method as it: (i) keeps
approximately equal lengths for all neuron’s connections thus
avoiding “clumps” of neurons in one region, and (ii) arranges the
nodes such that neurons that make connections with a particular
neuron are found within its proximity. We also found that due
to these properties, the configuration depicts the network in an
intuitive way, by grouping the same type of neurons together
(e.g., many of themotor neurons are clustered together on the left
of the graph) and places the neurons with high synaptic degrees
in themiddle. To keep the same frame of reference, force-directed
representation is pre-computed before the simulation such that
the positions of the nodes remain constant at all times.

Neural Activity Visualization
Neural activity is represented as an additional layer on top of
the static connectivity graph. We find that optimal approach
to visualize the two layers is to alter graph components
(nodes and edges) according to neural activity. This creates
a “breathing graph” which represents network activity and
structure in real-time. In particular, we propose dynamic
change to radii and colors of the nodes to depict neural
activity. Changes are typically noticeable when the visualized
variable representing the activity is continuous and scaled. In
addition, it is beneficial that the visualized variable will have
a continuous and interpretable meaning. Notable candidates
for such variables are SR calcium activation dynamics or
instantaneous firing rates (peri stimulus time histograms PSTH)
(Palm et al., 1988; Schatzmann, 1989; Egelman and Montague,
1999). SR calcium activation is a scalable continuous process
representing transformation of membrane voltage dynamics
(spiking, bursts separated by near-silent interburst periods,
and graded voltage potentials) to an activation variable. It
serves as a vital biophysical signal associated with activation
of muscle activity (McMillen and Holmes, 2006). In addition,
several recording techniques quantifying neural dynamics are
capable to measure and monitor SR calcium activity and
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FIGURE 1 | Interactive interface for Neural Interactome. Left panel enlists all the neurons classified by type (sensory, inter and motor). Each neuron is a clickable

button with a scroll option. Scrolling adjusts the magnitude of constant stimulus; shift + click ablates the neuron from the network. Right: Force-directed graph

displays each neuron’s membrane voltage (node color denotes the sign; radius denotes the magnitude) and connections between neurons (edges between each pair

of nodes). At the bottom of the graph, time bar keeps track of visualized time point (dark gray), and of computed time by the backend neural integration (light gray).

can be directly compared with the visualization. The PSTH
variable is computed from spiking dynamics and represents
a spike count over a sliding window in time (Dayan and
Abbott, 2001). Such a measure is applied to both measurements
of spiking membrane voltage or a computational model
that produces spike trains. PSTH is a continuous and
scaled measure widely used for identification, classification
and recognition of response patterns associated with stimuli
(Riffell et al., 2014; Shlizerman et al., 2014).

To visualize these activity variables we propose to alter the
radius and the color of the nodes. When the variable is a signed
number (as in SR calcium activation) we use the radius to
represent variable’s amplitude and assign a color map to represent
its sign. When the variable is unsigned, as in the case of PSTH,
only one node component (either color or radius) is needed
to represent its amplitude, and the other component can be
utilized for visualization of additional information such as spike
times. For example, when the radius is used to depict the PSTH
amplitude, color flickering can be used to display the occurrence
of spikes.

For C. elegans network we transform membrane voltage to
SR calcium like activation variable to represent neural dynamics.
In particular, membrane voltages, computed by backend neural
integrator, described further in “Backend Neural Integration”, are

translated to the following metric of radius size according to:

|Ri| =
Rmax |Vi|

2

ρ + |Vi|
2

(1)

sign (Ri) = sign(Vi)

where Rmax is the maximum radii of the nodes and ρ is the
slope factor. The sign of Ri is determined by the sign of the
voltage Vi. Such scaling of membrane voltages allows discerning
active neurons at each given time without having to visualize the
raw voltages. While in C. elegans membrane voltages are graded
potentials, similar scaling accommodates other diverse types of
neural activity, e.g., bursts, oscillations, etc (Rahmati et al., 2016).

Observing the colors and radii scaling over time allows to
visually capture the unique patterns of dynamics on a population
level, specifically oscillations, sudden bursts, settling down of
dynamics. For example, when a population of neurons exhibit
oscillations, colors will distinguish representatives of particular
groups that are active and dynamically change their tones to
display the fluctuation between positive and negative voltages.
Indeed, for C. elegans network we show how we can identify
oscillatory sub circuits of motor neurons, which fluctuate from
negative to positive values over the period of 2 sec, upon
stimulation of PLM touch sensitive sensory neurons. To further

Frontiers in Computational Neuroscience | www.frontiersin.org 4 March 2019 | Volume 13 | Article 8

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Kim et al. Neural Interactome

aid the investigation, the interface displays a plot of neuron’s
membrane voltage over time when the user hovers over a node.

Simulation Timescale
We implement the simulation timescale to be typically slower
than the actual time in order to: (i) balance computations
performed by the backend, and (ii) allow users to capture the
details of the dynamics, as visualization in actual timescale
tends to happen quickly. We also design the timescales of the
stimulations to be dynamic, such that during stimuli transition or
neural ablation, running time temporarily slows down to capture
the dynamics that occur during the transition.

On the bottom of the interface we locate the time bar, which
serves as the interface to interact with the timescales of the
visualization (Figure 1). It consists of two bars; the dark gray
bar shows the current time in visualization, while the light
gray bar shows the computed time by the backend. We have
developed the time bar to be similar to a streaming bar, which
is widely implemented in popular video-hosting websites such as
YouTube, and provides the interface to our review system, as we
describe next.

Review System
The review system allows for isolating various time and
population scales for further analysis (Figures 2D). Using the
time bar, we add the ability to navigate back to any previously
computed time by clicking on a desired time point within the
time bar (analogous to navigating back and forth while playing
a video). In such a case the network along with the dark gray bar
are set to the state at the selected time point. Time navigation
can be done either during simulation or when simulation is
paused. In the former, the simulation will continue onward from
the selected time point while for the latter, it will display the
paused dynamics at that time point. In addition, we assign left
and right arrow keys on the keyboard to control visualization
speed (Fast FWD and Fast BWD). When activated during
simulation or paused, the left and right arrow keys increase
visualization speed while browsing through the dynamics in
both directions.

An additional component of the review system is the dynamic
zoom-in/out feature, which focuses into sub circuits within the
network at any time during the simulation. It is implemented by

FIGURE 2 | Visualization and main functionalities of Neural Interactome. (A) Force-directed graph visualization of C. elegans worm’s synaptic (chemical, left) and gap

(electrical, right) connectomes. Each node represents individual neuron colored according to its group type and edges represent connections (either synaptic or gap).

(B) Schematics of Neural Interactome real-time stimulation and integration component; when user stimulates a neuron with the interface, the backend integrator

computes membrane voltages in response to the stimuli, which are then visualized on the graph in respect to their signs and magnitudes. (C) Neural ablation is

performed by clicking on the neuron, while holding the shift key. Ablation disconnects all the connections of the neuron (both gap and synaptic). (D) The review system

implements a clickable time bar to allow navigation to any previously computed time point in the simulated dynamics. This is further enhanced with dynamics

zoom-in/zoom-out feature designed for in-depth analysis of connectivity structure and local dynamics of sub-circuits.
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uniformly scaling the lengths of the edges and keeping the nodes
radii the same. Effectively, such amethod is optimal for observing
a small group of neurons, as it increases the spacing between
nodes and displays local sub circuit connectivity structure and
dynamics (Figure 2D). Hovering with a mouse over a neuron
will also highlight the connections it makes to neighbor neurons,
and will display their labels categorized in different group
type colors.

In addition, features such as “presets” and “save dynamics” are
implemented as part of the review system. Presets allow users
to save configurations of neurons stimuli panel whereas save
dynamics stores the voltage time series data for all neurons during
a single session as a file. Presets can be used to save stimuli
configuration, ablation configuration, or both, whereas save
dynamics can be used to perform detailed analysis/comparison
with the experiments against the simulated dynamics. To
create a preset, one can enter the name of the preset above
the neurons stimuli panel while the panel is configured to
desired setup (Figure 1) and click SAVE button. Upon exiting
or resetting the interface, save dynamics will automatically
save the time series data in npy file format (compatible with
Python NumPy library) in “saved_dynamics” folder within the
software directory.

BACKEND NEURAL INTEGRATION

Backend neural integration computes neural activity for the
whole network for a time interval [t, t + 1t] and transmits
these values to the interactive interface for visualization. In
C. elegans, the integrator is solving a system of non-linear
ordinary differential equations with 558 dimensions (279 for
neurons voltage and 279 for synaptic variables) that model the
biophysical processes and interactions between neurons. Such
high dimensional ODE system is not computationally trivial,
thus we implement an efficient vectorized adaptive solution.
Specifically, the following equations are being integrated (see
Kunert et al., 2014 for more details):

C
dVi

dt
= −Gc (Vi − Ecell) − I

Gap
i

(

Ṽ
)

− I
Syn
i

(

Ṽ
)

+ IExti (2)

I
Gap
i

(

Ṽ
)

=
∑

j

G
g
ij(Vi − Vj) (3)

I
Syn
i

(

Ṽ
)

=
∑

j

Gs
ijsj(Vi − Ej) (4)

dsi

dt
= ar8(Vi; β, Vth) (1− si) − adsi (5)

8(Vi; β, Vth) =
1

1+ exp(−β (Vi − Vth))
(6)

Where C is the cell membrane capacitance, Gc is the cell
membrane conductance, Ecell is the leakage potential, and

I
Gap
i (Ṽ), I

Syn
i

(

Ṽ
)

, and IExti each correspond to input current
contributed by gap junctions, synapses, and external input
stimuli. G

g
ij and Gs

ij each correspond to total conductivity of

gap junctions between i and j and maximum total conductivity
of synapses to i from j, where Gs

ij is modulated by synaptic

activity variable si. The synaptic activity variable is governed
by Equation (5), where ar and ad correspond to the synaptic
activity rise and decay time, and 8 is the sigmoid function
with width β. The equations are based on in-situ recordings
of membrane voltage indicating that neuron responses are
graded potentials and hence better fit to describe the voltage
dynamics than standard multi-compartmental spiking neural
activity models.

While C. elegans neural activity is expressed through graded
membrane potential, for other systems, especially systems in
which neural activity is expressed through fast spiking, factors
such as synaptic transmission delays due to finite propagation
speeds and time lapses could appear and impact the network
dynamics (Guo et al., 2012, 2016). Mathematically, such delays
can be incorporated by introducing autaptic inhibition term
Iaut(t) of form:

I
syn
i (t) =

∑

j

gautij sij(t)
(

Esyn − Vi

)

(7)

Where gautij is the autaptic coupling strength from neuron j

to neuron i and the corresponding synaptic variable sij(t) is
described by identical first-order model as Equation. 5 with
sigmoid function term 8d now including the transmission delay
τd as follows:

8d =
Tmax

1+ exp[−βd(Vj (t− τd) − Vth)]
(8)

Where Tmax is the maximal concentration of transmitter in
the synaptic cleft, Vj is the pre-synaptic voltage. Since the
computation of network activity is independent from the
frontend visualization, the platform allows direct incorporation
of such higher order effects.

Synchronization of Integration and
Visualization
To support real-time interaction, we implement a
synchronization procedure through a communication system
between the interface and the backend. Specifically, we use
an object ODE integrator which supports event handling and
adaptive time-stepping. This functionality allows us to establish
a robust protocol between the interface and the backend to
support interactive changes to the simulation parameters in
real-time between solution points. The protocol monitors the
following quantities: tcomputed: Computed time in the backend
neural integration, tvisualization: Visualized time in the interactive
interface, 1t: Data stack, i.e., time interval to be computed,
tbuffer : Buffer size between tcomputed and tvisualization, τ : Internal
refractory period for checking tcomputed − tvisualization.

The system is implemented to keep tcomputed − tvisualization ∼=

tbuffer at all times such that backend neural integration is always
responsive to real-time user interactions, but also accommodates
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computation of new solutions before the visualization fully
catches up with the computation.

Based on these principles the communication protocol is
as follows:

(i) The interface sends a command to the backend to compute
solutions for the time interval of [tcomputed, tcomputed + 1t] given
the condition:

tcomputed − tvisualization ≤ tbuffer. (9)

(ii) Once the command has been sent, the interface waits for a
new block of solution of size 1t from the backend.

(iii) Once the block is received, the interface resumes to poll
whether condition (9) is satisfied. Polling is performed as follows:
If the condition is met, the system applies (i). If not, the system
goes through a refractory period of τ and then checks again for
condition (9).

In Figure 3 we include a diagram depicting how the
synchronization method allows for stimulation of neurons at
any given time and simultaneous inspection of network response
to such actions. When the user stimulates a specific neuron
(e.g., PLMR in Figure 3) or performs a neural ablation the
interface sends a command to backend neural integration to
modify necessary parameters. This is followed by an additional
command from the interface to compute the solution for interval
[tstimulus, tstimulus + 1t]. The backend, upon receiving the first
command, modifies the input stimuli parameters for stimulation
or connectivity matrices for ablation. It then executes the second
command by computing the voltage values for all neurons for
a given time interval. The computed voltage values are then
transmitted to the interface for visualization. This cycle of
command and data transmission is repeated indefinitely until the
simulation is stopped.

Stimuli Transition
In addition to integration of the dynamical equations, the
backend ensures that any modification of stimuli amplitude
during stimulation is executed in a realistic manner (i.e.,
no sudden jumps or drops in the stimulus). Ensuring such
continuity produces more realistic shift of stimuli from one value
to the other. Explicitly, we determine the magnitude of stimulus
during the transition through a combination of two hyperbolic
tangent functions:

Stransit (τ ) = Sold

(

1

2
−

1

2
tanh

(

t−
(

tswitch + toffset
)

r

))

+ Snew

(

1

2
+

1

2
tanh

(

t− (tswitch + toffset

r

))

(10)

Where tswitch is the time when the input current was modified,
and r, toffset are the constant coefficients that determine the width
and initial point of the transition, respectively. Such construction
makes sure that every transition takes place in a continuous
manner and supports variable transition speeds of r.

Neural Ablation
In addition, the backend implements neural ablation by
instantaneous modification of connectivity matrices (both gap
and synaptic). This step is followed by recalculation of the
quantities in the network associated with the modified structure
(e.g., the equilibrium states of the network Vth; see Materials
and Methods section for more detail). Effectively, when the
user ablates a neuron in the interface, an array that keeps track
of active neurons (1-present, 0-ablated) is being updated. The
modified array is then sent to the backend, where for each ablated
neuron, say neuron i, all elements of the connectivity matrices in

FIGURE 3 | Synchronization between interactive interface and backend neural integration. The backend computes membrane voltage values for future time interval

requested by the interface, and transmits them to the graph for visualization. User driven change in the interactive interface, i.e., stimulation or neural ablation, invokes

a process that passes the information to the backend where relevant parameters of integration are modified.
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row and column i (corresponding to in/out connections) are set
to zero.

Reinsertion of neurons after they were ablated implements
the ablation operations in reverse order. Particularly, when the
user reinserts the neuron, the interactive interface modifies
the active neurons array, such that the corresponding neuron’s
entry is changed from 0 to 1. The modified array is
then transmitted to the backend, where it will restore the
corresponding row and column of the connectivity matrices to
default values.

RESULTS

We proceed to demonstrate how application of Neural
Interactome to C. elegans nervous system can assist in the study
of neural dynamics. In particular, we target two sub circuits (i)
a circuit associated with a touch response, which stimulation is
known to be associated with forward and backward locomotion
(ii) explore neural dynamic patterns induced by the excitation of
sub group of sensory neurons, which recently were discovered to
be associated with nictation behavior.

Posterior Touch Response Stimulation
Scenario
PLM sensory neurons (PLML/PLMR) in C. elegans nervous
system are known as posterior mechanoreceptors. When
stimulated by tail touch, PLM neurons excite motor neurons
associated with forward crawling motion (Chalfie et al., 1985).
AVB interneurons (AVBL/AVBR) are also known as driver cells
for forward movement of the worm. We stimulate PLM sensory
neurons and AVB interneurons with constant stimuli to examine
neural patterns associated with forward crawling motion as a
result of posterior touch response. We adjust the magnitudes
of the input currents by scrolling stimuli bars in the interface.
Specifically, we set 1.4 nA for PLM neurons, and 2.3 nA for AVB
interneurons, which result in profound oscillations.

As expected from experimental results and prior work,
we observe oscillations in some populations of neurons. We
therefore study their periodic cycle. In the top panel of Figure 4A,
we show two snapshots of network dynamics taken at discrete
percentages into the periodic cycle. We observe that the network
graph responds with strong oscillation in about ∼40% of the
neurons with mostly motor neurons (marked in red) being
specifically active.

We identify more detailed properties of the dynamics by
inspecting the dynamic graph in review mode (Figure 4B). The
interface allows us to identify most responsive neurons and
classify them into different types. In motor neurons, most active
neurons (by maximum voltage amplitude above the threshold)
appear to be Ventricular and Dorsal type B (VB, DB) neurons
alongside with Ventricular and Dorsal type D (VD, DD) and
AS motorneurons (AS01 – AS10). These neurons have identical
oscillatory period of ∼2 s, however, their dynamics are out of
phase to each other.

Most responsive interneurons turn out to be AVB, LUA,
DVA, PVR, and PVC (Figure 4A). Indeed AVB, DVA, and PVC

were experimentally shown to act as modulators for forward
locomotion (Chalfie et al., 1985; Wicks et al., 1996; Driscoll
and Kaplan, 1997). Notably, Neural Interactome also identifies
relatively strong responses in LUA and PVR neurons.While these
neurons have structural connections to PLM (LUA neurons are
suggested to connect between PLM touch receptors, and PVR
have gap junctions to PLM), their direct relation to forward
locomotion was not affirmed (e.g., laser ablation of LUA did
not lead to abnormalities of movement). Our analysis, however,
suggests that these neurons are actively participating in the
oscillations. These findings suggest that Neural Interactome
can help find candidates of neurons correlated to particular
dynamics, even for known sub circuits.

Anterior Touch Response Stimulation
Scenario
ALM neurons sense touch to the anterior body region (i.e.,
frontal body) and induce motor neurons dynamics associated
with backward locomotion (Chalfie et al., 1985). Aiding this
process are the AVA, AVD, and AVE interneurons which act as
modulators for the motion.We therefore stimulate these neurons
with input currents that lead to profound dynamics, in particular:
ALM= 5.8 nA, AVA= 2.0 nA, and AVD/AVE= 1.0 nA.

The snapshots of network dynamics while stimulating these
neurons are shown in the middle panel of Figure 4A and labeled
as Backward Scenario. Notably, comparing forward vs. backward
neural responses, the dynamics for backward responses involve
much larger number of neurons (∼90%) than that of forward
responses. We find the most responsive motor neurons to be
Ventricular Dorsal type A (VA, DA), Ventricular Dorsal type D
(VD, DD) and AS (AS01-AS10). The oscillation behavior for each
of these groups is of different phase, but their periods appear to
be uniform around ∼3.5 s. The results are consistent with the
experimental observations which reported the A-type and D-type
motor neurons coordinating the backward motion (Chalfie et al.,
1985; Chalfie and White, 1988).

Zooming into particular populations of motor neurons we
observe that individual motor neurons exhibit more complex
and irregular patterns than those of the forward stimulation.
Unlike the oscillations observed in forward stimulation which
are characterized by predominantly smooth sinusoidal form, here
motor neurons appear to have oscillatory patterns with various
waveforms: some motor neurons repeat steep fluctuations
between negative and positive voltage while some exhibit
triangular type oscillations above their thresholds.

We also observe more activity within the interneurons. Most
prominent ones appear to be AVA, AVDR, AVE, PVR, DVA,
ADA, and SABV. Some of these neurons are indeed identified
in the literature, AVA, AVD, AVE are characterized to act as
modulators for backward motion and DVA is characterized
to maintain activity (Chalfie et al., 1985; Wicks et al., 1996;
Driscoll and Kaplan, 1997; Gray et al., 2005). However, we
also find high activity in neurons such as PVR, ADA, and
SABV. While PVR makes gap junction with ALM, its role in
backward locomotion has not been yet clarified. For both ADA
and SABV, their functionality has not been fully specified yet.
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FIGURE 4 | (A) Snapshots of neuronal responses corresponding to locomotion forward, backward, and nictation scenarios visualized by Neural Interactome. Forward

scenario shows the snapshots of neural dynamics in response to PLM and AVB neurons stimulation. Each snapshot is taken at 30% and 60% into the average period

of motor neurons oscillatory dynamics. On the right panel, the most responsive interneurons are highlighted. Backward scenario displays the snapshots of neural

dynamics as a result of stimulation of ALM/AVA/AVD/AVE neurons. Nictation scenario displays the snapshots of dynamics upon stimulation of IL2 neurons.

(B) Identification of unique oscillatory dynamics during forward scenario using the review mode. Visualization of motor-neurons sub circuit using the review system

zoom-in function (left). Snapshots of Ventricular B motor neurons (VB01 ∼ VB05) during forward scenario sampled five times with equal interval during 2 s periodic

cycle (right).

As in the posterior touch response scenario, the discovery of
these additional neurons participating in dynamics provides new
insights regarding the neurosensory integration of anterior touch
response behavior.

IL2 Neurons Stimulation Scenario
It has been recently shown that IL2 neurons regulate the nictation
behavior in which a worm stands on its tail and waves its
head. Such behavior is known to be observed within the dauer
larva (i.e., developmental stage nematode worms) to transport
itself via hosts such as flies or birds (Lee et al., 2012). For
non-dauers, targeted activation of IL2 neurons does not induce
nictation possibly because IL2 neurons undergo a significant
structural change at the dauer stage. In this scenario, we stimulate

IL2 neurons through Neural Interactome to investigate motor
neuron dynamics possibly linked to such behavior or its remnant.

We present snapshots of network dynamics induced by IL2
(IL2DL/IL2DR, IL2L/IL2R, IL2VL/IL2VR) neurons stimulation
in the bottom panel of Figure 4A. Notably, the network activates
neurons located mostly on right side of the graph. This is a
different pattern than forward and backward patterns. Most
responsive motor neurons for such stimulation are RMG,
RMH, and RMED along with moderate responses within SMD
and RMEL/RMER motor neurons. The oscillatory periods
for these neurons are uniform around ∼5.7 s with different
phases. Particularly, RMHL and RMHR neurons each produce
oscillations nearly anti-phase to each other. For RMG neurons,
the oscillation wave of RMGL always preceded that of RMGR,
suggesting phase displacement between oscillations of these two
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neurons. Oscillations among four SMDmotor neurons (SMDDL,
SMDDR, SMDVL, and SMDVR) as well as of three RME
motor neurons (RMEL, RMER, RMED) were observed to be
approximately in phase.

In the literature, these motor neurons are known to be
involved with control of head muscles. RMG and RMH motor
neurons innervate lateral four rows of head muscles while RME
neurons innervate all eight rows of head muscles (White et al.,
1986). SMD motor neurons are also known to innervate head
muscles involved with search behaviors such as omega-shaped
turns under absence of food in the environment (Gray et al.,
2005). Remarkably, Neural Interactome shows no response
among the motor neurons associated with forward/backward
locomotion (such as Ventricular Dorsal A, B and D) and only
shows response of neurons modulating head muscles. Such
results suggest that the activation of IL2 neurons leads to periodic
head movements with absence of locomotory behavior in the
rest of the body. While this does not necessarily imply that such
motor neurons pattern is linked to nictation, these observations
provide particular hypotheses and insights about the relatively
unknown sub circuit for further empirical studies.

SCENARIOS: ABLATION

To validate Neural Interactome’s application to investigation
of network structural changes, we perform two ablations in
conjunction with previously performed scenarios. In particular,
we remove AVB and AVA interneurons from the network and
repeat the posterior touch response scenario to observe their
effects on the dynamics.

AVB Ablation
According to the literature, the removal of AVB neurons
impedes forward locomotion (Chalfie et al., 1985). Indeed, we
are able to confirm these experimental findings using Neural
Interactome. Scenario C in Figure 5 shows the three snapshots
of full periodic cycle upon repeating the posterior touch
response scenario with AVB neurons ablated. We observe that
neural patterns involve far less neurons than that of a healthy
network (Figure 5, Scenario A). In particular, examination of full
network snapshots as well as of local groups of motor neurons
shows considerably weaker responses in comparison to the
healthy structure.

FIGURE 5 | Neural dynamics during forward scenario for different structures of the network (non-ablated and ablated neurons). (A) Three snapshots of dynamics with

healthy network (i.e., no ablation). (B) Snapshots of dynamics when AVA inter neurons are ablated. (C) Snapshots of dynamics when AVB inter neurons are ablated.

All snapshots are taken at 25%, 50%, and 75% into each dynamics’ oscillation period.
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The visualization does capture weak oscillations within a small
group of motor neurons; particularly in Ventricular Dorsal B
(VB, DB). Oscillation amplitudes are far less than the healthy
dynamics, however, they remain to be relatively in phase and
maintain an oscillatory period of ∼1.9 s. We are unable to find
any oscillatory activity within Ventricular Dorsal type D (VD,
DD) neurons, which were out of phase with the activity of B
type (VB, DB) neurons in the healthy case. Acknowledging that
the two oscillatory phases property is necessary for the worm
to perform forward crawling motion (Stephens et al., 2008),
such observation confirms the experimental findings that the
ablation of AVB neurons hinders the worm’s ability to perform
forward motion.

AVA Ablation
Unlike the removal of AVB interneurons, experiments showed
that the removal of AVA interneurons does not impact forward
motion (Chalfie et al., 1985). Scenario B in Figure 5 shows
snapshots of posterior touch response scenario with AVA
neurons ablated. It is interesting to observe that the dynamics
have slightly longer oscillatory period of about ∼2.6 s. However,
aside from that, the visualization shows that almost identical
sets of neurons are active as in the healthy scenario (compare
with Figure 4, Scenario A). We are also able to confirm, using
the review mode, that the dynamics continue to exhibit strong
oscillations in (VB, DB) & (VD, DD) motor neurons, with (VD,
DD) neurons being out of phase to (VB, DB) neurons. Thus, our
results for AVA ablation are consistent with experimental data in
the literature.

Taken together our results show that Neural Interactome
assists in confirming empirical results reported in the literature,
and provides further insights regarding structure and activity
associated with examined responses.

DISCUSSION

In this paper, we present a new visual interactive method, which
we call Neural Interactome for studying the dynamics and the
structure of a neuronal system (dynome). While it is important
to simulate the full dynome to study network functionalities,
multiple simulations of the dynome are formidable due to
complexity in number of neurons and variations of stimuli.
Neural Interactome approaches the problem through interactive
real-time interface to the dynome and therefore significantly
simplifies these studies. In particular, we show the simplicity
of stimulating and ablating various groups of neurons in the
framework.

To elucidate the overall structure and functionalities of the
framework, we first define key components: (i) The interactive
interface and (ii) the backend neural integration. Next, we apply
it to C. elegans nematode, which connectome is resolved and
the computational model describing both biophysical processes
and interactions between neurons has been developed. We
show that the framework provides novel possibilities to explore
the worm’s network structure and its unique neural patterns
subject to stimuli. In particular, we demonstrate the Neural
Interactome’s capabilities using stimulations associated with the

touch response: stimulation of PLM/AVB neurons for posterior
touch, ALM/AVA/AVD/AVE neurons for anterior touch, and
stimulation associated with nictation behavior: stimulation
of IL2 sensory neurons. In all three scenarios, we observe
clear visual characteristics of the induced neural patterns. For
example, using the review features, we are able to identify most
responsive neurons and additional properties of dynamics such
as oscillation period and phase on individual and population
level. By comparing such observations with behavioral and neural
descriptions in the literature, we demonstrate that our results
are consistent with the empirical observations of C. elegans
locomotion and that they suggest additional novel insights.

In addition, we demonstrate the effectiveness and usability
of the neural ablation feature in Neural Interactome by ablating
hub interneurons (AVA or AVB). AVB ablation leads to network
visualization with diminished activity in motor neurons as well
as absence of characteristic out of phase oscillatory property
required for such motion. The ablation of AVA interneurons,
however, shows almost identical set of participating neurons as
of the healthy network. We therefore believe that the framework
has a potential to reveal other functionalities through multiple
ablation scenarios, and provide further insights describing the
role of the ablated neurons (Carrillo et al., 2013). In experiments,
preparation and execution of ablation consumes significant time
and usually requires special equipment, e.g., optogenetics. On
the contrary, Neural Interactome can produce initial analyses for
numerous ablation scenarios within seconds and consequently
can be utilized as a pre-experiment tool to map scenarios for
empirical exploration.

We designed the Neural Interactome to permit updates to
both connectivity and dynamic models within the framework
as they are further being refined in the future. Connectivity
updates will merely require a change in the connectivity matrices.
Replacement of a current model with more detailed one or
different models (e.g., H-H type model) would merely require
the replacement of the model itself, while the synchronization
method between the neural neural integration and the interface
will ensure that the computed values will be visualized properly.
With such flexibility we expect that the framework will be
similarly applicable to other neuronal systems: ranging from
actual biological networks (such as that of Drosophilla medulla,
the mouse retina, the mouse primary visual cortex) to artificial
dynamic neural networks (e.g., Recurrent Neural Networks) and
genetic networks (Alter, 2007). We also plan to keep adding
more features to the framework to provide additional interaction
possibilities with more detailed properties of the network, such as
modification of individual synaptic or gap connections between a
pair of neurons and more visualization options, such as plotting
the comparison between multiple neuronal voltage dynamics.
In addition to the functional features, we plan to incorporate
more advanced computation methods such as parallel (GPU)
computation for larger and more complex networks. The current
simulation scheme is based on sequential time-stepping and
supports event handling from user interactions. For network
with moderate dimensionality such as C. elegans network, the
overhead from incorporation of parallel computing for a single
time step (i.e., GPU) and synchronization of the solution exceeds
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the time of solving it sequentially with CPU. However, for very
large networks the single step computation efficiency could be of
greater importance.

Beyond the simulation of C. elegans nervous system, we also
plan to connect the model to musculature/body movement as
they are critical components for model validation and for the
study of interaction between neural dynamics and behavior.
Development of such a model and connection of it with the C.
elegans neural interactome could help in understanding how the
neuronal network translates neural activity into behavior.

Neural Interactome can be either downloaded from Github
repository or accessed online via a web interface with following
addresses:

Github: https://github.com/shlizee/C-elegans-Neural-
Interactome

Web Interface: http://neuralcode.amath.washington.edu/
neuralinteractome

MATERIALS AND METHODS

In this section, we describe the materials and the methods used
for the development of Neural Interactome and its application
to C. elegans nervous system. The source code of the software
is available at Github repository (https://github.com/shlizee/C-
elegans-Neural-Interactome).

Development Environment and Tools
We used two different programming languages for the
development of Neural Interactome. We used Python to
develop the backend neural integration, and Javascript to
develop the frontend interactive interface. For establishing
communication protocols between the interface and backend,
we used flask-socketIO on Python side and Socket.IO on
javascript side. Both flask-socketIO and Socket.IO are libraries
that allow real-time bi-directional communication between
the client (frontend) and the server (backend) through
WebSocket protocols. In the context of Neural Interactome,
they were used to establish robust command and data
transactions between the interactive interface and backend
neural integration.

Several third party libraries were used for each language
as well. For Python, NumPy was used for mathematical
computations and manipulations of matrices. Several functions
from SciPy were used to construct the ordinary differential
equation solver and solve the system of linear equations for
computation of neural quantities such as Vthreshold values.

In Javascript, D3.js (Data-driven documents) platform was
used to construct force-directed graph representation of neuronal
network. For the main webpage development framework, we
used AngularJS as it provides optimal functionalities for building
dynamic, single page web apps (SPAs).

Threshold Potential (Vthreshold)
Computation
Threshold potential for each neuron is computed by imposing
dVi
dt

= 0 (Equation 2 for C. elegans) and solving for Vi. This is

equivalent to Solving the following system of linear equations

Ax = b (11)

A = M1 +M2 +M3; b = −b1 − b3 − Iext, (12)

where the solution x is N × 1 vector with each entry being the
threshold potential Vthreshold for the ith neuron.

M1 is a matrix of sizeN×N whereN is the number of neurons
(279 for C. elegans) with its diagonal terms populated with −Gc

(cell membrane capacitance).
M2 is a diagonal matrix where diagonal term in ith row

corresponds to−
∑

j G
g
ij i.e., the sum of total conductivity of gap

junctions for the ith neuron.
M3 is a diagonal matrix where its ith diagonal term

corresponds to −
∑

j seqG
s
ij, where seq =

ar
ar+2ad

and Gs
ij is

maximum total conductivity of synapses to i from j. Note that seq

is obtained by imposing dsi
dt

= 0 and synaptic activation 8 = 1/2
in Equation 5.

b1 = Gc∗Ec where Ec is a 1D vector of size N × 1 in which all
of its elements are Ec (leakage potential).

b3 = Gs · (s∗eqEj) where Ej is a 1D vector of size N × 1
that enlists the directionality of each neuron (0 if excitatory or
−48mV if inhibitory).

Iext is the input stimuli vector where its ith element determines
the input current amplitude for the ith neuron.

Parameters
Dynome Visualization
We used Rmax = 15 as the maximum radius of the nodes in
Equation 1.

ODEs Integration Parameters
The following values were used for relative/absolute tolerance
and minimum integration step size. Note that the step size is
determined adaptively by the solver to guarantee the prescribed
tolerances.

Relative tolerance: 10e-9
Absolute tolerance: 10e-10
Minimum step size: 10e-9s (1 ns).

Visualization Timescale
The following values were used for the temporal resolution of
simulation and dynamic timescales for visualization. Note that
these parameters are for visualization only and are not associated
with the integration step in backend integrator.

Temporal resolution: 10 ms
Visualization rate (normal): 100 ms/s
Visualization rate (during transition or ablation): 40 ms/s.

Parameters for Neural Integration
The values of parameters for each connection described in
Equation 2–6 are not precisely determined. However, we assume
reasonable values reported in the literature (Wicks et al., 1996;
Varshney et al., 2011). We assume each individual gap and
synaptic junction has approximate conductance of g = 100 pS
(Varshney et al., 2011), cell membrane conductance Gc = 10
pS, and membrane capacitance C = 1.5 pF (Varshney et al.,
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FIGURE 6 | Determining the optimal 1t (data stack size) for synchronization

and computational efficiency. Two evaluation metrics are collected for different

choices of stack size. t_computed − t_vis measures the synchronization

between the leading integration time point in backend and leading visualization

time point in frontend (lower is better). Stutter counts represents the

computational efficiency by counting the number of stutters (i.e., when

visualization pauses with t_computed = t_vis; lower is better). Both metrics are

measured with identical sessions of 10 s simulation. Final evaluation metric

(Lag) is obtained by multiplying these two metrics (lower is better). The results

show that 1t = 50 ms achieves the minimum lag, and supports the best

balance between synchronization and computational efficiency.

2011). We take leakage potential Ecell = −35 mV while reversal
potential Ej = 0mV for excitatory synapses and −48 mV for
inhibitory synapses (Wicks et al., 1996). For the synaptic activity
variable, we take ar =

1
1.5 , ad = 5

1.5 and width of the sigmoid
β = 0.125mV−1 (Wicks et al., 1996). Also for the initial condition
of the membrane voltages V and synaptic activity variable s,
we sample the normal distribution of µ = 0 and σ = 0.94
with size 279 ∗ 2 (for both V and s) and multiply by 10−4. To
validate the simulation and the choice of parameters we tested
for robustness by perturbing (±20%) individual connection
strengths and each neuron’s parameters, showing that dynamic
functionality persists.

Parameters for Synchronization
The optimal values for 1t, tbuffer, and internal refractory
period τ in Equation 9 depend on computing power of the

system. We found the parameters 1t = 50 ms, tbuffer =

100 ms and τ = 50 ms (in actual time) to be of reasonable
default values which achieve both computational efficiency and
synchronization between the interface and backend (Figure 6).
Note that 1t and tbuffer are in simulation timescale while τ is
measured in computer’s internal timer.

Parameters for Stimuli Transition
We use toffset = 150 ms, and r = 0.025 in Equation 10. We
found these values to be the optimal choice since the transition
curve does not induce abrupt shift in dynome dynamics, and the
visualization rate remains to be fast enough. Given the value of
r, the time it takes for complete transition from one stimulus
amplitude to the other is approximately 2toffset . Thus, for our
choice of parameters for C. elegans simulations, the transitional
period is around 300ms.

Computation of Input Current Unit
From Equation 2–4 and physiological parameters specified
above, the unit of input current is pS ∗mV = 10−15A = fA
(femto-ampere). However, in our implementation, we divided
both sides of Equation 2 by conductance constant 100 pS. This
gives 1arb (arbitrary unit of input)= 10−13A = 0.1 pA, implying
1000 arb= 100 pA= 0.1 nA. We verified these units with the I-V
curves measured in Goodman et al. (1998).
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