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Brain functional disruption and cognitive shortfalls as consequences of
neurodegeneration are among the most investigated aspects in current clinical
research. Traditionally, specific anatomical and behavioral traits have been associated
with neurodegeneration, thus directly translatable in clinical terms. However, these
qualitative traits, do not account for the extensive information flow breakdown within
the functional brain network that deeply affect cognitive skills. Behavioural variant
Frontotemporal Dementia (bvFTD) is a neurodegenerative disorder characterized by
behavioral and executive functions disturbances. Deviations from the physiological
cognitive functioning can be accurately inferred and modeled from functional
connectivity alterations. Although the need for unbiased metrics is still an open issue
in imaging studies, the graph-theory approach applied to neuroimaging techniques
is becoming popular in the study of brain dysfunction. In this work, we assessed
the global connectivity and topological alterations among brain regions in bvFTD
patients using a minimum spanning tree (MST) based analysis of resting state functional
MRI (rs-fMRI) data. Whilst several graph theoretical methods require arbitrary criteria
(including the choice of network construction thresholds and weight normalization
methods), MST is an unambiguous modeling solution, ensuring accuracy, robustness,
and reproducibility. MST networks of 116 regions of interest (ROIs) were built on wavelet
correlation matrices, extracted from 41 bvFTD patients and 39 healthy controls (HC).
We observed a global fragmentation of the functional network backbone with severe
disruption of information-flow highways. Frontotemporal areas were less compact, more
isolated, and concentrated in less integrated structures, respect to healthy subjects.
Our results reflected such complex breakdown of the frontal and temporal areas at
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both intra-regional and long-range connections. Our findings highlighted that MST, in
conjunction with rs-fMRI data, was an effective method for quantifying and detecting
functional brain network impairments, leading to characteristic bvFTD cognitive, social,
and executive functions disorders.

Keywords: functional connectivity, functional magnetic resonance imaging, resting state, minimum spanning tree,
graph theory, behavioral variant frontotemporal dementia, neurodegeneration

INTRODUCTION

The bvFTD is clinically defined by personality changes and
behavioral disturbances, impairment of executive functions and
emotional blunting (Gorno-Tempini et al., 2011; Rascovsky et al.,
2011). Abnormal intracellular accumulation of either tau or TDP-
43 protein is found in most cases (Mann and Snowden, 2017).

Recently, the increasing interest in unraveling functional and
structural features of the brain, has benefitted from complex
network analyses, such as graph theory, a multidisciplinary
approach that allows to analyse complex systems in a
straightforward computable way and to describe cerebral
areas as nodes, and their connections as edges (Rubinov and
Sporns, 2010). Both structural (anatomical) and functional
(statistical relationship between two nodes) connectivity can be
assessed (Zhang et al., 2016).

Applying graph theoretical methods to neuroimaging
techniques is becoming popular in the study of brain dysfunction
(Bullmore and Sporns, 2009; Drakesmith et al., 2015; Chiang
et al., 2016). Recently, a few studies have considered graph theory
analysis applied to rs-fMRI data in patients with bvFTD and
have better described FTD-related brain changes (Agosta et al.,
2013; Filippi et al., 2017). However, although conventional graph
theoretical analyses are helpful in dissecting disease mechanisms
(Bullmore and Sporns, 2012), the methodology is significantly
hampered by a number of arbitrary choices. Descriptive metrics
and their normalization, network type (weighted or unweighted
networks), threshold value (fixed cut-off, fixed average degree,
fixed edge density, or variable threshold over a range of values)
are some of the critical points making network results difficult
to reproduce (van Wijk et al., 2010; Telesford et al., 2011; Stam
et al., 2014; Drakesmith et al., 2015; Yu et al., 2016). In addition,
several network metrics and node centrality indices may assume
different importance at either local or global scale (Telesford
et al., 2011; Antonenko et al., 2018), whether the graph model
accounts for time variant (i.e., dynamic) or invariant (i.e.,
static) connectivity (Rashid et al., 2014; Park et al., 2018), and the
parcellation type, according to Independent Component Analysis
(ICA; McKeown et al., 2003; Griffanti et al., 2014) and specific
atlases (see Materials and Methods, for data pre-processing
in this work).

Minimum Spanning Tree, a unique acyclic subgraph
that connects N nodes with (N-1) edges, and maximizing
synchronization between brain areas (i.e., minimizes edge

Abbreviations: AAL, automated anatomical labeling; bvFTD, behavioral variant
Frontotemporal Dementia; HC, healthy controls; MST, minimum spanning tree;
ROI, regions of interest; rs-fMRI, resting state functional MRI; SPT, shortest path
tree; TOM, topological overlap measures.

connections), is a promising unambiguous solution to describe
complex brain networks (Stam et al., 2014). The use of MST
avoids methodological confounding thanks to an efficient
integration of topological properties and functional connectivity
information (Tewarie et al., 2014; van Diessen et al., 2016;
van Lutterveld et al., 2017), ensuring network robustness and
reproducibility respect to classical graph analytical approaches
(Otte et al., 2015; Tewarie et al., 2015). MST is a tree which has
the minimum total edge weight of all possible spanning trees
of the original graph. If the brain network can be interpreted
as a kind of transport network, an MST might represent the
critical backbone of information flow in weighted networks
(i.e., contains with high probability all the shortest paths in
the network). Given MSTs efficiency and high sensitivity to
small fluctuations of connection weights (Van Mieghem and
Magdalena, 2005), they can intrinsically provide an accurate
representation of subtle and critical topological perturbations,
at local scale. On the other hand, MST sparseness could raise
issues at global scale. However, it has been demonstrated that
if the MST weight distribution is consistent with a power law
with sufficiently small exponent value, the global information
flow of the underlying network follows entirely MST paths (Van
Mieghem and Magdalena, 2005; Van Mieghem and van Langen,
2005; Meier et al., 2015). Moreover, TOMs can be applied
to the original adjacency matrix to modulate neighborhood
characteristics in MST nodes (Ravasz et al., 2002). In addition, we
used wavelet decomposition and correlation to obtain noise-free
and robust functional relationships between brain areas (Achard
et al., 2006; Zhang et al., 2016).

Collectively, these aspects enable data-driven network
comparison of healthy and diseased groups, without
normalization or standardization steps, as recently illustrated in
EEG and MEG data (Stam et al., 2014; van Dellen et al., 2014;
Numan et al., 2017). Furthermore, network robustness and
reproducibility should ensure univocal results, minimizing room
for ambiguous interpretations. Besides graph theoretical aspects,
data acquisition and pre-processing issues may affect results,
including brain parcellation and data acquisition technologies.
These aspects should follow the principles of common usage,
availability, cost effectiveness, and non-invasivity, that can
secondarily affect methodological choices and issues (Hohenfeld
et al., 2018). Despite objective difficulties in generating a
consensus functional brain map, especially for rare disorders,
a set of reference resting state functional networks have
been replicated in many different studies (Hohenfeld et al.,
2018). According to well-established rs-fMRI literature, three
reference networks are mainly involved in bvFTD functional
breakdown: the default-mode network (DMN), the salience
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network (SN), and the executive network (EN), accounting for
the cognitive, emotional, and social impairments characterizing
this pathology (Raichle, 2015; Trojsi et al., 2015; Sedeño et al.,
2016; Hohenfeld et al., 2018).

In this study, we leverage MST-based analysis of rs-fMRI
data to investigate large-scale functional network alterations,
inspecting global and local network properties in bvFTD patients,
compared to a group of HC, and providing a novel MST
procedure, combining individual tree-based global evidences and
two-group topological aspects.

MATERIALS AND METHODS

The analysis workflow of the rs-fMRI data is illustrated in
Figure 1 and described in detail below.

Subjects
Forty-one patients with a probable bvFTD diagnosis, according
to current criteria (Gorno-Tempini et al., 2011), were
recruited at the Center for Neurodegenerative Disorders,
University of Brescia, Italy All patients underwent an extensive

FIGURE 1 | General study workflow. The most important steps of
connectome extraction. MRI signals acquisition and brain parcellation
represent the first phases of resting state functional magnetic resonance
imaging data pre-processing. Wavelet correlation matrix and minimum
spanning tree (MST) network calculation are included in the analysis phase.
Wavelet transformation was applied to the average voxel time series mapped
to AAL 116 brain regions of interest (ROI), allowing to obtain the statistical
relationships between nodes (i.e., wavelet correlation matrices). Each matrix is
the input of the MST algorithm, from which parameters and topological
features (including edges partition and nodes cluster) have been calculated.

neuropsychological assessment, as previously published (Gazzina
et al., 2016), genetic screening for the most frequent monogenic
causes of FTD (i.e., Granulin, C9orf72, and Microtubule
Associated Protein Tau; Cosseddu et al., 2018) and brain MRI
structural imaging study. In the present study, none of the bvFTD
cases carried pathogenic mutations of monogenic bvFTD.

Thirty-nine HC, recruited from voluntary individuals, were
used as control group. HC underwent a brief standardized
neuropsychological assessment (Mini-Mental State Examination;
MMSE >=27). Table 1 shows the demographic information of
the participants. The study, in conformity with the Helsinki
Declaration, was approved by the Brescia Hospital Ethics
Committee. Informed consent was obtained from all participants.

MRI Acquisition
All imaging was obtained using a 1.5T Siemens Avanto
MRI scanner (Siemens, Erlangen, Germany), equipped with a
circularly polarized transmit-receive coil. In a single session, the
following scans were collected from each subject:

(i) dual-echo TSE [repetition time = 2500 ms, echo time
(TE) = 50 ms], to exclude presence of macroscopic brain
abnormalities, according to exclusion criteria;

(ii) 3D MPRAGE T1-weighted scan (TR = 2050 ms,
TE = 2.56 ms, matrix = 1 × 1 × 1, in-plane field of
view [FOV] = 256 × 256 mm2, slice thickness = 1 mm, flip
angle = 15◦);

(iii) T2∗-weighted EPI sensitized to BOLD contrast
[TR = 2500 ms, TE = 50 ms, 29 axial slices parallel to
anterior commissure-posterior commissure line (AC-
PC) line, matrix = 64 × 64, field of view = 224 mm,
slice thickness = 3.5 mm], gap between slices
1.75 mm for rs-fMRI.

Echo planar images were collected during rest for an 8-min
period, resulting in a total of 195 volumes.

Neuroimaging Pre-processing
Functional data were pre-processed using FSL 5.0.8
neuroimaging software, as reported in Jenkinson et al. (2012): (i)
the first two volumes were removed to allow signal stabilization;
each volume was motion-corrected to a reference volume
using MCFLIRT; (ii) non-brain structures were removed using
Brain Extraction Tool (BET); (iii) the effect of TR during slice
acquisition was reduced using slice-timing correction and the
data were spatially smoothed applying the Gaussian kernel with

TABLE 1 | Demographic and clinical characteristic of the participants.

bvFTD (n = 41) HC (n = 39) P-value

Age (year) 65.6 ± 7.01 61.7 ± 6.5 0.010a

Sex (male/female) 26/15 13/26 0.014b

Education (year) 9.1 ± 3.82 10.3 ± 3.84 0.161a

CDR 6.7 ± 3.84 0.0 ± 0.0 –

Values for bvFTD and HC are reported as mean ± SD; a, independent two-group
t-test; b, Pearson chi-squared test; CDR, Clinical Dementia Rating.
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a full width and half maximum (FWHM) of about 7 mm; (iv)
grand-mean intensity of the entire data was adjusted by a single
multiplicative factor; (v) high-pass temporal filtering Gaussian-
weighted least-squares straight line fitting (100 s) was applied;
(vi) functional data were co-registered into equivalent native-
space T1 weighted image using Boundary-Based Registration
(BBR); and (vii) each T1 weighted image was co-registered into
standard space template MNI152 using linear (affine with 12
degree of freedom) brain image registration (FLIRT).

To control for motion effect, we included in the further steps
only subjects with head motion in a range below or equal to 1 mm
(translation) and one degree (rotation). Motion parameters were
derived from six degree of freedom registration using MCFLIRT
(Jenkinson et al., 2012).

After pre-processing, we applied an automatic approach called
“FMRIB’s ICA-based X-noiseifier” (FIX) to detect non-signal
components in resting state images which combines the classifiers
approach and the Independent Component Analysis (ICA) in
a MATLAB environment (Griffanti et al., 2014, 2015). We
applied FIX procedure in three steps. First, for each subject we
estimate the amount of Gaussian noise of the true dimensionality
of the data, i.e., the number of activation and non-Gaussian
noise sources using a probabilistic ICA approach implemented
in MELODIC (Beckmann and Smith, 2004). Then, we made
a random selection of subjects (10 healthy subjects and 10
bvFTD subjects, covering approximately 25% of the whole
sample set) to create a subsample to train the FIX’s multi-
level classifier. For these subjects, we manually selected the
components (white matter, susceptibility artifact, head motion,
cardiac pulsation) looking into the thresholded spatial map
estimated from single-ICA and the power spectrum of the time
series for each component (Griffanti et al., 2014). Lastly, to test
if FIX successfully detected the noise components and regressed
out the variance (including the six motion parameters derived
from MCFLIRT), we looked into a sample of subjects to confirm
classification of bad components. The “cleaned” rs-fMRI images
(after noise and motion variance regression) of each subject were
subsequently used for brain parcellation.

Brain Parcellation
The ALL atlas (AAL; Tzourio-Mazoyer et al., 2002) was
used to parcel brain into 116 (90 cortical and subcortical,
and 26 cerebellar) regions of interest (ROIs, Supplementary
Table 1). Mean time series were extracted from each ROI
by averaging the signal from all voxels within each region,
using Marsbar software (1Brett et al., 2002). A subsequent
descriptive aggregation was applied to obtain 8 (right and
left) macro-ROI (referred to as lobes or “macro-regions”):
Frontal, Insular, Limbic, Occipital, Parietal, Subcortical Gray
Matter (SCGM; including Thalamus), Temporal, and Cerebellum
(including Vermis).

Wavelet Correlation Analysis
For each subject, the final dataset (Saba et al., 2018)
was composed by 193 mean time-series extracted

1http://marsbar.sourceforge.net/

from each brain region. Different correlation estimates
define statistical relationship between brain region pairs
(Zalesky et al., 2012): in the present study, we used
wavelet correlation.

Each temporal series was decomposed using wavelet analysis
and characterized by weighted coefficients, proportional to the
total amount of energy emitted from the system, relative to a
specific scale and brain location. Considering total energy as a
frequency-time, wavelet decomposition enables data processing
at different hierarchical scale resolutions. Indeed, low-frequency
components correspond to coefficients of approximative scale,
while high-frequency components correspond to finer scale
coefficients (Bullmore et al., 2004). The high flexibility for non-
stationary characteristics of the data in each decomposition
scale favors wavelet multi-modularity application to fMRI data.
Therefore, wavelet correlation results in a higher robustness and
noise reduction, with a more homogeneous representation of the
original time series and their transformations (Bullmore et al.,
2004; Zhang et al., 2016).

Consistent with (Zhang et al., 2016) guidelines, the maximal
overlap discrete wavelet transform (MODWT; Achard et al.,
2006) with a Daubechies wavelet filter (length equal to 8), was
used to band-pass filter on mean time series, and extract wavelet
coefficients for the wavelet scales. Given our (TR = 2500 ms,
Nyquist frequency = 0.2 Hz), four frequency bands (i.e., scales)
were used; scale one: 0.2–0.1 Hz; scale two: 0.05–0.1 Hz; scale
three: 0.025–0.05 Hz; and scale four: 0.013–0.025 Hz. Then, we
defined a correlation matrix whose ijth elements were set by the
estimated wavelet correlations between brain regions i
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we focused on wavelet decomposition scale two (s = 2), as only
this scale reached the significance in three distinct bvFTD/HC
connectivity-based Wilcoxon rank sum tests (Supplementary
Table 2). Specifically, we quantified bivariate connectivity of
the wavelet correlation matrix for each subject (Lynall et al.,
2010), with three global measures: (i) strength, defined as the
average of columns mean; (ii) diversity, defined as the average
of the columns variance, and (iii) zero correlation, defined as
the number of correlations with P > 0.05, testing the null
hypothesis, H0 : ρij = 0.

Minimum Spanning Tree (MST)
Structures and Graph Metrics
The MST method overcomes issues concerning arbitrary
threshold selection in weighted connected graphs, by joining
edges with minimum weight. In other words, it assembles
connections minimizing the sum of edge-weights, excluding
edges that form a cycle. MST is an extremely efficient binary
representation of a full graph G (N, E) characterized by N nodes
and E = (N-1) edges. It yields perfectly comparable networks
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among different samples, without dependences from vertices and
edges number variability, and a best possible synthesis of the
original graph information, achieved through the most important
subgraph (Stam et al., 2014). Among existing methods for MST
search, we applied the Prim’s algorithm (Cormen et al., 2001), to
obtain a MST from each subjects’ wavelet correlation matrix.

The MST method handles very different network
configurations with their extremes represented by linear or
star shapes. In the former, each node has a maximum of two
edges (i.e., path-like tree) and two extreme leaves (i.e., nodes
with only one link). Whereas, in a star, all nodes are leaves,
except the central node to which the other ones are connected
(Stam et al., 2014).

Every network can be described through a set of graph
metrics (e.g., topological indices) characterized according to its
configuration (either linear or star) and its specific graph metrics
values. We used global MST measures providing information on
graph centrality (maximum degree kmax, maximum betweenness
Bmax), distance (diameter d, eccentricity Ecc), association
(assortativity Ass), and topological aspects (degree divergence K,
leaf fraction Lf). Their definitions are given in Table 2.

Short distances and overload prevention aspects suggest a
good tree configuration or network integration. If a tree has a
star-like (i.e., highly connected) topology, it will be characterized
by a greater information exchange capacity (i.e., spread of
information across the tree), yet a greater probability of central
node overload. The opposite behavior is true if the graph has
a line-like topology. In particular, an increase of maximum
betweenness Bmax and leaf fraction Lf, with a decrease of diameter
d and eccentricity Ecc, tend to have a star-type configuration
and a better network integration (van Lutterveld et al., 2017). In
addition, maximum betweenness Bmax and degree divergence K
correlate positively with the presence of some high-degree tree
nodes (hub communication) in networks with a scale-free degree
distribution (a scale-free network has a large number of nodes
with a lower degree and few highly connected hubs; Albert and
Barabási, 2002; Mears and Pollard, 2016).

Finally, positive assortativity (Ass> 0) indicates that nodes are
likely to be connected to other nodes with the same degree, and

therefore that the high degree nodes (hubs) tend to be connected
to each other (Bullmore and Sporns, 2009). Negative assortativity
(Ass < 0) is typical of biological networks with hierarchical
structure where hubs are connected to nodes with lower degree
nodes (Newman, 2003).

Topological Overlap Measures (TOM)
and Shortest Path Tree (SPT)
In the present study, we implemented pre-processing procedures
to avoid some of the intrinsic limitations of the MST approach:
the absence of triangular connections (i.e., absence of clustering
metric) e graph sparseness with a limited number of edges of the
resulted network.

First, we applied topological overlap measures (TOM; Ravasz
et al., 2002; Zhang and Horvath, 2005) to the network adjacency
matrix to compensate the absence of triangular connections in
the MST. This allowed to analyse MSTs in terms of aggregation
or clustering without biases. Specifically:

TOMij =
lij + aij

min
{
ki, kj

}
+ 1 − aij

where lij =
∑

u aiu aju is the overlap estimate between two nodes
neighborhoods, aij is the ijth-element of adjacency matrix, ki and
kj are the degree measures of ith-node and jth-node, expressed
as ki =

∑
u6=i aiu; kj =

∑
u 6=j aju. A higher overlap is associated

with a greater relationship between two nodes, and a greater
relationship with their common nodes (Mumford et al., 2010).
Therefore, TOM modulates neighborhood characteristics of
nodes, by quantifying the topological overlap between two nodes
against all other nodes in the network. High TOM values identify
nodes that constitute a neighborhood (Ravasz et al., 2002).

Secondly, MST is characterized by (N-1) edges, resulting a
sparse graph with a limited number of edges. Therefore, we
evaluate the network performance of MST through the SPT
problem (Van Mieghem and Magdalena, 2005; Meier et al., 2015),
quantifying if MST is a good representation of the whole graph
(i.e., whether the sparse tree may be considered as a critical
backbone of original network; Tewarie et al., 2014).

TABLE 2 | Description of minimum spanning tree global measures.

Measure Definition

kmax Degree (k) of a node is the number of links connecting one node to another in the network, and maximum degree kmax indicates the highest value of
node degree in the network

Bmax Betweenness centrality (B) of a node indicates the number of shortest paths passing through the normalized node such that Bε[0,1], and maximum
betweenness Bmax indicates the highest value of betweenness centrality in the network

d Diameter (d) identifies the longest distance, measured in number of edges, between any two nodes; d has a range from 2 to N-1

Ecc Eccentricity (Ecc) of a node indicates the distance of a node with respect to any other node, in term of longest distance between them. Here, Ecc
represents the average value (i.e., the arithmetic mean) for all nodes

Ass Assortativity (Ass) describes node tendency to link to other nodes, characterized by the same or similar degree, which can be quantified by computing
the Pearson correlation coefficient of the degrees of pairs of nodes connected by an edge

K Degree divergence (K) is a measure of broadness of the degree distribution in the whole network, defined as the ratio between the variability and the
average of node connections

Lf Leaf fraction (Lf) is the ratio between the number of nodes with only one edge (i.e., “end-points” in the graph) and the maximum possible number of
edges (i.e., the number of nodes minus 1, N-1). Stars-type graph is defined by Lf = (N-1)/(N-1) = 1, while linear-type graph by Lf = 2/(N-1)

N, number of nodes in a minimum spanning tree.
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The shortest path is the path with minimum sum of weights
from a source to a destination node, and a SPT is the union
of the shortest paths from a source node to all other nodes in
the graph. An SPT is mainly sensitive to the small, non-negative
link weights, around zero. Starting with a full graph G, the
probability distribution for the link weights of G around zero can
be described by a power distribution: F (x) = Pr (X ≤ x) ∼ xα,
where x ∈ [0, 1] represents weights, and the exponent α > 0,
defines the extreme value index of the probability distribution
(Van Mieghem and Magdalena, 2005).

Three specials α−trees correspond to precise α ranges. The
α→∞ regime matches a unique weight for all links (i.e.,
w = 1). In the α = 1 regime, link weights result to be uniformly
distributed. Finally, in the α→ 0 regime, link weights show
strong fluctuations. For α→ 0, defined as the stronger disorder
condition, the SPT of the full graph coincide with a MST (Van
Mieghem and Magdalena, 2005; Van Mieghem and van Langen,
2005), and the information flow within the network follows only
MST links (Meier et al., 2015).

Therefore, we tested the α→ 0 regime (i.e., MST) of the
weighted full (i.e., original) graph G for each subject in
three steps:

(1) Define a full graph G (N, E) by fixing to zero the not
statistically significant (P > 0.05) wavelet correlations,
rij. The null hypothesis: H0 : ρij = 0 was evaluated with

the Mutual Information test, MI = −N ln
(

1− r2
ij

)
/2

(Edwards et al., 2010).
(2) Apply topological overlap measures (i.e., TOM) to the

r(0)
ij = rij if P < 0.05 and r(0)

ij = 0 if P ≥ 0.05.
MST was created by edges weights defined as wij =

min
(
1/TOMij; 100

)
/100. This transformation ensures that

weights are enclosed in the range (0, 1), and the most
important edges (with small weights, i.e., large TOM values)
represent the strongest neighborhood connections.

(3) Ranking weights wij in descending order and estimating
the α exponent from the power functionF (x) = c · xα, by
plotting Y = log10 [F(x)] versus X = log10 [(x)]. A straight
line with an R-squared index approaching 1 is indicative
of good fit to the power function, and slope indicates SPT
coincidence with MST.

Edges Partition and Nodes Clustering in
MST
Two-group comparisons of topological MST properties were
applied to the individual wavelet correlation matrices, between
bvFTD and HC, averaged over subjects. Topological structure
of nodes and links in an MST have a key role to capture paths
with higher importance in information flow (Meier et al., 2015).
It is possible to identify an MST subnetwork showing a higher
average node (or link) betweenness centrality compared to the
rest of MST (Wu et al., 2006). In other terms, this subset of
nodes (or links) is used more often than others, and their paths
can be considered as a set of superhighways (SHW) in MST,
i.e., the most important “roads.” Other links in MST constitute
“secondary roads.” Identifying SHW enabled to subdivide MST

edges (links) in two distinct components with significantly
different transport properties.

Based on SHW’s definition, we applied the method suggested
by Wu et al. (2006), on both scale-free and Erdos–Renyi
(i.e., random) networks, for edges partition in MST. Briefly,
considering the fully connected network with the previous
TOM-based link weights, we extracted one MST for each case-
control group. Through an iterative process, we removed links
in descending order of their weights and calculated the degree
divergence value (K), which decreases in each cycle with link
removals. As demonstrated by Braunstein et al. (2007), the
process ends whenK < 2, and the largest remaining component is
the SHW set. Lastly, we measured node betweenness differences
(i.e., bvFTD – HC) to assess the amplitude of information flow
connectivity gain or loss, and we defined a threshold b as the
non-zero median of the absolute betweenness differences. Areas
showing differences above b (or below −b), will be taken as
markers of functional connectivity gain (or loss).

Clustering nodes in a tree is more complex respect to
other graphs. Several types of clustering algorithms have been
developed which revealed to be limited and unsuitable to MST
characteristics (Yu et al., 2015). Here, we used a novel approach
for MST clustering suggested by Yu et al. (2015) based on
the geodesic distance matrix D, where the ijth-elements of
D represent the number of links of a shortest path between
two nodes. As proposed by the authors, we computed vector
similarities as the Spearman’s distance, dS = 1− rS, where rS
is the Spearman’s rank correlation between all row pairs of D.
Next, we applied the iterative hierarchical clustering algorithm,
using dS as input and average-linkage method (Gordon et al.,
2016) to define the distance between two clusters. This method
merges node pairs into corresponding clusters by decreasing
similarity until all nodes are merged into one cluster. The
different stages of the algorithm were represented in the form
of a dendrogram. We partitioned the case-control MSTs in an
equal number of clusters using the same cut-off value (0.2) on
each case-control dendrogram.

Statistical Analysis
Global network connectivity (strength, diversity, and zero
correlation), and MST global parameters (maximum degree,
maximum betweenness, diameter, eccentricity, assortativity,
degree divergence, leaf fraction, extreme value index, R-squared),
provided a dataset of 80 rows (subjects) and 12 columns
(parameters) for further statistical analysis. Since data were
generally not Gaussian, non-parametric, Wilcoxon signed rank
test was used to compare FTD and HC groups P-values were
adjusted using Benjamini–Hochberg correction, and fixing the
significance threshold at P < 0.05 (two sided). Sex and age
showed significant differences between groups, therefore data
were corrected for age, sex and age∗sex interaction.

Global measures from the two case-control average correlation
matrices were also compared by permutation tests as follows:
(i) by computing the observed absolute difference between the
global measure in FTD and HC groups, (ii) by permuting group
assignments of the individuals’ values of the global measures for
FTD and HC groups (B = 10000 iterations), and (iii) by repeating
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step (i) to obtain B = 10000 sampled permutations of the absolute
differences between FTD and HC groups. Then, P-values were
obtained using the sample permutation distribution with the
same significant threshold of the individual signed rank tests.

Methodological Comparison
Minimum spanning tree properties were compared with other
conventional graph theory approaches, to measure the extent
of network metrics reproducibility and wavelet scale specificity.
The first method we applied uses the efficiency cost optimization
(ECO; De Vico Fallani et al., 2017) criterion, imposing a
fixed edge density threshold, based on the trade-off between
network efficiency and wiring cost. We further applied two
methods defining per subject optimal correlation thresholds,
based on the extended Bayesian information criterion (EBIC;
Chen and Chen, 2008), and spectral analysis (Perkins and
Langston, 2009). Finally, we tested the performances of a
scale free model-based method that chooses the correlation
threshold optimizing power law fitting for each subject
(Mumford et al., 2010). Differently from MST topology,
these networks include triangular connections and cycles
(i.e., they are not acyclic graphs), where classical clustering-
based indices can be calculated. MST-specific indices are leaf
fraction and alpha, while non-MST indices include clustering
coefficient, average path length, and efficiency. Common
metrics include maximum degree, maximum betweenness,
degree divergence, diameter, eccentricity, and assortativity.
Wilcoxon rank sum tests were calculated for every method at
each wavelet scale.

Software
Network analyses, graph visualization, and statistical analyses
were performed in R (R Core team, 2018), using packages igraph
(Csardi and Nepusz, 2006), WGCNA (Langfelder and Horvath,
2008), brainwaver (Achard, 2015), brainGraph (Watson, 2018),
and custom R functions.

RESULTS

Global Functional Connectivity of
rs-fMRI Data
For each subject, we examined the complexity of rs-fMRI
data (Saba et al., 2018) using bivariate measures (i.e., strength,
diversity, and zero correlation) computed as summary regional
values of the wavelet correlations (Supplementary Table 2).
Scale 2 was the only reaching significance at these three tests
(Figure 2 and Supplementary Table 2). Diversity and zero
correlation showed a significant increase in bvFTD respect to
HC, while strength showed significant decrease (P < 0.05 for
every test). The significant increment of wavelet correlation
diversity and its percentage of zeros (median HC: 25% vs. median
bvFTD: 35%) indicated a decreased heterogeneity and increased
null functional connectivity between brain regions in bvFTD
compared to HCs. In addition, strength decrease denounces a
generalized connectivity weakening in bvFTD respect to HCs.

Stronger Disorder Limit
By analyzing TOM-based weighted fully connected graphs for
each subject (see Materials and Methods), we obtained good
fitting for the power function (Figure 2 and Supplementary
Table 2). High R2 (R-squared) indices were observed in both
groups (0.93–0.97 for HC and 0.90–0.99 for bvFTD). When
the extreme value index was estimated (α̂), excluding outliers,
low values (0.14–0.57 for HC and 0.10–0.42 for bvFTD)
were found. Values of α̂ less than one indicated a strong
disorder limit tendency.

MST Global Graph Metrics
Minimum spanning trees indicated brain connections alterations
in bvFTD patients when compared to controls (Figure 2 and
Supplementary Table 2). Data suggested a reduction of the
degree centrality and leaf fraction, and an increment of distance
metrics in the bvFTD group. Their trees were composed by nodes
with a lower maximum degree and number of leafs. Moreover,
the trees were characterized by a higher inter-distance, translating
in a higher diameter and eccentricity in bvFTD compared
to HC trees. These measures indicated brain impairments in
bvFTD, highlighting less node-connections and loss of efficiency
in exchange information capacity, that support a linear-shaped
configuration network. Conversely, HC tree metrics showed a
better network integration, characterized by parameter values
that tend to a star-type configuration (i.e., an increase in the
number of hubs and leaf points, and a decrease of diameter and
eccentricity). Although assortativity index was not significant, it
confirmed the topological hierarchy and biological nature of all
MSTs, with assortativity values less than 0, for both groups. Lastly,
permutation testing of two-group differences on the average
correlation matrices yielded similar results (data not shown).

MST Topological Two-Group Comparison
Cluster, spatial, and anatomical data were integrated through a
network representation, showing the topological properties of
the two-group average for HC and bvFTD graphs (see Materials
and Methods section). The results of edge partitioning and
node clustering are shown in Figures 3A,B, 4A,B. Every
node in Figures 3A,B, colored by cluster membership,
correspond to a single brain area belonging to a specific
macro-region or lobe (i.e., node name), and traversed by
two kinds of functional connections: (i) superhighways
(bold gray), and (ii) secondary functional routes (thin gray).
Finally, Figures 5A,B displays lobe partition (node color),
node degree centrality (node size), and superhighways
information flow connectivity (edge thickness) for bvFTD
and HC groups, respectively.

In Figures 3A,B, 5A,B emerged the HC multiple-star
structure, whose central nodes, namely Lingual-L, Occipital-
Inf-R, Precuneus-L, and Cerebellum-6-L regions (nodes #47,
#54, #67, and #99 in Figure 5B), serve as starting points for
superhighways and bridge components in the tree backbone. This
architecture was impaired in the MST of bvFTD patients, where
few conserved stars, namely Precuneus-L, and Cerebellum-6-
L (nodes #67 and #99 in Figure 5A), maintained a reduced
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FIGURE 2 | Box-plots and P-values of Wilcoxon rank sum test for global connectivity measures and minimum spanning tree global parameters. The null hypothesis
of the test is that the distributions of the HC and bvFTD do not differ (i.e., true location shift equal to 0). Data were corrected by age, sex, and age∗sex interaction,
and P-values were adjusted by Benjamini–Hochberg correction. Legend: rzero, zero correlation; kmax, maximum degree; Bmax, maximum betweenness; d,
diameter; Ecc, eccentricity; Ass, assortativity; K, degree divergence; Lf, leaf fraction; alpha, extreme value index; R2 alpha, R-square of the extreme value index.

functional connectivity, leading to a general isolation of Frontal
and Temporal areas from central nodes. Network complexity
reduction from HC to bvFTD is evident from bvFTD hierarchical
clustering in Figure 3A, where Frontal and Temporal areas
(green and red clusters, respectively) are almost completely
separated from Parietal (yellow cluster) and Occipital-Cerebellar
regions (cyan cluster). On the other hand, HC heatmap in

Figure 3B, shows two highly connected network communities
(green-brown and red-cyan clusters). Specifically, two different
groups of Frontal-Parietal regions (brown and red clusters)
are highly connected to Frontal (green cluster) and Temporal-
Occipital-Cerebellar regions (cyan cluster), respectively. Notably,
network star nodes (i.e., Lingual-L, Occipital-Inf-R, Precuneus-
L, and Cerebellum-6-L) traverse and integrate these two highly
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FIGURE 3 | (A,B) Clusters and superhighways differences in brain macro-regions. MSTs for both bvFTD and HCs are shown on the left (A) and right (B) panel,
respectively. Clusters are defined by node colors, while thick edges show superhighway paths. Hubs (i.e., nodes having degree centrality >5) are marked with a
black dot. Nodes are labeled according to macro-regions (i.e., lobes) membership (see Supplementary Table 1 for label encodings).

FIGURE 4 | (A,B) Heatmaps and dendrograms of brain areas clustering elaboration. Hierarchical subdivision of brain areas and clustering for both bvFTD and HCs
are shown on the left (A) and right (B) panel, respectively. The same number of clusters for both groups is obtained through the application of a cutting-height on
dendrograms. We applied a cut-off equal to 0.2 to obtain four clusters (yellow-to-red squares within clustering areas). The four clusters (showed as colored boxes),
reveal a clearer subdivision in the bvFTD group (A) respect to HCs (B).

connected communities in HC (Figure 5B). Conversely, bvFTD
clusters are much more homogeneous (i.e., areas from the same
lobe tend to cluster together), involving fewer and isolated stars.
This is evident in Figure 5, where the bvFTD network panel
(A) shows a clear lobe segregation (i.e., node color), especially
for Frontal (red), Parietal (yellow), Occipital (light blue), and
Cerebellum (blue) lobes, while the HC network panel (B) shows
a much higher level of integration.

The survival ratio (i.e., the intersection between graphs
calculated as the fraction of links found common in two MSTs)
was equal to 42%, defining dissimilar topological structures of

MSTs in the two groups. These differences are highlighted in
Figure 6, where edges present in the bvFTD graph but not in
the HC one panel (A), and vice versa panel (B), are shown.
More specifically, highly connected star-clusters seen in the HC
group were absent in the bvFTD graph. Conversely, leafs and
short linear structures seen in the bvFTD group were absent
in the HC graph.

Nodes and edges in the axial orientation (x-y)-coordinates
of the anatomical automatic labeling (AAL 116) brain atlas are
shown in Figures 7A,B, providing a complete frontotemporal
brain state representation, through the visualization of type,
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FIGURE 5 | (A,B) Node degree centrality and superhighway routes in brain macro-regions. MSTs for both bvFTD and HCs are shown on the left (A) and right (B)
panel, respectively. Macro-regions (i.e., lobes) are defined by node colors. Thick edges show superhighway paths and node size is proportional to degree centrality.
Nodes are labeled by AAL 116 region identifier. Identifiers and corresponding areas and macro-regions can be found in Supplementary Table 1. Macro-region color
code: Red, Frontal; Green, Temporal; Yellow, Parietal; Orange, Limbic; Cyan, Occipital; Brown, Subcortical Gray Matter; Light pink, Insula; Blue, Cerebellum.

FIGURE 6 | (A,B) Graph-edges difference between the two groups. MSTs differences for both bvFTD and HCs are shown. Left (A) panel shows bvFTD-HC residual
graph, while right (B) panel reports the difference HC-bvFTD. Node colors follow cluster membership, as in Figure 3. Nodes are labeled according to macro-regions
membership (see Supplementary Table 1 for label encodings).

number, and origin of connections, confirming the abnormalities
found in bvFTD, compared to HC. The most evident feature is
a massive grouping of Frontal areas (red nodes in Figure 7A),
disconnected from both Temporal lobes (green nodes in
Figure 7A) and other areas (yellow nodes in Figure 7A),
including the conserved star nodes Precuneus-L and Cerebellum-
6-L (nodes #67 and #99 in Figure 7A). Strikingly, the massive

frontal aggregation in bvFTD belongs entirely to a single cluster
(red nodes in Figures 5A, 7A), at the center of which is present
a new bvFTD-specific star node (Frontal Sup-Medial-L, node
#23 in Figures 5A, 7A), indicative of a new isolated functional
macro-region in bvFTD. Notably, comparing superhighways
distribution between groups (Figures 7A,B), HCs show a deeply
intertwined connectivity that integrates star nodes with Frontal
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FIGURE 7 | (A,B) Spatial location of areas and superhighway routes according to x-y AAL 116 coordinates. MSTs for both bvFTD and HCs are shown on the left (A)
and right (B) panel, respectively. Thick edges show superhighway paths and node size is proportional to degree centrality. Red nodes correspond to Frontal areas,
while Temporal areas are colored in green. Hubs (i.e., nodes having degree centrality >5) are labeled by AAL 116 region identifier. Left MST (A) reports conserved
hubs (areas #67 and #99), lost hubs (areas #47 and #54), and the gained frontal hub (area #23) in bvFTD, respect to HCs.

and Temporal areas, linking them each other. Conversely, bvFTD
superhighway connectivity collapses around conserved hubs and
within the Frontal macro-region, causing their isolation.

Methodological Comparison
Minimum spanning tree network metrics were compared to
other classical graph theory approaches (see Materials and
Methods), to assess network properties reproducibility and
wavelet scale specificity. Network metrics and Wilcoxon rank
sum test results are reported in Supplementary Table 2. Beside
the MST, only the efficiency/cost trade-off based method (i.e.,
ECO) showed significant bvFTD/HC specifically at scale 2, while
all the other scales were non-informative (i.e., non-significant
bvFTD/HC differences). The EBIC-based method reported
few significant indices not directly related to information
exchange efficiency (i.e., maximum degree, degree divergence,
and assortativity), for both scales 1 and 2, indicating poor
discriminant power. Lastly, spectral analysis and scale free
model-based methods did not show significant case/control
differences at any wavelet scale. Notably, both MST and ECO
are based on the optimization of the information flow exchange
across the functional network, maximizing graph integration and
minimizing wiring costs. Common metrics between MST and
ECO showing significant results at scale 2 were the same in both
methods. However, differently from MST, ECO yielded several
disconnected nodes (up to 74) per subject.

DISCUSSION

In the present study, we evaluated the power of MST
representation within the framework of bvFTD, combining

rs-fMRI data and graph theory analysis. Different neuroimaging
methods have been proposed to highlight brain damage in bvFTD
(Whitwell et al., 2011; Rohrer et al., 2015). However, since the
description of the BOLD signal (Ogawa et al., 1990), functional
neuroimaging allowed to go beyond the mere anatomical
description of brain connectivity, identifying functionally
connected (i.e., synchronized time-dependent fluctuations of
the BOLD signal) networks of cortical and subcortical regions
(Seeley et al., 2008). In bvFTD, multiple independent studies
identified the frontal brain regions as the affected core networks
(Seeley et al., 2009; Zhou et al., 2010; Whitwell et al., 2011;
Borroni et al., 2012; Farb et al., 2013; Lee et al., 2014).

Graph theory has already been applied in a few MRI studies
on bvFTD, demonstrating disruption of the global topologic
organization, increased path length and assortativity, with loss
of cortical hubs and network centrality, extending the list of
sensible target regions to salience and executive functions (Agosta
et al., 2013; Trojsi et al., 2015; Sedeño et al., 2016; Hohenfeld
et al., 2018). Despite the wide use of graph theory in the
analysis of neurodegenerative disorders, many methodological
aspects are left to the experimenter choice, leading to possible
confounding results.

When comparing graphs with the same number of nodes
(N) and edges (N-1), the MST is an unambiguous method
for brain network analysis, allowing to avoid methodological
biases (Tewarie et al., 2015). Although it does not completely
replace traditional graph theory approaches, MST remains
the simplest and most effective representation of a full graph
(Stam et al., 2014), where minimum weight (i.e., maximum
connectivity) links constitute significant information flow
paths. Moreover, it has been recently demonstrated how
MST provides robust network estimates, with results in
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accordance to classical network analytical data (Otte et al., 2015;
Tewarie et al., 2015). As indicated by our methodological
comparison (see Results), algorithms based on information flow
optimization and wiring cost minimization (including MST
and ECO methods) achieved the best bvFTD/HC separation
performances (Supplementary Table 2). On the other hand,
fixed-correlation threshold and scale free model-based graphs
showed poor or non-significant results, indicating that enforcing
an arbitrary correlation threshold or network nature (i.e.,
scale free power law distribution) strongly limit network
descriptive power. Conversely, MST has the advantage of
requiring no correlation thresholds, network density or a priori
distribution, ensuring full reproducibility and robustness in
different conditions. Furthermore, since our results indicated
a strong disorder limit tendency in both groups, the MST was
able to preserve the connectivity features of the underlying
functional networks (Tewarie et al., 2014). Through our TOM-
adjusted edge weights, MSTs and relative parameters conserved
their neighborhood node characteristics, highlighting nodes
aggregation (i.e., star-type configurations), and providing a
valid method to identify a set of shortest paths in MSTs that
may be considered as the “critical backbone” of original graph
(Tewarie et al., 2014).

Our MSTs suggest that the differences between groups
may be attributed to functional alterations of such major
organization, since they represent the information-flow highways
of the fully connected network. Shape-linear configuration
tendency in bvFTD graphs highlights different impairments:
high distance between nodes, low centrality parameter values,
and a low exchange information capacity (i.e., low network
integration). Connection efficiency loss is particularly evident
in Figure 7, where the superhighway system in HCs, linking
hubs to Frontal and Temporal brain areas, is replaced by
a local (i.e., isolated) network surrounding conserved hubs.
Functional isolation is a generalized process in bvFTD, where
brain areas tend to interact within lobes (i.e., colors in Figure 5),
showing a homogeneous brain area distribution, longer distances
between hubs, and longer within-lobe superhighways. Therefore,
bvFTD functional breakdown is not merely described by
connectivity loss, but though disease-specific reorganizations
and regularization of the information flow. This contrasts
with the marked integration of a healthy functional network,
where superhighways serve as shortcuts to connect areas
from different brain macro-regions. Network regularization has
already been observed as a distinctive FTD trait, respect to other
neurodegenerative disorders, including Alzheimer’s disease (de
Haan et al., 2009; Zhou et al., 2010). We further investigated
this aspect by gathering evidences from both global and local
network metrics.

Although global functional parameters (i.e., strength,
diversity, and zero correlation) showed a significantly
weaker and reduced connectivity in bvFTD, edge-level and
node-level features (i.e., superhighways, and node degree
and betweenness centrality), highlighted a more complex
scenario, explaining some of the key dysfunctions observed
in large scale resting-state functional networks, including
the DMN, SN, and EN networks (Zhou et al., 2010; Trojsi

et al., 2015; Sedeño et al., 2016; Hohenfeld et al., 2018). The
first evidence from our data is the formation of a new FTD-
specific hub (area #23: Frontal_Sup_Medial_L, Figure 5A),
absent in HCs. This hub is the starting point of a huge
superhighway, fully extending within frontal lobe, clearly
derived from an elongation of the original route in HCs
(Figure 5B). Specifically, our data showed the involvement
of regions: Frontal_Sup_Medial_L/R, Frontal_Sup_Orb_L/R,
Frontal_Mid_Orb_L/R, Frontal_Med_Orb_L/R, Rectus_L/R,
and Olfactory_L/R (areas #23, #24, #5, #6, #9, #10, #25,
#26, #27, #28, #21, and #22 in Supplementary Table 1 and
Figure 5A). Notably, all the elements of this superhighway
are part of the DMN (Zhou et al., 2010; Trojsi et al., 2015;
Hohenfeld et al., 2018), strongly supporting the evidence
of a compensation mechanism and frontal DMN decreased
connectivity with areas from other lobes. However, this process
is not exclusive of the Frontal lobe. Within-lobe superhighway
formation, and consequent isolation, involves also the two
conserved nodes in bvFTD: Precuneus_L (area #67, parietal
lobe in yellow in Figure 5A) and Cerebellum_6_L (area
#99, blue in Figure 5A), where the former plays a key role
in the DMN network. Betweenness difference (b) is a good
local indicator of these impairments at node level (threshold
set at b = ± 435, (see Supplementary Table 3). Notably,
while areas #23 and #67 show a strongly increased node
betweenness (b23 = 1545, and b67 = 879) from bvFTD to HCs,
area #99 loses a great portion of its centrality (b99 = −1534),
supporting the evidence of a functional deterioration of the
cerebellar lobule VI, that has been associated with cerebellar
atrophy in both bvFTD and Alzheimer’s disease (Guo et al.,
2016; Schmahmann, 2016). Nevertheless, area #99 is the
center of an enlarged intra-cerebellar superhighway system,
showing that superhighway elongation is due to a generalized
network centrality reorganization, rather than a region-specific
impairment. It has been recently suggested that long-distance
connections have an important role in integrating distinct
brain areas, leading to a greater functional diversification,
robustness, and specialization (Betzel and Bassett, 2018).
However, long-range connections number and length is strictly
controlled by their metabolic demand. In contrast, bvFTD
long within-lobe superhighways seem not to contribute to
the overall functional integration, but rather being the result
of a compensatory mechanism, in response to a generalized
functional deterioration. To verify this hypothesis, we focused
our attention to those areas showing a strong betweenness
centrality loss (b < −435) in bvFTD respect to HCs. The
clearest example in our data is given by three connected
areas (Figure 5B): Angular_R (area #66, b66 = −1552),
Frontal_Sup_R (area #4, b4 = −1359), and Cingulum_Ant_R
(area #32, b32 = −1299), being involved in DMN, EN, and
EN/SN, respectively. As shown in Figure 5B, these three
areas connect the Precuneus_L (parietal area #67) and its
superhighway system to the frontal superhighway starting from
area #23 (Frontal_Sup_Medial_L), that in bvFTD is markedly
enlarged (Figure 5A). In the bvFTD network, area #23 is a
new hub, and the #23–67 connection is now a much longer
and linear path, suggesting that superhighway elongation
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could be a compensatory reaction to a less efficient network
integration. Notably, Cingulum_Ant_R (area #32) is part of the
limbic system, involved in both DMN and salience/executive
functions, suggesting that limbic system failure could be an
underlying cause of the global network rearrangement observed
in bvFTD subjects.

A further support to this hypothesis is represented by the
disruption of two HC network hubs (Figure 5B): Occipital_Inf_R
(area #54, b54 = −4054) and Lingual_L (area #47, b47 = −2913),
replaced by a long linear-shaped sequence of occipital areas
(Figure 5A), denouncing a massive loss of degree and
betweenness centrality also in this part of the network. Beside
hubs, two adjacent connector areas experienced huge loss
of betweenness: Fusiform_R (area #56, b56 = −531) and
ParaHippocampal_R (area #40, b40 =−540). Strikingly, while the
former is a direct bridge to the hub group, the latter is the first
node of a limbic superhighway (Figure 5B), whose nodes occupy
distinct peripheral positions in bvFTD (Figure 5A), including:
Hippocampus_L/R (area #37–38), ParaHippocampal_L/R (areas
#39–40), and Amygdala_L/R (areas #41–42).

Collectively, these evidences show an underlying involvement
of the limbic system in the observed bvFTD functional
deterioration, associated to the well-studied impairments
affecting emotion recognition, social inference, and executive
functions typical of this neurodegenerative disorder
(Zhou et al., 2010; Trojsi et al., 2015; Sedeño et al., 2016;
Hohenfeld et al., 2018).

CONCLUSION

The present work had the primary goal of highlighting alterations
in brain connectivity of bvFTD subjects, providing at the
same time a detailed description of the observed functional
impairments, and insights about their possible causes. According
to the most recent fMRI literature (Guo et al., 2017; Cui et al.,
2018), we applied an MST model to wavelet correlation matrices
from bvFTD and HC subjects, exploiting three strongpoints of
MST-based methods: (i) assumption-free network construction
and reproducibility, (ii) independence from node and edge
number during network comparison, and (iii) simplicity of
representation (i.e., three branching is directly interpretable in
terms of most efficient shortest paths). On the other hand, MSTs
have one main limitation: the resulting network is a sparse
representation, implicitly excluding triangular connections, thus
causing non-applicability of some common clustering metrics
(e.g., transitivity and coreness) and evaluation of the network
small-worldness. However, we coped with this issue by using
TOM (Zhang and Horvath, 2005) and the extreme value index
evaluation (Van Mieghem and Magdalena, 2005).

The combination of this theoretical model with rs-fMRI
data allowed us not only to generate a clear picture of the
functional divergence of bvFTD from HCs, but also to shed
light on the possible causes of topological and functional
rearrangements, and compensatory mechanisms, underlying
cognitive, social, and executive impairments characterizing
bvFTD phenotype.

Further developments to the present work, that now constitute
main limitations, are represented by: (i) the lack of clinical and/or
metabolic parameters that could confirm or reveal new causal
hypotheses, and (ii) a combination with anatomical variables
(e.g., gray matter mass), to achieve a better model resolution, and
associate degenerative processes to functional deterioration.

Collectively, the application of MST-based analysis to rs-fMRI
data looks a promising way to clarify the role of degenerative
processes involved in FTD functional breakdown, improving the
discovery of new fMRI biomarkers.
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