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Increasing evidence supports the hypothesis that the visual system employs a sparse

code to represent visual stimuli, where information is encoded in an efficient way by a

small population of cells that respond to sensory input at a given time. This includes

simple cells in primary visual cortex (V1), which are defined by their linear spatial

integration of visual stimuli. Various models of sparse coding have been proposed to

explain physiological phenomena observed in simple cells. However, these models have

usually made the simplifying assumption that inputs to simple cells already incorporate

linear spatial summation. This overlooks the fact that these inputs are known to have

strong non-linearities such the separation of ON and OFF pathways, or separation of

excitatory and inhibitory neurons. Consequently thesemodels ignore a range of important

experimental phenomena that are related to the emergence of linear spatial summation

from non-linear inputs, such as segregation of ON and OFF sub-regions of simple cell

receptive fields, the push-pull effect of excitation and inhibition, and phase-reversed

cortico-thalamic feedback. Here, we demonstrate that a two-layer model of the visual

pathway from the lateral geniculate nucleus to V1 that incorporates these biological

constraints on the neural circuits and is based on sparse coding can account for the

emergence of these experimental phenomena, diverse shapes of receptive fields and

contrast invariance of orientation tuning of simple cells when the model is trained on

natural images. The model suggests that sparse coding can be implemented by the V1

simple cells using neural circuits with a simple biologically plausible architecture.

Keywords: efficient coding, LGN-V1 pathways, biological plausibility, separated ON and OFF sub-regions,

push-pull effect, phase-reversed feedback, receptive fields, contrast invariance

1. INTRODUCTION

In early experimental studies of cat striate cortex, Hubel and Wiesel found two main types of
cells: simple cells and complex cells (Hubel and Wiesel, 1959, 1962). Simple cells exhibit linear
spatial summation of visual stimuli, while complex cells have significant non-linear behavior. This
difference is reflected in receptive field (RF) structures of the two types of cells. Receptive fields
(RFs) describe spatial patterns of light and dark regions in the visual field that in combination are
effective at driving neural response. They are frequently modeled as linear spatial filters. Simple
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cells have a single RF filter, reflecting the linear spatial summation
properties, while complex cells pool the output for two or more
RF filters in a non-linear fashion.

Over the past decades, some important characteristics of
simple cell RF have been observed experimentally (with emphasis
on cat and primates, but also ferrets). First, simple cells show
a range of selectivity for the orientation of visual stimuli, from
highly oriented RFs, which are selective to an optimal orientation,
to non-oriented RFs, which are insensitive to orientation. Many
RFs of simple cells in V1 are oriented, localized, and bandpass
(Hubel and Wiesel, 1962, 1968), while non-orientated RFs are
seen in all layers of V1 (Hawken et al., 1988; Chapman and
Stryker, 1993). Second, RFs of orientation tuned simple cells can
be well-described by two-dimensional Gabor functions (Jones
and Palmer, 1987a; Ringach, 2002). In addition, both these
studies found some blob-like RFs, which are broadly tuned in
orientation. Third, RFs of simple cells have spatially segregated
ON and OFF sub-regions (Hubel and Wiesel, 1962; Martinez
et al., 2005); i.e., the spatial region that excites the simple cell in
response to bright (ON) stimuli is separated from the region that
excites the cell in response to dark (OFF) stimuli (left column
of Figure 1). Fourth, simple cells show push-pull responses; i.e.,
if one stimulus excites a simple cell, the stimulus with opposite
contrast, but same location, will inhibit the simple cell (Jones
and Palmer, 1987b; Ferster, 1988; Hirsch et al., 1998; Martinez
et al., 2005). One example of the push-pull effect can be seen
on the left of Figure 1 where a simple cell is excited by input
from a cell in the lateral geniculate nucleus (LGN) responding
to dark spots (an OFF LGN cell) but is effectively inhibited
by LGN cells responding a bright spot in the same location
(an ON LGN cell). Fifth, feedback from simple cells to LGN
cells frequently has a phase-reversed influence compared to the
feedforward input (Wang et al., 2006); i.e., where the RF of an
ON (OFF) LGN cell is overlapped with the ON (OFF) sub-region
of the RF of a simple cell, i.e., feedforward excitation, feedback
from the simple cell to the LGN cell is suppressive; where an
ON (OFF) LGN cell coincides with the OFF (ON) sub-region
of a simple cell RF, i.e., effective feedforward suppression, the
feedback is facilitatory. This effect of phase-reversed feedback is
also illustrated in Figure 1, where the influence from a simple cell
to LGN cells is opposite to the influence from LGN cells to the
same simple cell. Lastly, the orientation tuning property of simple
cells are contrast invariant; i.e., the shape andwidth of orientation
tuning curves remain the same for different stimulus contrasts
(Sclar and Freeman, 1982; Skottun et al., 1987; Finn et al., 2007;
Priebe, 2016).

On the other hand, insights from computational modeling of
V1 cells have also been used to explain experimental data. Sparse
coding has been proposed by many researchers as a principle
employed by the brain to process sensory information. Olshausen
and Field reproduced localized, oriented and spatially bandpass
RFs of simple cells based on a sparse coding model that aimed to
reconstruct the input with minimal average activity of neurons
(Olshausen and Field, 1996, 1997). However, the original model
failed to generate non-oriented RFs observed in experiments
(Ringach, 2002). Subsequently, Olshausen and colleagues found
that the sparse coding model can produce RFs that lack strong

FIGURE 1 | Illustration of segregated ON and OFF sub-regions, the push-pull

effect, and phase-reversed feedback. ON and OFF LGN cells are spatially

located in a 2D region. The colors of magenta and green represent excitatory

and inhibitory connections, respectively.

orientation selectivity by having many more model neurons
than the number of input image pixels (Olshausen et al., 2009).
Rehn and Sommer introduced hard sparseness to classical sparse
coding, which minimizes the number of active neurons rather
than the average activity of neurons in the original model,
and demonstrated that the modified sparse coding model can
generate diverse shapes of simple cell RFs (Rehn and Sommer,
2007). Zhu and Rozell showed that many visual non-classical
RF effects of V1 such as end-stopping, contrast invariance of
orientation tuning can emerge from a dynamical system based
on sparse coding (Zhu and Rozell, 2013).

These studies were important in explaining the RF structure,
but made a number of simplifying assumptions that overlooked
many details of biological reality, include some or all of
the following. First, the responses of neurons (e.g., firing
rates) should be non-negative. Second, the learning rule of
synaptic connections should be local where the changes of
synaptic efficacy depend only on pre-synaptic and post-synaptic
responses. Third, the learning rule should not violate Dale’s Law,
namely that neurons release the same type of transmitter at
all their synapses, and consequently, the synapses are either all
excitatory or all inhibitory (Strata and Harvey, 1999). Fourth,
the computation of the response of any neuron should be local,
such that only neurons synaptically connected to this target
neuron can be involved. In addition, a biologically plausible
model should also be consistent with important experimental
evidence. For LGN-V1 visual pathways, experimental evidence
includes the existence of a large amount of cortico-thalamic
feedback (Swadlow, 1983; Sherman and Guillery, 1996), long-
range excitatory but not inhibitory connections between LGN
and V1, and separated ON and OFF channels for LGN input
(Hubel and Wiesel, 1962; Ferster et al., 1996; Jin et al., 2008,
2011). The original sparse coding model neglects many of the
biological constraints described above.

Several recent studies addressed the issue of biological
plausibility by incorporating some of these constraints, while
continuing to neglect others. For example, Zylberberg and
colleagues designed a spiking network (based on sparse coding)
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that can account for diverse shapes of simple cell RFs using
lateral inhibition (Zylberberg et al., 2011). The local learning rule
and the use of spiking neurons bring some degree of biological
plausibility to the model, but the model employs connections
that can change sign during learning, which violates Dale’s law,
and there are not separate channels for ON and OFF LGN
input. Additionally, the effect of sparse coding is achieved by
competition between units via lateral inhibition, but a recent
study suggested that dominant lateral interactions are excitatory
in the mouse cortex (Lee et al., 2016). In another modeling work
of simple cell RFs, Wiltschut and Hamker designed an efficient
coding model with separated ON and OFF LGN cells, and,
feedforward, feedback, and lateral connections that can generate
various types of simple cell RFs (Wiltschut and Hamker, 2009),
but their model does not incorporate Dale’s law.

As with earlier studies (Olshausen and Field, 1996, 1997; Rehn
and Sommer, 2007; Olshausen et al., 2009), these more recent
studies (Wiltschut and Hamker, 2009; Zylberberg et al., 2011),
incorporating biological constraints, have continued to focus on
the RF structure of simple cells, while largely neglecting the
experimental phenomena shown in Figure 1. This is because
they have typically not separated inputs from ON and OFF LGN
cells, which is a key distinction underlying all the phenomena
listed in Figure 1. One important question in this regard is how
these non-linear (half-wave rectified) LGN inputs are combined
to give linear RFs for simple cells and whether this causes the
experimental phenomena listed in Figure 1. To our knowledge,
Jehee and Ballard are the only researchers that have explicitly
explained the effect of phase-reversed feedback using a model
based on predictive coding (Jehee and Ballard, 2009). However,
the RFs generated by their model do not match well with those
observed in experiments and the push-pull effect for simple cells
has not been explained. In addition, the formula for calculating
responses of model neurons (Jehee and Ballard, 2009, Equation
7) is not local and the learning rule neglects Dale’s law.

In this paper, we propose a two-layer model of LGN-V1 visual
pathways that can account for experimental phenomena:

• Segregated ON and OFF sub-regions of simple cells,
• The push-pull effect for simple cells,
• Phase-reversed cortico-thalamic feedback,
• Diverse shapes of RFs (oriented and non-oriented),
• Contrast invariance of orientation tuning.

Our model is biologically plausible by incorporating:

• Separate channels of ON and OFF LGN input,
• Non-negative neural responses,
• Local learning rule,
• Dale’s law,
• Local computation,
• Dynamics of rate-based model neurons,
• Feedback from V1 to LGN.

The first layer consists of ON and OFF LGN cells and the
second layer consists of simple cells. The connections from the
first layer to the second layer (feedforward connections) and
from the second layer to the first layer (feedback connections)
consist of separate excitatory and inhibitory connections. Even

though the inhibitory connections between LGN and V1 should
be implemented via intermediate populations of inhibitory
interneurons, we use neurons that have both excitatory and
inhibitory connections to simplify the circuit. This aspect of
the model is not biologically plausible, but possible biologically
plausible neural circuits for implementing inhibitory connections
are proposed in the Discussion section. Themodel presented here
is relevant to visual cortices both with and without an orientation
columnar organization.

The novelty of themodel proposed here is that it models LGN-
V1 pathways using segregated ON and OFF LGN channels and
separate excitatory and inhibitory connections to investigate the
structure of connections between LGN and simple cells to explain
a wide range of experimental phenomena. In addition, it can
generate a wide variety of experimentally observed RFs of simple
cells. Also, the model is biologically plausible by respecting many
biological constraints and important experimental evidence.
Finally, the experimental phenomena explained in this paper are
all caused by the structure of learned connections between LGN
and V1 after the model is trained on natural image data.

2. MATERIALS AND METHODS

2.1. Sparse Coding
The original sparse coding model (Olshausen and Field, 1996)
proposed that simple cells represent their sensory input in such
a way that their spiking rates in response to natural images tend
to be statistically independent and rarely attain large values (near
the top of the cells’ dynamic range). Mathematically this means
that the joint distribution of spike rates over natural images is
the product of the distributions for individual cells, and that
each of these individual distributions has a long tail (i.e., high
kurtosis). Additionally it was proposed that the representation
should allow the reconstruction of the sensory input through a
simple weighted sum of visual features with minimal error. This
can be formulated as an optimization problem of minimizing the
cost function,

E(A, s) =
1

2
‖x− As‖22 + λ

∑

i

Q(si), (1)

where x represents the input, columns of the matrix A represent
basis vectors that are universal visual features from which any
image can be constructed from a weighted sum, s is the vector
of responses, si, of model units that represent the corresponding
coefficients for all basis vectors,Q(·) represents a penalty function
that favors low activity of model units, and λ is a parameter that
scales the penalty function (Olshausen and Field, 1996, 1997).
The term As in Equation (1) is the reconstruction of the input
from the model, so the first term on the right-hand-side of
Equation (1) represents the sum of squared difference between
the input and model reconstruction. The second term on the
right-hand-side of Equation (1) tends to push s to small values.
Therefore, by solving this minimization problem, the model
finds a sparse representation for the input. By taking the partial
derivatives of Equation (1) in terms of the elements of A and s,
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and applying gradient descent, the dynamic equations and the
learning rule are given by

ṡ = ATr− λQ′(s)

1A ∝ 〈rsT〉,
(2)

where r = x − As, 〈·〉 is the average operation, the dot
notation represents differentiation with regard to time, and Q′(·)
represents the derivative of Q(·).

Based on Equation (2), a network implementation of sparse
coding, shown in Figure 2, was proposed by Olshausen and
Field (1997) who suggested that a feedforward-feedback loop
can implement sparse coding. The input to the model was
natural images that had been whitened using a filter that
resembles the center-surround structure of retinal ganglion RFs.
However, the original sparse coding model was not biologically
plausible in several aspects, such as the possibility of negative
spiking rates and the violation of Dale’s law. In addition,
the input the the model was not split into separate ON and
OFF channels. Finally, this network imposed feedback synaptic
connections that were anti-symmetric to the corresponding
feedforward connections (i.e., equal but opposite in sign) and
it was unclear how such symmetry could be achieved using
biologically plausible mechanisms.

2.2. Structure of Our Model
We propose a two-layer network with rate-based neurons that
models the activities of LGN cells (first layer), and simple cells
(second layer), respectively (Figure 3). The model is based on a
locally competitive algorithm that efficiently implements sparse
coding with neural dynamics with non-negative spiking rates
(Rozell et al., 2008).

FIGURE 2 | The network implementation of sparse coding. Upward and

downward arrows represent feedforward and feedback connections. The

reconstruction As is subtracted via negative feedback. Q′(s) represents
self-inhibition of neurons (Adapted from Figure 5 in Olshausen and Field,

1997).

We first define the parameters of the model that will be used
throughout the paper. A summary of all symbols defined below is
shown in Table 1. There are 2N LGN cells in the first layer, with
N ON LGN cells and N OFF LGN cells, andM simple cells in the
second layer. Denote x = [x1, · · · , x2N]T as the vector of input
stimuli to the first layer. Denote xON as the input to ON LGN cells
(the firstN elements of x) and xOFF as the input to OFF LGN cells
(the last N elements of x), i.e., x = [xTON, x

T
OFF]

T .
Denote vL and sL as 2N × 1 vectors that represent membrane

potentials and firing rates of LGN cells in the first layer. Denote
vLON, s

L
ON, v

L
OFF, and sLOFF as N × 1 vectors that represent the

membrane potentials and firing rates of ON and OFF LGN cells,

i.e., vL = [vLON
T
, vLOFF

T
]T and sL = [sLON

T
, sLOFF

T
]T . Similarly, vC

and sC areM×1 vectors that represent membrane potentials and
firing rates ofM cortical simple cells in the second layer.

In our model, there are several important connections:
feedforward (up) excitatory and inhibitory connections from
LGN cells to simple cells, feedback (down) excitatory and
inhibitory connections from simple cells to LGN cells, and
self-excitatory connections of simple cells that represent self-
excitation. Definitions of connections are described below. One
aspect of the model that lacks biological plausibility is existence
of inhibitory connections between thalamus and cortex, but we
propose biologically plausible neural circuits of implementing
this aspect of the model in the Discussion section.

Denote Au,+
ON as an N ×M matrix with non-negative elements

that represents the feedforward excitatory connections from
ON LGN cells to simple cells. Each column of Au,+

ON represents
connections from N ON LGN cells to a simple cell. Similarly,
denote Au,+

OFF as an N × M matrix with non-negative elements
that represents the feedforward excitatory connections fromOFF
LGN cells to simple cells. Denote Au,−

ON and Au,−
OFF as N × M

matrices with non-positive elements that represent inhibitory
connections from ON and OFF LGN cells to simple cells,
respectively. Denote Au,+ and Au,− as 2N × M matrices that

FIGURE 3 | Graphical representation of the model. I is the identity matrix that

represents self-excitation. Red and green arrows represent excitatory and

inhibitory connections, respectively. Upward and downward arrows are for

feedforward and feedback pathways. Notation defined in the main text.
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TABLE 1 | Model symbols.

Description Symbol

Input stimuli to LGN cells x

Input stimuli to ON LGN cells xON

Input stimuli to OFF LGN cells xOFF

Membrane time constant of LGN cells (12 ms) τL

Membrane potentials of LGN cells vL

Membrane potentials of ON LGN cells vL
ON

Membrane potentials of OFF LGN cells vL
OFF

Firing rates of LGN cells sL

Firing rates of ON LGN cells sL
ON

Firing rates of OFF LGN cells sL
OFF

Spontaneous firing rate of LGN cells (2 Hz) sb

Membrane time constant of cortical simple cells (12 ms) τC

Membrane potentials of cortical simple cells vC

Leakage voltages of cortical simple cells vCleak

Firing rates of cortical simple cells sC

Excitatory connection: all LGN cells to simple cells Au,+

Excitatory connection: ON LGN cells to simple cells Au,+
ON

Excitatory connection: OFF LGN cells to simple cells Au,+
OFF

Inhibitory connection: all LGN cells to simple cells Au,−

Inhibitory connection: ON LGN cells to simple cells Au,−
ON

Inhibitory connection: OFF LGN cells to simple cells Au,−
OFF

Excitatory connection: simple cells to all LGN cells Ad,+

Excitatory connection: simple cells to ON LGN cells Ad,+
ON

Excitatory connection: simple cells to OFF LGN cells Ad,+
OFF

Inhibitory connection: simple cells to all LGN cells Ad,−

Inhibitory connection: simple cells to ON LGN cells Ad,−
ON

Inhibitory connection: simple cells to OFF LGN cells Ad,−
OFF

Sparsity level (0.6) λ

Learning rate η

represents all excitatory and inhibitory connections from LGN to
V1; then we have Au,+ = [Au,+

ON Au,+
OFF] and Au,− = [Au,−

ON Au,−
OFF].

For the feedback pathway, similar notation is used except
superscript “d” represents feedback connections from simple

cells to LGN cells. Therefore, we have Ad,+ = [Ad,+
ON Ad,+

OFF] and

Ad,− = [Ad,−
ON Ad,−

OFF].
Using the notation defined above, the dynamics of ON and

OFF LGN cells located in the first layer are given by

τLv̇
L
ON = −vLON + xON + Ad,+

ONs
C + Ad,−

ONs
C + sb

sLON = max(vLON, 0)
(3)

and

τLv̇
L
OFF = −vLOFF + xOFF + Ad,+

OFFs
C + Ad,−

OFFs
C + sb,

sLOFF = max(vLOFF, 0),
(4)

where τL is the time constant of the membrane potentials of LGN
cells, sb is a constant that represents the instantaneous firing rate
of the background input (i.e., from neurons outside the network),

and the max operation represents the firing dynamics such that a
cell only fires when the membrane potential is above a threshold.

Therefore, using the combined notation for ON andOFF LGN
cells, the dynamics of LGN cells can be written as

τLv̇
L = −vL + x+ (Ad,+ + Ad,−)sC + sb

sL = max(vL, 0).
(5)

The dynamics of simple cells located in the second layer is
given by

τCv̇
C =− (vC − vCleak)+ Au,+

ON

T
sLON + Au,−

ON

T
sLON

+ Au,+
OFF

T
sLOFF + Au,−

OFF

T
sLOFF + sC,

(6)

which can be reformulated as

τCv̇
C = −vC + vCleak + (Au,+ + Au,−)TsL + sC

sC = max(vC − λ, 0),
, (7)

where τC is the time constant of the membranes of simple cells
and λ is the threshold of the rectifying function of firing rates. In
addition, λ is a positive constant that introduces sparseness into
the model, sC represents the self-excitation of simple cells, which
comes from reformulating the model equations of the locally
competitive algorithm (Rozell et al., 2008), and vC

leak
represents

the change of membrane potential caused by leakage currents.
The leakage currents drive the membrane potentials of simple
cells to their resting potentials when there is no external input,
i.e., vC is zero. Therefore, the steady states of the model dynamics
are vL = sb, s

L = sb, v
C = 0, and sC = 0, which implies that

vC
leak

= −(Au,+ + Au,−)Tsb, where sb is a vector whose elements
are all equal to sb. Equations 5 and 7 are solved simultaneously by
iteration to obtain values of membrane potentials and firing rates.

The codes to run the model are available from ModelDB
(http://modeldb.yale.edu/247970).

2.3. Learning Rule
The learning process of the model is based on a Hebbian or
anti-Hebbian rule, namely that the change of synaptic strength
is related only to local pre-synaptic and post-synaptic activities.

The learning rules are given by

1Au,+ = η〈(sL − sb)s
CT〉

1Au,− = η〈(sL − sb)s
CT〉

1Ad,+ = −η〈(sL − sb)s
CT〉

1Ad,− = −η〈(sL − sb)s
CT〉,

(8)

where η is the learning rate, 〈·〉 is the ensemble average operation
over some samples, sL− sb is the vector such that each element of

vector sL is subtracted by scalar sb, and (s
L − sb)s

CT is the matrix
given by the outer product of vectors sL − sb and sC.

The change of synaptic strength depends only on the pre-
synaptic activity (sL) and post-synaptic activity (sC). Therefore,
this learning rule is local and thus biophysically realistic. In
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obedience to Dale’s law, all the weights of Au,+ and Ad,+ are
kept non-negative and all weights of Au,− and Ad,− are kept
non-positive during learning. If any synaptic weight changes sign
after applying Equation (8), the synaptic weight is set to zero.
In addition, after each learning iteration, synaptic weights are
multiplicatively normalized to ensure that Hebbian learning is
stable. Specifically, each column of Au,+ and Ad,− is normalized
to norm l1 and each column of Au,− and Ad,+ is normalized to
norm l2. The multiplicative normalization of synaptic weights
may be achieved by homeostatic mechanisms (Turrigiano, 2011),
but these are not implemented here as they are not the focus of
this paper.

2.4. Input
The data set used in our simulation consists of 10 pre-whitened
512 × 512 pixel images of natural scenes provided by Olshausen
and Field Olshausen and Field (1996). Some previous studies of
sparse coding (efficient coding) also used this data set (Olshausen
and Field, 1996; Wiltschut and Hamker, 2009; Zylberberg et al.,
2011; Zhu and Rozell, 2013). The input stimuli to the model are
chosen to be 16 × 16 pixel image patches sampled from these 10
pre-whitened 512× 512 pixel images, similar to previous studies
(Zylberberg et al., 2011; Zhu and Rozell, 2013).

The pre-whitening process mimics the spatial filtering of
retinal processing up to a cut-off frequency determined by the
limits of visual acuity (Atick and Redlich, 1992). This process is
realized by passing the original natural images through a zero-
phase whitening filter with root-mean-square power spectrum,

R(f ) = fe−(f /fc)
4
, (9)

where fc = 200 cycles/picture (Olshausen and Field, 1997).
Figure 4 shows the spatial and frequency profiles of the pre-
whitening filter. The spatial profile of the filter (Figure 4C),
obtained by taking the 2D inverse Fourier transform of the filter
in the 2D frequency domain, approximates center-surround RFs
of LGN cells in a pixel image. The pre-whitening filter described
in Equation (9) is widely used in computational studies (Jehee
et al., 2006; Jehee and Ballard, 2009;Wiltschut andHamker, 2009;
Zhu and Rozell, 2013).

The pre-whitened images are then scaled to variance 0.2
similar to Olshausen and Field (1997). Image patches are fed into
the first layer, which consists ofN ON LGN cells andN OFF LGN
cells, i.e., one pixel is fed into oneONLGN cell and oneOFF LGN
cell. If a pixel intensity in a pre-whitened image patch is negative,
we assign the absolute value of the pixel intensity to the input
of the OFF LGN cell and set the input of the corresponding ON
LGN cell to zero; if the pixel intensity is positive, we set the input
of the ON LGN cell to the pixel intensity and set the input to the
OFF LGN cell to zero.

2.5. Training
Since we use 16 × 16 pixel images as the input to our model,
256 ON and 256 OFF LGN cells (N = 256) are required in the
first layer. We use 256 simple cells (M = 256) in the second
layer. The first-order Euler method is implemented to solve the
dynamical system described by Equation 5 and 7. We choose

FIGURE 4 | Pre-whitening filter. (A) The pre-whitening filter described in

Equation (9). (B) The pre-whitening filter in 2D frequency domain. (C) The

spatial profile of the pre-whitening filter. The scale of the spatial filter is

arbitrarily normalized to convert the luminance to the membrane potential

relative to the maximal luminance of the image.

a time scale in which the passive membrane time constant is
τL = τC = 12 ms, within the physiological range (Dayan et al.,
2001), and sparsity level λ = 0.6 similar to Zhu and Rozell (2013).
The spontaneous firing rate, sb, is chosen as sb = 2 Hz, the
median of spontaneous firing rates of the mouse LGN cells in the
experimental study of Tang et al. (2016). There are 30 integration
time steps, with an integration time step of 3ms, for calculating
neuronal responses per stimulus with the assumption that neural
responses will converge after 30 iterations.

Learning rules in Equation (8) are used to update the synaptic
weights. For the normalization step after each learning iteration,
each column of Au,+ and Ad,− is normalized to have norm l1
and each column of Au,− and Ad,+ is normalized to have norm
l2. Elements of Au,+ and Ad,+ are non-negative and initialized
randomly using an exponential distribution with mean 0.5. Au,−

and Ad,− are initialized randomly with non-positive elements
that are sampled from an exponential distribution with mean
−0.5. Then, synaptic weights are normalized before the learning
process starts. Results shown in this paper are from simulations
with l1 = l2 = 1 (unit norm), as used in the previous study
by Rozell et al. (2008). The learning rule based on the average
activities of a mini-batch is applied; i.e., in every epoch, a mini-
batch that consists of 100 randomly selected 16× 16 pixel images
sampled from the data set is used. Before the training process of
natural image patches, the model is pre-trained on white noise
for 10, 000 epochs to mimic the process of pre-development
of the visual system; the learning rate is 0.5 in pre-training.
To ensure that the weights converge after learning on natural
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image patches, we use 30, 000 epochs in the training process,
where the learning rate is 0.5 for the first 10, 000 epochs, 0.2 for
the second 10, 000 epochs and 0.1 for the third 10, 000 epochs.
Learning rates were chosen to ensure stable convergence of the
weights in a reasonable time; but the results are not sensitive to
moderate changes.

2.6. Recovering Receptive Fields of Model
Simple Cells Using White Noise
In order to estimate the RFs of model simple cells in a systematic
way, we use the method of spike-triggered averaging to find the
pattern that each simple cell responds to on average (Schwartz
et al., 2006). Using K 16× 16 white noise stimuli n1, · · · ,nK , we
present pre-processed stimuli to the model, record the firing rates
of a simple cell, s1, · · · , sK , and then estimate the RF, F, of the
simple cell as the weighted average,

F =
s1n1 + · · · + sKnK

s1 + · · · + sK
. (10)

We used 70, 000 white noise stimuli, i.e., K = 70, 000.
In our simulations, we have two versions of estimated RFs

using the two different methods of pre-processing the white
noise stimuli: the same pre-whitening filter for natural scenes
(Equation 9) and a low-pass filter described by

L(f ) = e−(f /fs)
4
. (11)

2.7. Fitting Receptive Fields to Gabor
Functions
The RFs of visual cortical cells are often modeled using a 2D
Gabor function G(x, y) of the form

G(x, y; x0, y0, σx, σy, fs,β , θ ,φ)

= β cos(2π fsx
′ + φ)e

−( x′√
2σx

)2−(
y′√
2σy

)2
(12)

with

x′ = (x− x0) cos θ + (y− y0) sin θ

y′ = −(x− x0) sin θ + (y− y0) cos θ ,
(13)

where β is the amplitude, (x0, y0) is the center, σx and σy
are standard deviations of the Gaussian envelope, θ is the
orientation, fs is the spatial frequency, and φ is the phase of the
sinusoid wave (Ringach, 2002). These parameters are fitted using
the built-in MATLAB (version R2016b, MathWorks, MA, USA)
function, lsqcurvefit, that efficiently solves non-linear curve-
fitting problems using a least-squares method. The fitting error
is defined as the square of the ratio between the fitting residual
and RF.

To ensure that results were only reported for RFs that were
well-fitted to Gabor functions, we excluded RFs for which either
(1) the synaptic fields had fitting error larger than 40% or (2) the
center of the fitted Gabor functions lay either outside the block,
or within one standard deviation of the Gaussian envelope of
the block edge (Zylberberg et al., 2011). After applying these two
quality control measures, 140 out of 256 model cells remained for
subsequent analysis.

2.8. Measuring the Overlap Index Between
ON and OFF Sub-regions
To investigate the extent of overlap between ON and OFF sub-
regions, we used an overlap index that was used in experimental
studies (Schiller et al., 1976; Martinez et al., 2005). Similar
to the method used in Martinez et al. (2005), each ON and
OFF excitatory sub-region was fitted by an elliptical Gaussian
function:

h(x, y; x0, y0, a, b, θ , γ ) =
γ

2πab
e
− x′2

2a2
− y′2

2b2 (14)

where γ is the amplitude, a and b are half axes of the ellipse, and
x′ and y′ are the transformed coordinates given by Equation (13).
If there are more than one ON (or OFF) sub-regions for the
simple cell, only the most significant sub-region was fitted by the
elliptic Gaussian. If either the ON or OFF sub-region of a simple
cell has fitting error larger than 40% or has the half axis, a, larger
than 3 pixels, this simple cell is excluded. 92 simple cells remained
for the analysis of overlap index.

The overlap index, Io, is then defined as

Io =
WON +WOFF − d

WON +WOFF + d
, (−1 < Io ≤ 1) (15)

where WON and WOFF are the half width measured at the point
where the response is 30% of the maximal response, and d is
the distance between the centers of ON and OFF sub-regions.
Smaller values of Io indicate more segregation between ON and
OFF sub-regions.

2.9. Measuring the Push-Pull Index
The push-pull effect of the model was measured by a push-
pull index (Martinez et al., 2005). First, for each simple cell, we
recorded the membrane potential, P, when the preferred input
(the synaptic field) was presented to themodel. Next, we recorded
the membrane potential, N, while presenting the opposite
of preferred input to the model. To make the measurement
independent of the relative strength of different simple cells, P
and N were normalized by

P =
P

max(|P|, |N|)
and N =

N

max(|P|, |N|)
. (16)

The Push-pull index, Ip, is then defined as

Ip = |P + N|, (0 ≤ Ip ≤ 2). (17)

Smaller values of Ip indicate stronger push-pull effect.

2.10. Measuring Contrast Invariance of
Orientation Tuning
The method in (Zhu and Rozell, 2013) was used to investigate
contrast invariance of orientation tuning and the procedure is
as follows. First, an exhaustive search was performed to find the
preferred circular sinusoidal grating in the parameter space of
the following ranges: radius of the grating was between 1 pixel
and 2.5min(σx, σy) (smaller than 8 pixels which is the maximum
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radius for a 16 × 16 image patch) with the stepsize of 1 pixel ;
spatial frequency was between 0.05 and 0.3 cycles/pixel with the
stepsize of 0.05 cycles/pixel; orientation was between 0 and 180
degrees with the stepsize of 5 degrees; phase was between 0 and
360 degrees with the stepsize of 30 degrees. Next, we measured
the mean response to the drifting grating with orientations
between 0 and 180 degrees with the stepsize of 5 degrees while
varying the contrast of the stimuli from 0.2 to 1 in increments of
0.2, where contrast is defined as the amplitude of the sinusoidal
grating. The orientation tuning curve for each contrast level was
then fit to the Gaussian function and the half-height bandwidth
of the Gaussian fit was calculated. The slope of the linear fit to
half-height bandwidth vs. contrast for the cell was used to plot
the population statistics of contrast invariance (Alitto and Usrey,
2004). Here, only 68 model simple cells that have oriented RFs
located well within the 16 × 16 image patch were selected for
the analysis.

3. RESULTS

After learning, synaptic weights between LGN and V1 display
spatial structures similar to those observed in recordings of
neurons in V1, such as oriented Gabor-like filters and non-
oriented blobs. Since both excitatory and inhibitory connections
from ON and OFF LGN cells contribute to the responses of
simple cells, we use the synaptic field (Sf) defined as

Sf = (Au,+
ON + Au,−

ON)− (Au,+
OFF + Au,−

OFF) (18)

to visualize the overall synaptic weights from ON and OFF LGN
cells. The synaptic fields of 140 model simple cells that meet the
two quality control measures (see the Materials and Methods
section) are shown in Figure 5, where each block represents the
overall effect of the feedforward connections from ON and OFF
LGN cells to a simple cell. Note that although Figure 5 displays
spatial patterns that are similar to experimental RFs, strictly
they represent the synaptic weights from LGN cells to simple
cells, which ignores the early visual processing before LGN.
However, the RFs of the model are systematically investigated in
the following sections.

In the remaining results, we show that the synaptic
weights exhibit several properties that have been observed
experimentally, including segregation of ON and OFF sub-
regions, push-pull effect, phase-reversed feedback, diverse shapes
of simple cell RFs, and contrast invariance of orientation tuning.

3.1. Segregated ON and OFF Sub-regions
Hubel and Wiesel found that simple cells in cat striate cortex
have spatially separated ON and OFF sub-regions (Hubel and
Wiesel, 1962), which was also confirmed by other experimental
studies (Jones and Palmer, 1987b; Hirsch et al., 1998; Martinez
et al., 2005). However, it is impossible for a model that combines
ON and OFF LGN input into a single linear input to explain
this important phenomenon. Our model separates ON and OFF
LGN input and shows that the learned feedforward excitatory
connections from ON and OFF LGN cells to simple cells can

FIGURE 5 | Synaptic fields (defined in Equation 18) for 140 selected simple

cells. Each block is a 16× 16 image that represents the combined effects of

ON and OFF LGN cells for a simple cell in spatial domain. One hundred and

forty cells are located on a 12× 12 grid. Values in each block are normalized

to the range [−1 1] when plotting this figure.

account for the segregation of ON and OFF sub-regions of
simple cells.

ON and OFF excitatory regions of some example simple cells
are displayed in Figure 6A. In our model, there are 256 ON LGN
and 256 OFF LGN cells located evenly on a 16 × 16 image, so
each block in Figure 6A represents 256 excitatory weights from
ON or OFF LGN cells to a simple cell. Figure 6A shows that these
excitatory connections form spatial patterns such as bars and
blobs. Furthermore, a careful examination of the patterns shows
that excitatory connections from ON LGN cells are normally
adjacent to patterns of excitatory connections from OFF LGN
cells, but the two patterns do not overlap, as can be seen when
contour plots for the ON and OFF excitatory regions are overlaid
in Figure 6B.

We quantified the segregation of ON and OFF sub-regions
using the overlap index (defined in the Materials and Methods
section). The histogram of the overlap index for simple cells
in an experimental study (Martinez et al., 2005) is re-plotted
in Figure 6C. Consistent with the experimental data, 88 out of
92 model simple cells had an overlap index smaller than 0.1
(Figure 6D), which indicates that the ON and OFF sub-regions
are well-separated in a large majority of the population. The
synaptic fields of simple cells whose overlap indices are larger
than 0.1 are shown in Figure 6E, revealing thatmost of them have
low spatial frequencies.

3.2. Push-Pull Effect
Simple cells are also found to have push-pull responses; i.e., if
one contrast polarity excites a cell, the opposite contrast polarity
tends to inhibit it (Jones and Palmer, 1987b; Ferster, 1988; Hirsch
et al., 1998;Martinez et al., 2005). Even though this effect has been
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FIGURE 6 | Segregation of ON and OFF sub-regions. (A) Some examples of Au,+
ON

and Au,+
OFF

. Each block is a 16× 16 image that represents 256 excitatory

connections from ON or OFF LGN cells to a simple cell. The color magenta represents excitatory connections. (B) Red and blue contours represent excitatory

connections from ON and OFF LGN cells, respectively. Connections that are smaller than 20% of the maximal connection were removed to only show the substantial

weights. The number in each block indicates the overlap index. (C) Histogram of the overlap index for simple cells in cat V1. Re-plotted from Figure 3C in Martinez

et al. (2005). (D) Histogram of the overlap index for model simple cells. (E) Synaptic fields of the four simple cells with overlap index larger than 0.1.

observed in many experimental studies, to our knowledge there
has not been a learning model proposed that can explain how this
effect emerges. Again, a model that separates ON and OFF LGN
input is necessary to investigate the emergence of the push-pull
effect. In this section, we show that the push-pull effect for simple
cells naturally emerges as a result of neural learning.

Some examples of ON excitatory and OFF inhibitory synaptic
weights (Au,+

ON and Au,−
OFF, respectively) are shown in Figure 7A.

The patterns of Au,+
ON are similar to the ones of Au,−

OFF and
they are located at similar locations, as can be seen from the
highly overlapped contours in Figure 7B. However, the degree of
overlap is different between the examples.

Analogous results to the above also hold for learned
excitatory connections fromOFF LGN cells,Au,+

OFF, and inhibitory

connections from ON LGN cells, Au,−
ON (data not shown).

We then quantified the push-pull effect using push-pull
index (defined in the Materials and Methods section). Both
the histograms of push-pull index for experimental data
(Figure 7C) and model simple cells (Figure 7D) peaked near
zero and showed an decreasing trend. Model simple cells

showed even stronger push-pull index with more simple cells
having push-pull index close to zero. The synaptic fields
of simple cells with push-pull indices larger than 0.2 are
shown in Figure 7E, showing that most of them have low
spatial frequencies.

3.3. Phase-Reversed Feedback
The experimental study of Wang and colleagues suggests that the
synaptic feedback fromV1 to LGN is phase-reversed with respect
to the feedforward connections (Wang et al., 2006). For example,
the connection from a simple cell to an ON-center LGN cell will
be excitatory if the ON-center is aligned in visual space to the
OFF sub-field of simple cell (i.e., phase-reversed). Conversely,
if the ON-center is aligned to the ON sub-field of the simple
cell, the connection will be inhibitory. Our learning model with
separate ON and OFF LGN cells enables us to investigate the
feedback effect from simple cells to LGN cells. In this section,
we show that phase-reversed feedback arises in the structures of
learned connections.

Frontiers in Neural Circuits | www.frontiersin.org 9 March 2019 | Volume 13 | Article 13

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Lian et al. Biologically Plausible Model of LGN-V1 Pathways

FIGURE 7 | Push-pull effect. (A) Some examples of Au,+
ON

and Au,−
OFF

. Each block on the left is a 16× 16 image that represents 256 excitatory connections from ON

LGN cells to a simple cell. Each block on the right represents inhibitory connections from OFF LGN cells to a simple cell. The color magenta represents excitatory

connections; the color green represents inhibitory connections. (B) Red and blue contours represent excitatory connections from ON LGN cells (Au,+
ON

) and inhibitory

connections from OFF LGN cells (Au,−
OFF

), respectively. Connections that are smaller than 20% of the maximal connection were removed to only show substantial

weights. The number in each block indicates the push-pull index. (C) Histogram of the push-pull index for simple cells in cat V1. Re-plotted from Figure 4B in Martinez

et al. (2005). (D) Histogram of the push-pull index for model simple cells. (E) Synaptic fields of the six simple cells with push-pull index larger than 0.2.

Feedback from simple cells to LGN cells occurs via both
excitatory connections, Ad,+

x , and inhibitory connections, Ad,−
x ,

with the overall effect characterized by Ad
x = Ad,+

x + Ad,−
x ,

where x = ON or OFF depending on the type of LGN cell.
Therefore, the overall feedback to ON LGN cells, denoted as
Ad
ON, can be represented by Ad

ON = Ad,+
ON + Ad,−

ON . Similarly,

Ad
OFF = Ad,+

OFF + Ad,−
OFF represents the overall feedback to OFF

LGN cells.
The ON and OFF sub-fields of simple cells receptive fields are

characterized by the positive and negative regions of the synaptic
field defined in Equation (18). The scatter plots in Figure 8 show
that relationship expected from phase-reversed feedback. Sf is
highly positively correlated with Ad

OFF (correlation coefficient

r = 0.90), while Sf is highly anti-correlated withA
d
ON (correlation

coefficient r = −0.92). According to the figure, wherever Sf is
positive, indicating the ON sub-field, the feedback to ON LGN
cells, Ad

ON, is very likely to be negative and the feedback to

OFF LGN cells, Ad
OFF, tends to be positive; however, wherever

Sf is negative, indicating the OFF-field, the converse is true: the

feedback to ON LGN cells, Ad
ON, is very likely to be positive and

the feedback to OFF LGN cells, Ad
OFF, tends to be negative. This

corresponds to a phase-reversed feedback from V1 to LGN.
This phase-reversed feedback from V1 to LGN can be

explained by the learning dynamics of LGN and simple cells

described in Equation 8. The learning rule shows that Au,+

and Ad,− are updated with the same magnitude of synaptic
change but opposite in sign (and are normalized with the same
norm l1). Similarly, Au,− and Ad,+ are updated with the same
magnitude of synaptic change but opposite in sign (and are
normalized with the same norm l2). These anti-symmetries
are a consequence of having Hebbian learning for the forward
weights and anti-Hebbian learning for the feedback weights.
In both cases the magnitude of weight change is proportion
to the production of pre- and post-synaptic spike rates, but
the sign of the change is opposite. The anti-symmetry arises
because roles of pre- and post-synaptic rates are interchanged
in forward vs. feedback directions, in combination with the sign
change. Simulation results show that Au,+ converges to −Ad,−
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FIGURE 8 | Synaptic fields, Sf (defined in Equation 18), vs. feedback to ON

and OFF LGN cells, Ad
ON

and Ad
OFF

. Sf is highly positively correlated with Ad
OFF

(correlation coefficient r = 0.90) and Sf is highly anti-correlated with Ad
ON

(correlation coefficient r = −0.92). When Sf is greater than zero, Ad
OFF

tends to

be greater than zero and Ad
ON

tend to be smaller than zero. On the contrary,

Ad
OFF

tends to be smaller than zero and Ad
ON

tends to be greater than zero if

Sf is negative.

FIGURE 9 | ‖Au,+ + Ad,−‖2 and ‖Au,− + Ad,+‖2 during pre-development

when white noise is used as the input. The difference between Au,+ and

−Ad,− (blue line) decreases to zero very quickly during learning. Similarly, the

difference between Au,− and −Ad,+ (red line) reduces to zero quickly,

although somewhat slower than the blue line.

and Au,− converges to −Ad,+ even during pre-development
when white noise is used as the input to the model, as illustrated
in Figure 9.

3.4. The Diversity of Model Receptive
Fields Resembles That Observed
Experimentally for Simple Cells
In this section, we show that the range of spatial structures of RFs
of our model have a close resemblance to experimental data.

RFs were calculated from the model by simulating
experiments in which Gaussian white noise is presented as
a visual stimulus, and the spike triggered average is used to
estimate RFs. As the presentation of white noise may cause
adaptive effects in the early stages visual system relative to
natural images, we considered two versions of the model, one
with the standard pre-whitening filter (Equation 9) modeling
center-surround processing, and a second without pre-whitening
in which the filter is replaced by a low-pass filter (Equation
11) with the same upper cut-off frequency as pre-whitening
filter. We use pre-whitened RFs and low-pass RFs to represent
of simple cell RFs estimated using the pre-whitening filter and
low-pass filter.

Some examples of pre-whitened RFs, low-pass RFs and
synaptic fields are shown in Figure 10, which shows that pre-
whitened RFs and low-pass RFs are similar to synaptic fields.
However, pre-whitened RFs tend to have more and thinner
stripes, which indicates a narrower tuning to a somewhat higher
spatial frequency. For a simple cell tuned to very low spatial
frequencies (bottom right blocks), the RF recovered with pre-
whitening was a poor match to the original synaptic field, but for
RF recovered with low-pass filtering it was fair.

Early studies show that RFs of simple cells can be well-
described by 2D Gabor functions described in Equation (12)
(Jones and Palmer, 1987a; Ringach, 2002). For our model, most
RFs could be well-fitted by Gabor functions with suitable choices
of parameters with small fitting errors, as shown in Figure 11A.
Note that although the fitting error of blob-like RFs might be
low, the parameter choices are not necessarily reasonable, in that
they are poorly constrained and the process of Gabor fitting
imposes an a priori hypothesis that the RF is a 2D-Gabor function
even though it is clearly not Gabor-like. The pre-whitened RFs
with fitting errors larger than 40% (Figure 11B) are cells whose
synaptic fields have low spatial frequencies (Figure 11C), because
pre-whitened RFs of these cells matched poorly to the original
synaptic fields (Figure 10B). Low-pass RFs of all 140 selected
model cells have fitting errors smaller than 40% with 132 of them
having fitting errors smaller than 20% (data not shown).

Using fitted parameters of Gabor functions, Ringach
constructed a scatter plot of nx = σxfs vs. ny = σyfs to
analyze the spatial structures of RFs in V1 over the population
(Ringach, 2002). Such plots have subsequently been used by
many researchers to investigate the distributions of model simple
cell RFs (Rehn and Sommer, 2007; Wiltschut and Hamker, 2009;
Zylberberg et al., 2011). nx and ny are the width and length of the
Gabor function measured in the number of cycles of the spatial
frequency (i.e., across and along the stripes). Ringach noted that
blob-like RFs are mapped to points near the origin, while RFs
with elongated sub-regions are mapped to points away from the
origin (Ringach, 2002). In addition, nx and ny are directly related
with the half-magnitude spatial frequency bandwidth 1f and
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FIGURE 10 | Receptive fields of example model cells. Values of each block are normalized to the range [−1 1] when plotting the figure. (A) Synaptic fields of example

model cells. (B) Pre-whitened RFs of example model cells. The pre-whitening filter described in Equation (9) was used to filter white noise stimuli. (C) Low-pass RFs of

example model cells. The low-pass filter described in Equation (11) was used to filter white noise stimuli.

FIGURE 11 | (A) Histogram of Gabor fitting errors for pre-whitened RFs.

(B) Pre-whitened RFs that has fitting error larger than 40%. (C) Synaptic fields

of the corresponding cells in (B).

orientation bandwidth 1θ of the fitted Gabor function,

1f : = h(nx) = log2





1+
√
2 ln 2
2πnx

1−
√
2 ln 2
2πnx



 in octaves

1θ : = g(ny) = 2 arctan

(√
2 ln 2

2πny

)

in degrees.

(19)

Both h(nx) and g(ny) are monotonically decreasing functions;
i.e., the larger nx and ny, the smaller 1f and 1θ . Note that

h(nx) is not well-defined when nx <
√
2 ln 2/2π (≈ 0.13),

i.e., when the lower half-magnitude frequency do not exist. This
corresponds to the region in which Gabor fitting gives ambiguous
fits for parameters like spatial frequency and orientation, because
oriented RFs with low spatial frequency might lie in this region
as well.

We plot nx vs. ny and 1f vs. 1θ for RFs obtained from
both the model and experimental studies in Figure 12. However,
the different pre-processing filters for white noise stimuli have a
dramatic influence on the distributions of nx vs. ny, shifting the
distribution for low-pass RFs to the left of pre-whitened RFs, in
closer agreement to the experimental data. As mentioned earlier,
pre-whitened RFs tend to have more stripes relative to the low-
pass RFs, so they are mapped to points away from the origin
compared to low-pass RFs. In addition, the distribution of low-
pass RFs is continuous from the origin, while there is a gap
between points near the origin and points away from the origin
for pre-whitened RFs. The inset sub-plots of Figure 12 show that
data points near the origin might be orientated RFs with low
spatial frequencies and blob-like RFs might not be necessarily
mapped to points near the origin.

In general, oriented RFs are well-described by Gabor
functions and low-pass RFs better resemble the distribution of
experimental data compared with pre-whitened RFs.

3.5. Contrast Invariance of Orientation
Tuning
Another important property of simple cells is contrast invariance
of orientation tuning; i.e., the width of the orientation tuning
curve is maintained when the contrast of the stimulus changes, as
demonstrated in Figure 13A. The orientation tuning curves with
various stimulus contrasts for a model simple cell are shown in
Figure 13B, where the bandwidths of each curve remain the same
while the responses become larger when the stimulus contrast
increases. For a study of contrast invariance of V1 population in
ferret, the histogram of the slope of the linear fit of half-width
bandwidth vs. contrast (Figure 13C) showed that most cells were
contrast invariant with the slope close to zero (Alitto and Usrey,
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FIGURE 12 | nx vs. ny . Comparison of RFs of the model with experimentally recorded data for cat simple cells and monkey simple cells. Open circles: 25 cat simple

cells from Table 1 in Jones and Palmer (1987a) re-plotted in the (nx , ny ) plane; red stars: 93 monkey simple cells in Ringach (2002); blue dots: pre-whitened RFs using

the pre-whitening filter described in Equation (9); green dots: low-pass RFs using the low-pass filter described in Equation (11). The axes on the top and right

represent frequency and orientation bandwidths of fitted Gabor functions computed using Equation (19). Some examples of RFs are displayed in the inset sub-plots.

Data points of estimated RFs with fitting errors > 40% were excluded, which gave 124 data points for pre-whitened RFs and 140 data points for low-pass RFs.

2004). Figure 13D shows that most model cells have the slope
around zero, which is consistent with experimental data.

4. DISCUSSION

4.1. Relationship With Sparse Coding
Sparse coding has been successful in modeling simple cell
receptive fields (RFs) and has been used by many researchers
over the past years. Our model is based on an algorithm that
efficiently implements sparse coding (Rozell et al., 2008), and is
therefore closely related to the original concept of sparse coding
(Olshausen and Field, 1996).

If we define A as a 2N ×M matrix that represents the overall
effect caused by excitatory and inhibitory connections from 2N
LGN cells to M simple cells, we have A = Au,+ + Au,−.
The dynamics of simple cells described in Equation (7) can be
rewritten as

τCv̇
C = −vC + AT(sL − sb)+ sC. (20)

As illustrated in Figure 9, Au,+ → −Ad,− and Au,− →
−Ad,+ during learning. Therefore, we have Ad,− + Ad,+ =
−Au,+ − Au,− = −A. The dynamics of LGN cells described in
Equation (5) can be rewritten as

τLv̇
L = −vL + x− AsC + sb. (21)

If the columns of A are seen as the basis vectors of a generative
model, AsC can be seen as the linear reconstruction of the

input using learned basis vectors and thus x − AsC represents
the residual error, which is similar to r of the sparse coding
formulation given in Equation (2). Therefore, the residual error
used to update the basis vectors of the original sparse coding
model is represented by the responses of LGN cells in our model.

To incorporate Dale’s law, non-negative connections, Au,+,
and non-positive connections, Au,−, are employed in our model
to represent the positive and negative elements of A. Au,+ and
Au,− are not co-active in general, which suggests that Au,+ ≈
[A]+ and Au,− ≈ [A]−, where [ · ]+ preserves the positive
elements and sets negative elements to zero and [ · ]− preserves
the negative elements and sets positive elements to zero.

In other words, our model is essentially a variant of sparse
coding that employs separate connections to learn the positive
and negative part of the overall connections.

4.2. Relationship With Predictive Coding
Ourmodel is a hierarchical model with feedforward and feedback
connections based on a locally competitive algorithm (Rozell
et al., 2008). The structure of our model is essentially very
similar to that of predictive coding models. To be more specific,
the feedback from the second-layer neurons reconstruct the
input. The residual error is computed at the first layer and then
propagated to the second layer via feedforward connections.

Although our model presented here and the predictive coding
model of Jehee and Ballard (2009) can explain phase-reversed
feedback, the models differ in several respects. First, sparse
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FIGURE 13 | Contrast invariance of orientation tuning. (A) Contrast invariant orientation tuning curves of a simple cell in cat V1. Re-plotted from Figure 3A in Skottun

et al. (1987). Different colors represent different contrasts. (B) Contrast invariant orientation tuning curves of a cell in our model. c = 1 and c = 0.2 correspond to the

high and low contrast, respectively. (C) Histogram of the slope of half-height bandwidth vs. contrast for V1 population in ferret. Re-plotted from Figure 3B in Alitto and

Usrey (2004). (D) Histogram of the slope of half-height bandwidth vs. contrast for model simple cells.

coding in our model is simply realized by the threshold of the
rectifying function of firing rates for simple cells and this simple
mechanism leads to simple neural circuits. Second, compared
to the mechanism for determining simple cell responses one
by one in their model, our model computes the responses in
parallel. Third, our model generates diverse types of RFs that
correspond well to experimental data. Finally, the phase-reversed
effect is simply accounted for by the special pattern of learned
connections, which also explains the segregation of ON/OFF
sub-regions and push-pull effect for simple cells.

4.3. The Function of Spontaneous Activity
In the model proposed here, the dynamics of LGN cells
described in Equation (5) has the background firing rate, sb,
as part of the input to LGN cells. This spontaneous firing rate
introduces a shift of the operating point for LGN cells. Given
the responses of simple cells, sC, x − AsC in Equation (21)
represents the reconstruction residual error between the input
and reconstruction. The residual error gives the difference
between the real input and the representation produced by the

model and it can be either positive or negative. To code for
the signed quantities (residual error), Ballard and Jehee carried
out a case-by-case study, leading to very complicated neural
circuits (Ballard and Jehee, 2012). However, our model has
a straightforward method for the implementation of solving
signed quantities. The background firing rate, sb, in Equation
(5) increases the residual errors by sb. Therefore, the membrane
potential of LGN cell, vL, represents the residual error shifted up
by sb. The threshold function in Equation (5) gives the firing rate
of the LGN cell and it preserves the residual error in the interval
of [−sb, ∞], which preserves the information of whether the
model under-estimates or over-estimates the input stimuli and
forces the connections to evolve through learning in the correct
direction. In Equation (7), which describes simple cell dynamics,
the effect of the spontaneous firing rate, sb, is removed by vC

leak
,

a homeostatic mechanism employed by simple cells to maintain
resting membrane potentials when there is no external input.
The local learning rule described by Equation (8) also eliminates
the effect of the spontaneous firing rate by subtracting it. The
use of spontaneous firing rate makes the model much simpler
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and offers a new approach for solving the problem of signed
quantities (residual errors). Experimental evidence shows that
thalamocortical neurons can fire with bursts of action potentials
without any synaptic input (Kandel et al., 2013), which suggests
that the spontaneous firing activities might be used to encode the
difference between input and feedback information.

4.4. Pre-processing of the Early Visual
System
Atick and Redlich suggest that the retinal goal is to whiten the
visual input up to a transition frequency such that input noise can
also be suppressed (Atick and Redlich, 1992). The pre-whitening
filter (Equation 9) approximately whitens the natural scenes up
to the cut-off frequency.

However, for pre-processing white noise stimuli, two
hypotheses are considered here. First, the filtering process of the
early visual system can be described by the pre-whitening filter
(Equation 9) whether or not the visual stimuli are natural scenes.
Second, the early visual system is adaptive such that the visual
stimuli are whitened up to a cut-off frequency. In this case, a
low-pass filter (Equation 9) should be used, because white noise
stimuli are already whitened across all frequencies. Our results
suggest that estimated RFs using low-passed white noise match
the experimental data much better than estimated RFs using pre-
whitened white noise. Further investigation of how visual stimuli
are processed before they are fed to the visual cortex is needed to
better understand the properties of simple cells.

4.5. The Role of l1 and l2
Each column of Au,+ and Ad,− is normalized to norm l1 and
each column of Au,− and Ad,+ is normalized to norm l2. In
other words, l1 represents the overall strength of feedforward
excitatory connections and feedback inhibitory connections
while l2 represents the overall strength of feedforward inhibitory
connections and feedback excitatory connections. The results
shown in this paper are based on l1 = 1 and l2 = 1; i.e.,
the strength of feedforward excitatory connections is equivalent
to feedforward inhibitory connections, which leads to a strong
push-pull effect in Figure 7D. If l2 is smaller than l1, the push-
pull effect will be weaker and the distribution of the push-pull
index will shift to the right. In addition, reducing l2 results in
more blob-like receptive fields (data not shown).

4.6. Neural Circuits
Biologically realistic neural models can provide deeper insights
into how real neural circuits function. The model proposed here
contains a number of features that correspond to those in its
biological counterpart, namely in terms of ON and OFF channels
for LGN cells, positive neuronal responses, local computation,
local learning rule, existence of feedback, and obedience to
Dale’s law.

In addition, our model incorporates inhibitory effects between
LGN cells and cortical simple cells. As pointed out in
the Materials and Methods section, for simplicity, inhibitory
effects are implemented by direct inhibitory connections
between two layers. However, in reality, long-range inhibitory
effects should be implemented via interneurons that have

inhibitory synapses. In this section, we will discuss several
neural circuits of implementing inhibitory connections of
our model.

Possible neural circuits that may be used to implement
long-range inhibition are displayed in Figure 14. Assume that
the overall inhibitory effects from LGN cells (with activity sL)
to cortical simple cells (with activity sC) can be represented
by inhibitory connections, A−, between populations. We also
assume that the learning rule ofA− is local, i.e., that only depends
on the responses of two populations (sL and sC). Long-range
inhibition in our model is implemented via direct inhibitory
connections, which is not biologically realistic (Figure 14A).

The circuit in Figure 14B implements inhibitory connections,
A− (with non-positive weights), via a population of interneurons
that have inhibitory connections, A−, with cortical simple
cells. LGN cells are connected to interneurons via long-range
identical excitatory connections, I; i.e., the interneurons copy the
responses of LGN cells. For this structure, long-range excitatory
connections, I, are fixed while A− are learned using the same
learning rule in Figure 14A. In this case, the learning rule of
A− is still local because the responses of interneurons are just
sL and the model is still biologically plausible in terms of the
local learning rule. Furthermore, the RFs of interneurons in the
same layer as cortical simple cells should be LGN-like. Though
V1 cortical cells with blob-like RFs were found in different species
(Kretz et al., 1986; Jones and Palmer, 1987a; Hawken et al.,
1988; Muly and Fitzpatrick, 1992; Chapman and Stryker, 1993;

FIGURE 14 | Possible neural circuits for implementing long-range inhibition.

Red and green arrows represent excitatory and inhibitory connections. (A)

Direct long-range inhibition. (B) Circuit I. (C) Circuit II.
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Ringach, 2002), we are not sure whether this neural circuit is
the most likely candidate because the fixed identical connection
between LGN cells and the interneurons seems artificial unless
they can be learned.

Figure 14C shows another possible neural circuit for
implementing A−. LGN Cells are connected to interneurons via
long-range excitatory connections, −A−. There is a one-to-one
mapping between interneurons and cortical simple cells. In
this case, the overall effect from LGN cells to simple cells is
equivalent to A−. In addition, the RFs of inhibitory interneurons
should resemble simple cells and show orientation tuning since
the learned A− has spatial structures such as oriented bars,
which is consistent with the smooth simple cells found in cat
V1 of the experimental study (Hirsch et al., 2003). The positive
connections −A− can be learned by Hebbian learning and
the identical connections between interneurons and cortical
simple cells can be learned by anti-Hebbian learning. Therefore,
this neural circuit is more feasible than than the circuit
in Figure 14B.

4.7. Discrepancies Between Model and
Experimental Data
Our model can capture the most significant features of
experimental phenomena such as the segregation of ON and
OFF sub-regions, push-pull effect and contrast invariance
of orientation tuning. However, there are also discrepancies
between the distributions of model and experimental data.
In general, the histograms of experimental data (Figures 6C,
7C, 13C) are wider than model data (Figures 6D, 7D, 13D),
which shows that experimental data is more diverse. One
possible explanation is that model cells in this paper are only a
subset of the rich repository of real cortical cells. Furthermore,
choices of free parameters in the model might also lead to
different results.

5. CONCLUSION

In this paper, we presented a biologically plausiblemodel of LGN-
V1 pathways to account for many experimental phenomena
of V1. We found that the segregation of ON/OFF sub-regions
of simple cells, push-pull effect, and phase-reversed cortico-
thalamic feedback can all be explained by the structure of learning
connections when the model incorporates ON and OFF LGN
cells and is trained using natural images. Furthermore, the model
can produce diverse shapes of receptive fields and contrast
invariance of orientation tuning of simple cells, consistent with
experimental observations.
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