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Abstract

In this paper we present the R package bamdit. The name of the package stands for
“Bayesian meta-analysis of diagnostic test data”. bamdit was developed with the aim of
simplifying the use of models in meta-analysis, that up to now have demanded great statis-
tical expertise in Bayesian meta-analysis. The package implements a series of innovative
statistical techniques including: the Bayesian summary receiver operating characteristic
curve, the use of prior distributions that avoid boundary estimation problems of variances
and correlations of random effects, analysis of conflict of evidence and robust estimation
of model parameters. In addition, the package comes with several published examples of
meta-analysis that can be used for illustration or further research in this area.

Keywords: meta-analysis, diagnostic test data, hierarchical models, conflict of evidence, bias
modeling, MCMC, JAGS, R.

1. Introduction
One of the most important decisions in the presence of illness is the correct medical diagnosis.
Ideally, for a particular diagnostic problem we should have a collection of studies which
indicate the best way to proceed. However, this is not the case in clinical and other areas of
empirical research. Instead, researchers have to face a heterogeneous and fragmented evidence
which has to be analyzed.
Meta-analysis is a branch of statistical techniques that helps researchers to combine evidence
from a multiplicity of sources. In particular, meta-analysis of diagnostic test data differs
from other types of meta-analysis in several aspects: First, the diagnostic summaries that
we aim to combine (e.g., sensitivity and specificity) could be interdependent and a marginal
combination by pooling these quantities might be misleading (Irwig, Macaskill, Glasziou,
and Fahey 1995). Second, diagnostic studies are usually performed under slightly different
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diagnostic setups and they can be applied to different patients’ populations. Hence, we
can expect high heterogeneity between studies’ results. In addition, the number of studies
included might be small and with different qualities (e.g., they might have different study
designs) (Lijmer et al. 1999; Lijmer, Bossuyt, and Heisterkamp 2002; Westwood, Whiting,
and Kleijnen 2005). Hence, conducting meta-analysis and combining results from diagnostic
studies may become a challenge.
In this paper we present the R package bamdit (Verde 2018). The name of the package stands
for “Bayesian meta-analysis of diagnostic test data”. The development of the package started
with the following question: “How can we make complex meta-analysis in an automatic
fashion?”
The initial release of bamdit was the version 1.0 of summer 2011. This version was an exper-
imental package where the aim was to investigate different statistical software architectures
to fit complex meta-analysis models. During the last years we have rewritten and updated
the package several times with the intention of making the package more user-friendly. The
current release corresponds to the version 3.2.1 of September 2018 which is presented in this
paper.
The package may be helpful to practitioners who are not familiar with complex Bayesian
modeling and who do not have the skills to implement these models in Bayesian software such
as WinBUGS/OpenBUGS (Lunn, Spiegelhalter, Thomas, and Best 2009) or JAGS (Plummer
2003).
For more than a decade, meta-analysis of diagnostic tests has been an active area of research,
a gentle introduction is given by Gatsonis and Paliwal (2006) and more recently by Takwoingi,
Riley, and Deeks (2015). Statistical methods have fallen into two main approaches: On the
one hand we have techniques that focus on making a meta-analysis summary by recovering
an underlined receiver operating characteristic (ROC) curve. This is the case of the summary
ROC (SROC) curve introduced by Moses, Shapiro, and Littenberg (1993) and the hierarchical
ROC (HROC) curve presented in Rutter and Gatsonis (2001); Macaskill (2004).
On the other hand we have approaches that directly model the diagnostic outcomes as a
bivariate meta-analysis (Reitsma, Glas, Rutjes, Scholten, Bossuyt, and Zwinderman 2005;
Chu and Guo 2009). The relationships between these two approaches have been investigated
by Harbord, Deeks, Egger, Whiting, and Sterne (2007) and Arends, Hamza, Van Houwelingen,
Heijenbrik, Hunink, and Stijnen (2008) from the classical perspective and by Novielli, Cooper,
Sutton, and Abrams (2010) from the Bayesian perspective.
Recent research in meta-analysis of diagnostic test data has focused on the problem of model-
ing heterogeneity (Verde 2010), measuring heterogeneity (Zhou and Dendukuri 2014), assess-
ing publication bias (Bürkner and Doebler 2014), modeling results in the presence of imperfect
reference standard (Menten, Boelaert, and Lesaffre 2013), using bivariate and trivariate cop-
ula distributions (Kuss, Hoyer, and Solms 2014; Hoyer and Kuss 2015) and non-parametric
approaches (Zapf, Hoyer, Kramer, and Kuss 2015).
Software for meta-analysis has been available for many years. The SROC curve approach
is implemented in the free software Meta-Disc (Zamora et al. 2006), implementations of the
bivariate meta-analysis can be found in commercial software such as the function metandi in
Stata (Harbord and Whiting 2010) and in the macro MetaDAS in SAS (Takwoingi and Deeks
2010).
In R (R Core Team 2018), several packages have been developed for different meta-analytic
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problems. An extensive list with a comprehensive description of these packages is presented in
the CRAN task view “Meta-Analysis” (Dewey 2018). In particular the following R packages
have been developed for meta-analysis of diagnostic test data: mada (Doebler 2017) imple-
ments the bivariate method of Reitsma et al. (2005) by using the normal approximation
of the observed diagnostic rates in the logit scale. This package also offers bivariate meta-
regression functionality. HSROC (Schiller and Dendukuri 2015) provides a full Bayesian im-
plementation of the hierarchical summary receiver operating characteristic (HSROC) method
of Rutter and Gatsonis (2001). Metatron (Huang 2014) includes the implementation of
the Reitsma et al. (2005) model by fitting a bivariate generalized linear mixed-effects model
(GLMM), the package includes the case of diagnostic tests with an imperfect reference stan-
dard. metamisc (Debray 2017) implements the method of Riley et al. (2008) which estimates
a common within and between correlation when the within-study correlations are unknown.
Approximate Bayesian methods using INLA (integrated nested Laplace approximation) can
be found in Paul, Riebler, Bachmann, Rue, and Held (2010). This approach is implemented
in the package meta4diag (Guo and Riebler 2017). In Section 5 we give more detailed infor-
mation about these R packages.
Implementation of different Bayesian meta-analysis models for diagnostic test data in BUGS
software is discussed in Rutter and Gatsonis (2001), Verde (2008, 2010) and Novielli et al.
(2010).
The rest of the paper is organized as follows: In Section 2 we describe the software implemen-
tation of bamdit. In Section 3 we present methodological details of the Bayesian statistical
model. In Section 4 we show how to use bamdit in practice. In Section 5 we compare bamdit
with other R packages for meta-analysis of diagnostic test data. Finally, in Section 6 we give
a brief summary of the work and we discuss future developments of the bamdit package.

2. Software characteristics

2.1. Software implementation
In the implementation of bamdit we have considered that the package should be easy to use
for practitioners familiar with R, but without a Bayesian statistical background.
We also considered that the package has to be portable between different operating systems.
bamdit uses JAGS for MCMC (Markov chain Monte Carlo) computations, therefore the
main system requirement is that JAGS (≥ 3.4.0) is installed on your computer (see http:
//mcmc-jags.sourceforge.net/).
It is important to note that R 3.3.0 introduced a major change in the use of toolchain for
Windows. This new toolchain is incompatible with older packages written in C++. As a
consequence, if the installed version of JAGS does not match the R installation, then the
rjags package will spontaneously crash. Therefore, if a user works with R ≥ 3.3.0, then JAGS
must be installed with the installation program JAGS-4.2.0-Rtools33.exe. For users who
continue using R 3.2.4 or an earlier version, the installation program for JAGS is the default
installer JAGS-4.2.0.exe.
A single function called metadiag() performs the meta-analysis. This function allows to
fit bivariate normal random effects or bivariate scale mixture of normals. The default link
function is the logistic link, but the user can choose between the three classical link functions

http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
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of binomial data: logistic, complementary log-log or probit.
Internally, this function writes the BUGS script and sends the script to JAGS where MCMC
computations are performed and returned to R.
The metadiag() function is a generic function implemented in S3 object-oriented program-
ming in R. The output of the function is an object of the class metadiag, which contains
results of the MCMC computations, the data used for analysis and further information from
the fitted model. Results from a metadiag object can be displayed with its print, summary
and plot functions. Further statistical details of the model behind bamdit is presented in
Section 3.
Convergence of the MCMC computations can be analyzed using the R package coda (Plum-
mer, Best, Cowles, and Vines 2006). In addition, we have implemented a series of graphical
functions that can be used to summarize results and to compare results between models. We
demonstrate this software’s functionality in Section 4.

2.2. Some statistical advantages of using bamdit

From the statistical point of view, bamdit reduces the risk of having boundary problems
in the estimation of the variances and the correlation between random effects of the meta-
analysis model. In this regard it can be applied to problems where classical approaches fail
(see Section 4 and Section 5).
In addition, bamdit is equipped with an automatic analysis of conflict of evidence (Verde
2014) which allows to detect studies with unusual results that have been included in the meta-
analysis. The user does not need to exclude these studies, the heavy-tailed distributions for
random effects implemented in bamdit automatically down-weight conflicting studies, which
results in a robust Bayesian technique.
The statistical approach implemented in bamdit is fully Bayesian (see Section 3). Therefore,
the variability of all parameters in the model are propagated to their posteriors. This contrasts
with packages that use classical GLMM such as metatron, where standard deviations and
correlations are calculated by fixing parameter values at their estimates.
The likelihood contributions of the models implemented in bamdit are exact and normal
approximations are not required. Packages such us mada and metamisc use normal approx-
imations of the likelihood contributions. These approximations can be very misleading in
studies with a small number of patients or in meta-analysis of high-technology diagnostic
tests where we expect zero outcomes in true positives or true negatives.
A particular value of bamdit is that it calculates the marginal and joint posterior predic-
tive distribution of the sensitivity and specificity. As discussed by Higgins, Thompson, and
Spiegelhalter (2009), these predictions are the most important summaries in meta-analysis
involving random effects, which can be used to predict results in a new study.
With respect to predictions, most of the R packages for meta-analysis of diagnostic tests
provide a graphical summary of the predictive contours at given confidence levels (e.g., 50%
and 95%). These contours are calculated by assuming that the predictive distribution of ran-
dom effects follows a bivariate normal distribution. The plot function of bamdit implements
this option by using the argument smooth.par = TRUE. For smooth.par = FALSE a non-
parametric smoothing of the bivariate distribution of the predictive sensitivity and specificity
is displayed. This last option is very useful when the normal distribution of random effects is
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not plausible.

3. Bayesian meta-analysis of diagnostic test data

3.1. A data model for diagnostic test results

We assume that the pieces of evidence that we aim to combine are the results of N diagnostic
studies, where results of the ith study (i = 1, . . . , N) are summarized in a 2×2 table as given
in Table 1, where tpi and fni are the number of patients with positive and negative diagnostic
results from ni,1 patients with disease, and fpi and tni are the positive and negative diagnostic
results from ni,2 patients without disease.
Assuming that ni,1 and ni,2 have been fixed by design, we model the tpi and fpi outcomes
with two independent Binomial distributions:

tpi ∼ Binomial(TPRi, ni,1) and fpi ∼ Binomial(FPRi, ni,2), (1)

where TPRi is the true positive rate or sensitivity of study i and FPRi is the false positive
rate or complementary specificity (1-specificity).
At face value, diagnostic performance of each study is summarized by the empirical true
positive rate and true negative rate or specificity,

T̂PRi = tpi

ni,1
and T̂NRi = tni

ni,2
(2)

and the complementary empirical rates of false positive rate and false negative diagnostic
results,

F̂PRi = fpi

ni,2
and ̂FNRi = fni

ni,1
. (3)

The main question in meta-analysis of diagnostic test data is: How can we combine the
multiplicity of diagnostic accuracy rates in a single coherent model? In this work we recognize
that in order to combine results of different studies we have to explicitly model the variability
between studies, which is the topic of the next section.

3.2. Random effects model

We model between studies’ variability with the following random components:

Di = g(TPRi)− g(FPRi) and Si = g(TPRi) + g(FPRi), (4)

Patient status
With disease Without disease

Test + tpi fpi

Outcome - fni tni

Sum: ni,1 ni,2

Table 1: 2× 2 table summarizing the study results.
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where g(·) corresponds to a link function which maps the diagnostic rates to the real scale
(−∞,∞). The canonical link function used in this work is the logistic link g(p) = log(p/(1−
p)), but other links are also possible (e.g., the complementary log-log link function g(p) =
log(− log(1− p)).
The random component Di represents the study effect associated with the diagnostic discrim-
inatory power. For example, the logistic link function of Di corresponds to the diagnostic
odds ratio in the logarithmic scale:

Di = log
( TPRi

1− TPRi

)
− log

( FPRi

1− FPRi

)
. (5)

Meta-analysis based on odds ratios is a common practice for therapeutic outcomes and one
could also follow this approach for diagnostic studies. However, diagnostic results are sensitive
to diagnostic settings (e.g., the use of different thresholds) and to populations where the
diagnostic procedure under investigation is applied. These issues are associated with the
external validity of diagnostic results.
Following the footsteps of Moses et al. (1993), Verde (2008) introduced the random effect Si.
This random effect quantifies variability produced by patients’ characteristics, study design
and diagnostic setup, that may produce a correlation between the observed T̂PRs and F̂PRs.
In short, we called Si the threshold effect of study i and it represents an adjustment of external
validity in the meta-analysis.
Conditionally to a study weight qi, the study effects Di and Si are modeled as exchangeable
between studies and they follow a scale-mixture of bivariate normal distributions with mean
and variance:

E

[(
Di

Si

) ∣∣∣∣ qi

]
=
(
µD

µS

)
and var

[(
Di

Si

) ∣∣∣∣ qi

]
= 1
qi

(
σ2

D ρσDσS

ρσDσS σ2
S

)
= Σi, (6)

and scale mixing density
qi ∼ p(qi). (7)

The inclusion of the random weights qi into the model was proposed by Verde (2010), where
p(qi) allows for a great flexibility to model the marginal distribution of Di and Si. Two
important cases are: qi ∼ χ2(ν), which corresponds to a marginal bivariate t distribution
with known degrees of freedom ν, and p(qi = 1) = 1 which corresponds to a bivariate normal
distribution.
In the case of the bivariate t distribution, when the degrees of freedom parameter is fixed to a
constant, by integrating qi from the conditional distribution of (Di, Si|qi) we have a marginal
variance of

var

[(
Di

Si

)]
= ν

ν − 2

(
σ2

D ρσDσS

ρσDσS σ2
S

)
. (8)

In this case, we have to restrict ν > 2 in order to have finite marginal variance in the random
effects. However, in the scale mixture of normal distribution we can fix ν = 1 and have a
bivariate Cauchy distribution with infinite marginal variances for a particular study. This is
equivalent to excluding a study from the meta-analysis.
Another generalization of the random effects distribution happens when we put a prior on
the degrees of freedom parameter ν (see Section 3.4). This corresponds to an adaptive robust
distribution of the random effects.
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Figure 1: DAG for the model which combines diagnostic accuracy results. Elliptical nodes
represent random variables (parameters and data), rectangular nodes represent fixed param-
eters, single arrows correspond to stochastic dependencies between nodes and double arrows
correspond to deterministic relationships. Model parameters with priors are depicted with
dashed ellipses. Repeated structures of the graph are represented by the central plate. The
model of interest is framed with a rectangle containing the hyperparameters of the model
(µD, µS , σD, σS , ρ, ν).

The use of the scale mixture of normal distributions as a statistical robust technique has been
used in Bayesian statistics for a long time. There is a substantial literature in this area and
a good starting point is the recent review by O’Hagan and Pericchi (2012).

3.3. The directed acyclic graph of the model

Figure 1 displays the directed acyclic graph (DAG) of the model presented in this section.
In the usual DAG notation, elliptical nodes represent random variables (parameters and
data), rectangular nodes represent fixed parameters, single arrows correspond to stochastic
dependencies between nodes and double arrows correspond to deterministic relationships.
Model parameters with priors are depicted with dashed ellipses. Repeated structures of the
graph are represented by the central plate, where each 2 × 2 table is modeled as the result
of diagnostic parameters (TPRi and FPRi) which are the result of random study effects (Di

and Si). The model of interest is framed with a rectangle containing the hyperparameters of
the model (µD, µS , σD, σS , ρ, ν).
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The DAG of Figure 1 links the statistical model to the MCMC computations implemented
in JAGS. Using an automated theorem proof algorithm, JAGS factorized the joint posterior
distribution in a set of conditional distributions which are used for Gibbs sampling. In
addition, the DAG representation helps to understand how to extend the model of interest.
For example, the pooled sensitivity and the pooled specificity are the result of functional
parameters of the hyperparameters (see Section 3.7).

3.4. Priors for hyperparameters

The formulation of the model for aggregate data is completed by specifying the priors for the
hyperparameters µD, µS , σD, σS and ρ. We assume that parameters are independent and we
use the following set of priors:

µD ∼ Logistic(m1, v1), µS ∼ Logistic(m2, v2) (9)

and
σD ∼ Uniform(0, u1), σS ∼ Uniform(0, u2). (10)

The correlation parameter ρ is transformed by using the Fisher transformation,

z = logit
(
ρ+ 1

2

)
(11)

and a normal prior is used for z:

z ∼ Normal(mr, vr). (12)

Modeling priors in this way guarantees that in each MCMC iteration the variance-covariance
matrix of the random effects θ1 and θ2 is positive definite. The values of the constants
m1, v1,m2, v2, u1, u2,mr and vr have to be given. They can be used to include valid prior in-
formation which might be empirically available or they could be the result of expert elicitation.
If such information is not available, we recommend setting these parameters to values that
represent weakly informative priors. In this work, we use m1 = m2 = mr = 0, v1 = v2 = 1
and vr =

√
1.7 as weakly informative prior setup.

These values are fairly conservative, in the sense that they induce prior uniform distributions
for TPRi and FPRi. They give locally uniform distributions for µ1 and µ2, uniforms for σ1
and σ2, and a symmetric distribution for ρ centered at 0. In our experience, the most difficult
parameter to estimate in this model is ρ. Therefore, we recommend to make a prior-to-
posterior sensitivity analysis by giving different values for mr and vr in order to understand
their influence in the analysis. Taking vr =

√
1.7 gives an approximate uniform distribution

for ρ between −0.9 and 0.9, and less than 1.5% probability that ρ is less than −0.95 or greater
than 0.95. This setup protects the computations from being trapped into impossible values
of ρ.
Finally, in the current implementation of bamdit we give the following prior to the degrees of
freedom ν parameter:

U = 1/ν (13)

and a uniform distribution for U :

U ∼ Uniform(a, b) (14)
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with a = 1/df.upper and b = 1/df.lower. The default values in bamdit are df.lower = 3
and df.upper = 30, this setup allows to explore random effect distributions that go from
a t distribution with 3 degrees of freedom to a normal distribution. This prior is designed
to favor long-tailed distributions and to explore conflict of evidence in meta-analysis. In
addition, we provide the option to give a fixed value of ν, where the default is ν = 4, or to
disable the scale mixture random effects and to use a bivariate normal distribution in the
meta-analysis.

3.5. Interpretation of the studies’ weights as conflict-of-evidence measures
An important aspect of qi is its interpretation as estimated bias correction. A priori all
studies included in the review have a mean of E(qi) = ν. We can expect that studies which
are unusually heterogeneous will have posteriors substantially less than ν.
In bamdit we use wi = ν/qi and we report the posterior pr(wi > 1|Data) to indicate studies’
heterogeneity. In our working experience, a study could be atypical if this posterior probability
is greater than 0.7.
In addition, if the model is not corrected by the influence of unusual study results, then
the meta-analysis may produce biased results. The use of scale mixtures of random effects
automatically down-weights the influence of outliers in the meta-analysis and produces a
robust estimation of the fixed-effects.
Unusual studies’ results could be produced by factors that may affect the quality of the study,
such as errors in recording diagnostic results, confounding factors, loss to follow-up, etc. For
that reason, the studies’ weights wi can be interpreted as an adjustment of studies’ internal
validity bias.

3.6. Splitting the studies’ weights
In Verde (2014) I conjectured that one way to perform conflict of evidence in a multi-parameter
meta-analysis model was to extend the random effects distribution by using a scale mixture
of normal distributions per random effect. I have called this technique “splitting the studies’
weights” and it is implemented in the bamdit function metadiag() by using the argument
split.w = TRUE.
The study’s weight wi = ν/qi is now “split” into two components wi,1 = ν/q1,i and wi,2 =
ν/q2,i, these weights measure individual conflict for the components Di and Si respectively.
For example, if the sources of conflict are studies with unusual specificity, the posteriors of
wi,2 will be further away from a prior mean E(wi,2) = 1, while the corresponding posteriors
of wi,1 will be concentrated around the prior mean.
It is worth mentioning that the mixture of normal distributions introduced by using the
splitting argument changes the distribution of the random effects. For example, if this splitting
option is used with a t distribution with ν = 4, then we look at outliers in two orthogonal
directions: the direction of D and S. If the splitting option is not used then the multivariate
t distribution looks at outliers in any direction of the space (D,S).
We report the posteriors pr(wi,1 > 1|Data) and pr(wi,1 > 1|Data) to indicate the direction
of the studies’ heterogeneity. We illustrate how to use this technique in the examples of
Section 4.
Conditionally to qi,1 and qi,2, the study effectsDi and Si are modeled as exchangeable between
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studies. As a common scale mixing density, we use a χ2 distribution conditionally to the
degrees of freedom ν:

q1,1, . . . , qN,1, q1,2 . . . , qN,2 ∼ χ2(ν). (15)

3.7. Pooled and predictive summaries
In meta-analysis of diagnostic data we are interested in summarizing the overall accuracy of
the test in terms of the pooled sensitivity and the pooled specificity.
These quantities are calculated as functions of µD and µS as following:

Sensitivitypooled = g−1[(µD + µS)/2], Specificitypooled = 1− g−1[(µD − µS)/2]. (16)

In Figure 1 these quantities are represented as functions of logical nodes, statistical inference
is based on sampling from their marginal posterior distributions:

p(Sensitivitypooled|Data) p(Specificitypooled|Data). (17)

Another important summary is the predicted pair of rates (FPR, TPR) for a study that has
not been included in the meta-analysis. Statistical inference of these quantities is based on
sampling from the bivariate predictive posterior

p(TPRnew,FPRnew|Data). (18)

In Figure 1 we display how this posterior is built by defining a stochastic node (Dnew, Snew)
which is used to calculate TPRnew,FPRnew in each MCMC iteration.
The predictive posterior (18) can be used graphically in order to report the predictive surface
at a given credibility level (e.g., 95%). We call this summary the Bayesian predictive surface
(BPS). Clearly, in this model framework we can calculate the marginal predictive posteriors
p(TPRnew|Data) and p(FPRnew|Data).
The predictive posterior (18) can be used to generate predictive data. This process is described
at the top of Figure 1. A total number of patients is fixed in each group nnew

1 and nnew
2 and

the predictive number of true positive and false positive results is generated by using two
independent binomial distributions with predictive rates TPRnew,FPRnew. These predictive
data can be used to assess what is expected in a new diagnostic study with nnew

1 and nnew
2

patients per group.
Data prediction can be extended to generate N studies with the same number of ni,1 and ni,2
as the original ones (i = 1, . . . , n). The resulting predictive data can be compared with the
observed data to assess model misfit.

3.8. Conditional summaries
The most common statistical technique used by practitioners to summarize meta-analysis of
diagnostic data is the summary receiving operating characteristic (SROC) curve introduced
by Moses et al. (1993). The model presented in Section 3 allows to build the Bayesian version
of the SROC curve introduced by Verde (2008).
An alternative representation of the marginal model presented in Section 3.2 is the model
based on the conditional distribution of (Di|Si = x) and the marginal distribution of Si. The
conditional mean of (Di|Si = x) is given by:

E(Di|Si = x) = A + Bx (19)
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where the functional parameters A and B are

A = µD, and B = ρ
σD

σS
. (20)

We define the Bayesian SROC curve (BSROC) by transforming back results from (S,D) to
(FPR,TPR) with

BSROC(FPR) = g−1
[

A

(1−B) + B + 1
(1−B) g(FPR)

]
. (21)

The BSROC curve is obtained by calculating TPR in a grid of values of FPR which gives a
posterior conditionally on each value of FPR. Therefore, it is straightforward to give credibility
intervals for the BSROC for each value of FPR.
One important aspect of the BSROC is that it incorporates the variability of the model’s
parameters, which influences the width of its credibility intervals. In addition, given that
FPR is modeled as a random variable, the curve is corrected by measurement error bias in
FPR.
Finally, we can define a Bayesian area under the SROC curve (BAUC) by numerically inte-
grating the BSROC for a range of values of the FPR:

BAUC =
∫ fpr1

fpr0
BSROC(x) dx. (22)

We recommend to use the limits fpr0 and fpr1 within the observed values of F̂PRs.
We have implemented these conditional summaries in the function bsroc(), the function
plots the study results with the fitted SROC curve, its credibility intervals and the posterior
distribution of the BAUC. We illustrate this functionality in Section 4.

3.9. Further parametrization of random effects

In the bivariate normal distribution case, the random effects distribution is similar to the
bivariate model introduced by Reitsma et al. (2005) where the authors modeled random
effects on the logistic transformed sensitivities (sei) and specificities (spi). From Equation 4
we have:

g(sei) = (Di + Si)/2 g(spi) = 1− (Si −Di)/2. (23)

Taking g(·) = logit(·) we have the same random effects distribution as in Reitsma et al.
(2005). However, the likelihood contributions of each study in the Reitsma model are assumed
to be approximately normal, while in our model the likelihood contributions are exactly
binomial. Moreover, given that our model is a full Bayesian hierarchical model with priors
on the hyperparameters (see Section 3.4), the resulting estimation could be different (see
Section 5).
The model implemented in bamdit generalizes the Reitsma model in the following aspects:
by allowing the random effects to be non-normal; by relaxing the normality assumption of
the likelihood contributions; and by introducing priors on hyper-parameters, which reduces
the risk of having numerical problems in the estimation of the random effects distributions
(e.g., variances equal to zero or correlations equal to one).
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The argument re.model in the function metadiag() allows to choose between two parametriza-
tions of the random effects: taking re.model = "SeSp" parametrizes the model in terms of
(g(sei), g(spi)) while taking re.model = "DS" parametrizes the model as presented in Sec-
tion 3.2 where the default value is re.model = "DS". The hyperpriors are automatically
adapted according to the choice of parametrization.

4. Application of bamdit in practice

4.1. Example: Diagnostic of bladder cancer

Glas, Lijmer, Prins, Bonsel, and Bossuyt (2003) performed a systematic review to investigate
diagnostic procedures for tumor markers used for diagnosing bladder cancer. One of these
markers was telomerase, a ribonucleoprotein enzyme, which was evaluated in 10 studies.
Riley, Abrams, Sutton Lambert, and Thompson (2007) used this example to present issues
regarding boundary problems in the estimation of the correlation between random effects.
Paul et al. (2010) illustrate the use of INLA computations in this example as well.

Looking at the data

The data of this meta-analysis can be found in the glas data frame in bamdit. We can have
a quick view of the different subgroups of markers by using the function plotdata(), here
we present some of its functionality:

R> set.seed(2017)
R> library("bamdit")
R> data("glas")
R> head(glas)

tp n1 fp n2 Author cutoff(U/ml) marker
1 1 2 15 52 Kirollos <NA> BTA
2 17 60 9 70 Johnston <NA> BTA
3 8 28 7 34 Murphy <NA> BTA
4 19 47 8 30 Landman <NA> BTA
5 33 41 27 304 Leyh <NA> BTA
6 8 12 12 35 Chong <NA> BTA

R> plotdata(glas, group = glas$marker, max.size = 20)

We extract the subset of studies which have reported results by using the telomerase marker:

R> glas.t <- glas[glas$marker == "Telomerase", 1:4]

and we plot this subgroup by

R> plotdata(glas.t)



Journal of Statistical Software 13

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR (1 − Specificity)

T
P

R
 (

S
en

si
tiv

ity
)

gr
BTA
BTA.stat
BTA.TRAK
FDP
NMP22
Telomerase

n
100

200

300

Figure 2: Display of the meta-analysis results of the data frame glas: Each circle identifies
the true positive rate vs. the false positive rate of each study. Different colors are used for
different markers and different sizes for sample sizes.

Fitting Bayesian meta-analysis models
A single function called metadiag() is used to fit different types of Bayesian meta-analysis
models. Below we illustrate some of the arguments of this function. For example, to fit a
model, with a bivariate normal distribution with a logistic link function, and random effects
on Di and Si type:

R> glas.m1 <- metadiag(glas.t, re = "normal", re.model = "DS",
+ link = "logit", sd.Fisher.rho = 1.7, nr.burnin = 1000,
+ nr.iterations = 10000, nr.chains = 4, r2jags = TRUE)

module glm loaded

Compiling model graph
Resolving undeclared variables
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Figure 3: Display of the meta-analysis results of studies with the telemerase marker in the
data frame glas.

Allocating nodes
Graph information:

Observed stochastic nodes: 20
Unobserved stochastic nodes: 28
Total graph size: 208

Initializing model

To see the results of these computations print the object by typing:

R> summary(glas.m1, digits = 3)

Inference for Bugs model at "5", fit using jags,
4 chains, each with 10000 iterations (first 1000 discarded)
n.sims = 36000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
deviance 80.088 5.458 71.291 76.185 79.430 83.314 92.484 1.002 3300
fp.new 11.947 13.119 0.000 2.000 7.000 18.000 46.000 1.001 36000
mu.D 3.099 0.511 2.018 2.792 3.117 3.430 4.068 1.003 1400
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mu.S -0.572 0.718 -1.933 -1.045 -0.589 -0.127 0.944 1.002 2000
rho -0.868 0.139 -0.991 -0.958 -0.913 -0.828 -0.480 1.001 22000
se.new 0.758 0.126 0.445 0.695 0.778 0.845 0.942 1.001 28000
se.pool 0.777 0.041 0.691 0.752 0.779 0.804 0.852 1.001 36000
sigma.D 1.531 0.547 0.774 1.158 1.427 1.793 2.857 1.003 1100
sigma.S 2.446 0.737 1.399 1.934 2.313 2.806 4.218 1.002 1900
sp.new 0.761 0.258 0.083 0.640 0.866 0.959 0.998 1.001 36000
sp.pool 0.849 0.076 0.652 0.815 0.864 0.901 0.950 1.004 1700
tp.new 37.862 6.951 21.000 34.000 39.000 43.000 48.000 1.001 34000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 14.9 and DIC = 95.0
DIC is an estimate of expected predictive error (lower deviance is better).

We can see that hyper-parameters, like the component of variances (σD and σS) and the
correlation between random effects (ρ) are estimated without boundary problems.
If we need to directly calculate the correlation between the pooled sensitivity and the pooled
specificity, then we can attach the object glas.m1 by using the package R2jags and directly
calculate the correlation:

R> library("R2jags")
R> attach.jags(glas.m1)
R> cor(se.pool, sp.pool)

[,1]
[1,] -0.424367

Displaying meta-analysis summaries
It is very useful to display the Bayesian predictive surface by contours at different credi-
bility levels and compare these curves with the observed data. The function plot displays
parametric or non-parametric predictive contours:

R> plot(glas.m1, level = c(0.5, 0.75, 0.95), parametric.smooth = TRUE)

The function plotsesp() is a user-friendly function in bamdit which displays the posterior
distribution of the pooled sensitivity and specificity and their predictive posteriors. We can
display these posteriors as follows:

R> plotsesp(glas.m1)

Figure 5 shows the output. Clearly, the low number of studies influence the ability to predict
the result of a future study.
The BSROC curve and its area under the curve are useful summaries of a meta-analysis, we
can easily display these summaries by using the function bsroc() as follows:
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Figure 4: Results of the meta-analysis: Bayesian predictive surface by contours at different
credibility levels.

R> bsroc(glas.m1, level = c(0.025, 0.5, 0.975), plot.post.bauc = TRUE,
+ fpr.x = seq(0.01, 0.75, 0.01), lower.auc = 0.01, upper.auc = 0.75,
+ partial.AUC = FALSE)

------------------------------------------------------------
These results are based on the following random effects model:
------------------------------------------------------------
Link function: logit
Random Effects distribution: Bivariate Normal
Parametrization: Differences and Sums
Splitting study weights: No
------------------------------------------------------------
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Figure 5: Results of the meta-analysis: Posterior distributions for the pooled sensitivity and
specificity and their predictive posteriors.

------------------------------------------------------------
Posteriors for the parameters of the Bayesian SROC Curve
------------------------------------------------------------

Mean SD 2.5% 25% 50% 75% 97.5%
A 3.102 0.507 2.039 2.795 3.119 3.431 4.068
B -0.547 0.151 -0.839 -0.646 -0.550 -0.453 -0.236

------------------------------------------------------------
Summary results for the Bayesian Area Under the Curve (BAUC)
------------------------------------------------------------

Mean SD 2.5% 25% 50% 75% 97.5%
BAUC 0.628 0.032 0.551 0.611 0.632 0.65 0.678
------------------------------------------------------------

Interestingly, the BAUC results and the BSROC, which are displayed in Figure 6, show
promising diagnostic ability of this marker.
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Figure 6: Conditional summaries: The left panel shows the BSROC curve, the central line
corresponds to the posterior median and the upper and lower curves correspond to the quan-
tiles of the 2.5 % and 97.5 % respectively. The right panel displays the posterior distribution
of the area under the BSROC curve.

Hyper-parameters posteriors

If we are interested in visualizing the posterior distributions of all hyper-parameters simulta-
neously, we can use one of the alternative matrix plot functions in R. For example, we can
use the ggpairs() function from the package GGally as follows:

R> library("ggplot2")
R> library("GGally")
R> library("R2jags")

R> attach.jags(glas.m1)
R> hyper.post <- data.frame(mu.D, mu.S, sigma.D, sigma.S, rho)
R> ggpairs(hyper.post, title = "Hyper-Posteriors",
+ lower = list(continuous = "density"))

In lower diagonal panels of Figure 7 we can also see the correlation structure of this multi-
variate posterior. The main diagonal of this matrix plot contains the posterior densities of
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Figure 7: Posterior distributions for the hyperparameters of the model.

each parameter. One interesting aspect is the posterior of the correlation coefficient ρ, which
clearly shows a negative correlation in the random effects.

Conflict of evidence analysis by using scale mixtures random effects

We can fit a model with scale mixtures as random effects to investigate if there is conflict of
evidence between the studies included in the systematic review. The following code gives an
example:

R> glas.m2 <- metadiag(glas.t, re = "sm", link = "logit",
+ sd.Fisher.rho = 1.7, df.estimate = TRUE, split.w = TRUE,
+ nr.burnin = 10000, nr.iterations = 100000, nr.chains = 1,
+ r2jags = TRUE)

The results are printed as usual:

R> glas.m2

Inference for Bugs model at "4", fit using jags,
1 chains, each with 1e+05 iterations (first 10000 discarded)
n.sims = 90000 iterations saved
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mean sd 2.5% 25% 50% 75% 97.5%
deviance 80.5 5.6 71.5 76.5 79.8 83.8 93.1
df 7.1 4.0 3.1 4.1 5.8 8.9 17.6
fp.new 14.6 13.7 0.0 4.0 10.0 22.0 48.0
mu.D 2.6 0.5 1.5 2.3 2.7 3.0 3.5
mu.S 0.0 0.6 -1.2 -0.5 -0.1 0.4 1.3
...
p.w2[5] 0.7 0.4 0.0 0.0 1.0 1.0 1.0
...
p.w2[7] 0.7 0.4 0.0 0.0 1.0 1.0 1.0
...
p.w2[10] 0.7 0.5 0.0 0.0 1.0 1.0 1.0
...
rho -0.9 0.1 -1.0 -1.0 -0.9 -0.8 -0.5
se.new 0.8 0.1 0.4 0.7 0.8 0.8 0.9
se.pool 0.8 0.0 0.7 0.8 0.8 0.8 0.9
sigma.D 1.5 0.6 0.7 1.1 1.4 1.8 3.0
sigma.S 2.3 0.8 1.1 1.7 2.1 2.7 4.1
sp.new 0.7 0.3 0.1 0.6 0.8 0.9 1.0
sp.pool 0.8 0.1 0.6 0.7 0.8 0.8 0.9
...
w2[5] 2.0 3.2 0.5 1.0 1.4 2.2 7.5
w2[6] 1.3 2.4 0.4 0.7 1.0 1.4 3.9
w2[7] 2.4 4.6 0.5 1.0 1.5 2.4 10.3
...
pD = 15.7 and DIC = 96.2

Although this model shows similar results as the model with bivariate normal random effects,
there is a reduction of about 5% of the standard deviations of the pool summaries and we have
the additional information coming from the posterior weights. The posterior probability that
w2 is greater than one is 0.7 for observations 5, 7 and 10. This indicates that these studies
may contain unusual results. The function plotw displays the posteriors of the weights w1
and w2:

R> plotw(m = glas.m2)

Figure 8 summarizes the results of the component weights w1 and w2. If the normal random
effects assumption were correct, then we would expect the posteriors of w1 and w2 centered
at 1. Studies 5 and 7 showed a moderate deviation and Study 10 a clear deviation. We can
print the original data to explain these results:

R> glas.t[c(5, 7, 10), ]

tp n1 fp n2
38 40 57 1 138
40 23 42 0 12
43 37 44 22 29
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Figure 8: Posterior distributions of the component weights: It is expected that the posterior
is centered at 1. Studies 5 and 7 showed a moderate deviation and Study 10 a clear deviation.

and calculate the empirical rates:

R> dat.hat <- data.frame(tpr = glas.t[ , 1]/glas.t[ , 2],
+ fpr = glas.t[ , 3]/glas.t[, 4], n = glas.t[ , 2] + glas.t[ , 4])
R> dat.hat[c(5, 7, 10), ]

tpr fpr n
tpr fpr n

5 0.7018 0.0072 195
7 0.5476 0.0000 54
10 0.8409 0.7586 73

Studies 5 and 7 have a very low false positive rate, maybe too low to be true! Study 10
has over 75% false positive rate, which is extreme for these data. We can use the function
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Figure 9: Comparative results of the Bayesian predictive surface at the 95 percent credibility
level. The normal random effects model corresponds to the solid line and the scale mixtures
of random effects to the dotted line.

plotcompare() to display the differences between two models with respect to the predictive
posterior contours:

R> plotcompare(m1 = glas.m1, m2 = glas.m2, m1.name = "Binomial + Normal",
+ m2.name = "Binomial + Scale mixtures", level = 0.95)

Figure 9 shows that the model with the scale mixture random effects extends the predictive
contours in the lower direction of sensitivity and in the upper direction of the false positive
rate.

4.2. Example: Computer tomography in the diagnosis of appendicitis

This example refers to a meta-analysis of 51 studies investigating the performance accuracy
of of computer tomography (CT) scans in the diagnosis of appendicitis (Verde 2008).
One characteristic of this meta-analysis is the combination of disparate data. From the 51
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Figure 10: Display of the meta-analysis results of the data frame ct: Each circle identifies
the true positive rate vs. the false positive rate of each study. Different colours are used for
different study designs and different sizes for sample sizes.

studies 22 were retrospective and 29 were prospective. Verde (2008) analyzed this characteris-
tic and found that retrospective studies substantially had more heterogeneity than prospective
ones, which led to the structural dispersion model of Verde (2010). Recently, Zhou and Den-
dukuri (2014) used this data to illustrate measurement heterogeneity in a bivariate random
effects meta-analysis.

Looking at the data

The data of this meta-analysis can be found in the ct data frame in bamdit. In addition to the
test performance results, this data frame contains information about study characteristics,
patient characteristics, study design, and diagnostic setup.

R> data("ct")
R> gr <- with(ct, factor(design,
+ labels = c("Retrospective study", "Prospective study")))
R> plotdata(ct, group = gr, y.lo = 0.75, x.up = 0.75, alpha.p = 0.5,
+ max.size = 20)
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Analyzing conflict of evidence of studies with different design

We analyze these data to show how to compare the posterior weights for different groups of
studies. In the following example we compare these posteriors by using the function plotw.
We apply the factor variable gr to the argument group which indicates if a study has a
prospective or a retrospective design.

R> ct.m <- metadiag(ct, re = "sm", link = "logit", df.estimate = TRUE,
+ split.w = TRUE, nr.burnin = 1000, nr.iterations = 10000,
+ nr.chains = 4, r2jags = TRUE)
R> plotw(m = ct.m, group = gr)

Figure 11 displays the posteriors of each components’ weights. The right panel shows that
prospective studies number 25 and 33 deviate with respect to the prior mean of 1, while on
the left panel we see that one prospective study (number 47) and five retrospective studies
have substantial variability.
The function plotcompare() can be used to compare the predictive differences between ret-
rospective and prospective studies:

R> m1.ct <- metadiag(ct[ct$design == 1, 1:4])
R> m2.ct <- metadiag(ct[ct$design == 2, 1:4])
R> plotcompare(m1.ct, m2.ct, m1.name = "Retrospective design",
+ m2.name = "Prospective design", group = gr, limits.x = c(0, 0.75),
+ limits.y = c(0.65, 1))

Finally, Figure 12 presents the 95% predictive posterior contours for studies with retrospective
and prospective design. We can clearly see the effects of study design in the meta-analysis.
In synthesis, retrospective studies are less specific and more uncertain than prospective ones.

5. Comparison with other R packages
The aim of this section is to present a brief comparison of results between different R packages
that can be used for meta-analysis of diagnostic tests. For this aim we use the example of
Glas et al. (2003) presented in Section 4.
Different packages implement different parametrization of random effects distributions, they
use different estimation techniques, different numerical procedures and different inferential
approaches. Therefore, in order to make results comparable we harmonize results in the
following way: We use the logistic link function for sensitivity and specificity, the bivariate
normal distribution is used for random effects, and the parametrization of random effects is
based on sensitivity and specificity in the logistic scale. We apply the default settings for all
functions and we present results with three significant decimal digits.
For example metatron uses sensitivity and false positive rate, therefore the estimated corre-
lation was multiplied by −1 to obtain the correlation between sensitivity and specificity in
the logistic scale. The same was used for mada and metamisc. The R script from Kuss et al.
(2014) presents results in the probability scale, so we use the delta-method to back-transform
the variances in the logistic scale. The package HSROC implements the calculations in the
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Figure 11: Posterior distributions of the component weights: It is expected that the posterior
is centered at 1. Studies with a retrospective design tend to present deviations in FPR.

probit scale, therefore we re-scale results and we use the formulas (4.16)–(4.20) from Harbord
et al. (2007) for means, variances and correlation.
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Table 2 summarizes the results of our analysis. Of course the results are not conclusive and
it is not the intention to make a systematic comparison between packages, but we can give
the following remarks:

• Estimation of the pooled means: The parameters µSE and µSP represent the pooled
sensitivity and specificity in the logistic scale respectively. All packages estimate µSE

similarly, with respect to µSP results are similar too, but metatron tends to overesti-
mate this parameter. In the probability scale we can see that the pooled sensitivity
and specificity are approximately similar across the packages, with the exception of
metatron.

• Estimation of the standard deviations: The parameters σSE and σSP are the standard
deviations of the random effects of the sensitivity and specificity in the logistic scale.
Looking across the results we clearly see that metatron gives implausible values close to
zero for both parameters. As we saw in Section 4 there is an outlier in the direction of
the specificity, which makes the estimates of σSP more variable across packages, bamdit
gives the larger value of 2.207 and the HSROC the smallest value 1.422.

• Estimation of the correlations: As mentioned in Section 3.4, the correlation parameter
ρ is the most difficult parameter to estimate. The package mada gives the impossible
value −1. The same happens with metatron with a value close to 0. The other packages
managed to estimate ρ between −0.857 to −0.615.

• Bayesian approaches: There are similarities between results of meta4diag and bamdit.
This is not by chance, both packages implement the same model for random effects. The
differences come from the priors used for the variance-covariance matrix, meta4diag uses
a Wishart distribution while bamdit uses a conditional model to implement the priors.
HSROC delivers similar results for the pooled estimates of sensitivity and specificity
with posterior intervals similar to meta4diag and bamdit.

• Predictions: Only two packages, HSROC and bamdit, presented the posterior predictive
intervals of sensitivity and specificity. The predictive interval for sensitivity reported by
bamdit is close to the observed data, which have a range of 0.54 to 0.84. The predictive
interval for specificity reported by HSROC excludes one observed specificity equal to
0.24, indicating that the model over-predicts specificity in this example.

In this example, we can highlight that the packages which implement a classical approach
based on GLMM, or its approximation, have problems with the estimation of variances and
correlations of random effects. The package metamisc is the exception: It gives results similar
to meta4diag and bamdit.
A casual practitioner may only look at the pooled sensitivity and specificity and find no
difference between packages. However, the correlation structure gives important information
about the heterogeneity of the studies included in the meta-analysis and the prediction of
future studies. Therefore, packages with problems in the estimation of this part of the model
will predict impossible results.
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Package µSE µSP σSE σSP ρ Sensitivity Specificity
mada 1.137 1.962 0.434 1.540 −1.000 0.757

[0.686; 0.816]
0.877
[0.717; 0.952]

metatron 1.192 2.343 0.005 0.005 −0.001 0.767
[–]

0.912
[–]

metamisc 1.115 1.974 0.429 1.580 −0.752 0.753
[0.681; 0.813]

0.878
[0.712; 0.954]

KussHoyer 1.231 1.883 0.308 1.522 −0.857 0.774
[0.721; 0.820]

0.868
[0.708; 0.947]

meta4diag 1.178 2.187 0.407 1.770 −0.819 0.764
[0.699; 0.820]

0.897
[0.744; 0.968]

HSROC 1.180 2.050 0.566 1.422 −0.615 0.765
[0.643; 0.871]

0.886
[0.752; 0.982]

Predictions 0.825
[0.382; 1.000]

0.817
[0.388; 1.000]

bamdit 1.232 2.006 0.513 2.207 −0.731 0.772
[0.696; 0.841]

0.862
[0.631; 0.969]

Predictions 0.758
[0.510; 0.920]

0.766
[0.052; 0.999]

Table 2: Estimation of model parameters using different packages in R. Results of the mean
parameters µSE , µSP , the scale parameters σSE , σSP and the correlation ρ are presented in
the logistic scale. The models are parametrized in terms of sensitivity and specificity.

6. Conclusions
When developing bamdit, our aim was to simplify the application of a meta-analysis model
which was accessible to practitioners but which up to now had required a large amount of
statistical expertise. The package implements a series of innovative statistical techniques to
avoid boundary estimation of parameters, conflict of evidence and robust estimation of model
parameters.
The first example in Section 4 shows that the MCMC algorithm implemented in bamdit
outperforms a classical bivariate random effects approach based on REML estimation, which
can be unreliable when the meta-analysis contains a small number of studies with a large
heterogeneity (Riley et al. 2007). Moreover, the flexible random effects distribution used in
bamdit helps to better understand the studies’ results by pointing out unusual results.
The conflict-of-evidence assessment is the deconstructionist side of meta-analysis, where each
piece of evidence is put aside from the full model and compared to the rest of the evidence.
One possibility for this type of analysis is to embed a meta-analysis model in a more general
model where the non-conflict situation is a particular case. Both examples in Section 4
demonstrated that we could apply a double scale mixture of bivariate normal distributions
and we made conflict diagnostics by direct interpretation of the scale weights.
One important topic currently not implemented in bamdit is the meta-regression and the in-
direct comparison of several diagnostic procedures. These topics are linked to the problematic
of ecological bias and are topics of current research. However, we plan to update bamdit in
order to include this functionality soon.
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Actually, there is no other statistical software such as R that has implemented such a universe
of possibilities to make meta-analyses of diagnostic tests. Unfortunately, R is not the most
popular software in meta-analysis of diagnostic test data. Recently, we reviewed 68 published
meta-analyses of diagnostic test data in medical journals between October 2015 and February
2016. We found that 29 papers chose Stata for fitting the bivariate meta-analysis of Reitsma
et al. (2005), 9 used Meta-Disc alone, and 19 papers combined the use of Meta-Disc with
Stata. Among the remaining 11 papers, 3 used SAS and 5 R. We found that practitioners
publish statistical results in medical journals with convergence errors, variance equal to zero,
integrated AUC in a range that is not empirically plausible, and so on. There is an imperative
need to improve statistical results in this area and we hope that bamdit can help with this.
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