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Abstract

In clinical research subjects are usually observed during a period of time. Primary
and secondary endpoints are often either responses measured longitudinally over time
or the time at which an event of interest occurs. Joint modeling is increasingly being
used for multiple purposes such as to adjust the analysis of the longitudinal response for
informative dropout mechanisms.

In this paper we present %JM, a SAS macro that fits jointly generalized mixed mod-
els for longitudinal data and proportional hazards models for time-to-event responses.
The macro fits normal, binary, binomial and Poisson longitudinal responses and allows
choosing among a range of options to fit the trajectories of the longitudinal response over
time: a linear function, splines, natural cubic splines and B-splines. For the time-to-event
response, that might be right-censored, the macro fits parametric, stratified or not, pro-
portional hazards models with the following baseline risk functions: exponential, Weibull,
piecewise exponential and the generalizations of the Weibull and the Gompertz models
based on splines.

%JM offers several options to connect the longitudinal model and the time-to-event
model: current-value-dependent and slope-dependent shared parameters, lagging effects,
cumulative effects, random effects coefficients as shared parameters and interaction effects.

Keywords: SAS macro, joint modeling, time-to-event, longitudinal, generalized mixed models,
shared parameter models, survival data.

1. Introduction

The joint modeling of longitudinal and time-to-event data has received significant attention
over the past years. The two contexts where these models have been proven most useful
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are: (a) to evaluate longitudinal response over time and analyze this response jointly with
the time to study discontinuation in order to adjust for informative dropout mechanisms; (b)
to evaluate the effect of a surrogate marker measured over time into an event such as death
avoiding the bias that occurs when Andersen and Gill’s extended Cox model is used with
endogenous biomarkers measured with error (Prentice 1982). For further background on this
family of models we recommend the reviews of Tsiatis and Davidian (2004) and Wu, Liu, Yi,
and Huang (2012) and the book of Rizopoulos (2012b).

One of the difficulties that joint models have encountered for a broad use in clinical research
is the lack of software and the intensive use of computational resources. Fortunately this
has recently changed and several packages and procedures are already available. Three R (R
Core Team 2018) packages; JM (Rizopoulos 2010), joineR (Williamson, Kolamunnage-Dona,
Philipson, and Marson 2008; Philipson, Diggle, Sousa, Kolamunnage-Dona, Williamson, and
Henderson 2018) and lcmm (Proust-Lima, Philipps, Diakite, and Liquet 2017a; Proust-Lima,
Philipps, and Liquet 2017b); and one Stata (Stata Corp 2014) module, stjm (Crowther 2012),
fit these models using maximum likelihood whereas the R package JMBayes (Rizopoulos
2016, 2017) produces Markov chain Monte Carlo simulations to approach this problem from
a Bayesian perspective. All these software packages are limited to normal longitudinal data
with the exception of the JMBayes R package that allows user-defined likelihood functions
for the longitudinal data.

In SAS (SAS Institute Inc. 2004), Guo and Carlin (2004) proposed using the NLMIXED pro-
cedure although they did not address the challenge implicit in the estimation of the survival
function of the time-to-event model that, in general, does not have a closed form. More re-
cently, Zhang, Chen, Ibrahim, Boye, Wang, and Shen (2014) have written several SAS macros
based on the NLMIXED procedure that use the Riemann integral to compute the cumulative
hazard function. This work is, though, limited to normally-distributed longitudinal responses
that change over time following either a linear or a quadratic function, time-to-event responses
with a piecewise constant baseline hazard, and the two most popular association structures,
namely a trajectory current-value-dependent shared parameter and the use of the random
effects coefficients as shared parameters.

This paper presents %JM (available at http://www.jm-macro.com/), a SAS macro that fits
jointly generalized mixed models for longitudinal data and parametric proportional hazards
models for time-to-event responses. The macro accepts normal, binary, binomial and Pois-
son longitudinal responses and offers several options to fit the trajectories of this response
over time: a linear function, splines, natural cubic splines and B-splines. For the time-to-
event response, the macro includes the following baseline risk functions: exponential, Weibull,
piecewise exponential and the generalizations of the Weibull and the Gompertz models based
on splines. %JM has multiple options to connect the longitudinal model and the time-to-event
model: current-value-dependent and slope-dependent shared parameters, lagging effects, cu-
mulative effects, random effects coefficients as shared parameters and interaction effects.

This paper is structured as follows. Section 2 formulates the joint models fitted by the macro.
Section 3 presents the macro. Section 4 illustrates its use with two examples, and Section 5
concludes the paper. A full description of all macro parameters is given in Appendix A.

http://www.jm-macro.com/
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2. Joint model specification
This paper focuses on a group of joint models where the association structure between longi-
tudinal and time-to-event outcomes is modeled via non-observed latent variables (Rizopoulos
and Lesaffre 2014). In particular, we will use normally-distributed random effects bi as the
latent variables that associate both responses and given these, the longitudinal responses yi

and the time-to-event responses Ti are assumed to be independent. The probability of the
observations for a subject i {Ti, δi, yi}, conditioned to the random effects bi, can thus be
decomposed as follows

p(Ti, δi, yi | bi; θ) = p(Ti, δi | bi; θ)p(yi | bi; θ),

where Ti is the observed time-to-event or time-to-censoring, δi is the indicator of event or
censoring, yi = {yij ; 1 ≤ j ≤ ni} the collection of observations in the longitudinal response
for subject i and θ the vector of parameters that includes parameters for the time-to-event
response and for the longitudinal model.

2.1. The longitudinal submodel

For the longitudinal response, we will fit generalized random-effects (G-sided) mixed-effects
models. The random effects bi are assumed to be normally distributed with mean zero and a
variance-covariance matrix G. Given the random effects, the observations for the longitudinal
response on the same subject are assumed to be independent.

p{yi | bi; θy} =
∏
j

p{yi(tij) | bi; θy},

where θy refers the vector of parameters for the longitudinal model. This generalized random-
effects linear model for longitudinal data can be formulated as follows:

g{mi(t)} = g[E{yi(t) | bi}] = Xi(t)(βt + bi) + Ziβb,

where mi(t) denotes the expected value for subject i at time t on the longitudinal response
yi(t), g(·) is a link function, Xi(t) is the design matrix of fixed and random effects that model
the trajectories of the longitudinal response over time, associated with the coefficients βt and
bi respectively, and Zi and βb are the design matrix and the coefficients associated with the
baseline covariates.

Random intercepts and slopes

In the context of random-effects linear models several options exist to adequately model the
trajectories of the longitudinal response over time. A simple random intercepts and slopes
model consists of a fixed-effect intercept β0, a fixed-effect slope β1, a random-effect intercept
bi0, a random-effect slope bi1 and a vector of coefficients βb associated with a set of baseline
covariates, as shown below

g{mi(t)} = (β0 + bi0) + (β1 + bi1)t+ Ziβb. (1)

We need to estimate the variances of the random effects bi0 and bi1 as well as their covariance
unless it is assumed to be 0. Occasionally we might need to fit a distinct trajectory for certain
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subgroups. For instance, a separate slope for subjects in active treatment (TRT = 1), with
respect to those in placebo (TRT = 0), would require the second term of Equation 1 to be
expanded to (β1 + β2TRT i + bi1)t.

Random splines

A simple straight line may not be adequate to model the trajectories of the longitudinal
response over time. The time-dependent component of the random-effects longitudinal model,
that we have denoted above as Xi(t)(βt + bi), can be modeled using splines. A spline is a
smooth function, that we will denote as s(t;βt, bi), that is often constructed as a linear
combination of truncated power functions. A spline of degree n and N internal knots can be
expressed as

s(t;βt, bi) =
N+n∑
j=0

(βj + bij)Bj(t),

where Bj(t) are the basis functions, and βj and bij their associated fixed and random-effects
coefficients respectively. Splines without knots are standard polynomials. For instance, a
spline of degree 3 and no knots is a function that includes a linear term, a quadratic term
and a cubic term.
Natural cubic splines are cubic splines resulting after setting the second and third derivatives
to zero at the boundary knots and therefore fitting a straight line outside these. Four (two
fixed and two random) less effects are required with respect to the complete cubic spline with
the same number of internal knots. The basis functions B0(t) to BN+1(t) can be calculated,
for example, using Equation 2 (Hastie, Tibshirani, and Friedman 2009):

B0(t) = 1; B1(t) = t; Bj+1(t) = dj(t)− dN (t), (2)

where N is the number of internal knots, dj(t) = (t − υj)3
+/(υN+1 − υj)3, υ0 is the lower

boundary knot, υ1 to υN are the internal knots and υN+1 refers to the upper boundary knot.
Splines can also be expressed as a linear combination of Bézier basis functions through the
generalization of the Bézier curve. B-splines are maximally differentiable bases with a number
of desirable properties (Farouki and Rajan 1987; Farouki and Goodman 1996) that, in general,
lead to better convergence as compared to the bases defined using truncated power functions.
Bézier basis functions can be produced using the Boor recurrence relation (Racine 2018).

2.2. The time-to-event submodel

For the time-to-event response we will fit parametric proportional hazards models in which
the baseline hazard function needs to be specified. The variable of interest T ∗ is the time to
the event that might not be observed for all subjects. The observed variables are the time to
event or censoring Ti and the indicator of event δi. The general expression of this model is
given by

hi(t) = h0(t) exp(γ>wi),

where h0(t) is the baseline hazard rate that must be specified, wi denotes the vector of
covariates and γ the corresponding vector of regression coefficients.
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Exponential

The simplest model for the time-to-event response assumes that the baseline risk is constant
over time:

h0(t) = λ.

Weibull

The Weibull distribution adds a shape parameter to allow the hazard risk to increase or
decrease over time using a power function of time.

h0(t) = k

λk
tk−1.

Piecewise exponential

In standard survival analysis it is customary to leave h0(·) unspecified as in the Cox model.
In the joint modeling framework such an approach may underestimate the standard errors of
the parameter estimates (Hsieh, Tseng, and Wang 2006), and it is more adequate to define
this function. A standard approach is the piecewise-constant hazard model with a baseline
hazard function defined as follows:

h0(t) =
Q+1∑
q=1

ξqI(υq−1 < t ≤ υq),

where υ0 = 0, υ1, . . . , υQ are Q internal knots that split the range of times into Q+1 intervals,
υQ+1 is a value higher than the maximum observed time and ξq is the hazard at the interval
defined from υq−1 to υq.
A piecewise exponential model can get as close to the unspecified Cox model as desired by
increasing the number of knots. However, too many knots might not be recommended and, in
order to avoid the underestimation of the standard errors mentioned before, it is advisable to
maintain at least 10–20 events per parameter including the parameters involved in estimating
the longitudinal response (Harrell 2001).

Flexible generalization of the Gompertz and the Weibull models

The Gompertz and the Weibull models can be formulated in terms of the baseline log-hazard
function as log{h0(t)} = κ0 + κ1t and log{h0(t)} = κ0 + κ1 log(t) respectively. A flexible
generalization of these models can be constructed as log{h0(t)} = s(x, κ) where s(x, κ) is
a spline function of x, with x = t and x = log(t) for the generalizations of the Gompertz
and Weibull models respectively, and κ the vector of coefficients of the spline function. For
example, a generalization of the Weibull model using natural cubic splines has the following
formulation

log{h0(t)} =
N+1∑
j=0

κjBj(x),

where x = log(t), N is the number of internal knots and B0(x) to BN+1(x) are the basis
functions defined in Section 2.1.
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The Royston-Parmar model

The Weibull model can also be formulated with respect to the logarithm of the cumulative
hazard function, log{H0(t)} = log[

∫ t
0 h0(t)dt], as a monotonic linear equation log{H0(t)} =

κ0 + k1 log(t) with κ1 > 0. Royston and Parmar (2002) proposed a flexible generalization
of the Weibull model defined as log{H0(t)} = ∑N+1

n=0 κnBn(x) where B0(x) to BN+1(x) are
the basis functions of a monotonic natural cubic spline with N internal knots on x = log(t).
Taking into account that h(t) = dH(t)/dt, the log-hazard function of this model can be
formulated in terms of the basis functions B0(x) to BN+1(x) and their first derivatives B′0(x)
to B′N+1(x) as

log{h0(t)} = − log(t) +
N+1∑
n=0

κnBn(x) + log
{N+1∑

n=0
κnB

′
n(x)

}
,

where x = log(t).

Stratification

It might not be reasonable to assume that the whole sample has the same baseline hazard
function, that is, the proportional hazard assumption between subgroups might not hold. In
these situations it is convenient to treat those subgroups as strata thus a different baseline
hazard is fitted for each subgroup, as given by

hik(t) = h0k(t) exp(γ>wi),

where h0k(t) is the baseline risk of stratum k. This model requires Q×K parameters to define
all baseline hazard functions where Q is the number of parameters required to estimate the
hazard function of each stratum and K is the number of strata.

Exogenous time-dependent covariates

One of the motivations for the development of joint models of longitudinal and time-to-
event responses was to find an alternative to the extended Cox model, also known as the
Andersen-Gill model, when the time-dependent covariate yi(t) is not exogenous. Endogenous
time-dependent covariates are thus included in this model as the dependent longitudinal
responses yi(t). However there could be situations where, in addition to the endogenous time-
dependent response yi(t), it is of interest to include an exogenous time-dependent covariate
wi(t) following the principles of the extended Cox model. In this case, the general expression
of the time-to-event model changes to

hi(t) = h0(t) exp(γ>wi(t)),

where wi(t) is a covariate vector that contains both baseline and exogenous time-dependent
covariates.

2.3. The joint model

The most standard approach to connect the longitudinal and the time-to-event submodels in
this framework is to assume that the risk of event at a given time t depends on the estimated
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value of the longitudinal response at that time (Faucett and Thomas 1996; Wulfsohn and
Tsiatis 1997).

hi(t) = h0(t) exp{γ>wi + αmi(t)}. (3)

For the case that the baseline risk h0(t) is exponential, it should be noted that, once a shared-
parameter α is included between the subject-level estimate of the longitudinal response mi(t)
and the time-to-event response Ti, the resulting hazard hi(t) for subject i, given in Equation 3,
is not constant anymore but changes as the longitudinal response changes over time.

Other parameterizations

The above model assumes that the risk of event at time t is related to the expected value of
the longitudinal response at exactly this time point t. This might not always be the most
appropriate parameterization and thus other types of association have been suggested in the
literature (Rizopoulos and Ghosh 2011; Rizopoulos 2012b). For each patient the longitudinal
model fits a trajectory in time and it may be the case that it is not the value but the rate of
increase (or decrease) of the longitudinal response that is associated with the risk of event.

hi(t) = h0(t) exp{γ>wi + αm′i(t)}.

A cumulative association assumes that the risk of event does not depend on the expected
value of the longitudinal response at that time point but on the cumulative effect.

hi(t) = h0(t) exp
{
γ>wi + α

∫ t

0
mi(s)ds

}
.

Occasionally there is a latency period between the value of the longitudinal response and the
appearance of an increased risk. These situations can be modeled fixing a time-lagged effect
model.

hi(t) = h0(t) exp[γ>wi + αmi{max(0, t− c)}],

where c specifies the time lag. It is also possible to connect the longitudinal and the time-to-
event models through the individual coefficients of the random effects.

hi(t) = h0(t) exp(γ>wi + α>bi), (4)

where α is the vector of coefficients associated with the vector of random effects bi. For
example, using a random intercepts and slopes model for the longitudinal response, the last
term of Equation 4 would be α1bi0 + α2bi1. From a computational point of view, the main
advantage of this parameterization is that the association between both responses is time-
independent what leads to an analytical form of the cumulative hazard function.

Interaction effects

It might not be correct to assume that the effect of the longitudinal response on the event risk
is the same for all subjects and thus shared-parameter interactions need to be considered. A
standard parameterization with interactions would be formulated as given by

hi(t) = h0(t) exp[γ>wi1 + α>{wi2 ·mi(t)}], (5)
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where wi1 denotes the vector of covariates, γ its corresponding vector of coefficients, wi2 the
vector of interaction terms, and α its corresponding vector of interaction coefficients. The first
term of wi2, is usually taken as 1 so α1 represents the association between the longitudinal
and the time-to-event responses when all other interaction terms are zero.

Association term: mean versus linear predictor

For non-normal longitudinal responses, the link function is usually distinct from the identity
function leading to two options to link the longitudinal and the time-to-event models: (a) a
linear relationship between the log-hazard function and the expected response of the longitu-
dinal response mi(t) as shown in Equation 3; and (b) the log-hazard function linearly related
to the linear predictor g{mi(t)} = Xi(t)β + Zi(t)bi as illustrated in Equation 6.

hi(t) = h0(t) exp{γ>wi + αg{mi(t)}} = h0(t) exp[γ>wi + α{Xi(t)(βt + bi) + Ziβb}], (6)

where mi(t) is the estimated value for longitudinal response yi(t), g(·) is the link function,
Xi(t) is the design matrix of fixed and random effects that model the trajectories of the
longitudinal response over time, associated with the coefficients βt and bi respectively, and Zi

and βb are the design matrix and the coefficients associated with the baseline covariates.

3. The %JM macro
This section will introduce the main functionalities of the %JM macro. In addition, Appendix A
contains the complete list of macro parameters.

3.1. The conditional log-likelihood function

The NLMIXED procedure allows to manually define the individual components of the conditional
log-likelihood function, that are different for the longitudinal and the time-to-event responses,
through the use of the ll statement. The probability of an observation yi(tij) from the
longitudinal response, conditional to the random effects parameters, always has a closed form
as given below, for example, for the normal distribution.

log[p{yi(tij) | bi; θy}] = −1
2 log(2π)− log(σ)− 1

2
{yi(tij)−mi(tij)

σ

}2
, (7)

where θy denotes the vector of parameters of the longitudinal response model decomposed
into the subvectors θy = (βt, βb, σ

2). In particular, the %JM macro does not estimate the
residual variance, σ2, but its log-transformed square root, log(σ).
On the other hand, the probability function of the time-to-event response, conditional to the
random effects parameters, can be expressed as

log{p(Ti, δi | bi; θ)} = δi log{hi(Ti | bi; θy, θT )} −
∫ Ti

0
hi(s | bi; θy, θT )ds, (8)

where θ = (θy, θT ) and θT = (κ, γ, α) is the vector of parameters of the time-to-event model
including the association parameters α. In order to provide the conditional probability func-
tion of the time-to-event response to the ll statement of the NLMIXED procedure, the macro
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needs to calculate the integral involved in the second term of Equation 8. Since this integral
may not have a closed form, depending on the model chosen for both the longitudinal and the
time-to-event responses, the %JM macro approximates it using the 15-points Gauss-Kronrod
rule as given by ∫ Ti

0
hi(s | bi; θ)ds ≈

Ti

2

15∑
k=1

wkhi(tik | bi; θ),

where tik are the 15 Kronrod-rule nodes for the integral from −1 to 1 re-scaled into the 0 to Ti

interval, and wk are the 15 Kronrod-rule weights for the integral from −1 to 1. The NLMIXED
procedure allows defining arrays in the programming statements to code the conditional
probability function. This functionality is useful to apply the 15-points Gauss-Kronrod rule
for the definition of the conditional likelihood function of the time-to-event response.

3.2. Approximation of the marginal log-likelihood function
Under the assumptions of this model, the marginal (joint) log-likelihood of the observations
on subject i can be expressed as follows:

log p(Ti, δi, yi; θy, θT ) = log
∫
p(Ti, δi | bi; θy, θT )

[∏
j

p{yi(tij) | bi; θy}
]
p(bi; θb) dbi,

where θb denotes the unique parameters of the random-effects covariance matrix G.
The NLMIXED procedure approximates the marginal likelihood, the integral of the conditional-
likelihood function over the random effects, using adaptive or non-adaptive Gauss-Hermite
quadrature. By default, the NLMIXED procedure uses adaptive Gauss-Hermite quadrature, and
selects the number of quadrature points adaptively by evaluating the log-likelihood function
at the initial parameters until two successive evaluations have a relative difference less than
0.0001. The NLMIXEDOptions macro parameter allows personalization of the approximation
method with the options available in the NLMIXED procedure. For example, NLMIXEDOptions
= noad noadscale qpoints=100 would lead to a non-adaptive Gauss-Hermite quadrature
with 100 quadrature points.

3.3. Optimization routines
The %JM macro uses the optimization techniques available in the NLMIXED procedure. If
the NLMIXEDOptions macro parameter is not provided by the user, the default dual Quasi-
Newton algorithm is used. Table 1 shows the execution times required to fit the joint model
of Section 4.1 with some of the optimization routines available in the NLMIXED procedure.

3.4. Initial parameters
The %JM macro fits first the separate longitudinal and time-to-event models using either the
MIXED procedure or the GLIMMIX procedure for normal and non-normal longitudinal responses
respectively and the LIFEREG procedure for the time-to-event responses. The estimates ob-
tained from these disjoint models, together with zeros for the association parameters α, are
provided as initial parameters to the NLMIXED procedure to fit the joint model.
Alternatively, users can provide initial parameters, that have been previously stored in a
dataset, using the InitialParameters macro parameter. Appendix B.2 specifies the struc-
ture expected for the dataset of initial parameters. Sometimes it is useful to fit a first joint
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Time
Optimization technique NLMIXEDOptions (minutes:seconds) −2LL
Double-dogleg tech = dbldog 3:44 8628.4
Quasi-Newton tech = quanew 5:00 8628.4
Newton-Raphson with search tech = newrap 6:54 8628.4
Newton-Raphson with ridging tech = nrridg 5:04 8628.4
Trust region tech = trureg 4:36 8628.4

Table 1: Example 1, execution times.

model, save the parameter estimates in a dataset using the OutputParameters macro param-
eter, and then use these estimates as initial parameters in subsequent calls to the macro.

3.5. Setup of the longitudinal model

For the longitudinal submodel, the %JM macro fits either normal, binary, binomial or Pois-
son responses by specifying the distribution in the LongiType macro parameter. The user
might change the link function, from the canonical link that is used by default, by specifying
LongiLink = identity | logit | log | probit.
The longitudinal model can include one or more baseline covariates (LongiCovariates =
<var list>) and there are several options to model the trajectories of the longitudinal re-
sponse over time (LongiTimeModel = linear | spline | naturalcubic | bspline). For
each of these models it is possible to specify variables that interact with the trajectory
(LongiTimeInter = <var list>). If one wishes to estimate not only a distinct trajectory
shape but also a distinct intercept for a particular group, the corresponding 0–1 variable needs
to be added as a baseline covariate as well.
For splines, B-splines and natural cubic splines users can specify the number of desired internal
knots using the LongiNknots parameter. With respect to the location of the knots, if not
given by the user, the macro places the knots using an equally-spaced-quantile partition of
the longitudinal-response observation times. Splines and B-splines also require specifying the
degree thus for example LongiDegree = 3 would fit a cubic polynomial.
In addition, B-splines and natural cubic splines, use both a lower and an upper boundary
knot although the role of these is slightly different. The B-splines basis functions Bi,n(t),
generated using the Boor recurrence relation (Racine 2018), fit a horizontal line outside the
boundary knots thus these bases might not be adequate to predict data beyond them. On the
other hand, natural cubic splines fit a straight, but not necessarily horizontal, line outside the
boundary knots what makes this model often an attractive option to have prudent predictions
for points beyond the observed time span. If not given by the user, using the LongiLowerKnot
and LongiUpperKnot parameters, zero and the maximum observed time of the longitudinal
responses are used as lower and upper boundary knots respectively.
Table 2 shows the possible structures available for the random effects variance-covariance
matrix G.

3.6. Setup of the time-to-event model

The %JM macro allows using the popular exponential, Weibull and piecewise exponential dis-
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Structure name Macro parameter G matrix

Unstructured LongiGMatrix = un

 σ2
0 σ10 σ20

σ10 σ2
1 σ21

σ20 σ21 σ2
2



Variance
components

LongiGMatrix = vc

 σ2
0 0 0

0 σ2
1 0

0 0 σ2
2



Ante-dependence LongiGMatrix = ante(1)

 σ2
0 ρ10σ0σ1 ρ10ρ21σ0σ2

ρ10σ0σ1 σ2
1 ρ21σ1σ2

ρ10ρ21σ0σ2 ρ21σ1σ2 σ2
2



Table 2: Random-effects variance-covariance matrices.

tributions for the baseline hazard (EventModel = exponential | weibull | piecewise)
as well as the generalizations of the Gompertz model using splines, B-splines or natural cubic
splines (EventModel = gspline | gbspline | gnaturalcubic), the equivalent generaliza-
tions of the Weibull model (EventModel = wspline | wbspline | wnaturalcubic) and the
analogous models parameterized over the log-cumulative hazard function using the Royston
and Parmar approach (EventModel = rpspline | rpbspline | rpnaturalcubic).
Baseline covariates are given through the EventCovariates parameter whereas exogenous
time-dependent covariates can be included using a vertical data structure as explained in
Appendix B.1.
For the piecewise exponential model and the models using splines, the macro allows the user to
fix the number of knots (EventNknots = <n>) and/or the position of the knots(Eventknot1
= <time>, . . . ). If not specified by the user, six knots will be used that split the time period
into an equally-spaced-quantile partition of observed, maybe log-transformed, times. In order
to calculate the partition, the user might choose either to use the default option, all censored
or non-censored event times or to use only actual (non-censored) events (AdditionalOptions
= eventtimes).
In addition, it is possible to add a stratification variable (EventStrata = <var name>), that
allows the macro to be used either for situations where the proportional hazards assumption
does not hold or to fit time-to-events models with competing events.

3.7. Setup of the association structure

The parameterizations to associate the longitudinal model with the time-to-event model
are selected setting the SharedParam parameter to one or several of the following options:
current_value, slope, cumulative or coefficients. Some variables can modify the effect
of the longitudinal response on the event risk model, as depicted in Equation 5; this can be
modeled including these variables in the SharedParamInt parameter.
When a random coefficients parameterization is chosen (SharedParam = coefficients), the
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user needs to specify the random effects to be included as shared parameters by specifying, for
example, SharedCoefficients = bi0 bi1. Lagging in the association between the longitu-
dinal and the time-to-event response is fixed by giving a positive value to the SharedLagging
parameter. Lagging can be used together with the current-value, the slope or the cumula-
tive parameterization thus, for example, a time-lagged slope-dependent model would result
in Equation 9.

hi(t) = h0(t) exp[γ>wi + αm′i{max(0, t− c)}]. (9)

For the cumulative association a linear relationship between the log-hazard function and
the cumulative linear predictor,

∫ t
0 g{mi(s)}ds, is assumed. The macro approximates this

cumulative value as illustrated below for a longitudinal model using splines:

∫ Ti

0
g{mi(t)}dt =

N+n∑
j=0

(βj + bij)Cj(Ti) + ZiγTi,

where Cj(x) =
∫ x

0 Bj(t)dt, Bj(t) are the spline basis functions and Zi and γ are the design
matrix and the coefficients associated with the baseline covariates. The cumulative basis
functions Cj(x) are approximated using the Gauss-Kronrod rule for the observed times Tj

and using the trapezoidal rule for the Gauss-Kronrod rule nodes tik required to approximate
the cumulative hazard.
Several parameterizations, separated between spaces in the SharedParam parameter, can be
combined. For example, the option SharedParam = current_value slope would lead to the
following model

hi(t) = h0(t) exp{γ>wi + α1mi(t) + α2m
′
i(t)}.

Including multiple parameterizations should be done cautiously. It is possible, for instance,
to include both a current-value-dependent shared parameter α1 and a cumulative-dependent
shared parameter α2 in the same model. However such a parameterization may have high
collinearity.

3.8. Macro installation

The following six macros need to be compiled, e.g., by using the %include statement:

%include '&location./calculateknotspartition.sas';
%include '&location./spline.sas';
%include '&location./ncspline.sas';
%include '&location./bspline.sas';
%include '&location./kronrodrule15p.sas';
%include '&location./jm.sas';

A convenient solution to avoid the %include statements in each program is to include these
macros in a location referred by the SAS autocall facility.
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4. Examples

4.1. An example with a normally-distributed longitudinal response

The fitting of a joint model will be illustrated with the dataset from a study to compare
two antiretroviral drugs (Abrams et al. 1994). The square-root-transformed CD4 cell count,
assumed normally distributed, is fitted using a random intercepts and slopes model with
gender as baseline covariate and a separate slope for the subjects with DDI treatment.

mi(t) = (β0 + bi0) + (β1 + bi1 + β2DDIi)t+ β3FEMALEi,

where β0 to β3 are the coefficients associated with fixed effects and bi0 and bi1 are random
effects. The matrix of variances-covariances associated with the random effects was assumed
unstructured so three parameters have to be estimated: the variances of bi0 and bi1 and the
covariance between them.
The time to death is fitted using a Royston-Parmar model, using a natural cubic spline with
3 knots as smoothing function, and both gender and DDI as baseline covariates. Both models
are associated through both the estimated current-value and the slope of the longitudinal
response as given by

hi(t) = h0(t) exp{γ1DDIi + γ2FEMALEi + α1mi(t) + α2m
′
i(t)}.

This model is fitted using the following code:

%JM(Data = mydata.aids, SubjectVar = patient, LongiTimeModel = linear,
LongiVar = cd4, LongiTimevar = obstime, LongiTimeInter = ddi,
LongiCovariates = female, LongiGMatrix = un, EventTimeVar = time,
EventVar = death, EventVal = 1, EventModel = rpnaturalcubic,
EventCovariates = ddi female, EventNknots = 3, NLMIXEDOptions = gconv=0,
OutputPredictions = mi, OutputPredictData = mydata.aids_mi,
SharedParam = current_value slope, AdditionalOptions = calculateexectime);

Some input parameters (LongiType = normal, InitialParameters = disjoint) are not
specified because the default values of the macro are used. The omission of the method and
technique options in the NLMIXEDOptions macro parameter implies that the default inte-
gration method and optimization technique, adaptive Gaussian quadrature and dual quasi-
Newton respectively, are used. The inclusion of gconv=0 in this macro parameter is convenient
to avoid the premature stopping of the optimization algorithm due to a relative change in
the gradient being very small without the gradient value itself being sufficiently small (Kier-
nan, Tao, and Gibbs 2012). The input parameter OutputPredictions is used to request the
NLMIXED procedure to save a dataset with subjects’ predicted longitudinal responses mi(t),
using the empirical Bayes estimates for the random effects. For this model, the macro provides
the following output:

Joint Model Summary:
Longitudinal Response Distribution: Normal. Link function: identity.
Longitudinal Process: Random Intercepts and Slopes Model
Event Process: (Natural-cubic-splines-based) Royston-Parmar model
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baseline risk function.
Parameterization: current_value slope.
Event Process: 467 subjects, 188 events.

The NLMIXED Procedure

Specifications

Data Set WORK._JMDATA
Dependent Variable JMResponse
Distribution for Dependent Variable General
Random Effects bi0 bi1
Distribution for Random Effects Normal
Subject Variable patient
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature

Dimensions

Observations Used 1872
Observations Not Used 0
Total Observations 1872
Subjects 467
Max Obs Per Subject 6
Parameters 17
Quadrature Points 1

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope
1 3 4357.95401 36.53343 1056.432 -4452.23
. . . . . . . . . . . . . . . . . . . . .

68 134 4314.219 5.28E-11 0.000372 -0.00002

NOTE: FCONV convergence criterion satisfied.

Fit Statistics

-2 Log Likelihood 8628.4
AIC (smaller is better) 8662.4
AICC (smaller is better) 8662.8
BIC (smaller is better) 8732.9
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Additional Estimates
Standard

Label Estimate Error ...

Longitudinal Process: Intercept 7.1637 0.2322 ...
Longitudinal Process: Slope -0.2247 0.02241 ...
Longitudinal Process: DDI by slope -0.00143 0.03057 ...
Longitudinal Process: FEMALE 0.6356 0.7474 ...
Longitudinal Process: Log SD Residual 0.5593 0.02714 ...
Longitudinal Process: Log SD Random Intercept 1.5178 0.03582 ...
Longitudinal Process: Log SD Random Slope -1.6497 0.09648 ...
Longitudinal Process: Covariance Intercept by Slope 0.06422 0.07178 ...
Event Process: Spline parameter 0 -5.1115 0.7846 ...
Event Process: Spline parameter 1 1.4639 0.3083 ...
Event Process: Spline parameter 2 0.002638 0.05402 ...
Event Process: Spline parameter 3 -0.4785 1.0466 ...
Event Process: Spline parameter 4 1.0682 2.5062 ...
Event Process: DDI 0.3938 0.2688 ...
Event Process: FEMALE 0.5655 0.3802 ...
Association (current-value) -0.3721 0.05389 ...
Association (slope-dependent) -5.7478 1.4133 ...

Execution Time (hours:minutes:seconds): 0:05:00.

The joint model finds a strong association of both the square root CD4 cell count and its slope
with the risk of death. A unit decrease in the marker corresponds to a exp(0.3721) = 1.45-
fold increase in the risk of death while a unit decrease in the slope is associated with a
exp(5.7478) = 313.50-fold increase in this risk.
The NLMIXED procedure selected one quadrature point, resulting in the Laplace approximation.
Alternatively, end users can force the use of a specific number of quadrature points by adding,
for example, qpoints=5 to the NLMIXEDOptions macro parameter. Figure 1 illustrates, for a
group of parameters, the estimates obtained depending on the number of quadrature points
used to approximate the marginal log-likelihood function.
The macro does not directly produce graphs but allows saving estimates and predictions in
datasets so users can create the desired additional output. The replication scripts produce two
additional plots: Figure 2 shows the predicted longitudinal response versus time of patients
1 to 20; Figure 3 provides four diagnostic plots.

4.2. An example with a binary longitudinal response

In this section, the fitting of a joint model with non-normal longitudinal responses will be
illustrated with the dataset of Section 4.1 on the binary longitudinal response πi defined as
having the CD4 cell count higher or equal to 30 cells per cubic millimeter.

log{ πi(t)
1− πi(t)

} = (β0 + bi0) + (β1 + bi1 + β2DDIi)t+ β3FEMALEi. (10)

The time to death is fitted using the same Royston-Parmar model used in Section 4.1. Both
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Figure 1: Example 1, joint model estimates versus number of quadrature points.

Figure 2: Example 1, joint model empirical Bayes estimates versus time of 20 subjects.
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Figure 3: Example 1, diagnostic plots.

submodels are associated using the random effects coefficients as shared parameters.

hi(t) = h0(t) exp(γ1DDIi + γ2FEMALEi + α1bi0 + α2bi1). (11)

For non-normal data, the %JM macro uses first the GLIMMIX procedure to fit the longitudinal
model, in this case a random-effects logistic regression, and takes the estimates as initial
parameters for the joint model. The following code shows how this longitudinal model is
fitted with the GLIMMIX procedure:

proc glimmix data = mydata.aids;
class patient;
model cd4_a30 (Event = "1") = obstime obstime*ddi female

/ distribution = binary link = logit;
random int obstime/ sub = patient type = un;

run;

By default, the GLIMMIX procedure uses pseudo-likelihood (PL) estimation methods based on
linearization. The PL methods can produce biased estimates in situations where the number
of observations per subject is small, particularly, for binary data (Breslow and Lin 1995; Lin
and Breslow 1996; Flom, McMahon, and Pouget 2006; Pinheiro and Chao 2006). In line
with this, we can set the LongiModelOptions macro parameter to method=quad to avoid the
PL approach and use the adaptive Gauss-Hermite approximation in the submodel used to
estimate the initial parameters of the longitudinal response. This joint model is therefore
fitted using the following code:
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%JM(Data = mydata.aids, SubjectVar = patient, LongiType = binary,
LongiTimeModel = linear, LongiVar = cd4, LongiTimevar = obstime,
LongiTimeInter = ddi, LongiCovariates = female, LongiGMatrix = un,
LongiModelOptions = method=quad, EventTimeVar = time, EventVar = death,
EventVal = 1, EventModel = rpnaturalcubic, EventCovariates = ddi female,
EventNknots = 3, NLMIXEDOptions = gconv=0, OutputPredictions = mi,
OutputPredictData = mydata.aids_mi, SharedParam = coefficients,
SharedCoefficients = bi0 bi1, AdditionalOptions = calculateexectime);

The macro provides the following output:

Joint Model Summary:
Longitudinal Response Distribution: Binary. Link function: logit.
Longitudinal Process: Random Intercepts and Slopes Model
Event Process: (Natural-cubic-splines-based) Royston-Parmar model

baseline risk function.
Parameterization: coefficients.
Event Process: 467 subjects, 188 events.

Dimensions

Observations Used 1872
Observations Not Used 0
Total Observations 1872
Subjects 467
Max Obs Per Subject 6
Parameters 16
Quadrature Points 11

(Part of the output has been omitted)

The NLMIXED Procedure

Additional Estimates
Standard

Label Estimate Error ...

Longitudinal Process: Intercept 0.5921 0.2896 ...
Longitudinal Process: Slope -0.2676 0.06017 ...
Longitudinal Process: DDI by slope 0.01252 0.06276 ...
Longitudinal Process: FEMALE 0.09023 0.9430 ...
Longitudinal Process: Log SD Random Intercept 1.5272 0.1215 ...
Longitudinal Process: Log SD Random Slope -1.5249 0.4717 ...
Longitudinal Process: Covariance Intercept by Slope 0.4700 0.4203 ...
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Figure 4: Example 2, joint model estimates versus number of quadrature points.

Event Process: Spline parameter 0 -5.2979 0.5002 ...
Event Process: Spline parameter 1 1.4566 0.2993 ...
Event Process: Spline parameter 2 0.02640 0.05466 ...
Event Process: Spline parameter 3 -0.6294 1.0858 ...
Event Process: Spline parameter 4 1.3301 2.6382 ...
Event Process: DDI 0.3170 0.1693 ...
Event Process: FEMALE 0.2733 0.3106 ...
Association (BI0-dependent) -0.2542 0.1082 ...
Association (BI1-dependent) 1.9533 2.7321 ...

Execution Time (hours:minutes:seconds): 1:29:26.

The NLMIXED procedure used eleven quadrature points to approximate the marginal log-
likelihood function using the adaptive Gauss-Hermite method requiring an execution time
of about 90 minutes. This result is in line with previous evidence showing that the Gauss-
Hermite technique requires a large number of quadrature points in the random-effects logistic
regression model (Lesaffre and Spiessens 2001). In this context, it is advisable to check the
sensitivity of the results to changes in the number of quadrature points, thus the model is suc-
cessively fitted with different numbers of quadrature points, by setting the NLMIXEDOptions
macro parameter to qpoints=<n>. Figure 4 shows for a selected subset the absolute values
of the parameter estimates in dependence of the number of quadrature points.
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5. Conclusions
The joint modeling of longitudinal responses and time to event responses is useful in situations
when we suspect that the two processes may be associated, such as the survival analysis with
time-dependent covariates or the analysis of longitudinal responses with informative dropouts.
In this context the methods based on a joint likelihood formulation are known to yield precise
inferences, but be computationally demanding (Tsiatis and Davidian 2004).
The literature and software available for this class of models is still limited. Some solutions are
available in R and Stata although their focus is mostly on normally-distributed longitudinal
responses (Rizopoulos 2010; Philipson et al. 2018; Proust-Lima et al. 2017a; Crowther 2012;
Rizopoulos 2017).
This paper illustrated the possibilities of the SAS NLMIXED procedure to fit this group of
models. This procedure allows defining the conditional log-likelihood function, which is dif-
ferent for the longitudinal response and the time-to-event response, and uses either adaptive
or non-adaptive Gauss-Hermite quadrature to approximate the integral of the conditional
log-likelihood function over the random effects.
We presented %JM, a SAS macro that uses the NLMIXED procedure to fit jointly generalized
mixed models for longitudinal data and proportional hazards models for time-to-event re-
sponses. The macro fits normal, binary, binomial and Poisson longitudinal responses and
provides several options to fit non-linear trajectories of the longitudinal response over time.
For the time-to-event response, that might be right-censored, the macro fits parametric, strat-
ified or not, proportional hazards models allowing for a broad range of risk functions. %JM
offers several options to connect the longitudinal and the time-to-event models.
Some of the limitations of %JM are inherited from the NLMIXED procedure. The approximation
of the marginal log-likelihood function is likely to require longer execution times than the
pseudo-adaptive approach proposed by Rizopoulos (2012a) for these models, available in the
JM R package. One of the strengths of this macro is that it is not limited to normal longitu-
dinal responses, however the modeling of non-normal longitudinal responses is expected to be
more computationally intensive (Lesaffre and Spiessens 2001). Macro users are encouraged
to routinely check the dependence of the results on the number of quadrature points.
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A. Macro parameters
The %JM macro needs to be called using keyword parameters. Tables 3, 4 and 5 provide the
description of all %JM macro parameters.

B. Input and output datasets

B.1. Input dataset

Table 6 illustrates the standard structure for the input dataset with separate columns for the
longitudinal and the time-to-event responses. In addition, the macro allows using a vertical
input dataset, with separate rows for the longitudinal and the time-to-event responses, by
specifying datastructure = vertical in the macro call.
A vertical structure requires a variable called JMDist that should equal LONGI for the lon-

Macro parameter Description
Data = <dataset> Name of the input dataset. Required.
DataStructure = standard |
vertical

Structure of the input dataset. Standard: input data
with separate columns for longitudinal and time-to-
event responses (default); vertical: input data structured
in separate rows for longitudinal and time-to-event re-
sponses. See further details in Appendix B.1.

Where = <condition> Condition to select a subset of rows.
SubjectVar = <var name> Name of the variable that identifies the subject.

Required.
InitialParameters =
disjoint | <dataset>

Option to estimate initial parameters. disjoint: uses
parameters obtained from the disjoint longitudinal and
time-to-event submodels (default); <dataset>: uses a
dataset where a set of initial parameters has been stored,
e.g., obtained from a previous run to the macro.

OutputParameters =
<library.dataset>

Dataset to store the estimated model parameters.
By default, the estimated parameters are saved in
work._jmoutputparameters. See further details on the
structured of this dataset in Appendix B.2.

Outputpredictions = <list
of model terms>

Requests the macro to create datasets with predictions.
Available terms are: XiBeta, XiBeta_Zibi, mi log_hi
and cum_hi. It is possible to specify a transformation of
these such as exp(-cum_hi). When the term depends
not only on fixed effects but also on random effects, the
empirical Bayes estimates of these are used.

OutputpredictData = <list
of dataset names>

List of names of the (libraries and) datasets used to save
the predictions.

ListingFile = ’file name’ File to send the output by the ods listing statement.

Table 3: %JM macro parameters (Part 1 of 3).
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Macro parameter Description
LongiType = normal | binary
| binomial | poisson

Distribution of the longitudinal response yi(t). normal is
used by default.

LongiLink = identity |
logit | log | probit

Link function. The canonical link is used by default.

LongiVar = <var name> Name of the variable with the longitudinal response.
Required.

LongiEventCat = <category> For binary longitudinal responses only, category of interest.
Default value is 1.

LongiTrialsVar = <var name> For binomial longitudinal responses only, name of the vari-
able with number of trials.

LongiOffset = <var name> Name of the variable to be included in the linear model with
a coefficient fixed to 1.

longiTimeVar = <var name> Name of the variable with the time at which the longitudinal
response has been observed. Required.

LongiTimeModel = linear
| spline | bspline |
naturalcubic

Approach to fit the trajectories of the longitudinal response
versus time. Required.

LongiLowerKnot = <time>
LongiUpperKnot = <time>

Lower and upper boundary knots for the modeling of the lon-
gitudinal response using B-splines or natural cubic splines.
For further details see Sections 2.1 and 3.5.

LongiNKnots = <positive
integer>

Number of internal knots for the modeling of the longitudi-
nal response using splines, B-splines or natural cubic splines.
No internal knots are assumed by default.

LongiKnot1 = <time>, ...,
LongiKnot9 = <time>

Internal knots for the modeling of the longitudinal response
using splines. For further details see Sections 2.1 and 3.5.

LongiCovariates = <var
list>

List of baseline covariates of the longitudinal response
model.

LongiTimeInter = <var name> Name of the variable that interacts with the longitudinal
trajectory.

LongiGMatrix = vc | un |
ante(1)

Structure of the G matrix. vc: variance components (de-
fault); un: unstructured; ante(1): ante-dependence.

LongiGMatrixParam =
varcovar | chol | varcorr

Parameterization of the G matrix. varcovar: parameters
for variances and covariances (default); chol: parameters
for the Cholesky decomposition; varcorr: parameters for
variances and correlations.

LongiSmallLogSD = <value> Value to use as initial value for the log-transformed standard
deviation of random effects where the disjoint linear model
has estimated 0. Default value is −10.

LongiModelOptions =
<options>

Options in the MIXED (or GLIMMIX) statement of the MIXED
(or GLIMMIX) procedure used to estimate the initial param-
eters. For normal responses, by default, method = ml.

LongiGLINLOptions =
<options>

For non-normal responses, options in the nloptions state-
ment of the GLIMMIX procedure used to estimate the initial
parameters.

Table 4: %JM macro parameters (Part 2 of 3).



26 %JM: Joint Modeling of Longitudinal and Time-to-Event Data in SAS

Macro parameter Description
EventTimeVar = <var name> Name of the variable with the time at which the event

or the censoring occurs. Required.
EventVar = <var name> Name of the variable with the indicator of event or cen-

soring. Required.
EventVal = <category> Category that indicates event of interest. All other

categories will be assumed censored observations.
Required.

EventModel = exponential
weibull | piecewise | gspline
gbspline | gnaturalcubic
wspline | wbspline
wnaturalcubic | rpspline
rpbspline | rpnaturalcubic

Distribution of the baseline hazard in the time-to-event
model. Required.

EventTimeStart = <var name> For data in vertical structure, name of the variable with
the start of the interval.

EventStrata = <var name> For stratified models, name of the variable to identify
the strata.

EventNKnots = <positive
integer>

Number of internal knots for the modeling of the time-
to-event responses using a piecewise exponential model
or splines. Default value is 6.

EventKnot1 = <time>, ...,
EventKnot9 = <time>

Internal knots for the modeling of the time-to-event re-
sponses using a piecewise exponential model or splines.

EventCovariates = <var list> List of baseline covariates of the time-to-event model.
SharedParam = current_value
| slope | cumulative |
coefficients

Parameterization to associate the longitudinal model
with the time-to-event model. Multiple choices are pos-
sible. The current-value parameterization is used by
default. For further details see Sections 2.3 and 3.7.

SharedLagging = <positive real> Lagging in the association between the longitudinal and
the time-to-event response. Default value is 0.

SharedParamInt = <var list> List of variables that interact with the effect of the lon-
gitudinal response on the event risk model.

SharedCoefficients = bi0 | bi1
| bi2 | bi3 | ...

For the random-effects coefficients parameterization,
random effects used as shared parameters. Required
if SharedParam = coefficients.

SharedLongiTerm = mean |
linear_predictor | coefficients

Option to link the longitudinal model and the time-to-
event model. See Section 2.3 for further details.

NLMIXEDOptions = <options> Options in the NLMIXED statement of the NLMIXED pro-
cedure used to fit the joint model.

AdditionalOptions = <option> Requests the macro additional options. See further de-
tails in Appendix C.

SmallTimeDif = <time> Amount of time small enough to adequately estimate
the slope of mi(t) using the central difference approxi-
mation. 0.001 is used by default.

Table 5: %JM macro parameters (Part 3 of 3).
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Patient DDI Obstime CD4 Death Time
1 0 0 10.7 0 16.97
1 0 6 8.4 0 16.97
1 0 12 9.4 0 16.97
1 0 18 . 0 16.97

Table 6: Standard input data structure.

Patient JMDist DDI Obstime CD4 Start Stop Weight Death
1 LONGI 0 0 10.7
1 LONGI 0 6 8.4
1 LONGI 0 12 9.4
1 LONGI 0 18 .
1 EVENT 0 . . 0 5 75.1 0
1 EVENT 0 . . 5 10 72.8 0
1 EVENT 0 . . 10 16.97 71.6 0

Table 7: Vertical input data structure.

gitudinal responses and EVENT for the time-to-event responses as shown in Table 7. Using
a vertical structure is convenient either to include time-dependent covariates in the model
or to increase the precision of the approximation of the survival function. With the data of
Table 7, the macro would apply the Gauss-Kronrod rule separately for each of the three time
intervals shown.

B.2. Parameter estimates and predictions datasets

In addition to the standard output displayed in the examples of Sections 4.1 and 4.2, the
parameter estimates are stored in the dataset specified by the OutputParameters macro
parameter. If not given by the user, the estimates are saved in work._jmoutputparameters.
Table 8 shows the parameters dataset created in the example of Section 4.1. This dataset
includes not only the information displayed in the standard output but also, for each rescaled
parameter, the gradient of the negative log-likelihood.
In addition, the OutputPredictions macro parameter can be used to request the NLMIXED
procedure to save one or more datasets with subjects’ predictions as illustrated in Section 4.1.
This dataset has the usual format produced by the PREDICT statement.

C. Additional options
The following options can be requested by adding one or more of the keywords below to the
AdditionalOptions macro parameter:

• calculateexectime: calculates and displays the macro execution time.

• competing: informs the macro that the variable given in the EventStrata parameter
defines competing events. With this option, the macro expects a vertical data structure
where rows have been included for each of the competing time-to-event responses.
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Parameter Estimate StandardError DF tValue Probt . . .
L_INTERCEPT 7.1637 0.2322 465 30.85 < .0001 . . .
L_TIME_B1 −0.2247 0.0224 465 10.03 < .0001 . . .
L_TIME_B1_BY_DDI −0.0014 0.0306 465 −0.05 0.9628 . . .
L_FEMALE 0.6356 0.7474 465 0.85 0.3955 . . .
L_LOGSD_INTERCEPT 1.5178 0.0358 465 42.37 < .0001 . . .
L_COV_B0_B1 0.0642 0.0718 465 −0.89 0.3714 . . .
L_LOGSD_TIME_B1 −1.6497 0.0965 465 17.10 < .0001 . . .
L_LOGSD_RESIDUAL 0.5593 0.0271 465 20.61 < .0001 . . .
E_DDI 0.3938 0.2688 465 1.47 0.1435 . . .
E_FEMALE 0.5655 0.3802 465 1.49 0.1376 . . .
E_TIME_B0 −5.1115 0.7846 465 6.51 < .0001 . . .
E_TIME_B1 1.4639 0.3083 465 4.75 < .0001 . . .
E_TIME_B2 0.0026 0.0540 465 0.05 0.9611 . . .
E_TIME_B3 −0.4785 1.0466 465 −0.46 0.6477 . . .
E_TIME_B4 1.0682 2.5062 465 0.43 0.6701 . . .
ASSOCT_TD −0.3721 0.0539 465 −6.90 < .0001 . . .
ASSOCT_SL −5.7478 1.4133 465 −4.07 < .0001 . . .

Table 8: Output parameter estimates dataset.

• eventtimes: uses only actual (non-censored) events to calculate the time partition
for the time-to-event model. Applicable for the piecewise exponential model and the
time-to-event models using splines.

• fitstatistics: creates a dataset with the fit statistics. The dataset will be placed in
the same location and with the same name as the parameters dataset, but adding the
suffix _fit.

• onlyevent: fits only the time-to-event model.

• onlylongi: fits only the longitudinal model.

• noint: removes the intercept from the longitudinal model.

• nomacrowarn: disables all macro warnings.

• skipmacroheader: skips the header produced by the macro before the execution of the
NLMIXED procedure.

• untouchedlisting: disables all macro ods listing statements.
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