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Abstract

In this paper we discuss the challenge of equitably combining continuous (quantita-
tive) and categorical (qualitative) variables for the purpose of cluster analysis. Existing
techniques require strong parametric assumptions, or difficult-to-specify tuning parame-
ters. We describe the kamila package, which includes a weighted k-means approach to
clustering mixed-type data, a method for estimating weights for mixed-type data (Modha-
Spangler weighting), and an additional semiparametric method recently proposed in the
literature (KAMILA). We include a discussion of strategies for estimating the number of
clusters in the data, and describe the implementation of one such method in the current R
package. Background and usage of these clustering methods are presented. We then show
how the KAMILA algorithm can be adapted to a map-reduce framework, and implement
the resulting algorithm using Hadoop for clustering very large mixed-type data sets.

Keywords: clustering, Hadoop, kernel density estimator, mixed data, mixed-type data, mix-
ture model, R, semiparametric, unsupervised learning.

1. Introduction

Cluster analysis, also referred to as unsupervised learning, comprises a set of techniques that
seek to identify structure in a data set without reference to a known set of labeled “training”
data vectors (Hastie, Tibshirani, and Friedman 2009). In this paper we introduce software
for clustering data consisting of mixed continuous and categorical variables. Although there
are various existing approaches for clustering mixed-type data, they suffer from significant
drawbacks including loss of information due to discretization, arbitrary weighting of contin-
uous versus categorical variables (e.g., as in dummy coding or the similarity metric of Gower
1971), or strong parametric assumptions (e.g., as in parametric mixture models). We review
these existing approaches in Section 2, and in Section 3 discuss an often overlooked technique
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introduced by Modha and Spangler (2003) for estimating appropriate weights for combining
continuous and categorical variables. In Section 4 we describe the KAMILA (k-means for
mixed large data) algorithm and underlying data model, and in Section 5 we introduce the
R (R Core Team 2017) package kamila (Foss and Markatou 2018) implementing a weighted
k-means algorithm, Modha-Spangler weighting, and the KAMILA algorithm for clustering
mixed-type data. Package kamila is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=kamila. In Section 6 we introduce soft-
ware for implementing KAMILA on a distributed file system using Hadoop (Apache Software
Foundation 2016a). Section 7 offers conclusions, while Appendix A discusses the Hadoop
implementation of the KAMILA algorithm.

2. Related work

Clustering techniques can generally be divided into hierarchical methods and partitioning
methods. Hierarchical methods involve constructing a series of nested partitions of the data
set; these can either involve iteratively splitting a cluster from the previous step (divisive
techniques) or iteratively merging two clusters from the previous step (agglomerative tech-
niques). The diana function in R package cluster (Maechler, Rousseeuw, Struyf, Hubert, and
Hornik 2015) implements divisive clustering. The function agnes in package cluster (Maech-
ler et al. 2015) and the function hclust implemented in each of the packages stats (R Core
Team 2017), fastcluster (Miillner 2013), and flashClust (Langfelder and Horvath 2012) are
commonly used functions for agglomerative clustering. A compromise between agglomerative
and divisive clustering is developed by Chipman and Tibshirani (2006), and implemented in
R package hybridHclust of Chipman, Tibshirani, and Hastie (2015).

Partitioning methods generally involve a single split of the data set into mutually exclusive
and exhaustive clusters. A well-known example are the k-means algorithms (Hartigan and
Wong 1979; MacQueen 1967) or alternatives such as the k-medoids algorithms, e.g., the
PAM (partitioning around medoids) algorithm of Kaufman and Rousseeuw (1990). The
Hartigan-Wong, Lloyd, and MacQueen k-means algorithms are implemented by the kmeans
function in the stats package (R Core Team 2017). Kernel k-means uses kernels to project
the data into a non-linear feature space before applying k-means, and is implemented in the
kkmeans function in the kernlab package (Karatzoglou, Smola, Hornik, and Zeileis 2004).
The function kcca in package flexclust (Leisch 2006) implements generalizations of k-means
using arbitrary centroid statistics and distance measures. Trimmed k-means, which trims a
specified proportion of extreme values in each cluster, is implemented in packages trimcluster
(Hennig 2012) and tclust (Fritz, Garcia-Escudero, and Mayo-Iscar 2012). The pam function
in package cluster (Maechler et al. 2015) implements k-medoids. The clara function in
the same package implements a computationally efficient version of k-medoids in which the
partitioning steps are executed on sub-sampled data and then applied to the entire data set.
This efficient algorithmic structure makes clara well suited for large data sets that can be
stored in RAM. At the end of this section we discuss existing software for data sets too large
to store on a single compute node.

The finite mixture model (e.g., Lindsay 1995; McLachlan and Basford 1988; McLachlan and
Peel 2000; Titterington, Smith, and Makov 1985) is another partitioning method in which
each cluster is assumed to follow some parametric distribution, the parameters of which
are then typically estimated using the EM (expectation-maximization) algorithm (Dempster,
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Laird, and Rubin 1977). Various finite mixture models are implemented in R. Finite Gaussian
mixture models can be fit using the packages EMCluster (Chen and Maitra 2015), mclust
(Fraley, Raftery, Murphy, and Scrucca 2012), and mixture (Browne, ElSherbiny, and McNi-
cholas 2015); multinomial or gamma mixtures can be fit using package mixtools (Benaglia,
Chauveau, Hunter, and Young 2009), and mixtures of skew-normals can be fit using package
mixsmsn (Prates, Cabral, and Lachos 2013). For an overview on packages available on CRAN
for cluster analysis and mixture models see the corresponding CRAN Task View (Leisch and
Griin 2017).

Although there is an abundance of clustering techniques designed for a single data type,
fewer exist for handling mixed-type data. In fact, many of the most common approaches to
clustering mixed-type data involve imperfect usages of techniques designed for a single data
type. One common strategy is to first dummy code the categorical variables, and then apply
some technique designed for continuous data, such as k-means. For a categorical variable X
with ¢ distinct categorical levels, the dummy coding step generally involves creating ¢ distinct
0 — ¢ indicator variables, one for each of the levels, where 0 indicates absence and ¢ € R
denotes presence of that particular level in X. A problem arises in the selection of ¢; an
excessively large ¢ will overemphasize the categorical variables over the continuous variables
in the final clusters, whereas an excessively small ¢ will under-emphasize the categorical
variables. As demonstrated in Foss, Markatou, Ray, and Heching (2016), the selection of ¢
is a difficult problem without a clear solution; even in very simple mixed-type data sets the
ideal choice of ¢ can fluctuate based on the number of variables used in the analysis and
the degree of separation between the underlying clusters in the data. The common approach
of arbitrarily setting ¢ = 1 is by no means an acceptable solution to the mixed-type data
clustering problem. Another common approach of standardizing all variables (in particular,
each dummy-coded variable) to unit variance is also inadequate; it amounts to an equally

arbitrary choice of ¢; = 1/4/p;(1 — p;), where p; is the frequency of observations with that
categorical level present in the j-th dummy-coded variable. This has the effect of up-weighting
categories the further they deviate from p; = 0.5. While it is trivial to imagine an application
where this could be appropriate, it is equally trivial to imagine scenarios where the opposite
effect is desired (i.e., two near-majority categories of interest, with a small proportion of rare
categories of minimal interest). See Section 5.1 for an illustration of the difficulty in selecting
appropriate weights.

A second common strategy for clustering mixed-type data is to use a distance metric com-
patible with mixed data, such as Gower’s distance (Gower 1971), and then use a clustering
method that depends only on the distances between the data points (e.g., agnes, pam, or var-
ious other functions in the cluster package). However, each variable in Gower’s distance must
be assigned a user-specified weight determining its relative contribution to the distance, which
presents essentially the same dilemma as the choice of ¢ in the dummy coding approach above.
A poor choice of weights will result in certain variables being over- or under-emphasized, and
in particular, it is unclear how to properly weigh the continuous variables relative to the
categorical variables for a given data set. In Table 2 of Foss et al. (2016), a range of weight-
ing strategies for Gower’s distance and dummy coding were compared in a simulation study
using three variables (one continuous, two categorical). The continuous weight was fixed at
1.0 while the categorical weights spanned a broad range of values. Two models were used
to generate data; one in which the continuous variable contained more useful information
regarding cluster structure, and one in which the categorical variables contained more useful
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information. Although the top performing method in this simulation (KAMILA; no choice of
weights required as described in Section 4) achieved adjusted Rand index (ARI; Hubert and
Arabie 1985) scores of 0.99 in both conditions, weighting strategies for Gower’s distance and
dummy coding could only perform well in one condition at a time. For example, the best score
for Gower’s distance in condition 1 (ARI = 0.984) used categorical weights of 0.1, but could
only achieve an ARI of 0.688 in condition 2. The best score for Gower’s distance in condition
2 (ARI = 0.849) used categorical weights of 0.4, but could only achieve an ARI of 0.872 in
condition 1. Similar trade-offs were apparent for dummy coding. We note that the optimal
weight could fluctuate unpredictably based on features such as the number of variables and
the number of categorical levels; the best weights mentioned above do not generalize to other
data conditions.

Numerous other existing strategies for clustering mixed-type data involve this same problem
of requiring a user-specified weight determining the relative contribution of continuous versus
categorical variables. The k-prototypes method of Huang (1998) uses a distance metric equal
to the squared Euclidean distance between the continuous components plus the user-specified
constant v times the matching distance between the categorical components (Huang 1998,
p. 291, Equation 9). The package clustMixType (Szepannek 2016) implements k-prototypes
clustering in R. In Azzalini and Menardi (2014) (with associated package pdfCluster), a novel
density-based clustering scheme is proposed for continuous data, and a possible extension
to mixed-type data using a distance such as Gower’s distance is mentioned briefly. The
method of Friedman and Meulman (2004) uses a Gower-like distance metric, and introduces
an interesting strategy for selecting variable weights, but explicitly relies on the assumption
that setting each weight to 1/p is equivalent to giving the same influence to all attributes
regardless of data type (here p denotes the number of variables of any type). In Hennig and
Liao (2013), a weighting scheme is proposed for mixed-type data that takes into account
the number of levels in each categorical variable (and optionally the number of observations
in each categorical level). The method does not take into account other crucial aspects of
the data that influence the adequate choice of weights, such as number and quality of the
variables. This leads to this method performing worse than other methods for mixed-type
data (see Foss et al. (2016) for more extensive discussion and examples). As described above
and discussed in Foss et al. (2016), the proper choice of weights fluctuates in a data-dependent
manner, rendering any fixed choice of weights unable to balance continuous and categorical
components in any general sense.

The clustering technique of Modha and Spangler (2003) offers a potential solution to this
dilemma, and is described in Section 3. The algorithm is structured similarly to k-prototypes,
using a weighted combination of squared Euclidean distance and cosine distance for the contin-
uous and categorical variables, respectively. The weighting between continuous and categori-
cal variables is identified through a brute-force search. In various conditions Modha-Spangler
weighting performs well. Figure 4 in Foss et al. (2016) depicts simulation results suggesting
that Modha-Spangler weighting performs poorly relative to a competing method (KAMILA
clustering, described in Section 4) when clusters are poorly separated in the continuous vari-
ables but well-separated in the categorical. Furthermore, unlike finite mixture models, this
method is unable to adjust the relative contribution of individual variables of the same type.
To our knowledge, the method of Modha & Spangler has not previously been implemented
in R, nor in any other statistical software package.

Finite mixture modeling is another technique that does not require user-specified weights
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for the continuous versus categorical variable contribution. For mixed-type data, a popular
model is the joint normal-multinomial mixture model (Hunt and Jorgensen 2011). Finite
mixture models are often able to achieve a favorable balance between continuous and cate-
gorical variables when their parametric assumptions are reasonably accurate; however, they
often perform poorly when their parametric assumptions are strongly violated. For exam-
ples of this behavior, see Foss et al. (2016), in which the performance of mixture models is
studied in a series of Monte Carlo studies that systematically vary the severity of parametric
violations. Specifically, Foss et al. (2016) show that the normality assumption is particu-
larly vulnerable to cluster distributions that are skewed as well as heavy-tailed distributions.
Normal-multinomial mixture models are implemented in the R packages clustMD (McParland
2015), fpc (Hennig 2015a), and Rmixmod (Langrognet, Lebret, Poli, and Iovleff 2016).

In a manner similar to finite mixture models, the KAMILA method of Foss et al. (2016) is able
to achieve a favorable balance between continuous and categorical variables without requir-
ing user-specified weights. In order to decrease the susceptibility to violations of parametric
assumptions, the continuous components are modeled using a general class of elliptical distri-
butions. Categorical variables are modeled as mixtures of multinomial random variables, thus
not requiring dummy coding. Unlike the method of Modha and Spangler (2003), KAMILA
does not require a brute-force search to identify an appropriate balance between continuous
and categorical variables. We describe KAMILA in detail in Section 4.

Existing clustering software for very large data sets relies heavily on methods designed for
continuous data only, and on k-means clustering in particular; they are thus vulnerable to the
drawbacks enumerated above when used with mixed-type data. See the results of the simula-
tion in Section 5.1 for an illustration of the limitations of using k-means for mixed-type data,
and see Foss et al. (2016) for additional results and discussion of the limitations. The Ma-~
hout project (Apache Software Foundation 2016¢) implements k-means, fuzzy k-means, and
streaming k-means, as well as a spectral clustering algorithm that involves running k-means
on eigenvectors of the graph Laplacian of the original data. The In-Memory Statistics for
Hadoop Suite (SAS Corporation 2016) implements both k-means and DBSCAN;, a clustering
technique which also requires the choice of a suitable distance-based metric. The Microsoft
Azure Machine Learning Studio (Microsoft Corporation 2016) and the ScaleR package (Rev-
olution Analytics 2016b) both rely on the standard k-means algorithm for clustering data
sets. The R package pmclust (Chen and Ostrouchov 2016), built on the pbdMPI frame-
work (Ostrouchov, Chen, Schmidt, and Patel 2012), implements Gaussian mixture modeling
for continuous variables on large computing clusters using the single program/multiple data
(SPMD) programming style. In Section 6 we introduce an alternative clustering strategy
for large mixed-type data sets that implements the KAMILA clustering algorithm in Hadoop
streaming mode. In addition to achieving a superior balance between continuous and categor-
ical variables compared to standard k-means approaches, our method can drastically reduce
storage and computational requirements by not requiring dummy coding of variables. For
example, the airline data set analyzed in Section 6 would require over 25 times the number
of variables if its categorical variables were dummy-coded.

3. Modha-Spangler clustering

The work of Modha and Spangler (2003) presents a general framework for clustering data
sets with multiple data types, although it focuses primarily on the special case of mixed
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continuous and categorical variables. Let x; = (F&l), Faﬁ)’ . ,F&m))T denote the i-th data
vector with m different data types and i = 1,2,..., N. Modha and Spangler (2003) defines
a weighted distortion measure for mixed-type data as D*(x1,x2) = 3721 arD¢(F(1 0, F(2,0)),
where each of the m data types is assigned its own distance metric Dy and a corresponding
weight in a = (a1, 9,...,qm), ag >0, and > 2, ap = 1.

For a fixed weighting «, the proposed algorithm in Modha and Spangler (2003) seeks to
partition the data vectors into the k partitions {m*}*_, such that

k
{miHioy = arg min (Z > DG, cu>) ,

ﬂ—u}uzl u=1XEmy

where c,, denotes the centroid corresponding to the u-th cluster, whose definition depends on
the particular choices of distance metrics Dy for each data type. Modha and Spangler (2003)
use a method analogous to the k-means algorithm to approximate the optimal partition
{772}5:1-

In order to select the optimal weights a*, Modha and Spangler (2003) define the average
within-cluster distortion for the /-th data type as Wy(a) = S2F_, >oxens(a) De(Fo, c’("u!)(a)),
and the average between-cluster distortion as By(a) = 32N, Dy(F 5,0y, €e) — Wy(a), where ¢,
denotes the centroid of the /-th data type taken across all IV data vectors.

Finally, assuming no missing data, the method of Modha and Spangler (2003) aims to identify
the weighting vector a* such that

o = arg min
«

Wi(a) _ Wala) Win(a)
{Bl<a> “Bola) Bm<a>}'

The weighting is identified through a brute-force search: the algorithm is run repeatedly for
a grid of the possible weightings a with selection as described above. We focus primarily on
the case where m = 2, with the first data type consisting of continuous variables and the
second of 0-1 dummy-coded categorical variables. In this case, Modha and Spangler (2003)
use squared Euclidean distance for D; and cosine distance for Ds.

In the current R package we provide a flexible implementation of the Modha-Spangler method
in which the underlying clustering technique can be specified by the user. We devolve the is-
sues of initialization and stopping rules to the underlying clustering technique used. We leave
for future investigation the interesting question regarding how optimal settings for initializa-
tion and stopping rules are altered when moving from a simple application of a clustering
method to the Modha-Spangler approach. The granularity of the brute-force search over oy
can be specified by the user, with the default of ten equal subdivisions of [0, 1].

4. KAMILA clustering

4.1. Model

As described in Foss et al. (2016), we assume that our data set consists of N independent
and identically distributed observations of a (P + @)-dimensional vector of random variables
(VT,WT)T that follow a finite mixture distribution with G' components, where V is a P-
dimensional vector of continuous random variables and W is a vector of ) categorical random
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variables, and where the ¢-th element of W has L, categorical levels denoted 1, 2, ...,
Ly, with ¢ = 1, 2, ..., Q. The vectors V and W may be dependent, but under the local
independence assumption (e.g., see Hennig and Liao 2013; Hunt and Jorgensen 2011), V and
W are independent within any particular cluster.

Given membership in the g-th cluster, we model V as a vector following a finite mixture of
elliptical distributions with individual component density functions fv 4(v; g, Xg), where g
indexes cluster membership, 4, denotes the g-th centroid, and X, the g-th scaling matrix.
The specific form of the density function fv , is described below. Given membership in
the g-th cluster, we model W as a vector following a finite mixture of multinomials with
individual component probability mass functions fw 4(w) = HqQ:1 m(wg; O4q), where m(-;-)
is the multinomial probability mass function, and 6,4, is the multinomial parameter vector for
the g-th component of the g-th categorical variable. Given cluster membership in the g-th
cluster, under the local independence assumption, the joint density of (VT,WT)T is

Q
v wg(v,w; pg, Xg,00q) = fv,g(V; pg, Xg) H m(wg; bgq),
q=1

with the overall density unconditional on cluster membership given by

G

fV,W(Va w) = Z ngV,W,g(V’ W fig, g, egq)a (1)
g=1

where 7, denotes the prior probability of observing the g-th cluster.

4.2. Radial kernel density estimation

The Proposition 2 in Foss et al. (2016) states that if X € RP follows a spherically symmetric
distribution with center u, then

_ frR(T(E+1)
o prp_lﬂ'p/Q

fx(x) : (2)

where r = \/(x —u)'(x—p), R= \/(X — )" (X = u), and fg is the probability density of

R. We proceed to construct fR using a (univariate) kernel density estimation scheme, which
is then substituted into (2) in place of fr. Note that X corresponds to the vector V above
within a particular cluster, and that using a scaling matrix X, this result can be extended to
elliptical distributions. The kamila function currently uses 3, equal to the identity matrix;
future work will investigate how best to extend KAMILA clustering to allow for more flexible
specifications, such as ¥, = 3y for all g,¢, i.e., all scaling matrices being equal across
clusters, and X, # X, for all g # ¢

This univariate kernel density estimation scheme avoids the drawbacks of a multivariate kernel
density estimator: namely that multivariate kernel density estimation is computationally
expensive, and tends to over-fit data points (Scott 1992, Chapter 7).

4.3. Algorithm description

KAMILA proceeds by estimating the unknown parameters of (1) via an iterative process
similar to the EM algorithm, as shown in Algorithm 1 of Foss et al. (2016). At the t-th
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iteration of the algorithm, let ﬂét) denote the estimator of the centroid of population g, and

- (t
let qu) denote the estimator of the parameters of the multinomial distribution corresponding
to the g-th discrete random variable drawn from population g.

These parameter estimates can be initialized through random uniform draws, draws from
the observed data points, or with initial centroids selected through some other mechanism
(e.g., a preliminary clustering round). Using centroids identified through previous rounds of
clustering may be appropriate in certain circumstances, but in general, replacing a small sub-
problem (i.e., initialization) with the entire original problem (clustering) seems needlessly
complex. Any additional computational resources may be better spent on extending the
number of initializations and iterations of KAMILA rather than spending it on an entirely
separate clustering algorithm. We have found that initializing ﬂéo) for each ¢ = 1,2,...,G
with random draws from the observed continuous data vectors appears to offer a modest
advantage over random draws from a uniform distribution with marginal ranges equal to the

- (0
sample ranges of the data. Initializing Béq) for each g and each ¢ =1,2,..., L, is done with
a draw from a Dirichlet distribution (Kotz, Balakrishnan, and Johnson 2000) with shape
parameters all equal to one, i.e., a uniform draw from the simplex in RFa,

The estimation procedure proceeds iteratively, with each iteration consisting of two broad
steps: the partition and the estimation step. The partition step assigns each observation to a
cluster, and the estimation step re-estimates the parameters of interest using the new cluster
memberships.

Given ﬂgt) and 9(t)

of the ug s is d(t) \/ Z [(vip — ﬂg;))] The minimum distance is then calculated for the
(t) (t ))

at the ¢-th iteration, the Euclidean distance from observation i to each

i-th observation as r;’ = m;n(d . The kernel density estimate of the minimum distances is

constructed as
N (®)

A, 1 r—r

where k(-) is a kernel function and h(® is the corresponding bandwidth at iteration t. We
currently use the Gaussian kernel, with bandwidth h = 0.94n~/% where A = min(4,§/1.34),
& is the sample standard deviation, and ¢ is the sample interquartile range (Silverman 1986,

A(1)

p. 48, Equation 3.31). The function fg) is used to construct fy,” as shown in Section 4.2.

We assume that the @ categorical variables are independent within a given population g (i.e.,
local independence), and calculate the probability of observing the i-th vector of categori-

A (t
cal variables given population membership as c H ~ m(wig; Béq) ), where m(+;-) is the
multinomial probability mass function.

We assign the i-th object to the population g that maximizes the function
H(g) = log [{{(d})] +10g [c]]. (4)

In each iteration t, the latest partition of the IN observations is used to calculate ug 1)

and 9;2“) for all g, p, and ¢q. If Qg) denotes the set of indices of observations assigned to

population g at iteration ¢, we can then calculate the parameter estimates by

. 1
u§t+1) = Z Vi,
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ety 1 _
Ot = T-0 > Huwig =1},

’Qg ieall

where I{-} denotes the indicator function and |A| denotes the cardinality of the set A.

The kamila R package uses the straightforward rule of stopping a run when group membership
remains unchanged from one iteration to the next. When running KAMILA with particularly
large data sets, e.g., in a map-reduce framework (see Section 6), this stopping rule requires
the storage and comparison of cluster memberships for two consecutive iterations at a time
which can be computationally expensive; a stopping rule which avoids this computational
cost uses the quantities

)k
GCOH_ZZ (t,z)? '“gp » Ceat = ZZZ‘ng gqf ) (5)

g=1p=1 g=1lqg=1/¢=1

and stops when both are less than some chosen threshold(s). If membership remains un-
changed from one iteration to the next, then €.,y and e.,t will both be zero. Thus, selecting
very low thresholds will be similar to the initially proposed stopping rule. We have found
that using £ = 1 and thresholds of around 0.01 or lower yield satisfactory results with data
sets with variables numbering in the dozens.

After all runs have ended, we select the best partitioning based on an objective function.
Equation 4 above suggests selecting the partition that maximizes SV maX{Hi(ﬁnal) (9)} over
g

all runs. An alternative objective function, similar in structure to the Modha-Spangler objec-
tive described in Section 2, is to minimize the product of the categorical negative log-likelihood
and the within- to between-cluster distance ratio of the continuous variables, that is, selecting
the partition that minimizes Qcon X {— log c(»t)}. The quantity Qcon is defined as Weon/Beon,

where Weon = SN | ||xi — Aif(in)al)Hg, z:{1,2,...,N} — {1,2,...,G} is a function that maps
the observed data point index to its assigned cluster index, and Beon = Teon — Weon, Where
Teon is the total sum of squares SN, ||x; — fi||2 with fi denoting the sample mean taken
across all continuous variables. The latter objective function is currently the default used
in the kamila package, although future work will address in greater detail the best possible

objective functions that can be used for KAMILA clustering.

5. The R package kamila

The kamila package provides the three clustering functions wkmeans, a simple wrapper for
the stats: :kmeans function modified to handle mixed-type data; kamila, described in detail
in Section 4, and gmsClust, a flexible version of Modha-Spangler clustering described in
Section 3 that can be modified to use any base clustering method and objective function. The
gmsClust function defaults to using wkmeans with dummy coding of categorical variables and
squared Euclidean distance. Only the kamila and gmsClust functions are intended to be used
routinely for clustering; wkmeans is included primarily to be used as the default clustering
technique of gmsClust, while also serving to illustrate fundamental challenges associated with
using manual weights for clustering mixed-type data.

One heuristic approach to clustering mixed data is to use k-means with dummy coded cat-
egorical variables, implemented here with the wkmeans function. While the default of 0—1
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dummy coding is most common, this choice of weights is not optimal in any general sense;
unlike the use of dummy coding in a regression context, the choice of weights can yield com-
pletely different clustering results. Generally speaking, the higher the scalar ¢ used in 0—c
coding, the greater influence the categorical variables will have on the resulting clustering. In
the wkmeans function, the conWeight parameter specifies the relative weighting of both the
continuous and categorical variables. The conWeight parameter must be an element of [0, 1];
the continuous variables are each multiplied by conWeight, while the 0—1 dummy coded cat-
egorical variables are each multiplied by (1—conWeight). The “best” choice of weight in this
weighted k-means approach can change dramatically based on the characteristics of the data
set, and is generally difficult to specify (Foss et al. 2016). In the next section, we illustrate
this difficulty by showing the performance of two choices of weights on two different data sets.

Selecting the optimal clustering technique remains a challenge, in part due to the fact that
the optimal clustering technique is highly dependent upon the data set and a user’s analytic
objectives (Hennig 2015b). Expected characteristics of the clusters can guide the selection
of clustering technique. If the clusters are well-approximated by the normal distribution,
then the normal-multinomial model is recommended. If the clusters depart from normality,
however (e.g., due to skewness or heavy tails), then a model relying on normality should be
avoided (Foss et al. 2016) in favor of KAMILA or the Modha-Spangler technique. KAMILA
is particularly well-suited to handle large data sets (hence the acronym), both in terms of
algorithmic efficiency and its ability to identify useful latent structure. Depending on the
scenario, Modha-Spangler may be more appropriate if the sample size is small, particularly
if the underlying clusters are not well separated (well-separated clusters tend to be identified
easily by any method). In particular, KAMILA (and other techniques relying on multinomial
mixture models) can suffer if the sample size is small compared to the number of levels in the
categorical variables (e.g., sample sizes of 100-250 with variables containing 10+ categorical
levels and overlapping clusters). Modha-Spangler often is more robust in this type of scenario
with categorical sparsity (small sample size relative to the number of categorical levels). The
kamila function incorporates a categorical smoother which may be used to reduce the ill-
effects of categorical sparsity; if a user suspects that categorical sparsity is adversely affecting
performance the parameter catBw may be increased to 0.1 or 0.2; a trade-off is that an
increased bandwidth when there is no categorical sparsity will reduce the impact of categorical
variables.

The selection of the number of clusters remains a fundamental challenge in clustering (see,
e.g., Cooper and Milligan 1988; Hennig and Lin 2015; Milligan and Cooper 1985; Tibshirani
and Walther 2005). Recognizing that no method is superior in all circumstances, we include
an implementation of the prediction strength method of Tibshirani and Walther (2005) in
the kamila function. Strengths and weaknesses of the prediction strength method have been
discussed in the general case (Hennig and Lin 2015; Tibshirani and Walther 2005) as well
as in the context of KAMILA clustering by Foss et al. (2016, Section 3.3). The prediction
strength method tends to favor a small number of clusters, although this depends on a user-
specified threshold. While a threshold of 0.8—0.9 is recommended in Tibshirani and Walther
(2005) for well-separated data (default in the kamila function is 0.8), it is less clear what
threshold should be used if greater cluster overlap is expected. A lower threshold will, ceteris
paribus, yield an equal or larger number of clusters. In Foss et al. (2016) a threshold of 0.6
yields useful results in a particular application, and Hennig and Lin (2015) suggests using a
simulation-based approach in the spirit of Tibshirani, Walther, and Hastie (2001) to calibrate
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the selection process. In any of the clustering functions in the kamila package, the number of
clusters can also be manually selected by the user.

Theoretical analysis of the run-time of k-means analysis has proven surprisingly difficult (e.g.,
see Arthur, Manthey, and Roglin 2011), to say nothing of more complex algorithms such as
Modha-Spangler and finite mixture models. However, in typical applied conditions these
algorithms seem to consistently display linear run-times with respect to sample size (e.g.,
Figure 7 in Foss et al. 2016). The brute-force optimization of the Modha-Spangler algorithm
yields a linear run-time with a larger slope than k-means and KAMILA. This discrepancy
is increased in our R implementations of the Modha-Spangler (gmsClust) and KAMILA
(kamila) algorithms, due to the fact that all of the computationally intensive portions of
kamila are written in C4++.

5.1. Basic usage and simulation

We begin by illustrating the basic usage and performance of the methods in the kamila pack-
age. In order to demonstrate the properties of the methods, we first use the genMixedData
function to create a simple data generation function. This function allows the creation of
mixed-type data sets in which we carefully control the degree of cluster separation/overlap
separately in the continuous and categorical variables. We parameterize the overlap be-
tween two clusters as the overlapping area under their densities, with zero corresponding
to complete separation and one corresponding to complete overlap; genMixedData specifies
univariate overlap for each variable separately. The parameter nConVar controls the number
of continuous variables, nConWithErr controls how many of these variables have an overlap
of level conErrLev, while the remaining continuous variables have overlap of 0.01. The cate-
gorical variables are controlled analogously with the parameters nCatVar, nCatWithErr, and
catErrLev. The parameter popProportions is a vector of probabilities controlling the rela-
tive frequency of observations drawn from each cluster. Currently only two-cluster data sets
are supported, as controlling overlap between clusters in k-cluster simulated data sets is less
straightforward (e.g., see Maitra and Melnykov 2010). We note that simulated mixed-type
data with more intricate dependency structure between variables might be generated using
the PoisBinOrdNor package (Amatya and Demirtas 2015; Demirtas, Hu, and Allozi 2016) to
simulate data separately for each cluster.

R> suppressMessages(library("kamila"))

R> suppressMessages(library("mclust"))

R> ari <- adjustedRandIndex

R> genSimpleData <- function(conErrLev, catErrLev) {

tmpDat <- genMixedData(sampSize = 200, nConVar = 2, nCatVar = 2,
nCatLevels = 4, nConWithErr = 2, nCatWithErr = 2,
popProportions = c¢(.5, .5), conErrLev = conErrLev,
catErrLev = catErrLev)

tmpDat <- within(tmpDat, conVars <- as.data.frame(scale(conVars)))

tmpDat <- within(tmpDat, catVarsFac <- as.data.frame(lapply(
as.data.frame(catVars), factor)))

within(tmpDat, catVarsDum <- as.data.frame(dummyCodeFactorDf (
catVarsFac)))

+ + + + + + + + + +

11
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Figure 1: A pairwise scatterplot of the “Balanced” data structure (left), in which both con-
tinuous and categorical variables contain useful information regarding the cluster structure
and the “Unbalanced” data structure (right), in which the categorical variables contain the
most useful information regarding the cluster structure. Black circles denote cluster 1, while
red pluses denote cluster 2. Variables 3 and 4 correspond to the categorical variables, whose
levels have been arbitrarily numbered one through four, and jittered to avoid over-plotting.

The balanced and unbalanced data sets illustrated in Figure 1 are constructed using:

R> set.seed(1)

R> with(data = genSimpleData(conErrLev = 0.5, catErrLev = 0.5),

+ expr = pairs(cbind(conVars, jitter(catVars)), pch = c(1, 3)[truelD],
+ col = trueID, main = "\"Balanced\" Data"))

R> set.seed(2)

R> with(data = genSimpleData(conErrLev = 0.7, catErrLev = 0.3),

+ expr = pairs(cbind(conVars, jitter(catVars)), pch = c(1, 3)[trueID],
+ col = trueID, main = "\"Unbalanced\" Data"))

We focus on two conditions; first, one in which both variable types have approximately
comparable cluster overlap (e.g., Figure 1, left) and next, a data structure in which the
continuous variables have substantially more overlap compared to the categoricals (i.e., the
categorical variables are more useful for purposes of clustering, Figure 1, right). We compare
the performance of wkmeans with two weightings, Modha-Spangler and KAMILA clustering.

R> set.seed(3)

R> nrep <- 25

R> resl <- replicate(n = nrep, expr = {

+ balData <- genSimpleData(conErrLev = 0.5, catErrLev = 0.5)

+ kmWgt5_balData <- wkmeans(conData = balData$conVars,

+ catData = balData$catVarsDum, conWeight = 0.5, nclust = 2)
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kmWigt2_balData <- wkmeans(conData = balData$conVars,

catData = balData$catVarsDum, conWeight = 0.2, nclust = 2)
gms_balData <- gmsClust(conData = balData$conVars,

catData = balData$catVarsDum, nclust = 2)
kam_balData <- kamila(conVar = balData$conVars,

catFactor = balData$catVarsFac, numClust = 2, numInit = 10)

unbalData <- genSimpleData(conErrLev = 0.7, catErrLev = 0.3)
kmWgt5_unbalData <- wkmeans(conData = unbalData$conVars,
catData = unbalData$catVarsDum, conWeight = 0.5, nclust = 2)
kmWigt2_unbalData <- wkmeans(conData = unbalData$conVars,
catData = unbalData$catVarsDum, conWeight = 0.2, nclust = 2)
gms_unbalData <- gmsClust(conData = unbalData$conVars,
catData = unbalData$catVarsDum, nclust = 2)
kam_unbalData <- kamila(conVar = unbalData$conVars,
catFactor = unbalData$catVarsFac, numClust = 2, numInit = 10)
c(ari(kmWgt5_balData$cluster, balData$truelD),
ari (kmWgt2_balData$cluster, balData$truelD),
ari(gms_balData$results$cluster, balData$truelD),
ari(kam_balData$finalMemb, balData$truelD),
ari(kmWgt5_unbalData$cluster, unbalData$truelD),
ari(kmWgt2_unbalData$cluster, unbalData$truelD),
ari(gms_unbalData$results$cluster, unbalData$truelD),
ari(kam_unbalData$finalMemb, unbalData$trueID))})
R> rownames(resl) <- rep(c("W5/5", "W2/8", "MS", "KAM"), times = 2
R> boxplot(t(resl), ylab = "Adjusted Rand Index",
+ col = rep(c(0, 8), c(4, 4)))

+ + + + + + +F +++F A+ F A+ FEF A+ +

Results are shown in Figure 2, with performance measured using the adjusted Rand index
(ARI; Hubert and Arabie 1985). Although wkmeans with equal weighting (0.5 for both
variable types) outperforms an alternative weighting (0.2 and 0.8 for the continuous and cat-
egorical variables, respectively) in the balanced data condition, this performance benefit is
reversed in the unbalanced condition. In both cases, Modha-Spangler and KAMILA cluster-
ing perform equal or better than both wkmeans weightings. KAMILA appears to outperform
Modha-Spangler in the unbalanced data condition, which matches the findings of Foss et al.
(2016), namely that KAMILA tends to outperform Modha-Spangler weighting when categor-
ical variables are more informative than continuous.

5.2. Byar data analysis

We illustrate our R package kamila on a real data set consisting of fifteen variables measured
on 475 patients with prostate cancer. We cluster the data set with gmsClust with a k-medoids
algorithm specified as the base clustering algorithm, and with kamila.

We begin by dropping the height, weight, patient ID, and outcome variables, and converting
categorical variables from integers to factors.

R> data("Byar", package = "clustMD")
R> Byar$Serum.prostatic.acid.phosphatase <- log(
+ Byar$Serum.prostatic.acid.phosphatase)

13
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Figure 2: Performance of k-means, Modha-Spangler, and KAMILA clustering algorithms
on two different data structures. White boxplots denote results from a balanced data set
in which both the continuous and categorical variables contain useful information regarding
cluster structure, and gray boxplots denote results from an unbalanced data set in which
the categorical variables are more useful than the continuous. “W5/5” denotes the k-means
algorithm with a weight of 0.5 applied to both continuous and categorical variables during
clustering, and “W2/8” denotes weights of 0.2 and 0.8 applied to the continuous and categor-
ical variables, respectively. MS denotes the Modha-Spangler algorithm, and KAM denotes
the KAMILA algorithm.

R> conInd <- c(5, 6, 8:11)
R> conVars <- Byar/[, conInd]
R> summary(conVars)

Systolic.Blood.pressure Diastolic.blood.pressure Serum.haemoglobin

Min. : 8.00 Min. : 4.000 Min. : 59.0
1st Qu.:13.00 1st Qu.: 7.000 1st Qu.:122.5
Median :14.00 Median : 8.000 Median :137.0
Mean :14.38 Mean 8.158 Mean :134.2
3rd Qu.:16.00 3rd Qu.: 9.000 3rd Qu.:147.0
Max. :30.00 Max. :18.000 Max. :182.0
Size.of .primary.tumour Index.of.tumour.stage.and.histolic.grade
Min. : 0.00 Min. : 5.0

1st Qu.: 5.00 1st Qu.: 9.0

Median :10.00 Median :10.0

Mean :14.29 Mean :10.3

3rd Qu.:21.00 3rd Qu.:11.0

Max. :69.00 Max. :15.0
Serum.prostatic.acid.phosphatase

Min. :0.000

1st Qu.:1.609
Median :1.946
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Mean :2.639
3rd Qu.:3.384
Max. :9.210

R> catVars <- Byar[, -c(1:2, conInd, 14, 15)]
R> catVars[] <- lapply(catVars, factor)

R> summary(catVars)

Performance.rating Cardiovascular.disease.history

0:428 0:268
1: 32 1:207
2: 13
3: 2

Electrocardiogram.code Bone.metastases Stage
:161 0:398 3:273
: 23 1: 77 4:202
50
25
1145
: 70
1

Ok W~ O

We use the kamila package to cluster the data using Modha-Spangler clustering. In the
Modha-Spangler optimization framework, the optimal choices of distance metric and clus-
tering method depend on the data set at hand and the user’s clustering goals; we do not
wish to endorse one particular method over others. Thus, we allow the user to input any
custom distance metric and clustering algorithm into our Modha-Spangler implementation,
and we illustrate this functionality here. Instead of the default k-means algorithm, we use the
Modha-Spangler framework to optimize the k-medoids algorithm PAM (partitioning around
medoids; Kaufman and Rousseeuw 1990) using Gower’s distance (Gower 1971). This requires
using continuous variables that have been normalized to the range [0, 1] by subtracting the
minimum value and dividing by the range.

R> rangeStandardize <- function(x) {
+ (x - min(x)) / diff(range(x))
+ }

R> conVars <- as.data.frame(lapply(conVars, rangeStandardize))

We then write functions implementing the L1 distance for continuous variables and matching
distance for categorical (the two distances required by Gower’s distance). These functions
must accept as input two rows of a data frame and return a scalar distance measure. Note that
the default behavior of a data frame of factors differs substantially if it contains one versus
multiple variables; using as.integer to convert factors before comparison avoids comparing
incompatible types.

R> L1Dist <- function(vl, v2) {
+ sum(abs (vl - v2))

15
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+ }

R> matchingDist <- function(vl, v2) {

+ sum(as.integer(vl) != as.integer(v2))
+ }

Finally, we write a wrapper for the pam function from the cluster package, using the daisy
function to implement Gower’s distance. This function will be an input argument to the
gmsClust function, and must have the method signature below (including optional arguments
to be passed to the clustering function). It must return a list containing at least the three
named slots cluster containing an integer vector denoting cluster membership of the data
points; conCenters containing a data frame with each row denoting continuous coordinates
of a centroid; and catCenters containing a data frame with each row denoting categorical
coordinates of a centroid.

R> library("cluster")
R> pammix <- function(conData, catData, conWeight, nclust, ...) {

+ conData <- as.data.frame(conData)

+ catData <- as.data.frame(catData)

+ distMat <- daisy(x = cbind(conData, catData), metric = "gower",
+ weights = rep(c(conWeight, 1 - conWeight),

+ times = c(ncol(conData), ncol(catData))))

+ clustRes <- pam(x = distMat, k = nclust, diss = TRUE, ...)

+ return(list(cluster = clustRes$clustering,

+ conCenters = conData[clustRes$id.med, , drop = FALSE],

+ catCenters = catData[clustRes$id.med, , drop = FALSE]))

+

}

We now run Modha-Spangler clustering using PAM as the base clustering function with
Gower’s distance, specifying three clusters. Note that the distance function used in the
clustFun argument is independent of the distance functions used to construct the objective
function (i.e., arguments to conDist and catDist).

R> set.seed(4)

R> msRes <- gmsClust(conData = conVars, catData = catVars, nclust = 3,
+ clustFun = pammix, conDist = L1Dist, catDist = matchingDist)

R> with(msRes, plot(weights, objFun, xlab = "Continuous Weight",

+ ylab = "Objective Function"))

Inspecting the objective function at each possible weighting (Figure 3), we see that a weight
of 0.82 appears best.

We now run a KAMILA clustering procedure on the same data.

R> set.seed(5)
R> kmRes <- kamila(conVars, catVars, numClust = 3, numInit = 10,
+ maxIter = 50)

Comparing the partitions, we see that Modha-Spangler clustering identifies a substantially
similar structure compared to KAMILA. We note, however, that KAMILA uses a more effi-
cient algorithmic structure that does not require a brute-force search to optimize the contin-
uous and categorical contribution to the resulting clustering.
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Figure 3: Modha-Spangler objective function values from the Byar prostate cancer data
analysis. Values of the objective function are plotted against the continuous weight used in
the Modha-Spangler clustering using PAM and Gower’s distance.

R> table(kamila = kmRes$finalMemb, modhaSpangler = msRes$results$cluster)

modhaSpangler
kamila 1 2 3
1101 29 O
2 19 9 174
3 13 125 5

There appears to be a strong relationship between the identified cluster structure and the out-
come variable (survival, which was not used in constructing the clusters), which is supported
by a chi-squared goodness-of-fit test:

R> ternarySurvival <- factor(Byar$SurvStat)

R> survNames <- c("Alive", "DeadProst'", "DeadOther'")

R> levels(ternarySurvival) <- survNames[c(1, 2, rep(3, 8))]

R> kamila3clusters <- factor (kmRes$finalMemb, 1:3, paste("Cluster", 1:3))
R> (kamilaSurvTab <- table(kamila3clusters, ternarySurvival))

ternarySurvival
kamila3clusters Alive DeadProst DeadOther
Cluster 1 24 11 95
Cluster 2 46 90 66
Cluster 3 67 20 56

R> chisq.test (kamilaSurvTab)

Pearson's Chi-squared test

17
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Figure 4: Results of the Byar prostate cancer data analysis. Values of tumor severity are
plotted against serum prostatic acid phosphatase, with patient outcome depicted by plotting
color and KAMILA cluster membership depicted by plotting character.

data: kamilaSurvTab
X-squared = 104.74, df = 4, p-value < 2.2e-16

Cluster 2 is composed of a high proportion of patients who died due to prostate cancer (90/202;
74% of all patients in the entire data set who died due to prostate cancer), while cluster 1 is
primarily composed of patients who died due to reasons other than prostate cancer (95/130).
Cluster 3 contains primarily individuals who survived or died due to reasons unrelated to
prostate cancer (123/143). These figures suggest that the clustering captures disease-specific
mortality.

This is further supported by results shown in Figure 4, in which we see that cluster 2 appears
to contain a preponderance of patients with high indices of tumor stage/grade, while clusters 1
and 3 appear to include predominantly patients with low serum prostatic acid phosphatase
and low indices of tumor stage/grade.

R> suppressMessages(library("ggplot2"))
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Figure 5: Prediction strength values for the KAMILA clustering of the Byar prostate cancer
data. Prediction strength values are plotted against the number of clusters, with error bars
denoting plus or minus one standard error. The horizontal dotted line at y = 0.8 denotes the
default threshold for determining the number of clusters.

R> plotDatKam <- cbind(conVars, catVars, Cluster = factor (kmRes$finalMemb))
R> plotDatKam$Bone.metastases <- ifelse(plotDatKam$Bone.metastases == "1",

+ yes = "Yes", no = "No")

R> bonePlot <- ggplot(plotDatKam, aes(x = Serum.prostatic.acid.phosphatase,
+ y = Index.of.tumour.stage.and.histolic.grade, color = ternarySurvival,
+ shape = Cluster))

R> (bonePlot + geom_point() + scale_shape_manual(values = c(2, 3, 7))

+ + geom_jitter())

The three-way table below of KAMILA cluster membership, tumor stage, and bone metas-
tasis shows suggestive relationships with other variables. For example, every individual in
KAMILA cluster 2 had a tumor of stage 4, while all individuals in clusters 1 and 3 had tumors
of stage 3. All except for one individual with metastatic spread of the prostate tumor to the
bone was allocated to cluster 2.

R> ftable(Metastasis = ifelse(catVars$Bone.metastases == "1", yes = "Yes",
+ no = "No"), "Tumor Stage'" = paste("Stage", 3:4) [catVars$Stage],
+ Cluster = kmRes$finalMemb)

19
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Cluster 1 2 3
Metastasis Tumor Stage

No Stage 3 130 0 142
Stage 4 0126 O
Yes Stage 3 0o o0 1
Stage 4 0 76 O

We now run KAMILA clustering again, using the prediction strength method to estimate the
number of clusters.

R> set.seed(6)

R> numberOfClusters <- 2:10

R> kmResPs <- kamila(conVars, catVars, numClust = numberOfClusters,
+ numInit = 10, maxIter = 50, calcNumClust = "ps")

Prediction strength values for each of number of clusters tested are shown in Figure 5. The
selected number of clusters is two. In the table below, we see that the two-cluster KAMILA
solution is identical to the three-cluster KAMILA solution except that the two clusters with
the lowest proportion of deaths due to prostate cancer are merged.

R> psPlot <- with(kmResPs$nClust, gplot (number0OfClusters, psValues) +

+ geom_errorbar (aes(x = numberOfClusters, ymin = psValues - stdErrPredStr,
+ ymax = psValues + stdErrPredStr), width = 0.25))

R> psPlot <- psPlot + geom_hline(yintercept = 0.8, 1ty = 2)

R> psPlot + scale_x_continuous(breaks = numberOfClusters) + ylim(0, 1.1)

R> table(kamila3 = kmRes$finalMemb, kamila2 = kmResPs$finalMemb)

kamila?2
kamila3 1 2
1 130 0
2 0 202
3 143 0

6. Hadoop implementation

We illustrate here how to implement KAMILA on very large data sets stored on distributed
file systems. We use the map-reduce computing model (Dean and Ghemawat 2008) as im-
plemented in Hadoop (Apache Software Foundation 2016a; White 2009). We also make use
of the Hadoop streaming utility (Apache Software Foundation 2016b), available in the stan-
dard Hadoop distribution. Hadoop streaming allows mappers and reducers to be written in
any programming language to be integrated into an otherwise standard Hadoop map-reduce
run; this allows for rapid development of custom applications. In our case, it offers a way to
implement map-reduce runs that have access to the rich set of objects and methods available
in R.

There are multiple existing R packages that facilitate computing with data sets stored on
distributed file systems. The pbdR project (Ostrouchov et al. 2012) is a collection of pack-
ages for high-performance computing on distributed systems, including interfaces to MPI
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(The MPI Forum 2015) and ScaLAPACK (Blackford et al. 1997). Interfacing with Hadoop
can be accomplished with the packages RHIPE (Guha et al. 2012; Guha 2012), rmr2 (Rev-
olution Analytics 2016a), or hive (Feinerer and Theussl 2015), while interfacing with Spark
(Apache Software Foundation 2016d) can be accomplished using the R package sparklyr
(Luraschi, Ushey, Allaire, and The Apache Software Foundation 2016) or the SparkR pack-
age (Venkataraman 2013) included in Spark (Apache Software Foundation 2016d) versions
> 1.4. Although we opted to use a bare-bones implementation of Hadoop streaming in the
current work to minimize software dependencies, future implementations may draw upon the
packages mentioned above in order to allow distributed computations to be executed from
within the R environment.

The algorithm used in the Hadoop implementation of KAMILA is shown in Algorithm 1.
Unless otherwise noted, it is structured in fundamentally the same manner as detailed in
Section 4 and in Algorithm 1 in Foss et al. (2016), although certain modifications were nec-
essary to accommodate map-reduce operations. Initializations of the continuous variables
are not drawn from the entire data set, but a subset of the continuous data points (around

2,000 to 5,000 points are adequate) to reduce computation time. In the REDUCE 1 step of
(t)

Algorithm 1, values of rit are binned to avoid the computation required to store a vector
of length NV between the first and second map-reduce runs. For the calculation of the radial
kernel density estimate between map-reduce runs 1 and 2, calculations are performed assum-
ing the points are drawn from the mid-point of the bins; the variance of the binned values
is computed using Sheppard’s correction (Stuart and Ord 1998), in which a correction factor
of h?/12 is subtracted from the standard variance estimator, where h is the bin width. The
stopping rule given in Equation 5 is used in order to avoid the costly storage and comparison
of two vectors of length N every iteration.

Compared to KAMILA, k-means and Modha-Spangler algorithms pose problems in a high-
performance computing environment with large mixed-type data sets. In addition to sub-
stantial problems balancing continuous and categorical contribution described in Section 2,
k-means may cause difficulties with large data sets due to the computational demands of
dummy coding categorical variables. It is not uncommon to encounter large data sets with
categorical variables containing a large number of levels; since each dummy-coded level re-
quires its own variable the corresponding storage and run-time demands can quickly become
challenging to handle. Each iteration of the KAMILA algorithm requires two passes through
the continuous variables and one through the categorical, and thus has run-time approx-
imately proportional to 2p + ¢, where p is the number of continuous variables and ¢ the
number of categorical variables. One k-means iteration has run-time p + ¢*, where ¢* is the
number of dummy-coded categorical levels. If p = ¢ and there are £ levels per categorical
variable, the ratio of these run-times is (p + ¢*)/(2p + ¢) = (¢ + 1)/3. Thus, if every level is
given its own dummy variable, then computation times will be comparable if all variables are
binary. Since variables often have many levels, KAMILA will generally outperform k-means
in this context. (We note that simplex coding (McCane and Albert 2008) can reduce this ra-
tio slightly to £/3.) Since the standard formulation of Modha-Spangler is based on k-means,
it suffers from these same computational challenges, but with run-times multiplied by the
number of evaluations in its brute-force optimization scheme.

This setup requires Java 1.6.0_22, Hadoop 2.5.1, myhadoop 0.30b (https://github.com/

glennklockwood/myhadoop/tree/v0.30b), R 3.0.0, and the SLURM workload manager ver-
sion 16.05.3 (Yoo, Jette, and Grondona 2003). More detailed instructions for installing
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Algorithm 1 KAMILA map-reduce algorithm

for User-specified number of initializations do

Initialize ﬂ(o) 9(0) for g=1,2,...,G clusters and ¢ = 1,2, ..., Q categorical variables.

9 »Y9q
repeat
MAP 1
dg;) <+ dist(vy, ﬁét)) for i =1,2,..., N observed data vectors
t ot
rl( ) mgm(dgg))

Key: argmin(dz(;))
g
(t)

Value: r;
REDUCE 1: Calculate 7’: ®) as binned rgt) values.
i« RadiaKDE(r*®)
MAP2
cl(;) + P(w; | observation i € population g)
t A(t) (¢ t
H(g)  log [/ ()] +1og [}y ]
Key: argmax{Hi(t)(g)}
g
Value: Original data vector (v;, w;)
REDUCE 2: Calculate ﬂ(gtﬂ) and 9;2“).
until Stopping rule is satisfied.
end for
Output partition that maximizes the chosen objective function.

Hadoop can be found in Appendix A of Theu$l, Feinerer, and Hornik (2012). The en-
vironment modules package (http://www.modules.sourceforge.net/) is used to manage

packages and environment variables. We do not expect all interested parties to have the same
setup, and thus some adaptation may be required to implement our programs; however, we
have separated out the components such that the mappers and reducers can be conveniently

integrated into alternative setups using Hadoop streaming.

6.1. Running the analysis in Hadoop

Here we give a brief overview of the code implementing KAMILA in Hadoop. First we
navigate to the relevant directory where the supplementary material is contained and list the

content:

~$ 1s -1F --gr kamilaStreamingHadoop/

BASH/

csv/

py/

R/

Rnw/
kamila.slurm
kmeans.slurm
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LICENSE
preprocessing.slurm
README.md

Note that the sources may also be downloaded from GitHub (https://github.com/ahfoss/
kamilaStreamingHadoop.git).

As stated above, our methods may require adaptation to the particular platform of interest.
The file preprocessing.slurm is a SLURM batch submission script showing an example
preprocessing pipeline using SQLite (Hipp 2013, version 3.7.17). Three data files are required
to run the clustering program. In addition to the main data file (which currently must
be in CSV format), the program requires a TSV file with one row per categorical variable
describing basic metadata including column indices, number of levels, and the names and
counts of the categorical levels. Required formatting is described in README.md, and the
script py/preprocKamila.py gives example code for generating required inputs from a raw
data set. Categorical variables should not be dummy coded. The levels of each categorical
variable should be replaced by the integers 1-M, where M is the number of categorical levels
in that variable. Finally, as described above, a small random subset (without replacement;
about 2,000 to 5,000 should suffice) of the continuous data points should be drawn and
placed in a separate data file. The file kamila.slurm is a SLURM batch submission script
that implements KAMILA clustering in streaming Hadoop. The SLURM options and BASH
variables defined in the initial lines of kamila.slurm must be set to match the specifications
of the job at hand. Detailed instructions for these settings can be found in the document
README.md and in Appendix A.

Once kamila.slurm and the data set are set up, the job can be submitted to the SLURM
job manager using the sbatch command. In order to illustrate the data format required, a
sample analysis can be executed from the package as follows from a linux terminal. First, a
toy data set csv/sample.csv can be generated using an included R script:

~$ cd kamilaStreamingHadoop/
~/kamilaStreamingHadoop$ Rscript R/genData.R
~/kamilaStreamingHadoop$ 1s -1sh csv/

total 604K
604K sample.csv

A preprocessing script formats the data and generates the required metadata as described
above. A SQLite data base is created containing other useful summary information.

~/kamilaStreamingHadoop$ sh preprocessing.slurm
~/kamilaStreamingHadoop$ 1s -1sh csv/

total 998K

604K sample.csv

4.0K sample_KAM_rmvna_catstats.tsv

300K sample_KAM_rmvna_norm.csv

80K subsampled_2000_sample_KAM_rmvna_norm.csv
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~/kamilaStreamingHadoop$ 1s -1sh db/

total 760K
760K sample.db

Note that the preprocessing.slurm script can be instead run using the SLURM job manager:
~/kamilaStreamingHadoop$ slurm preprocessing.slurm

Next, cluster the data:

~/kamilaStreamingHadoop$ slurm kamila.slurm

Results of the analysis will be stored in the directory output-kamila-####, where ####
denotes the SLURM job ID. See Appendix A for a more detailed description of the raw
output file structure.

Finally, a sample script can be used to generate useful summary information about the clus-
tering procedure and results using the script Rnw/kamilaSummary.Rnw. The JOBID variable
in the section “User-Supplied Values” of kamilaSummary.Rnw must be changed to the job ID
used by SLURM to run kamila.slurm.

~/kamilaStreamingHadoop$ cd Rnw/

~/kamilaStreamingHadoop/Rnw$ Rscript -e "knitr::knit(\"kamilaSummary.Rnow\")"
~/kamilaStreamingHadoop/Rnw$ pdflatex kamilaSummary.tex
~/kamilaStreamingHadoop/Rnow$ !!

~/kamilaStreamingHadoop/Rnw$ evince kamilaSummary.pdf &

6.2. Airline data set

We illustrate our Hadoop software on the airline data set used in the ASA Data Expo 2009
(American Statistical Association 2016, http://stat-computing.org/dataexpo/2009/, ac-
cessed April 2016). All files necessary for downloading the data and conducting the anal-
ysis are part of the supplementary material. In addition they can be found on GitHub

Variable name Mean Standard deviation Min Max
Year 2.00E+-03 4.04E+00 2.00E+03 2.01E+03
DepTime 1.32E+01 4.79E+00 0.00E4+00 2.40E+401
ActualElapsedTime 1.24E+02 7.00E+01 0.00E+00 1.88E403
AirTime 1.03E+402 6.74E+01 0.00E+00 3.51E+403
ArrDelay 7.42E+00 3.33E4+01 —1.43E+03 2.60E+03
DepDelay 8.79E+00 3.08E4+01 —1.41E+03 2.60E+03
Distance 7.30E+02 5.64E+02 8.00E+00 4.96E+03

Table 1: Summary statistics for continuous variables in the airline data set. A negative
delay corresponds to an event that occurred earlier than the originally scheduled time. Note:
statistics are calculated before standardizing to mean 0 and standard deviation 1.
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Variable name Level name Counts Percent
Month 8 7370927 8.8
Month 7 7326866 8.7
Month 3 7233892 8.6
Month 5 7181463 8.5
Month 10 7109262 8.4
Month 6 7077369 8.4
Month 4 7013408 8.3
Month 1 6985085 8.3
Month 12 6901993 8.2
Month 11 6766812 8.0
Month 9 6756115 8.0
Month 2 6464065 7.7
DayOfWeek Mon 12370335 14.7
DayOfWeek Fri 12360530 14.7
DayOfWeek Thu 12325489 14.6
DayOfWeek Wed 12312472 14.6
DayOfWeek Tue 12262869 14.6
DayOfWeek Sun 11774948 14.0
DayOfWeek Sat 10780614 12.8
UniqueCarrier WN 13029547 15.5
UniqueCarrier DL 10203541 12.1
UniqueCarrier AA 9411379 11.2
UniqueCarrier UA 8569494 10.2
UniqueCarrier US 8065539 9.6
UniqueCarrier NW 6752509 8.0
UniqueCarrier CO 4888454 5.8
UniqueCarrier MQ 3789853 4.5
UniqueCarrier OO 3020263 3.6
UniqueCarrier XE 2290458 2.7
UniqueCarrier HP 2176097 2.6
UniqueCarrier AS 2104490 2.5
UniqueCarrier TW 1839203 2.2
UniqueCarrier EV 1626952 1.9
UniqueCarrier OH 1409415 1.7
UniqueCarrier FL 1249313 1.5
UniqueCarrier YV 822290 1.0
UniqueCarrier B6 799117 0.9
UniqueCarrier DH 669645 0.8
UniqueCarrier 9K 504508 0.6
UniqueCarrier F9 334842 0.4
UniqueCarrier HA 272834 0.3
UniqueCarrier TZ 206007 0.2
UniqueCarrier AQ 151507 0.2

Table 2: Summary statistics for categorical variables in the airline data set. Carriers are
denoted by IATA code; see the Supplemental Data Sources tab on the website given in the
American Statistical Association (2016) citation for full carrier names by IATA code.
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Variable name Level name Counts Percent
Origin ORD 4448835 5.3
Origin ATL 4335383 5.1
Origin DFW 3863123 4.6
Origin LAX 2857305 34
Origin PHX 2484176 3.0
Origin DEN 2212864 2.6
Origin IAH 2179533 2.6
Origin DTW 2037127 2.4
Origin LAS 1986152 2.4
Origin MSP 1916848 2.3
Origin EWR 1791026 2.1
Origin SFO 1777866 2.1
Origin STL 1724370 2.0
Origin CLT 1665273 2.0
Origin BOS 1531311 1.8
Origin PHL 1490657 1.8
Origin SLC 1486335 1.8
Origin LGA 1459035 1.7
Origin SEA 1416031 1.7
Origin CVG 1407283 1.7
Origin MCO 1381332 1.6
Origin BWI 1234570 1.5
Origin PIT 1159364 14
Origin DCA 1157242 1.4
Origin SAN 1088436 1.3
Origin IAD 979922 1.2
Origin JFK 971538 1.2
Origin CLE 952584 1.1
Origin MDW 927936 1.1
Origin MIA 906114 1.1
Origin TPA 896608 1.1
Origin OAK 885349 1.1
Origin MCI 808648 1.0
Origin SJC 791986 0.9
Origin HOU 775095 0.9
Origin PDX 761713 0.9
Origin MEM 757583 0.9
Origin BNA 748108 0.9
Origin FLL 735799 0.9
Origin DAL 652207 0.8
Origin MSY 636294 0.8
Origin RDU 608314 0.7
Origin SMF 605927 0.7
Origin SNA 592273 0.7
Origin AUS 577642 0.7
Origin SAT 546237 0.6
Origin IND 520262 0.6
Origin ABQ 519070 0.6
Origin CMH 513464 0.6
Origin ONT 501304 0.6
Origin Other 15923803 18.9

Table 3: Summary statistics for categorical variables in the airline data set: flight origin.
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Variable name Level name Counts  Percent
Dest ORD 4436438 5.3
Dest ATL 4328774 5.1
Dest DFW 3851797 4.6
Dest LAX 2857883 3.4
Dest PHX 2479383 2.9
Dest DEN 2212456 2.6
Dest IAH 2173218 2.6
Dest DTW 2035856 2.4
Dest LAS 1989516 2.4
Dest MSP 1913408 2.3
Dest EWR 1787315 2.1
Dest SFO 1775794 2.1
Dest STL 1723698 2.0
Dest CLT 1663261 2.0
Dest BOS 1533501 1.8
Dest PHL 1491679 1.8
Dest SLC 1487740 1.8
Dest LGA 1457226 1.7
Dest SEA 1415457 1.7
Dest CVG 1403933 1.7
Dest MCO 1383621 1.6
Dest BWI 1235708 1.5
Dest DCA 1158146 14
Dest PIT 1156441 1.4
Dest SAN 1089037 1.3
Dest IAD 978939 1.2
Dest JFK 971166 1.2
Dest CLE 952784 1.1
Dest MDW 927501 1.1
Dest MIA 907612 1.1
Dest TPA 898406 1.1
Dest OAK 885841 1.1
Dest MCI 809835 1.0
Dest SJC 792899 0.9
Dest HOU 774311 0.9
Dest PDX 762550 0.9
Dest MEM 757828 0.9
Dest BNA 749699 0.9
Dest FLL 737673 0.9
Dest DAL 650729 0.8
Dest MSY 637334 0.8
Dest RDU 609729 0.7
Dest SMF 606564 0.7
Dest SNA 592762 0.7
Dest AUS 578469 0.7
Dest SAT 546991 0.6
Dest IND 521711 0.6
Dest ABQ 520139 0.6
Dest CMH 515299 0.6
Dest ONT 502140 0.6
Dest Other 15957060 19.0

Table 4: Summary statistics for categorical variables in the airline data set: flight destination.
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Cluster number Count Total Euclidean Total categorical
distance to centroid log-likelihood

1 6748386 1.38E+07 —8.84E+07

2 12877112 1.55E+07 —1.74E4-08

3 13275607 1.37TE+07 —1.81E408

4 10721486 1.56E+07 —1.44E408

5 13810601 1.58E+07 —1.86E4-08

6 12522120 1.28E+07 —1.68E4-08

7 11019742 1.54E+07 —1.54E408

8 3212083 9.12E4-06 —4.46E+07

Table 5: Airline data: Cluster-specific information for the best KAMILA run, including
number of observations in each cluster, the summed Euclidean distance of each point to its
corresponding centroid (continuous variables only), and the log-likelihood of the multinomial
model with respect to the categorical variables.
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Figure 6: Results of clustering the airline data using KAMILA. A subset of the data is plotted
using the first two principal components of the sub-sample. Cluster number is depicted by
color, with the number within the plotted points depicting the iteration number of the best
k-means run. Loadings of the variables on the PCs are shown in Table 6.

(https://github.com/ahfoss/airline-hadoop-analysis); the analysis can be reproduced
by running the commands found in the README file.

Summary statistics for the variables used are given in Tables 1, 2, 3, and 4. If a row had
a missing entry for any of the variables used it was removed from the analysis. Continuous
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Variable index Variable name PC1 PC2
1 Year 0.043 0.000
2  DepTime -0.001 0.270
3 ActualElapsedTime 0.575 —0.045
4  AirTime 0.572 —0.070
5 ArrDelay 0.082 0.674
6 DepDelay 0.077 0.679
7 Distance 0.572 —0.074

Table 6: Airline data: Loadings of the continuous variables on principal components 1 and 2
in Figure 6. The first two principal components account for 70.5 % of the variance.

Cluster number Min Mean Max
1 13.000 265.821 1958.000
2 1.000 66.317 612.000
3 0.000 70.217 1615.000
4  4.000 147.483  694.000
5 0.000 60.255 3508.000
6
7
8

1.000  62.366  516.000
1.000 144.916 2582.000
0.000  98.292 1651.000

Table 7: Cluster-specific minimum, mean, and maximum for the continuous variable describ-
ing length of time the flight was off the ground (AirTime).

Cluster number Min Mean Max
1 —1188.000 5.116 1504.000
2 —1302.000 7.174  2453.000
3 —950.000 —2.143 1942.000
4 —1426.000 3.798 1655.000
5 —978.000 3.820 1438.000
6 —212.000 0.781 2598.000
7 —1298.000 2.079 1925.000
8 —1035.000 124.524 1724.000

Table 8: Cluster-specific minimum, mean, and maximum for the continuous arrival delay in
minutes (ArrDelay). A negative delay corresponds to an event that occurred earlier than the
originally scheduled time.

variables were z-normalized, and categorical variables were re-coded using unique integers for
each categorical level. There were a total of 335 and 331 terminals in the origin and destination
variables, respectively; we restricted the analysis to the 50 most prevalent terminals in both
cases and grouped other terminals in an “other” category. We note that if we had been forced
to rely on a method requiring dummy coding, we would require 145 variables to represent
the categorical variables instead of five, a 2800% increase in the number of variables required.
Based on the approximate calculations described in the opening of Section 6, this corresponds
roughly to an 8x increase in computation time for k-means over KAMILA.
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Figure 7: The most prominent airlines in cluster 8 of the airline data analysis. Pearson residu-
als were calculated for the cross-tabulations of cluster membership and airport, separately for
origin and destination airports. Residuals for only cluster 8 were then plotted. Higher num-
bers represent increased counts compared to the expected counts if the cluster were unrelated
to the variable in question.

6.3. Results of the airline analysis

We ran the KAMILA analysis using 16 initializations with a maximum of 10 iterations per
initialization (as shown in Algorithm 1 each iteration includes two map-reduce steps). Four
runs of four initializations were run in parallel, with the data split into 80 chunks for the
map-reduce steps. Our computing setup used 320 cores and ran for a wall time of 72 hours,
a little more than two and a half years of CPU time.

A plot of the clustering results for the airline data are shown in Figure 6. This plot shows a
subset of the data plotted on the first two principal components of the sub-sampled continuous
variables. Loadings of the continuous variables on these principal components are given in
Table 6, and account for 70.5% of the variance in the subset.

Cluster-specific minimum, maximum, and mean values are shown for the air time variable in
Table 7, and for arrival delay in Table 8. Figure 6 shows that the most prominent clusters
with regard to continuous variables are cluster 1, which appears to capture longer flights, and
cluster 8, which appears to capture flights with larger arrival and departure delays. This is
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Terminal Mean departure time (minutes) Terminal Mean departure time (minutes)

ORD 13.87 SMF 13.08
EWR 13.66 CMH 13.08
JFK 13.63 TPA 13.08
PHL 13.63 RDU 13.08
ATL 13.60 MSP 13.07
MDW 13.56 CVG 13.06
MIA 13.50 BNA 13.05
SFO 13.47 PIT 13.05
HOU 13.44 IAH 12.98
IAD 13.44 MEM 12.97
LAS 13.42 MCI 12.96
DTW 13.39 ABQ 12.96
PHX 13.35 SAN 12.96
DFW 13.33 PDX 12.94
FLL 13.31 MSY 12.93
DEN 13.30 ONT 12.90
BWI 13.27 Other 12.90
SEA 13.27 SLC 12.89
BOS 13.27 SJC 12.88
STL 13.26 IND 12.87
DAL 13.26 CLE 12.83
LGA 13.22 SAT 12.82
CLT 13.18 AUS 12.79
LAX 13.14 SNA 12.75
MCO 13.12 DCA 12.70
OAK 13.08

Table 9: Mean departure delay by airport in the airline data set.

Mon Tue Wed Thu Fri Sat Sun
Cluster 1 972438 971981 971373 966847 962540 969449 933758
Cluster 2 1902033 1893070 1881387 1888707 1887205 1933275 1491435
Cluster 3 1960129 1959462 1988005 1984145 1968617 1686060 1729189
Cluster 4 1551125 1528441 1536946 1547241 1550589 1506646 1500498
Cluster 5 2047288 2017011 1992459 2035587 2040594 2034428 1643234
Cluster 6 1858126 1812502 1830218 1852937 1866861 1602267 1699209
Cluster 7 1600030 1592269 1593626 1591320 1584428 1584879 1473190
Cluster 8 479151 585774 531455 445678 402020 457924 310081

Table 10: Counts of flights by cluster and day of week.

confirmed by inspecting variable means in Tables 7 and 8.

In order to investigate which departure terminals were most prominently associated with
cluster 8, we calculated Pearson residuals over the cross-tabulation of cluster membership
(in all clusters 1-8) and departure terminal. Pearson residuals were calculated using the
output value residuals from chisq.test in R, calculated as (O — E)/vE, where O denotes
observed counts and E denotes expected counts under an independence model. Note that
the clusters are data-dependent and thus a chi-squared goodness-of-fit test is invalid; we use
Pearson residuals as descriptive statistics only to adjust for differences in overall cluster size
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Mon Tue Wed Thu Fri Sat Sun
Cluster 1 —19.2 —-189 —-16.7 —-20.2 —20.6 26.3 74.9
Cluster 2 7.2 1.8 -238 3.9 8.4 98.5 —122.7
Cluster 3 6.8 7.4 31.8 30.6 25.1 —125.3 22.4
Cluster 4 —-19.3 -36.4 —-26.1 -16.6 —8.9 5.8 108.9
Cluster 5 126 —7.5 —-20.7 11.1 20.4 74.0 —94.2
Cluster 6 134 -19.2 -2.3 15.9 31.7 —112.7 75.6
Cluster 7 —15.1 —-20.2 —-15.5 -16.0 -—-16.4 35.1 52.2
Cluster 8 10.4 166.3 89.2 —35.2 —96.3 129 —157.9

Table 11: Pearson residuals for counts of flights by cluster and day of week.

Mon Tue Wed Thu Fri Sat Sun

WN 1933234 1944177 1928090 1937827 1936815 1788337 1561067
DL 1478438 1472266 1470108 1469804 1462119 1455216 1395590
AA 1370741 1369607 1362268 1365368 1365670 1332848 1244877
UA 1246535 1240902 1240207 1244582 1244501 1203927 1148840
US 1191480 1185983 1188343 1187252 1184223 1135607 992651
NW 992370 989472 989432 991630 991502 931525 866578
CO 734457 734909 734896 721185 712921 671245 578841
MQ 557737 556454 555244 558987 557170 532900 471361
OO 442043 440401 440530 439745 435809 425281 396454
XE 355997 355773 357069 340979 331282 306530 242828
HP 316420 316720 315098 314681 314354 309713 289111
AS 307114 307718 305790 304230 305227 292767 281644
TW 270786 269008 268888 270515 269526 253542 236938
EV 236848 238506 236643 237286 232317 232806 212546
OH 209664 209450 210652 209643 201544 191859 176603
FL 180229 180992 179704 177368 176639 179833 174548
YV 119200 119844 119277 118780 117962 118499 108728
B6 115345 115279 114559 113598 113923 113445 112968
DH 96915 96769 96849 96912 96536 93631 92033
9E 74563 73370 73458 74682 74350 69241 64844
F9 49356 48759 48528 48401 48838 47253 43707
HA 38358 40767 38054 38171 38117 38729 40638
TZ 30844 30893 30391 29613 30423 28658 25185
AQ 21661 22511 21411 21233 21101 21556 22034

Table 12: Counts of flights by carrier IATA code and day of week. Carriers are denoted by
IATA code; see the Supplemental Data Sources tab on the website given in the American
Statistical Association (2016) citation for full carrier names by IATA code.

and terminal size. Pearson residuals were calculated in the same way for arrival terminals,
and departure and arrival values for cluster 8 were plotted against each other in Figure 7. It
appears that Chicago O’Hare (ORD) and Newark Liberty International Airport (EWR) are
the most over-represented airports in cluster 8. An inspection of mean departure delays by
airport (Table 9) confirms that ORD and EWR have the highest mean departure delays of
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Mon Tue Wed Thu Fri Sat Sun

WN 13.5 22.5 14.8 23.4 28.2 —25.2 —83.2
DL -17.0 -21.1 -194 -184 -19.8 23.5 77.8
AA -103 -104 -—-133 —-94 —44 14.4 36.2
UA -113 -154 -129 -78 -34 4.9 49.1
US 5.8 1.6 6.9 7.1 8.7 7.1 =395
NW 0.2 —-20 0.8 4.1 8.0 —13.3 2.0
CO 19.1 20.3 22.7 7.4 1.0 —-15.1 —59.6
MQ 1.2 0.0 0.5 6.3 6.9 3.9 -20.0
o0 -26 —-46 -—-25 -30 -6.2 4.4 15.6
XE 33.5 33.6 37.5 104 —4.1 —-244 —-93.2
HP -59 —-49 -62 —-6.3 —-4.7 9.7 19.8
AS -38 -23 —-42 —-64 24 =29 23.4
T™W 1.0 -2.0 -0.7 2.9 3.1 =73 2.9
EV —-45 -07 -32 -—-13 -96 11.0 9.2
OH 5.6 5.5 9.5 77 -83 -—-11.9 -9.1
FL -78 57 =75 =125 -—-125 12.2 36.4
YV 47 -26 -32 —-43 =52 10.3 10.6
B6 -61 -60 -71 -96 -7.3 5.0 33.3
DH —-47 —-49 -38 -33 -32 -0.1 21.5
9E 1.6 —-26 —1.5 3.3 3.2 =50 0.9
F9 07 -18 -—-22 -26 0.3 1.9 4.0
HA -86 3.5 —-95 87 8.1 2.9 30.5
TZ 3.3 3.7 1.3 -3.0 24 —-09 -—74
AQ —4.0 1.8 -52 —-6.2 -6.5 2.5 18.9

Table 13: Pearson residuals for counts of flights by carrier IATA code and day of week.
Carriers are denoted by TATA code; see the Supplemental Data Sources tab on the website
given in the American Statistical Association (2016) citation for full carrier names by IATA
code.

all airports in the data set.

Counts of flights by day of the week for each cluster are shown in Table 10, with associated
Pearson residuals in Table 11. An interesting observation is that counts for Saturday and
Sunday are consistently more often over- or under-represented than this is the case for any
other day of the week, despite the fact that Saturday and Sunday are the least frequent days
for flying overall (see Table 2). Inspecting counts of flights for each carrier by day of the week
(Table 12) and associated Pearson residuals (Table 13), it appears that flights on Sunday
depart the most dramatically from an independence model. This is especially apparent in
Figure 8, a boxplot depicting Pearson residuals of carrier by day counts (i.e., Table 13)
aggregated across carriers. This suggests that airlines are markedly different in terms of how
many flights they offer on weekends, and on Sunday in particular. While more work would
be needed to identify the precise cause of this, one possible reason could be that some airlines
do not choose to offer many Sunday flights due to lower demand on weekends. The difference
could also be related to contrasting company policies regarding flight attendants’ work on
Sunday.
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Figure 8: Pearson residuals for the cross-tabulation of flights by carrier and day of week.
Pearson residuals are aggregated across carrier and plotted.

7. Conclusion

Although mixed-type data is quite common across many fields, effective strategies for clus-
tering such data sets are surprisingly difficult to find. As discussed above, this is true even in
the context of R, but it is particularly true when the data at hand is too large to be clustered
in a standard R environment. Existing methods use arbitrary strategies for controlling the
continuous and categorical contribution to the overall clustering, often resulting in undesir-
able solutions dominated by one type or the other. In this paper we introduced the R package
kamila that offers multiple solutions to this problem. Additionally, we provide examples using
Hadoop illustrating the implementation of KAMILA using a map-reduce model on a large
data set stored on a distributed file system. Clustering mixed-type data continues to be a
challenging problem; as these methods are refined, and as other effective strategies are dis-
covered, we intend for the kamila package to serve as a centralized platform for implementing
the most effective techniques in this area.
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A. KAMILA Hadoop submission file

The main SLURM batch submission script kamila.slurm should be modified to fit your
computing setup and data. The first set of choices involve options for the SLURM workload
manager; consult the sbatch documentation (SLURM Team 2016) for further information.

The remainder of the user-specified options are BASH variables. The first three variables are
the file names of the three data files described in Section 6.1:

o DATANAME: the file name of the primary CSV data file.
e SUBSAMP_DATANAME: the file name of the sub-sampled data file.

e CATINFO_DATANAME: the file name of the TSV file.

The fourth variable, DATADIR, is the directory of the data files, i.e, the full path of the data file
is ./$DATADIR/$DATANAME. The remainder of the environment variables control the behavior
of the KAMILA algorithm:

e INITIAL_SEED: integer. A random seed for the random number generator for repro-
ducibility.

e NUM_CLUST: integer. KAMILA partitions the data into this many clusters.

e NUM_MAP: integer. The default number of map tasks, passed to Hadoop streaming option
mapred.map.tasks.

e NUM_REDUCE: integer. The default number of reduce tasks, passed to Hadoop streaming
option mapred.reduce.tasks.

e NUM_CHUNK: integer. Each cluster is split into this many chunks, and each chunk is
assigned its own key (i.e., about NUM_CLUST x NUM_CHUNK keys total). This is useful if
the number of available reducers greatly exceeds NUM_CLUST.

e NUM_INIT: integer. The number of distinct initializations should be used.

e MAX_NITER: integer. The maximum number of initializations computed for each distinct
initialization.

e EPSILON_CON and EPSILON_CAT: positive reals. Parameters controlling the stopping rule.
The closer to zero the more stringent the rule and thus the more likely each initialization
will simply run for MAX_NITER iterations. The run is stopped if the summed absolute
deviation of the centroid parameters in both the continuous and categorical variables are
less than EPSILON_CON and EPSILON_CAT, respectively, from one iteration to the next.
A reasonable value is the total deviation you would accept in the estimated centroid
parameters relative to the true parameters, which depends on the data and the user’s
analysis needs. See the software paper cited above for more information.

e RBIN_HOME: character. File path to R, e.g., /home/blah/R/R-3.x.x/bin.
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A.1. KAMILA Hadoop output file structure

Output files are stored in the directory output-kamila-####, where the #### denotes the
job submission number. The file structure is organized as follows:

output-kamila-####/
best_run/
run_1/
stats/
iter_1/
iter_2/
iter_3/

run_2/
stats/
iter_1/
iter_2/
iter_3/

run_3/

The file output-kamila-####/best_run/allClustQual.txt contains a list of the objective
criterion values used to select the best run. The directory output-kamila-####/run_i/ con-

tains information on the ¢-th run; within each run’s directory iter_j/ stores information on

the j-th run. The primary results files, output-kamila-####/run_i/stats/finalRunStats.RData,
contain two R lists: runSummary and clustSummary.

The output-kamila-####/run_i/iter_j/ directories contain the centroids of the current
run/iteration stored as an RData file, along with other output from the reducers for that
iteration.

The runSummary object contains overall summary statistics for the clustering:

e clusterQualityMetric: the quantity used to select the best solution over all the runs.

e totalEucDistToCentroid: the total Euclidean distance from each continuous point to
its assigned centroid.

e totalCatLogLik: the log-likelihood of the categorical centroids with respect to the
categorical variables.

The clustSummary list contains one element for each cluster. Each cluster’s element contains
a list of length five with the elements:

e count: the number of observations assigned to this cluster.

o totalDistToCentroid: the total Euclidean distance from each member of the current
cluster to the centroid (along the continuous variables only).

e totalCatLogLik: the log-likelihood of the categorical centroids of the current cluster
with regard to the categorical variables.
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e con: means, minima, and maxima along each continuous variable for members of the
current cluster.

e catfreq: frequencies of observations of each level of each categorical variable within
the current cluster. Frequencies are calculated by counting the number of observations
in the current cluster at a particular level of a particular variable and dividing by the
number of observations in the current cluster.

A.2. Reading Hadoop results files into R

The document Rnw/kamilaSummary.Rnw (written as a knitr document; Xie 2015) included in
the kamilaStreamingHadoop repository provides code for generating plots and tables of sum-
mary statistics from the output objects described in Section A.1. The context and execution
of this script is described in Section 6.1. In the interest of brevity we do not discuss every
line of Rnw/kamilaSummary.Rnw comprehensively, but highlight certain sections of the code
that illustrate strategies for querying SQLite data bases and iterating through the Hadoop
results directory.

We begin by obtaining summary statistics from the SQLite data base with path and filename
stored in the variable dataBaseName.

R> suppressMessages (library("RSQLite"))

R> sqlite <- dbDriver("SQLite")

R> currentDb <- dbConnect(sqlite, dataBaseName)

R> nLines <- dbGetQuery(currentDb, "SELECT count (*) FROM finalDataSet")
R> nLines <- as.integer(nLines)

R> conVarInfo <- dbGetQuery(currentDb, "SELECT * FROM conStats")

R> numConVar <- nrow(conVarInfo)

R> catVarInfo <- dbGetQuery(currentDb, "SELECT * FROM catSummary")

R> levCounts <- as.integer(unlist(strsplit(as.vector(catVarInfo$LevCounts),
+ split = ",")))

R> levPcts <- levCounts / nLines * 100

R> catInfoTable <- data.frame(VariableName = with(catVarInfo, rep(VarName,

+ times = NumLev)), LevelName = unlist(strsplit(as.vector(
+ catVarInfo$LevNames), split = ",")), Counts = levCounts,
+ Percent = levPcts)

Table 1 was then generated from the conVarInfo data frame using a call to the xtable
function in the xtable package (Dahl 2016). Tables 2, 3, and 4 were generated similarly using
the catInfoTable data frame (split up due to length).

We construct Figure 6 by projecting a subset of the data onto its first two principal com-
ponents, with data points colored by final cluster membership. We assume that this sub-
set has already been created and stored as a separate CSV file with path and file name
subsampleDataFile. Upon this plot we superimpose the cluster centroids at each iteration
of the clustering procedure, labeled by iteration number. This is accomplished with the
following code.

R> suppressMessages (library ("MASS"))
R> subsamp <- read.csv(subsampleDataFile)
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R>
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datMeans <- colMeans (subsamp)

datSds <- apply(subsamp, 2, sd)

datSds[datSds == 0] <- 1

subsamp <- scale(subsamp, center = datMeans, scale = datSds)

subsampCon <- subsamp[, 1:numConVar, drop = FALSE]

svdDat <- svd(subsampCon)

transMat <- ginv(diag(svdDat$d) /*7}, t(svdDat$v))

transMat <- rbind(transMat, matrix (0, nrow = ncol(subsamp) - numConVar,
ncol = ncol(transMat)))

JOBID <- "1234567"

outputFileName <- paste("output-kamila-", JOBID, sep = "")

centroidFileNames <- list.files(file.path("..", outputFileName,
paste("run_", best_run, sep = "")), pattern = "currentMeans_i",

recursive = TRUE, full.names = TRUE)
centroidFileNames <- as.vector(centroidFileNames)
centroidFileNames <- centroidFileNames [order (nchar (centroidFileNames),
centroidFileNames)]
allCentroids <- lapply(centroidFileNames, FUN = function(ff) {
if (exists("myMeans")) rm(myMeans)
load(ff)
dd <- t(sapply(myMeans, function(elm) elm$centroid))
dd <- scale(dd, center = datMeans, scale = datSds)
rownames (dd) <- paste("Clust", 1:nrow(dd))
colnames(dd) <- paste("Dim", 1:ncol(dd))
return (dd)
P
thisNumIter <- length(allCentroids)
thisNumClust <- nrow(allCentroids[[1]])
myColors <- rainbow(thisNumClust)
myColorsAlpha <- rainbow(thisNumClust, alpha = 0.5)
datColors <- t(apply(subsamp, 1, function(rr) {
which.min(as.matrix(dist (rbind(rr,
allCentroids[[thisNumIter]])))[-1, 1])
})
plot(svdDat$u, xlab = "Principal Component 1",
ylab = "Principal Component 2", col = myColorsAlphaldatColors])
for (i in 1:thisNumIter) {
transCentroids <- allCentroids[[i]] 7*J, transMat
points(transCentroids, pch = 19, col = myColors, cex = 2.5)
points(transCentroids, pch = 1, col = "black", cex = 2.5, lwd = 2)
text (transCentroids, labels = i-1, cex = 0.8)
}
legend(x = "topright", title = "Cluster #", pch = 19, col = myColors,
legend = 1:thisNumClust)
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