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Abstract

Cluster-weighted models (CWMs) are mixtures of regression models with random co-
variates. However, besides having recently become rather popular in statistics and data
mining, there is still a lack of support for CWMs within the most popular statistical
suites. In this paper, we introduce flexCWM, an R package specifically conceived for fit-
ting CWMs. The package supports modeling the conditioned response variable by means
of the most common distributions of the exponential family and by the t distribution.
Covariates are allowed to be of mixed-type and parsimonious modeling of multivariate
normal covariates, based on the eigenvalue decomposition of the component covariance
matrices, is supported. Furthermore, either the response or the covariates distributions
can be omitted, yielding to mixtures of distributions and mixtures of regression models
with fixed covariates, respectively. The expectation-maximization (EM) algorithm is used
to obtain maximum-likelihood estimates of the parameters and likelihood-based informa-
tion criteria are adopted to select the number of groups and/or a parsimonious model.
For the component regression coefficients, standard errors and significance tests are also
provided. Parallel computation can be used on multicore PCs and computer clusters,
when several models have to be fitted. To exemplify the use of the package, applications
to artificial and real datasets, included in the package, are presented.

Keywords: cluster-weighted models, EM algorithm, mixture models, model-based clustering,
random covariates.

1. Introduction
When data at hand are composed by a response variable Y and by a set X of d covariates,
say (X, Y ), and there is a latent source of heterogeneity splitting the data into groups (or
clusters) possibly with different regression relationships, mixtures of regression models with
fixed covariates (see, e.g., DeSarbo and Cron 1988 and Frühwirth-Schnatter 2006) constitute
a reference framework of analysis. However, by assuming fixed covariates, modeling of X
is not considered; furthermore, the assignment of the data points (x, y) to the clusters is
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required to be independent from the covariates distribution, as noted by Hennig (2000). This
assignment independence assumption is generally not true in observational studies, and makes
mixtures of regression models with fixed covariates inadequate in many real data applications.
Mixtures of regression models with random covariates overcome this problem by allowing for
assignment dependence: the component distributions for X can also be distinct and they
can affect the assignment of the data points to the clusters. Therefore, they are often to be
preferred in real data analyses (Hennig 2000). For a comparison between the two approaches,
see also Ingrassia, Minotti, and Vittadini (2012) and Ingrassia and Punzo (2016).
A member of the class of mixtures of regression models with random covariates is the cluster-
weighted model (CWM; Gershenfeld 1997). The CWM assumes a (parametric) functional re-
lation for the local expectation of Y |X = x, and factorizes the local joint distribution p (x, y)
into the product between the conditional distribution of Y |X = x and the marginal distri-
bution of X. Some recent developments in CWMs can be found in Subedi, Punzo, Ingrassia,
and McNicholas (2013, 2015), Punzo (2014), Ingrassia, Minotti, and Punzo (2014), Ingrassia,
Punzo, Vittadini, and Minotti (2015), Berta, Ingrassia, Punzo, and Vittadini (2016), Punzo
and McNicholas (2017), and Dang, Punzo, McNicholas, Ingrassia, and Browne (2017).
In this paper, we introduce the R (R Core Team 2018) package flexCWM, available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
flexCWM, specifically conceived for fitting CWMs. The package supports modeling of the
conditioned response variable by means of the most common distributions of the exponential
family and by the t distribution. Covariates may be of mixed-type; supported distribu-
tions are multivariate Gaussian, multinomial, binomial, and Poisson. Following Banfield and
Raftery (1993) and Celeux and Govaert (1995), parsimonious modeling for multivariate nor-
mal covariates, based on the eigenvalue decomposition of the component covariance matrix, is
supported (see Punzo and Ingrassia 2015). The expectation-maximization (EM) algorithm is
used to obtain maximum-likelihood estimates of the parameters and several likelihood-based
information criteria are adopted to select the number of groups and/or a parsimonious model.
For the local regression coefficients, standard errors and significance tests are also provided.
Several CRAN packages, supporting modeling by mixtures of regressions, are available. A list
of them may be found in the CRAN task view “Cluster Analysis & Finite Mixture Models”
of Leisch and Grün (2018), in the section entitled “Cluster-wise Regression”. Package flexmix
is one of the most widely used packages for mixtures of regression models (Leisch 2004) and
mixtures of regression models with concomitant variables (Grün and Leisch 2008); it imple-
ments an user-extensible framework for estimation, via the EM algorithm. Other packages for
mixtures of regression models, include: package fpc for mixtures of linear regression models
and fixed point clusters for linear regression (Hennig 2018), package mixreg for mixtures of
one-variable regression models (Turner 2018), and package mixtools, which provides a set of
functions for analyzing a variety of finite mixture models, including mixtures of regression
models with fixed covariates (see Benaglia, Chauveau, Hunter, and Young 2009, Section 5).
Within this context, package flexCWM aims at giving support for cluster-weighted modeling,
providing also an alternative for estimating other classical mixture models.
The paper is organized as follows. Section 2 retraces the CWM implemented in the flexCWM
package, Section 3 outlines the EM algorithm for maximum likelihood parameter estimation,
and Section 4 illustrates further computational/operational aspects. The relevance of the
package is shown, via real and artificial data sets, in Section 5, and conclusions are finally
given in Section 6.

https://CRAN.R-project.org/package=flexCWM
https://CRAN.R-project.org/package=flexCWM
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2. Model specification
The distribution of (X, Y ), according to a CWM, can be written as

p (x, y;ϑ) =
k∑

j=1
πjp

(
y|x;βj ,γj

)
p (x;αj) , (1)

where, for the jth component, πj is the mixing proportion, with πj > 0 and ∑k
j=1 πj = 1,

p
(
y|x;βj ,γj

)
is the parametric (with respect to βj and γj) distribution of Y |X = x, and

p (x;αj) is the parametric (with respect to αj) distribution of X. In (1), ϑ contains all the
model parameters. Sufficient conditions for the identifiability of model (1), under Gaussian
assumptions for Y |X = x in each mixture components, are given in Hennig (2000); see
Ingrassia et al. (2015) in the case of p

(
y|x;βj ,γj

)
belonging to the exponential family.

The flexCWM package allows for the fitting of CWMs as parameterized in (1) using the
expectation-maximization (EM) algorithm. The local expectations of Y |X = x are modeled
using generalized linear models, where βj are the regression coefficients and γj are additional
parameters related to the distribution family chosen for p

(
y|x;βj ,γj

)
. The linear predic-

tor and the link function are specified using standard R formula objects, in the same way
used by the well-known stats::glm() function, and the following distribution families are
available: binomial, Poisson, gamma, inverse Gaussian, normal, and, for robustness’ sake,
the t distribution. Covariates can be of mixed-type; supported distributions are multivariate
normal, binomial, Poisson, and multinomial. Since local independence is assumed, covariates’
distributions are joined together via taking the product.
The flexCWM package may be used for estimating latent class cluster models with mixed-
type variables (see Vermunt and Magidson 2002, pp. 94–95) and mixtures of regression models
with fixed covariates, since both models are special cases of (1), obtained respectively by
fixing p

(
y|x;βj ,γj

)
≡ 1 and p (x;αj) ≡ 1. Furthermore, the x variables in p (x;αj) may

be partially or completely different from the covariates x in p
(
y|x;βj ,γj

)
, so leading to

a particular type of mixtures of regression models with concomitant variables (Dayton and
Macready 1988); for this reason, the x variables in p (x;αj) are referred to as concomitant
variables in the package.
Normal concomitant variables are modeled using multivariate normal distributions with co-
variance matrices Σ1, . . . ,Σk; so, for q normal variables, kq (q + 1) /2 free covariance param-
eters have to be estimated. For sake of parsimony, based on Punzo and Ingrassia (2015) and
following Celeux and Govaert (1995), the flexCWM package considers the eigendecomposition

Σj = λjΓj∆jΓ>
j , (2)

where λj = |Σj |1/q, ∆j is the scaled (|∆j | = 1) diagonal matrix of the eigenvalues of Σj sorted
in decreasing order, and Γj is a q × q orthogonal matrix whose columns are the normalized
eigenvectors of Σj , ordered according to their eigenvalues. Each element in the right-hand
side of (2) has a different geometric interpretation of the cluster with respect to the normal
concomitant variables: λj determines the volume, ∆j the shape, and Γj the orientation.
Still following Celeux and Govaert (1995), the flexCWM package allows to impose constraints
on the three components of (2) resulting in a family of fourteen parsimonious CWMs, when
q > 1, and in a family of two CWMs when q = 1 (cf. Table 1).
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3. Maximum likelihood estimation: The EM algorithm
The flexCWM package adopts the EM algorithm of Dempster, Laird, and Rubin (1977) to
find maximum likelihood (ML) estimates for the parameters of model (1). This algorithm is
described below; further details, and simulation results about the asymptotic properties of
the estimators of the local regression coefficients, can be found in Ingrassia et al. (2015) and
Punzo and Ingrassia (2016).
Given a random sample (x1, y1) , . . . , (xn, yn) of (X, Y ) from model (1), and once k has been
specified, the algorithm basically takes into account the complete-data log-likelihood

lc (ϑ) =
n∑

i=1

k∑
j=1

zij ln (πj) +
n∑

i=1

k∑
j=1

zij ln
[
p
(
yi|xi;βj ,γj

)]
+

n∑
i=1

k∑
j=1

zij ln [p (xi;αj)] , (3)

where zij = 1 if (xi, yi) comes from component j and zij = 0 otherwise. The EM algorithm it-
erates between two steps, one E-step and one M-step, until convergence; their schematization,
with respect to the CWM in its general version (1), is given below.

E-step: Given the current parameter estimates ϑ(r) of the rth iteration, simply replace each
zij by the estimated posterior probability

z
(r)
ij =

π
(r)
j p

(
yi|xi;β(r)

j ,γ
(r)
j

)
p
(
xi;α(r)

j

)
p
(
xi, yi;ϑ(r)

) . (4)

M-step: The obtained values of z(r)
ij , which are function of ϑ(r), are substituted for zij in (3)

leading to the expected complete-data log-likelihood

Q
(
ϑ|ϑ(r)

)
= Q1

(
π|ϑ(r)

)
+Q2

(
β,γ|ϑ(r)

)
+Q3

(
α|ϑ(r)

)
, (5)

where π = (π1, . . . , πk), α = (α1, . . . ,αk), β = (β1, . . . ,βk), and γ = (γ1, . . . ,γk);
the three terms on the right-hand side of (5) are ordered as the three terms on the
right-hand side of (3). As the three terms on the right-hand side of (5) have zero
cross-derivatives, they can be maximized separately.
The maximization of Q1, with respect to π and subject to the constraints on these
parameters, yields

π
(r+1)
j =

n∑
i=1

z
(r)
ij

/
n, j = 1, . . . , k. (6)

The maximization of Q2, with respect to β and γ, is equivalent to independently max-
imizing each of the k expressions

Q2j

(
βj ,γj |ϑ(r)

)
=

n∑
i=1

z
(r)
ij ln

[
p
(
yi|xi;βj ,γj

)]
(7)

with respect to βj and γj , j = 1, . . . , k. When p
(
y|x;βj ,γj

)
is assumed to belong

to the exponential family, the maximization of (7) is equivalent to the maximization
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problem of the generalized linear model (for the complete data), except that each ob-
servation (xi, yi) contributes to the log-likelihood with a known weight z(r)

ij ; see Wedel
and DeSarbo (1995) and Wedel and Kamakura (2000, pp. 120–124) for details.
If the parsimonious variants of model (1) are not applied, analogously to Q2, the max-
imization of Q3, with respect to α, is equivalent to independently maximizing each of
the k expressions

Q3j

(
αj |ϑ(r)

)
=

n∑
i=1

z
(r)
ij ln [p (xi;αj)] (8)

with respect to αj , j = 1, . . . , k. These updates can be obtained using weighted ML
estimation. When the parsimonious variants of the CWM are used, the M-step changes
only for the way the terms of the decomposition of Σj are obtained. These updates
are analogous to those given by Celeux and Govaert (1995) for mixtures of multivariate
Gaussian distributions with eigendecomposed covariance matrices and, within the R
platform, have been implemented in the m.step() function of the ContaminatedMixt
package (Punzo, Mazza, and McNicholas 2018), on which package flexCWM depends.
Package ContaminatedMixt allows the fit of parsimonious mixtures of multivariate con-
taminated normal distributions (Punzo and McNicholas 2016).

4. Some computational and operational aspects

4.1. Initialization

Many initialization strategies have been proposed for the EM algorithm applied to mixture
models (see, e.g., Biernacki, Celeux, and Govaert 2003, Karlis and Xekalaki 2003, and Bagnato
and Punzo 2013). The flexCWM package implements the following initializations, all based
on providing the initial quantities z(0)

i =
(
z

(0)
i1 , . . . , z

(0)
ik

)
, i = 1, . . . , n, to the first E-step of

the algorithm.

"random.soft": The k values in z(0)
i are randomly generated by a uniform distribution – via

the runif() function of the stats package – and then normalized in order to sum to 1.

"random.hard": Each z(0)
i is substituted by a single observation randomly generated – via

the rmultinom() function of the stats package – from a multinomial distribution with
probabilities (1/k, . . . , 1/k).

"manual": The (soft or hard) values of z(0)
i are provided by the user.

Furthermore, random initializations can be repeated from different random positions; in this
case, the solution maximizing the observed-data log-likelihood among these runs is selected.
For numeric variables only, two additional initialization strategies have been made available:

"kmeans": Hard values for z(0)
i , i = 1, . . . , n, are provided by a preliminary run of the k-means

algorithm, as implemented by the kmeans() function of the stats package.
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"mclust": Soft values for z(0)
i , i = 1, . . . , n, are computed by a preliminary fit of an uncon-

strained mixture of Gaussian distributions as implemented by the Mclust() function of
the mclust package (Fraley, Raftery, Scrucca, Murphy, and Fop 2017).

4.2. Convergence criterion
The Aitken acceleration (Aitken 1926) is used to estimate the asymptotic maximum of the
log-likelihood at each iteration of the EM algorithm. Based on this estimate, we can decide
whether or not the algorithm has reached convergence, i.e., whether or not the log-likelihood
is sufficiently close to its estimated asymptotic value. The Aitken acceleration at iteration
r + 1 is given by

a(r+1) = l(r+2) − l(r+1)

l(r+1) − l(r) ,

where l(r+2), l(r+1), and l(r) are the observed-data log-likelihood values from iterations r+ 2,
r + 1, and r, respectively. Then, the asymptotic estimate of the log-likelihood at iteration
r + 2 is given by

l(r+2)
∞ = l(r+1) + 1

1− a(r+1)

(
l(r+2) − l(r+1)

)
(cf. Böhning, Dietz, Schaub, Schlattmann, and Lindsay 1994). The EM algorithm can be
considered to have converged when l(r+2)

∞ − l(r+1) < ε (see Lindsay 1995).

4.3. Model selection
Thus far, the number of components k and/or the covariance structure of the normal dis-
tributed concomitant variables (cf. Table 1) have been treated as a priori fixed. However, in
most practical applications, they are unknown, so it is common practice to select them by
evaluating a convenient (likelihood-based) model selection criterion over a reasonable range
of possible options. The flexCWM package supports the information criteria listed in Ta-
ble 2, where l

(
ϑ̂
)

is the observed-data log-likelihood, m is the number of free parame-
ters, and MAP (ẑij) is the maximum a posteriori probability operator – assuming value 1
if maxh=1,...,k {ẑih} occurs at component j and 0 otherwise – and ϑ̂ and ẑij are the estimates
for ϑ and zij obtained with the EM algorithm. Simulation studies aimed at comparing the
behavior of the criteria in Table 2 for some particular variants of the CWM are provided in
Ingrassia et al. (2015) and Punzo and Ingrassia (2016). For an alternative approach, based
on a testing procedure, to select the best parsimonious model between those of the “general”
family in Table 1, see Punzo, Browne, and McNicholas (2016).

5. Package description and illustrative examples
In this section we provide a description of the main capabilities of the flexCWM package,
along with illustrations via real and artificial datasets contained in the package.

5.1. Package description
The flexCWM package is developed in an object-oriented design, using the standard S3
paradigm. Its main function, cwm(), fits the CWM(s) and returns an object of class ‘cwm’; the
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Criterion Definition Reference
AIC 2l

(
ϑ̂
)
− 2m Akaike (1973)

AIC3 2l
(
ϑ̂
)
− 3m Bozdogan (1994)

AICc AIC− 2m (m+ 1)
n−m− 1 Hurvich and Tsai (1989)

AICu AICc− n ln n

n−m− 1 McQuarrie, Shumway, and Tsai (1997)

AWE 2l
(
ϑ̂
)
− 2m

(3
2 + lnn

)
Banfield and Raftery (1993)

BIC 2l
(
ϑ̂
)
−m lnn Schwarz (1978)

CAIC 2l
(
ϑ̂
)
−m (1 + lnn) Bozdogan (1987)

ICL BIC + 2
n∑

i=1

k∑
j=1

MAP(ẑij) ln ẑij Biernacki, Celeux, and Govaert (2000)

Table 2: Definition and key reference for the implemented model selection criteria.

arguments of this function, along with their description, are listed in Table 3. In addition, the
package contains several methods that allow for data extraction and visualization. Extractors
for ‘cwm’ class objects are illustrated in Table 4.
When several models have been fitted, extractor functions consider the best model according
to the information criterion in criterion, within the subset of estimated models having a
number of components among those in k, a conditional distribution for Y among those in
familyY, and a parsimonious model among those in modelXnorm. Note that getIC() and
whichBest() have an argument criteria, in substitution to criterion, which allows to
select more than one criterion.
Finally, the package includes some methods for ‘cwm’ class objects: plot(), to display classi-
fication results in terms of both scatter plots and univariate distribution plots, summary(), to
visualize the estimated parameters and further inferential details, and print(), to print the
selected model(s) according to the information criteria in Table 2. As usual, further details
can be found in the functions’ help pages.

5.2. How to fit the different types of mixture models

In the following, we will show how to fit several types of mixture models available in the
literature. Table 5 schematizes how to fit mixtures of univariate distributions, assuming
that the data are in a vector named Y. As we can see from the table, there are two ways for
fitting binomial, Poisson, and (unconstrained) Gaussian mixtures. Furthermore, the flexCMM
package allows to fit:

• All the fourteen parsimonious mixtures of multivariate Gaussian distributions of Celeux
and Govaert (1995). They are obtained by setting modelXnorm to the parsimonious
model(s) to be fitted and by passing the data available using Xnorm.

• Latent class cluster models for mixed-type variables (see Vermunt and Magidson 2002,
pp. 94–95). They are obtained by passing variables via Xnorm, Xbin, Xpois and Xmult
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Arguments Description
formulaY An optional object of class ‘formula’. A symbolic description of the

model to be fitted.
familyY An optional object of class ‘family’. A description of the conditional

distribution(s) of Y in each mixture component. It can be: gaussian,
poisson, binomial, Gamma, inverse.gaussian (use ?stats::family
for details about default/possible links), and student.t with default
link = identity. Default value is gaussian.

data An optional data.frame, list, or environment with the variables
needed to evaluate formulaY.

Xnorm, Xbin,
Xpois, Xmult

Optional matrices containing concomitant variables having normal,
binomial, Poisson, and multinomial distributions, respectively.

modelXnorm An optional vector of character strings indicating the parsimonious
models to be fitted (cf. Table 1). The default is c("E", "V") when
ncol(Xnorm) == 1, and c("EII", "VII", "EEI", "VEI", "EVI",
"VVI", "EEE", "VEE", "EVE", "EEV", "VVE", "VEV", "EVV",
"VVV") when ncol(Xnorm) > 1.

Xbtrials An optional vector containing the number of trials for each column in
Xbin. If omitted, the maximum of each column in Xbin is chosen.

k A vector containing the values of k to be fitted.
initialization Initialization strategy for the EM algorithm. It can be:

"random.soft" (default), "random.hard", "manual", "kmeans", and
"mclust" (see Section 4.1 for details).

start.z (n× k) matrix of soft or hard classification; it is used only if
initialization = "manual".

seed Seed for the random number generator, when random initializations
are used; if NULL (default), the current seed is not changed.

maxR Number of random EM initializations. Default value is 1.
iter.max Maximum number of EM iterations. Default value is 200.
threshold Value of ε in the Aitken acceleration procedure (see Section 4.2). De-

fault value is 1.0e-04.
eps Smallest value for the eigenvalues of Σ1, . . . ,Σk. It used to prevent

the EM algorithm to be affected by local maxima or degeneracy of the
likelihood (see Hathaway 1986 and Ingrassia 2004). Default value is
1e-100.

parallel When TRUE, the package parallel is used for parallel computation. The
number of cores to use may be set with the global option cl.cores;
default value is detected using detectCores().

Table 3: List of arguments for the function cwm().
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Extractors Description
getBestModel() A ‘cwm’ class object containing the best model only.
getCluster() Classification vector.
getIC() Values for the considered criteria in criteria.
getPar() Estimated parameters (i.e., ϑ̂).
getParPrior() Estimated mixture weights (i.e., π̂).
getParGLM() Estimated regression coefficients (i.e., β̂ and γ̂).
getParConcomitant() Estimated parameters of the concomitant variables (i.e., α̂).

It has an additional optional argument, name, which allows
to specify the names of distribution families ("multinomial",
"poisson", "normal", "binomial") for the concomitant vari-
ables; if NULL (default) parameters estimated for all concomi-
tant variables are returned.

getParXnorm() Estimated parameters for Xnorm.
getParXbin() Estimated parameters for Xbin.
getParXpois() Estimated parameters for Xpois.
getParXmult() Estimated parameters for Xmult.
getPosterior() Estimated posterior probabilities (i.e., ẑij , i = 1, . . . , n and

j = 1, . . . , k).
getSize() Estimated group sizes (from the hard classification induced by

the MAP operator).
whichBest() Position of the model, in the ‘cwm’ class object, for the criteria

specified in criteria.

Table 4: Extractors for ‘cwm’ class objects.

Mixture
component formulaY familyY Xnorm Xbin Xpois Xmult modelXnorm

Binomial Y ~ 1 binomial NULL NULL NULL NULL NULL
NULL NULL NULL Y NULL NULL NULL

Poisson Y ~ 1 poisson NULL NULL NULL NULL NULL
NULL NULL NULL NULL Y NULL NULL

Gaussian (V) Y ~ 1 gaussian NULL NULL NULL NULL "V"
NULL NULL Y NULL NULL NULL "V"

Gaussian (E) NULL NULL Y NULL NULL NULL "E"
Multinomial NULL NULL NULL NULL NULL Y NULL
Gamma Y ~ 1 Gamma NULL NULL NULL NULL NULL
Inverse Gaussian Y ~ 1 inverse.gaussian NULL NULL NULL NULL NULL
Student-t Y ~ 1 student.t NULL NULL NULL NULL NULL

Table 5: How to fit univariate mixtures with different component distributions. The vector
of data is named Y.
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according to their distribution. modelXnorm can be used to specify the parsimonious
model(s) to be applied to Xnorm variables. Furthermore, one more variable, say Y, may
be passed by setting formulaY = Y ~ 1 and specifying its distribution using argument
familyY; this procedure allows for modeling a variable having Gamma, inverse Gaussian
or Student’s t distribution. Note that Y has to be in the current environment or in a
dataset passed through argument data.

• Mixtures of regression models with fixed covariates are obtained by passing a sym-
bolic description of the component regression model via the argument formulaY, and
specifying its conditional distribution and link function using argument familyY.

• The CWM in (1) is obtained by following the same scheme given for mixtures of regres-
sion models with fixed covariates, but with the difference of attributing each covariate
to one, and only one, of the four arguments Xnorm, Xbin, Xpois, and Xmult.

5.3. The students dataset

The first tutorial uses the students dataset included in the flexCWM package. These data,
introduced by Ingrassia et al. (2014), come from a survey of 270 students attending a Statistics
course at the Department of Economics and Business of the University of Catania in the
academic year 2011/2012 and consist of a response variable WEIGHT (weight of the respondent,
measured in kilograms) and two covariates, HEIGHT (height of the respondent, measured in
centimeters) and HEIGHT.F (height of respondent’s father, measured in centimeters). Data
are labeled with respect to the GENDER of the respondent. In the following we assume that
data were unlabeled: the purpose of this tutorial is to see if the methods implemented in the
flexCWM package are able to correctly identify the number of latent groups and distinguish
between male and female subjects.
To begin the analysis, the data are loaded by

R> set.seed(1234)
R> library("flexCWM")
R> data("students", package = "flexCWM")

The command data("students", package = "flexCWM") loads a data frame with four vari-
ables, as we can see in the structure of the object.

R> str(students)

'data.frame': 270 obs. of 4 variables:
$ GENDER : Factor w/ 2 levels "F","M": 2 2 2 2 2 2 2 2 2 2 ...
$ HEIGHT : int 184 186 186 179 175 181 187 174 179 175 ...
$ WEIGHT : int 82 83 88 74 68 79 80 85 81 78 ...
$ HEIGHT.F: int 185 180 182 177 175 176 179 172 182 174 ...

In order to make the next commands shorter and more readable, we now attach the student
data frame to the R search path via the command

R> attach(students)
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Figure 1: Dataset students: Matrix of scatter plots for the variables WEIGHT, HEIGHT, and
HEIGHT.F, with colors induced by GENDER.

A first look at the pairwise relation between these variables can be given through the matrix
of scatter plots shown in Figure 1; it is obtained via the command

R> pairs(cbind(WEIGHT, HEIGHT, HEIGHT.F), col = GENDER)

First of all, we will consider classical mixtures of linear (Gaussian) regression models with
fixed covariates; however, to deal with either longer than normal tails or atypical observations,
we will also consider the Student’s t distribution (Yao, Wei, and Yu 2014). The following
command

R> fit1 <- cwm(WEIGHT ~ HEIGHT + HEIGHT.F,
+ familyY = list(gaussian, student.t), k = 1:3,
+ initialization = "kmeans")

[...]

Best model according to AIC, AICc, AICu, AIC3, AWE, BIC, CAIC, ICL is
obtained with k = 1 group(s) and family gaussian(identity)

performs the EM-fitting of six models, because of familyY = list(gaussian, student.t)
and k = 1:3, and returns an object of class ‘cwm’. Argument initialization = "kmeans"
is used to indicate the initialization strategy to adopt for the EM algorithm (cf. Section 4.1).
Because several models have to be fitted, parallel computation is convenient; it is set with the
argument parallel = TRUE. The number of CPU cores used is printed and this is followed,
after a few seconds, by a description of the best model according to each of the 8 criteria in
Table 2. Here, we can note that all the criteria agree in suggesting a model with k = 1. From
a clustering point of view, this is not a good result, since a clear group structure is visible
in the scatter plot of HEIGHT versus HEIGHT.F in Figure 1. Nonetheless, because the fitted
models assume fixed covariates (assignment independence), they do not identify the correct
cluster structure.



Journal of Statistical Software 13

In order to take the covariates distributions into account for clustering, we will now fit the
CWM versions of the models previously fitted; this is done via the command

R> fit2 <- cwm(WEIGHT ~ HEIGHT + HEIGHT.F,
+ familyY = list(gaussian, student.t), Xnorm = cbind(HEIGHT, HEIGHT.F),
+ k = 1:3, initialization = "kmeans")

With k=1, some models in modelXnorm are equivalent, so only the first is
estimated.

[...]

Best model according to AIC, AICc is obtained with k = 3 group(s) and
parsimonious model EVV and family gaussian(identity)

Best model according to AICu, AIC3, ICL is obtained with k = 2 group(s) and
parsimonious model VVE and family gaussian(identity)

Best model according to AWE, BIC, CAIC is obtained with k = 2 group(s) and
parsimonious model EEE and family gaussian(identity)

The argument Xnorm = cbind(HEIGHT, HEIGHT.F) specifies the multivariate normal con-
comitant variables whose marginal distribution is considered for the definition of the CWM.
Since we did not specify any value for the argument modelXnorm, by default all the fourteen
parsimonious variants of the CWM are fitted (cf. Table 1). As we can see from the results
printed, all the criteria suggest at least 2 mixture components. In particular the BIC, which is
the most widely adopted criterion in the literature on mixture models, suggests an EEE model
with two mixture components and a Gaussian distribution for WEIGHT | (HEIGHT, HEIGHT.F).
To find out more about the model selected by the BIC, we run the command

R> summary(fit2, criterion = "BIC", concomitant = TRUE)

----------------------------------
Best fitted model according to BIC
----------------------------------
loglikelihood n df BIC

-2638.7 270 16 -5367.1

Clustering table:
1 2

153 117

Prior: comp.1 = 0.56295, comp.2 = 0.43705

Distribution used for GLM: gaussian(identity). Parameters:

Component 1



14 flexCWM: A Flexible Framework for Cluster-Weighted Models

Estimate Std. Error t value Pr(>|t|)
(Intercept) -54.027136 12.126540 -4.4553 1.233e-05 ***
HEIGHT 0.897714 0.091307 9.8318 < 2.2e-16 ***
HEIGHT.F -0.144006 0.083820 -1.7180 0.08695 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sigma = 5.951

Component 2
Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.2474456 12.3740383 -4.6264 5.807e-06 ***
HEIGHT 0.7599275 0.1081866 7.0242 1.787e-11 ***
HEIGHT.F -0.0077206 0.0939206 -0.0822 0.9345
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
sigma = 5.889

Model for normal concomitant variables: EEE (ellipsoidal, equal volume,
shape and orientation) with 2 components

Normal concomitant variables
Means:

group 1 group 2
X.1 161.75 177.54
X.2 175.60 174.14

Variance-covariance matrices:
Component 1

X.1 X.2
X.1 27.835 22.038
X.2 22.038 34.698

Component 2
X.1 X.2

X.1 27.835 22.038
X.2 22.038 34.698

The argument concomitant = TRUE allows to print the estimated parameters for the con-
comitant variables (Xnorm only in this example). Note that the p values are only a raw
approximation; this is because standard errors are not computed on the observed-data likeli-
hood of model (1), but on the expression in (7) and assuming the posterior probabilities ẑij

as given, instead of as estimated. Furthermore, the p values are not corrected for the fact
that the data are already used to determine the specific fitted model (see Grün and Leisch
2008 and Harrell 2001 for further details about this problem). So, their intended use is in an
exploratory manner only. We can take a graphical glance at the classification results for the
best BIC model via the command

R> plot(fit2)
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green and red) fitted densities of HEIGHT.F.

Figure 2: Dataset students: Classification obtained by the EEE linear Gaussian CWM with
k = 2 components.

which produces the plots in Figure 2. The marginal densities in Figure 2(b) and Figure 2(c)
show the covariates’ contribution to the definition of the two groups (assignment dependence),
with HEIGHT contributing more than HEIGHT.F. This assignment dependence is the cause of
the differences between the results obtained with this model and the ones obtained with the
model with fixed covariates (fit1). The comparison of Figure 1 and Figure 2 discloses a good
agreement between the classification obtained with that induced by GENDER. This agreement
is also corroborated, more precisely, by the confusion matrix.
R> fit2clust <- getCluster(fit2)
R> table(fit2clust, GENDER)

GENDER
fit2clust F M

1 149 4
2 2 115
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The function getCluster() extracts the classification vector of the fitted model that is shown
in Table 4.

5.4. The ExCWM dataset

In this second tutorial, we will use artificial data generated by a CWM with k = 2 compo-
nents, of sizes n1 = 70 and n2 = 130, four covariates of mixed data types and with various
distributions (normal, binomial and Poisson), and one binomial response variable. Our pur-
pose is to explore the capabilities of the flexCWM package in fitting data of mixed types
and detecting the true number of latent groups. First we will fit mixtures of distributions of
variables of the same data type. Then, we will fit mixtures of distributions of variables of
mixed data types. At the end, we will fit a full CWM, that takes into account the dependence
between the response variable and the covariates.
The data are in a data frame named ExCWM, which is included in the package. The following
commands load the data frame, attach it to the R search path, and display its structure.

R> set.seed(17)
R> data("ExCWM", package = "flexCWM")
R> attach(ExCWM)
R> str(ExCWM)

'data.frame': 200 obs. of 8 variables:
$ Y : int 19 20 14 11 5 17 6 20 19 20 ...
$ Xnorm1 : num -1.074 -0.177 -3.611 -2.285 -2.342 ...
$ Xnorm2 : num -2.92 -3.08 -1.65 -2.96 -2.17 ...
$ Xbin : int 3 5 4 3 2 3 3 5 4 3 ...
$ Xpois : int 1 0 0 0 1 1 0 2 0 2 ...
$ group : int 1 1 1 1 1 1 1 1 1 1 ...
$ Ybtrials: int 20 20 20 20 20 20 20 20 20 20 ...
$ Xbtrials: int 15 15 15 15 15 15 15 15 15 15 ...

In the following, a brief description of the 8 variables in the data frame is given. It will allow
the user to interpret correctly the results of the clustering that will be shown later.

Xnorm1, Xnorm2: The first n1 = 70 observations are simultaneously generated by a bivariate
Gaussian distribution with mean and covariance matrix given by

µ1 =
(
−2
−2

)
and Σ1 =

(
1 −0.5
−0.5 1

)
,

respectively, while the remaining n2 = 130 observations are generated by a bivariate
Gaussian distribution with mean µ2 = (2, 2)> and covariance matrix Σ2 = 2Σ1; this
corresponds to a VEE parsimonious model.

Xbin: It is generated by a binomial distribution, with probability 0.2 for the first n1 = 70
observations and with probability 0.8 for the remaining observations. The number of
trials (Xbtrials) is 15.
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Xpois: It is generated by a Poisson distribution, with mean λ1 = 1 for the first n1 = 70
observations and with mean λ2 = 5 for the remaining observations.

Y: It is generated by a binomial distribution, with conditional mean equal to

Ybtrials
exp {1.5Xnorm1 + Xnorm2 + 2Xbin + Xpois}

1 + exp {1.5Xnorm1 + Xnorm2 + 2Xbin + Xpois}
,

for the first n1 = 70 observations, and with conditional mean equal to

Ybtrials
exp {−20 + 0.5Xnorm1 + 2Xnorm2 + 0.5Xbin + 1.7Xpois}

1 + exp {−20 + 0.5Xnorm1 + 2Xnorm2 + 0.5Xbin + 1.7Xpois}
,

for the remaining observations. The number of trials is Ybtrials = 20.

group: It contains the true classification.

Parsimonious mixtures of multivariate normal distributions

We start by fitting parsimonious mixtures of bivariate normal distributions to (Xnorm1, Xnorm2)
via the command

R> resXnorm <- cwm(Xnorm = cbind(Xnorm1, Xnorm2), k = 1:3,
+ initialization = "kmeans")

With k=1, some models in modelXnorm are equivalent, so only the first is
estimated.

[...]

Best model according to AIC, AICc is obtained with k = 3 group(s) and
parsimonious model VEE

Best model according to AICu, AIC3, AWE, BIC, CAIC, ICL is obtained with
k = 2 group(s) and parsimonious model VEE

Apart from AIC and AICc, all the other information criteria select the true underlying VEE
model with two components. Parameters estimated for normal covariates, relative to the best
model according to criterion ("BIC" is the default), may be retrieved using the command

R> getParXnorm(resXnorm)

$normal.mu
group 1 group 2

X.1 -2.089624 1.891098
X.2 -2.001844 1.958787

$normal.Sigma
, , group 1
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X.1 X.2
X.1 1.0063575 -0.4627117
X.2 -0.4627117 0.8355841

, , group 2

X.1 X.2
X.1 2.335237 -1.073715
X.2 -1.073715 1.938960

Mixtures of binomial distributions
We now fit mixtures of binomial distributions to Xbin, via the command

R> resXbin <- cwm(Xbin = Xbin, k = 1:3, initialization = "kmeans")

Estimating model with k = 1 *
Estimating model with k = 2 ***
Estimating model with k = 3 *************************************************
*****************************************

Best model according to AIC, AICc, AICu, AIC3, AWE, BIC, CAIC, ICL is
obtained with k = 2 group(s)

When parallel is set to FALSE, which is the default, details on which model is being esti-
mated are displayed during computation, and one star is printed at each iteration of the EM
algorithm. All criteria succeeded in detecting the true number of components. Parameters
for the binomial components can be retrieved using

R> getParXbin(resXbin)

$binomial.p
comp.1 comp.2

Xbin1 0.1962726 0.7774974

Mixtures of Poisson distributions
We now fit mixtures of Poisson distributions to Xpois, via the command

R> resXpois <- cwm(Xpois = Xpois, k = 1:3, initialization = "kmeans")

Estimating model with k = 1 *
Estimating model with k = 2 *************************
Estimating model with k = 3 ********************************************

Best model according to AIC, AICc, AICu, AIC3, AWE, BIC, CAIC, ICL is
obtained with k = 2 group(s)
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As before, all the criteria detected the true number of components. Parameters for the Poisson
components can be retrieved using

R> getParXpois(resXpois)

$poisson.lambda
comp.1 comp.2

Xpois1 1.107827 5.326135

Latent class cluster models for mixed-type variables

We now fit latent class cluster models, for mixed-type variables, to the four variables in
(Xnorm1, Xnorm2, Xbin, Xpois)

R> resX <- cwm(Xnorm = cbind(Xnorm1, Xnorm2), Xbin = Xbin, Xpois = Xpois,
+ k = 1:3, initialization = "kmeans")

With k=1, some models in modelXnorm are equivalent, so only the first is
estimated.

[...]

Best model according to AIC, AICc is obtained with k = 3 group(s) and
parsimonious model VEE

Best model according to AICu, AIC3, AWE, BIC, CAIC, ICL is obtained with
k = 2 group(s) and parsimonious model VEE

According to the BIC, the best model has two components and a VEE covariance structure
for (Xnorm1, Xnorm2). All the parameters for the component distributions can be retrieved
via the command

R> getParConcomitant(resX)

$normal.mu
group 1 group 2

X.1 1.891910 -2.088991
X.2 1.959559 -2.001148

$normal.Sigma
, , group 1

X.1 X.2
X.1 2.331590 -1.073407
X.2 -1.073407 1.936516
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, , group 2

X.1 X.2
X.1 1.0079350 -0.4640285
X.2 -0.4640285 0.8371464

$binomial.p
comp.1 comp.2

Xbin1 0.7784746 0.2000168

$poisson.lambda
comp.1 comp.2

Xpois1 4.861538 0.9571244

Note that, although independence between (Xnorm1, Xnorm2), Xbin, and Xpois is assumed,
estimates of component distributions’ parameters are different from those obtained previously;
this is due to the effect of the posterior probabilities in the E-step of the EM algorithm.

CWMs
Finally, we fit CWMs, with a Y response and (Xnorm1, Xnorm2, Xbin, Xpois) as covariates/con-
comitant variables. This is done via the command

R> res <- cwm(cbind(Y, Ybtrials - Y) ~ Xnorm1 + Xnorm2 + Xbin + Xpois,
+ data = ExCWM, familyY = binomial, k = 1:3, initialization = "kmeans",
+ Xnorm = cbind(Xnorm1, Xnorm2), Xbin = Xbin, Xpois = Xpois,
+ Xbtrials = Xbtrials[1])

With k=1, some models in modelXnorm are equivalent, so only the first is
estimated.

[...]

Best model according to AIC, AICc, AICu, AIC3, AWE, BIC, CAIC, ICL is
obtained with k = 2 group(s) and parsimonious model VEE and family
binomial(logit)

When familyY = binomial, the response variable in formulaY has to be a matrix with two
columns, where the first column is the number of “successes” and the second column is the
number of “failures”; in the previous command, this matrix has been built using cbind(Y,
Ybtrials - Y). Note that within stats::glm(), when the response is the proportion of
successes, argument weights is used to give the number of trials; this way of providing
binomial data is not supported by cwm(). According to all criteria, the best model is VEE,
with two components. Summary results about the estimated parameters can be obtained via
the command

R> summary(res, concomitant = TRUE)
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----------------------------------
Best fitted model according to BIC
----------------------------------
loglikelihood n df BIC

-1746.6 200 23 -3615.1

Clustering table:
1 2

130 70

Prior: comp.1 = 0.65, comp.2 = 0.35

Distribution used for GLM: binomial(logit). Parameters:

Component 1
Estimate Std. Error z value Pr(>|z|)

(Intercept) -21.031795 1.097057 -19.1711 < 2.2e-16 ***
Xnorm1 0.472029 0.064847 7.2791 3.36e-13 ***
Xnorm2 2.055985 0.113973 18.0392 < 2.2e-16 ***
Xbin 0.589793 0.050347 11.7145 < 2.2e-16 ***
Xpois 1.684478 0.078374 21.4928 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Component 2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.21206 0.39764 0.5333 0.5938
Xnorm1 1.61273 0.12609 12.7900 < 2.2e-16 ***
Xnorm2 1.07458 0.13428 8.0027 1.217e-15 ***
Xbin 2.03959 0.12072 16.8949 < 2.2e-16 ***
Xpois 0.94386 0.11489 8.2153 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model for normal concomitant variables: VEE (ellipsoidal, equal shape and
orientation) with 2 components

Normal concomitant variables
Means:

group 1 group 2
X.1 1.8919 -2.0890
X.2 1.9596 -2.0011

Variance-covariance matrices:
Component 1

X.1 X.2
X.1 2.3316 -1.0734
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X.2 -1.0734 1.9365
Component 2

X.1 X.2
X.1 1.00794 -0.46403
X.2 -0.46403 0.83715

Poisson concomitant variables: lambda parameter
comp.1 comp.2

Xpois1 4.8615 0.95712

Binomial concomitant variables: p parameter
comp.1 comp.2

Xbin1 0.77847 0.20002

To take a graphical look at the obtained results in terms of classification and density estima-
tion, we can run the command

R> plot(res)

which produces the plots in Figure 3.

5.5. Computational times

In this section we provide the results of a simulation study on the computational times
required by the flexCWM package to fit the CWM when the size of the dataset increases. In
this study we consider 3 simulation factors:

1. the sample size n (50,000 and 100,000);

2. the number d of covariates (50 and 100);

3. the number of cores (1, 2, 3, and 4).

For each combination of n and d, one hundred datasets are sampled from a CWM, for a total
of 2×2×100 = 400 datasets. On each generated dataset, we fit the 14 parsimonious versions
of the CWM; this is repeated 4 times for each considered number of cores, which is set using
the cl.cores argument of options(). Computation is performed on a Windows 10 PC, with
Intel i7-8550U CPU, 16.0 GB RAM, using R 64-bit, and the elapsed time is computed via the
system.time() function of the base package.
For each combination of n and d, Figure 4 reports the elapsed time (in seconds) in each of
the 100 replications when varying the number of cores. The code used to obtain Figure 4(a)
is detailed below.

R> library("mnormt")
R> cores <- 1:4
R> seed <- 10
R> R <- 100
R> n <- 50000 # or 100000
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Figure 3: Dataset ExCWM: Classification obtained by the VEE linear binomial CWM with
k = 2 components.
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(d) n = 100, 000 and d = 100.

Figure 4: Elapsed time (in seconds) in each of the 100 replications when varying the number
of cores.

R> d <- 50 # or 100
R> k <- 2
R> set.seed(seed)
R> res <- array(0, c(R, length(cores)))
R> n1 <- n2 <- n/k
R> mu1 <- rep(3, d)
R> mu2 <- -mu1
R> Sigma1 <- Sigma2 <- diag(d)
R> alpha <- 0
R> beta1 <- rep(-1, d)
R> beta2 <- rep(1, d)
R> for (r in 1:R) {
+ X1 <- rmnorm(n = n1, mean = mu1, varcov = Sigma1)
+ X2 <- rmnorm(n = n2, mean = mu2, varcov = Sigma2)
+ X <- rbind(X1, X2)
+ Y1 <- rnorm(n/k, mean = (alpha + beta1 %*% t(X[1:(n/k), ])),
+ sd = 0.5)
+ Y2 <- rnorm(n/k, mean = (alpha + beta2 %*% t(X[(n/k+1):n, ])),
+ sd = 0.5)
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+ Y <- c(Y1, Y2)
+ loo <- data.frame(Y = Y, X)
+ for (m in cores) {
+ cat(paste0("---> r = ", r, " m=", m, "\n"))
+ options(cl.cores = m)
+ t <- system.time(
+ foo <- cwm(Y ~ ., data = loo, Xnorm = loo[, -1], k = k,
+ initialization = "kmeans", parallel = TRUE, seed = seed)
+ )
+ res[r, m] <- t[3]
+ cat(paste0("---> time: ", t[3]), "\n")
+ }
+ }
R> b <- ceiling(max(res)/50) * 50
R> boxplot(res, horizontal = TRUE, xlab = "Elapsed time (in seconds)",
+ ylab = "# of used cores", ylim = c(0, b), axes = FALSE)
R> axis(1, at = seq(0, b, by = 50))
R> axis(2, at = 1:4)

The remaining plots of Figure 4 are obtained by simply changing the values of n and d in
the code above, as indicated by the comments. To have the four plots in the same scale, the
upper limit b of the horizontal axes has been set to the highest time of the worst case scenario
(n = 100000 and d = 100). As expected, for each combination of n and d, the elapsed time
decreases (in average) when the number of cores increases. By using 4 cores, the elapsed time
ranges from 41.61 seconds when n = 50, 000 and d = 50, to 291.65 seconds when n = 100, 000
and d = 100.

6. Conclusions
Cluster-weighted models, eminent members of the class of mixtures of regression models with
random covariates, have recently become popular in statistics and data mining. Nevertheless,
there is a lack of support for them in the most used software packages for statistical computing.
In this paper, we have introduced flexCWM, a package for the R software environment,
specifically conceived for fitting and disseminating cluster-weighted models.
The package offers support for several distributions for both the response variable and the
covariates, allowing the latter to be of mixed types. Parsimonious modeling for normal
covariates is also supported. This allows for a certain flexibility, and it has been shown
that the package can also fit various mixtures of distributions, latent class cluster models for
mixed-type variables, mixtures of regression models with fixed covariates, and mixtures of
regression models with concomitant variables.
The package returns the most popular information criteria and, when a comparison among
different models is needed, computation can take advantage of parallelization on multicore PCs
and computer clusters. This is handy when, as it is often the case in practical applications, the
number of groups and/or the covariance structure of normal covariates is not a priori known.
We believe our package may be a practical tool supporting academics and practitioners who
are involved in cluster analysis applications.
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