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Abstract

We provide several examples of Bayesian semiparametric regression analysis via the
Infer.NET package for approximate deterministic inference in Bayesian models. The ex-
amples are chosen to encompass a wide range of semiparametric regression situations.
Infer.NET is shown to produce accurate inference in comparison with Markov chain Monte
Carlo via the BUGS package, but to be considerably faster. Potentially, this contribution
represents the start of a new era for semiparametric regression, where large and complex
analyses are performed via fast Bayesian inference methodology and software, mainly
being developed within Machine Learning.

Keywords: additive mixed models, expectation propagation, generalized additive models,
measurement error models, mean field variational Bayes, missing data models, penalized
splines, variational message passing.

1. Introduction

Infer.NET (Minka, Winn, Guiver, and Knowles 2014) is a relatively new software package
for performing approximate inference in large Bayesian models, using fast deterministic algo-
rithms such as expectation propagation (Minka 2001) and variational message passing (Winn
and Bishop 2005). We demonstrate its application to Bayesian semiparametric regression. A
variety of situations are covered: non-Gaussian response, longitudinal data, bivariate func-
tional effects, robustness, sparse signal penalties, missingness and measurement error.
The Infer.NET project is still in its early years and, and at the time of this writing, has not
progressed beyond beta releases. We anticipate continual updating and enhancement for many
years to come. In this article we are necessarily restricted to the capabilities of Infer.NET at
the time of preparation. All of our examples use Infer.NET 2.7, which was released in March
2018.
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The graphical model representation viewpoint of semiparametric regression (Wand 2009), and
other advanced statistical techniques, has the attraction that various embellishments of the
standard models can be accommodated by enlarging the underlying directed acyclic graph.
For example, nonparametric regression with a missing predictor data model involves the ad-
dition of nodes and edges to the graph, corresponding to the missing data mechanism. Figure
4 of Faes, Ormerod, and Wand (2011) provides some specific illustrations. Marley and Wand
(2010) exploited the graphical model representation viewpoint of semiparametric regression
to handle a wide range of non-standard models via the Markov chain Monte Carlo inference
engine implemented by BUGS (Lunn, Thomas, Best, and Spiegelhalter 2000). However, many
of their examples take between several minutes and hours to run. The inference engines pro-
vided by Infer.NET allow much faster fitting for many common semiparametric regression
models. On the other hand, BUGS is the more versatile package and not all models that
are treated in Marley and Wand (2010) are supported by Infer.NET. Like BUGS the package
Infer.NET allows the shifts from model estimation to model appropriateness by automatic
deviation of fast approximate inference algorithms.

Semiparametric regression, summarized by Ruppert, Wand, and Carroll (2003, 2009), is a
large branch of Statistics that includes nonparametric regression, generalized additive models,
generalized additive mixed models, curve-by-factor interaction models, wavelet regression
and geoadditive models. Parametric models such as generalized linear mixed models are
special cases of semiparametric regression. Antecedent research for special cases such as
nonparametric regression was conducted in the second half of the 20th Century at a time
when data sets were smaller, computing power was lower and the Internet was either non-
existent or in its infancy. Now, as we are in the mid-2010s, semiparametric regression is
continually being challenged by the size, complexity and, in some applications, arrival speed
of data sets requiring analysis. Implementation and computational speed are major limiting
factors. This contribution represents the potential for a new era for semiparametric regression
– tapping into 21st Century Machine Learning research on fast approximate inference on large
Bayesian models (e.g., Minka 2001; Winn and Bishop 2005; Minka 2005; Minka and Winn
2008; Knowles and Minka 2011) and ensuing software development.

Section 2 lays down the definitions and notation needed to describe the models given in later
sections and describes a set of support files for compiling and running Infer.NET programs.
Each of Sections 3–10 illustrates a different type of semiparametric regression analysis via
Infer.NET. All code is available in the supplementary material to this article. For most of the
examples, we also compare the Infer.NET results with those produced by BUGS. Section 11
compares BUGS with Infer.NET in terms of versatility and computational speed. A summary
of our findings on semiparametric analysis via Infer.NET is given in Section 12. Appendix A
gives a detailed description of using Infer.NET to fit the simple semiparametric regression
model of Section 3.

2. Preparatory infrastructure

The semiparametric regression examples rely on mathematical infrastructure and notation,
which we describe in this section.
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Distribution Density function in x Abbreviation

Normal (2πσ2)−1/2 exp{−(x− µ)2/(2σ2)}; σ > 0 N(µ, σ2)

Laplace (2σ)−1 exp(−|x− µ|/σ); σ > 0 Laplace(µ, σ2)

t
Γ
(
ν+1

2

)
√
πνσ2Γ(ν/2){1 + (x−µ)2

νσ2 }
ν+1

2
; σ, ν > 0 t(µ, σ2, ν)

Gamma BA xA−1e−B x

Γ(A) ; x > 0; A,B > 0 Gamma(A,B)

Half-Cauchy 2σ
π(x2 + σ2) ; x > 0; σ > 0 Half-Cauchy(σ)

Table 1: Distributions used in the examples. The density function argument x and parameters
range over R unless otherwise specified.

2.1. Distributional notation

The density function of a random vector x is denoted by p(x). The notation for a set of
independent random variables yi (1 ≤ i ≤ n) with distribution Di is yi ind.∼ Di. Table 1 lists
the distributions used in the examples and the parametrization of their density functions.

2.2. Standardization and default priors

In real data examples, the measurements are often recorded on several different scales.
Therefore, all continuous variables are standardized prior to analysis using Infer.NET or
Markov chain Monte Carlo (MCMC) via BUGS. This transformation makes the analyses
scale-invariant and can also lead to better behavior of the MCMC sampling.
Since we do not have prior knowledge about the model parameters in each of the examples,
non-informative priors are used. The prior distributions for a fixed effects parameter vector
β and a standard deviation parameter σ are

β ∼ N(0, τ−1
β I), σ ∼ Half-Cauchy(A)

with default hyperparameters

τβ = 10−10, A = 105.

This is consistent with the recommendations given in Gelman (2006) for achieving non-
informativeness for variance parameters. Infer.NET and BUGS do not offer direct specification
of half-Cauchy distributions and therefore we use the result:

If x| a ∼ Gamma(1
2 , a) and a ∼ Gamma(1

2 , 1/A2),
then x−1/2 ∼ Half-Cauchy(A).

(1)
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This result allows for the imposition of a half-Cauchy prior using only gamma distribution
specifications. Both Infer.NET and BUGS support the gamma distribution. This represen-
tation of the half-Cauchy prior suggests that the choice of A has little effect on the results
provided the chosen value of A is sufficiently large which corresponds to the case where we
have a diffuse prior on σ.

2.3. Variational message passing

Infer.NET has two inference engines, variational message passing (Winn and Bishop 2005) and
expectation propagation (Minka 2001), for performing fast deterministic approximate infer-
ence in Bayesian models. Succinct summaries of variational message passing and expectation
propagation are provided in Appendices A and B of Minka and Winn (2008).
Generally speaking, variational message passing is more amenable to semiparametric regres-
sion than expectation propagation. It is a special case of mean field variational Bayes (e.g.,
Wainwright and Jordan 2008). The essential idea of mean field variational Bayes is to approx-
imate joint posterior density functions such as p(θ1, θ2, θ3|D), where D denotes the observed
data, by product density forms such as

qθ1(θ1) qθ2(θ2) qθ3(θ3), qθ1,θ3(θ1, θ3) qθ2(θ2), or qθ1(θ1) qθ2,θ3(θ2, θ3). (2)

The choice of the product density form is usually made by trading off tractability against
minimal imposition of product structure. Once this choice is made, the optimal q-density
functions are chosen to minimize the Kullback-Leibler divergence from the exact joint pos-
terior density function. For example, if the second product form in (2) is chosen then the
optimal density functions q∗θ1,θ3

(θ1, θ3) and q∗θ2
(θ2) are those that minimize

∫∫∫
qθ1,θ3(θ1, θ3) qθ2(θ2) log

{
p(θ1, θ2, θ3|D)

qθ1,θ3(θ1, θ3) qθ2(θ2)

}
dθ1 dθ2 dθ3, (3)

where the integrals range over the parameter spaces of θ1, θ2 and θ3. This minimization
problem gives rise to an iterative scheme which, typically, has closed form updates and good
convergence properties. A by-product of the iterations is a lower-bound approximation to
the marginal likelihood p(D), which we denote by p(D; q). The iterative scheme of q-density
updates can be shown to monotonically increase the lower bound p(D; q). These updates
are guaranteed to converge to at least a local maximizer of p(D; q). Issues associated with
multiple local maximizers of p(D; q) typically arise when performing inference using discrete
random variables as model components. None of the models considered in this paper fall into
this category.
Further details on, and several examples of, mean field variational Bayes are provided by
Section 2.2 of Ormerod and Wand (2010). Each of these examples can also be expressed,
equivalently, in terms of variational message passing.
In typical semiparametric regression models the subscripting on the q-density functions is
quite cumbersome. Hence, it is suppressed for the remainder of the article. For example,
q(θ1, θ3) is taken to mean qθ1,θ3(θ1, θ3).
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2.4. Expectation propagation

Expectation propagation is also based on product density restrictions such as (2), but differs
in its method of obtaining the optimal density functions. It works with the reverse version of
the Kullback-Leibler divergence than that given in (3), i.e.,

∫∫∫
p(θ1, θ2, θ3|D) log

{
qθ1,θ3(θ1, θ3) qθ2(θ2)
p(θ1, θ2, θ3|D)

}
dθ1 dθ2 dθ3, (4)

and, therefore, leads to different iterative algorithms and approximating density functions.
Expectation propagation overcomes the problem of minimizing (4) via a Kullback-Leibler
projection onto exponential density functions. Minka (2005) develops a strategy for approxi-
mate minimization of (4) for general p(θ|D) and a given product restriction for q(θ) in terms
of messages passed on an appropriate factor graph. A detailed explanation of expectation
propagation accessible to statisticians is given in Kim and Wand (2016).

2.5. Mixed model-based penalized splines

Mixed model-based penalized splines are a convenient way to model nonparametric func-
tional relationships in semiparametric regression models, and are amenable to the hierarchical
Bayesian structures supported by Infer.NET. The penalized spline of a regression function f ,
with mixed model representation, takes the generic form

f(x) = β0 + β1x+
K∑
k=1

ukzk(x), uk
ind.∼ N(0, τ−1

u ). (5)

Here z1(·), . . . , zK(·) is a set of spline basis functions and τu controls the amount of penalization
of the spline coefficients u1, . . . , uk. Throughout this article, we use O’Sullivan splines for the
zk(·). Wand and Ormerod (2008) provide details on their construction. O’Sullivan splines
lead to (5) being a low-rank version of smoothing splines, which is also used by the R (R
Core Team 2018) function smooth.spline(). The underlying O’Sullivan spline basis can
be represented as a linear combination of B-splines with a fixed number of knots. Wand
and Ormerod (2008) recommend quantile spaced knots, while Eilers and Marx (1996) use
equally spaced knots. This choice has little effect on the fitted function provided a sufficiently
large number of knots are used. A reasonable rule of thumb for the number of knots K is
K = min(nU/4, 35) where nU is the number of unique xis. Univariate thin plate splines
(Wood 2003) (multivariate thin plate splines are discussed below) and other types of radial
basis functions (Fasshauer 2007) are alternative choices of basis functions that do not involve
B-splines which could also be used here.
The simplest semiparametric regression model is the Gaussian response nonparametric re-
gression model

yi
ind.∼ N(f(xi), σ2

ε), (6)

where (xi, yi), 1 ≤ i ≤ n are pairs of measurements on continuous predictor and response
variables. Mixed model-based penalized splines give rise to hierarchical Bayesian models for
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(6) such as

yi|β0, β1, u1, . . . , uK , τε
ind.∼ N

(
β0 + β1 xi +∑K

k=1 ukzk(xi), τ−1
ε

)
,

uk|τu
ind.∼ N(0, τ−1

u ), β0, β1
ind.∼ N(0, τ−1

β ),

τ
−1/2
u ∼ Half-Cauchy(Au), τ

−1/2
ε ∼ Half-Cauchy(Aε),

(7)

where σ2
ε = τ−1

ε .
Such models allow nonparametric regression to be performed using Bayesian inference engines
such as BUGS and Infer.NET. Our decision to work with precision parameters, rather than
the variance parameters (which are common in the semiparametric regression literature), is
driven by the former being the standard parametrization in BUGS and Infer.NET.
It is convenient to express (7) using matrix notation. This entails putting

y ≡

 y1
...
yn

 , X ≡

 1 x1
...

...
1 xn

 , Z ≡

 z1(x1) · · · zK(x1)
... . . . ...

z1(xn) · · · zK(xn)

 (8)

and

β ≡
[
β0
β1

]
and u ≡

 u1
...
uK

 . (9)

We then re-write (7) as

y |β, u, τε
ind.∼ N

(
Xβ + Zu, τ−1

ε

)
,

u|τu ∼ N(0, τ−1
u I), β ∼ N(0, τ−1

β I),

τ
−1/2
u ∼ Half-Cauchy(Au), τ

−1/2
ε ∼ Half-Cauchy(Aε).

The effective degrees of freedom (edf) corresponding to (7) are defined to be given by

edf(τu, τε) ≡ tr
(
[C>C + blockdiag{τ2

βI2, (τu/τε) I}]−1C>C
)

(10)

and are a scale-free measure of the amount of fitting being performed by the penalized splines.
Further details on effective degrees of freedom for penalized splines are given in Section 3.13
of Ruppert et al. (2003).
A directed acyclic graph representation of this model is given in Figure 1. Random variables
or vectors correspond to nodes while directed edges (i.e., arrows) convey conditional depen-
dence. Nodes filled gray correspond to observed model variables (sometimes called evidence
nodes), while unfilled nodes correspond to unobserved model variables (sometimes called hid-
den nodes). A further discussion of these graphical model representations can be found in
Wand (2009) or Faes et al. (2011).
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Figure 1: Directed acyclic graph representation of the mixed model-based penalized splines
described in Section 2.5. Shading indicates observed data.

Extension to bivariate predictors

The bivariate predictor extension of (6) is

yi
ind.∼ N(f(xi), σ2

ε ), (11)

where the predictors xi, 1 ≤ i ≤ n, are each 2 × 1 vectors. In many applications, the xis
correspond to geographical location but they could be measurements on any pair of predictors
for which a bivariate mean function might be entertained. Mixed model-based penalized
splines can handle this bivariate predictor case by extending (5) to

f(x) = β0 + β>1 x+
K∑
k=1

ukzk(x), uk
ind.∼ N(0, τ−1

u ) (12)

and setting zk to be appropriate bivariate spline functions. There are several options for
doing this (see, e.g., Ruppert et al. 2009, Section 2.2). A relatively simple choice is described
here and used in the examples. It is based on thin plate spline theory, and corresponds to
Section 13.5 of Ruppert et al. (2003). The first step is to choose the number K of bivariate
knots and their locations. We denote these 2× 1 vectors by κ1, . . . , κK . Our default rule for
choosing knot locations involves feeding the xis and K into the clustering algorithm known
as CLARA (Kaufman and Rousseeuw 1990) and setting the κk to be cluster centers. Next,
form the matrices

X =

 1 x>1
...

...
1 x>n

 ,

ZK =

 ‖x1 − κ1‖2 log ‖x1 − κ1‖ · · · ‖x1 − κK‖2 log ‖x1 − κK‖
... . . . ...

‖xn − κ1‖2 log ‖xn − κ1‖ · · · ‖xn − κK‖2 log ‖xn − κK‖

 , and

Ω =

 ‖κ1 − κ1‖2 log ‖κ1 − κ1‖ · · · ‖κ1 − κK‖2 log ‖κ1 − κK‖
... . . . ...

‖κK − κ1‖2 log ‖κK − κ1‖ · · · ‖κK − κK‖2 log ‖κK − κK‖

 .
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Based on the singular value decomposition Ω = Udiag(d)V >, compute
Ω1/2 = Udiag(

√
d)V > and set Z = ZKΩ−1/2. Then

zk(xi) = the (i, k)th entry of Z with uk
ind.∼ N(0, τ−1

u ).

2.6. Support files

The code for fitting the semiparametric models considered in this paper are a series of a R and
C] source code files utilizing Infer.NET. More specifically, for a particular example, an R script
exists which reads in or simulates data for the example, constructs relevant basis functions,
saves relevant information to comma separated variable (.csv) files, compiles corresponding
C] source code files and runs them. The semiparametric model is then specified and fit
utilizing Infer.NET libraries with the results saved to .csv files. Finally, the Infer.NET results
are loaded into R and processed. Note that the C] source code files are compiled using Visual
Studio 2010 from the command line in the Microsoft Windows operating system.
We have put together a set of files aimed at supporting and easing implementation of the
above pipeline. These files include functions for the construction of spline basis functions,
and the assessment of the quality of approximated posterior distributions. These support files
are summarized below.

InferNETSupport.R This R script loads all of the required packages and support functions
used by the examples presented in this paper. The main function in the script is called
RunInferNET(). This function takes an .cs file (containing Infer.NET code), copies this
file to a specified support directory renaming it RunMe.cs. The file RunMe.cs is part
of a template C] project called InferNETSupport.csproj which is then complied using
the MSBuild program (a part of Mircrosoft’s .NET framework).

DataTable.cs This file defines the ‘DataTable’ class for reading a data matrix stored in a
comma separated file format for use by Infer.NET.

SaveData.cs This file defines the ‘SaveData’ class for taking a data matrix in Infer.NET and
saving it as a comma separated file.

splineFunctions.R This R script contains a number of functions for constructing various
spline basis functions. These include ZOSull(), a function which constructs O’Sullivan
splines (Wand and Ormerod 2008), Ztps(), which constructs thin plate splines (Ruppert
et al. 2003), and the function save.default.knots.2D(), which selects knots for a two-
dimensional dataset (slightly modified from the SemiPar package in R).

approximateInferenceFunctions.R This R script contains accVarApp() and summMCMC(),
functions for summarizing the results of variational approximation and MCMCmethods.
Densities implemented in accVarApp() include normal, inverse-gamma, sqrt-inverse-
gamma, beta, Bernoulli, discrete, normal mixtures and some non-standard densities
considered in Wand, Ormerod, Padoan, and Frühwirth (2011).

mixFunctions.R This R script contains the functions dnorMix(), pnorMix() and qnorMix()
for calculating the density, distribution and quantile functions for a univariate normal
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mixture. It also contains the function logOfSum() for calculating the log of a sum of
the exponential of a vector in a numerically safe manner.

All of the semiparametric regression models considered in this paper are implemented using
our pipeline in the InferNetScripts directly from the .zip file containing the supplementary
material to this paper. We anticipate that implementing code for semiparametric regression
models similar to those considered in this paper should be relatively straightforward by mod-
ifying the code in these files directly.

3. Simple semiparametric model
The first example involves the simple semiparametric regression model

yi = β0 + β1 x1i + β2 x2i +∑K
k=1 uk zk(x2i) + εi, εi

ind.∼ N(0, τ−1
ε ), 1 ≤ i ≤ n, (13)

where zk(·) is a set of spline basis functions as described in Section 2.5. The corresponding
Bayesian mixed model can then be represented by

y|β, u, τε ∼ N(Xβ + Zu, τ−1
ε I), u| τu ∼ N(0, τ−1

u I),

β ∼ N(0, τ−1
β I), τ−1/2

u ∼ Half-Cauchy(Au), τ−1/2
ε ∼ Half-Cauchy(Aε),

(14)

where τβ, Au and Aε are user-specified hyperparameters and

y =

 y1
...
yn

 , β =

 β0
β1
β2

 , u =

 u1
...
uK

 ,

X =

 1 x11 x21
...

...
1 x1n x2n

 , Z =

 z1(x21) · · · zK(x21)
... . . . ...

z1(x2n) · · · zK(x2n)

 .
Infer.NET 2.6 does not support direct fitting of model (14) under the product restriction

q(β, u, τu, τε) = q(β, u) q(τu, τε). (15)

We get around this by employing the same trick as described in Section 3.2 of Wang and
Wand (2011). It entails the introduction of the auxiliary n× 1 data vector a. By setting the
observed data for a equal to 0 and by assuming a very small number for κ, fitting the model
in (16) provides essentially the same result as fitting the model in (14). The actual model
implemented in Infer.NET is

y|β, u, τε ∼ N(Xβ + Zu, τ−1
ε I), a|β, u, τu ∼ N

([
β
u

]
,

[
τ−1
β I 0
0 τ−1

u I

])
,

[
β
u

]
∼ N(0, κ−1I), τu| bu ∼ Gamma(1

2 , bu),

bu ∼ Gamma(1
2 , 1/A2

u), τε| bε ∼ Gamma(1
2 , bε), bε ∼ Gamma(1

2 , 1/A2
ε),

(16)
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with the inputted a vector containing zeros. While the full Infer.NET code is included in
Appendix A, we will confine discussion here to the key parts of the code that specify (16).
Specification of the prior distributions for τu and τε can be achieved using the following
Infer.NET code:
Variable<double> tauu = Variable.GammaFromShapeAndRate(0.5,

Variable.GammaFromShapeAndRate(0.5, Math.Pow(Au, -2))).Named("tauu");
Variable<double> tauEps = Variable.GammaFromShapeAndRate(0.5,

Variable.GammaFromShapeAndRate(0.5, Math.Pow(Aeps, -2))).Named("tauEps");
(17)

while the likelihood in (16) is specified by the following line:

y[index] = Variable.GaussianFromMeanAndPrecision(
Variable.InnerProduct(betauWork, cvec[index]), tauEps); (18)

The variable index represents a range of integers from 1 to n and enables loop-type structures.
Finally, the inference engine is specified to be variational message passing via the code:
InferenceEngine engine = new InferenceEngine();
engine.Algorithm = new VariationalMessagePassing();
engine.NumberOfIterations = nIterVB;

(19)

with nIterVB denoting the number of mean field variational Bayes iterations. Note that this
Infer.NET code is treating the coefficient vector[

β
u

]

as an entity, in keeping with product restriction (15).
Figures 2 and 3 summarize the results from Infer.NET fitting of (16) to a data set on the yields
(g/plant) of 84 white Spanish onions crops in two locations: Purnong Landing and Virginia,
South Australia. The response variable, y is the logarithm of yield, whilst the predictors are
indicator of location being Virginia (x1) and areal density of the plants (plants/m2) (x2).
The hyperparameters were set at τβ = 10−10, Aε = 105, Au = 105 and κ = 10−10, while the
number of mean field variational Bayes iterations was fixed at 100.
As a benchmark, Bayesian inference via MCMC was performed. To this end, the following
BUGS program was used:
for (i in 1:n) {

mu[i] <- (beta0 + beta1 * x1[i]+ beta2 * x2[i] + inprod(u[], Z[i, ]))
y[i] ~ dnorm(mu[i], tauEps)

}
for (k in 1:K) {

u[k] ~ dnorm(0, tauu)
}
beta0 ~ dnorm(0, 1.0E-10); beta1 ~ dnorm(0, 1.0E-10)
beta2 ~ dnorm(0, 1.0E-10);
bu ~ dgamma(0.5, 1.0E-10); tauu ~ dgamma(0.5, bu)
bEps ~ dgamma(0.5, 1.0E-10); tauEps ~ dgamma(0.5, bEps)

(20)
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Figure 2: Onions data. Fitted regression line and pointwise 95% credible intervals for varia-
tional Bayesian inference by Infer.NET and MCMC.

Parameter MCMC Infer.NET
(θ) E(θ|y) 95% credible interval E(θ|y) 95% credible interval

β0 0.512 (0.416, 0.606) 0.516 (0.428 0.604)
β1 −0.716 (−0.817, −0.614) −0.717 (−0.817, −0.618)
β2 −0.942 (−1.003,−0.882) −0.944 (−1.001,−0.886)
τε 18.9 (13.3, 25.4) 19.0 (13.7, 25.1)
τu 0.598 (0.008, 3.332) 0.316 (0.038, 0.881)

Table 2: Onions data. Parameter point estimates and 95% credible intervals for variational
Bayesian inference by Infer.NET and MCMC.

A burn-in length of 50000 was used, while 1 million samples were obtained from the posterior
distributions. Finally, a thinning factor of 5 was used. The posterior densities for MCMC
were produced based on kernel density estimation with plug-in bandwidth selection via the R
package KernSmooth (Wand 2015). Figure 2 displays the fitted regression lines and pointwise
95% credible intervals. The estimated regression lines and credible intervals from Infer.NET
and MCMC fitting are highly similar. Figure 3 visualizes the approximate posterior density
functions for β1, τ−1

ε and the effective degrees of freedom of the fit. The variational Bayes
approximations for β1 and τ−1

ε are rather accurate. The approximate posterior density func-
tion for the effective degrees of freedom for variational Bayesian inference was obtained based
on Monte Carlo samples of size 1 million from the approximate posterior distributions of τ−1

ε

and τ−1
u .

A summary of the parameter point estimates and 95% credible intervals for this model is
given in Table 2. In this table we see that inferences for Infer.NET and MCMC are identical
to the first two significant figures for β0, β1, β2 and τε. However, τu is underestimated by
Infer.NET with credible intervals which are too small.
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Figure 3: Variational Bayes approximate posterior density functions produced by Infer.NET
and MCMC posterior density functions of key model parameters for fitting a simple semi-
parametric model to the onions data set.

4. Generalized additive model
The next example illustrates binary response variable regression through the model

yi|β, u
ind.∼ Bernoulli(F ({Xβ + Zu}i)), u| τu ∼ N(0, τ−1

u I),

β ∼ N(0, τ−1
β I), τ−1/2

u ∼ Half-Cauchy(Au), 1 ≤ i ≤ n,
(21)

where F (·) denotes an inverse link function and X, Z, τβ and Au are defined as in the previous
section. Typical choices of F (·) correspond to logistic regression and probit regression. As
before, introduction of the auxiliary variables a ≡ 0 enables Infer.NET fitting of the Bayesian
mixed model

yi|β, u
ind.∼ Bernoulli(F ({Xβ + Zu}i)),

a|β, u, τu ∼ N
([

β
u

]
,

[
τ−1
β I 0
0 τ−1

u I

])
,

[
β
u

]
∼ N(0, κ−1I), τu| bu ∼ Gamma(1

2 , bu),

bu ∼ Gamma(1
2 , 1/A2

u), 1 ≤ i ≤ n.

(22)

The likelihood for the logistic regression case is specified as follows

VariableArray<bool> y = Variable.Array<bool>(index).Named("y");
y[index] = Variable.BernoulliFromLogOdds(

Variable.InnerProduct(betauWork, cvec[index]));
(23)

while variational message passing is used for fitting purposes. Setting up the prior for τu and
specifying the inference engine is done as in code chunk (17) and (19), respectively. For probit
regression, the last line of (23) is replaced by

y[index] = Variable.IsPositive(Variable.GaussianFromMeanAndVariance(
Variable.InnerProduct(betauWork, cvec[index]), 1)); (24)

and expectation propagation is used
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engine.Algorithm = new ExpectationPropagation(); (25)
Instead of the half-Cauchy prior in (21), a gamma prior with shape and rate equal to 2 is
used for τu in the probit regression model

Variable<double> tauU = Variable.GammaFromShapeAndRate(2, 2); (26)
Figure 4 visualizes the results for Infer.NET and MCMC fitting of a straightforward extension
of model (22) with inverse-logit and probit link functions to a breast cancer data set (Haber-
man 1976). Here our MCMC scheme used a burn-in length of 5000 and obtained a further
5000 samples to be used for inference. This data set contains 306 cases from a study that
was conducted between 1958 and 1970 at the University of Chicago’s Billings Hospital on
the survival of patients who had undergone surgery for breast cancer. The binary response
variable represents whether the patient died within 5 years after operation (died), while 3
predictor variables are used: age of patient at the time of operation (age), year of operation
(year) and number of positive axillary nodes (nodes) detected. The actual model is

diedi|β, u
ind.∼ Bernoulli(F (β0 + f1(agei) + f2(yeari) + f3(nodesi))), 1 ≤ i ≤ 306.

Note that all predictor variables were standardized prior to model fitting and the following
hyperparameters were used: τβ = 10−10, Au = 105, κ = 10−10 and the number of variational
Bayes iterations was 100. Figure 4 illustrates that there is good agreement between the results
from Infer.NET and MCMC.

5. Robust nonparametric regression with the t distribution
A popular model-based approach for robust regression is to model the response variable
to have a t distribution. Outliers occur with moderate probability for low values of the
t distribution’s degrees of freedom parameter (Lange, Little, and Taylor 1989). More recently,
Staudenmayer, Lake, and Wand (2009) proposed a penalized spline mixed model approach
to nonparametric regression using the t distribution.
The robust nonparametric regression model that we consider here is a Bayesian variant of
that treated by Staudenmayer et al. (2009):

yi|β0, β1, u, τε, ν
ind.∼ t

(
β0 + β1 xi +∑K

k=1 uk zk(xi), τ−1
ε , ν

)
, 1 ≤ i ≤ n,

u| τu ∼ N(0, τ−1
u I), β ∼ N(0, τ−1

β I),

τ
−1/2
u ∼ Half-Cauchy(Au), τ

−1/2
ε ∼ Half-Cauchy(Aε),

p(ν) discrete on a finite set N.

(27)

Restricting the prior distribution of ν to be that of a discrete random variable allows Infer.NET
fitting of the model using structured mean field variational Bayes (Saul and Jordan 1996).
This extension of ordinary mean field variational Bayes is described in Section 3.1 of Wand
et al. (2011). Since variational message passing is a special case of mean field variational
Bayes this extension also applies. Model (27) can be fitted through calls to Infer.NET with ν
fixed at each value in N . The results of each of these fits are combined afterwards. Details
are given below.
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(a)

(b)

Figure 4: Breast cancer data. Fitted regression lines and pointwise 95% credible intervals
for logit (a) and probit (b) regression via variational Bayesian inference by Infer.NET and
MCMC.

Another challenge concerning (27) is that Infer.NET does not support t distribution specifi-
cations. We get around this by resorting to the result:

If x| g ∼ N
(
µ, (gτ)−1

)
and g ∼ Gamma(ν2 ,

ν
2 ), then x ∼ t(µ, τ−1, ν). (28)

As before, we use the a ≡ 0 auxiliary data trick described in Section 3 and the half-Cauchy
representation (1). These lead to the following suite of models, for each fixed ν ∈ N , needed
to be run in Infer.NET:

y|β, u, τε ∼ N(Xβ + Zu, τ−1
ε diag(1/g)),

a|β, u, τu ∼ N
([

β
u

]
,

[
τ−1
β I 0
0 τ−1

u I

])
,

[
β
u

]
∼ N(0, κ−1I)

u| τu ∼ N(0, τ−1
u I), gi| ν

ind.∼ Gamma(ν2 ,
ν
2), β ∼ N(0, τ−1

β I),

τu| bu ∼ Gamma(1
2 , bu), bu ∼ Gamma(1

2 , 1/A2
u),

τε| bε ∼ Gamma(1
2 , bε), bε ∼ Gamma(1

2 , 1/A2
ε),

(29)
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where the matrix notation of (8) and (9) is used, g = [g1, . . . , gn]> and τβ, Au and Aε are
user-specified hyperparameters with default values τβ = 10−10, Au = Aε = 105. The prior
for ν was set to be a uniform distribution over the atom set N , which is set equal to 30
equally-spaced numbers between 0.05 and 10 inclusive.
After obtaining fits of (29) for each ν ∈ N , the approximate posterior densities are obtained
from

q(β, u) =
∑
ν∈N

qν(ν)q(β, u|ν), q(τu) =
∑
ν∈N

qν(ν) q(τu|ν),

q(τε) =
∑
ν∈N

q(ν) q(τε|ν), with q(ν) = p(ν|y) =
p(ν)p(y|ν)∑

ν′∈N
p(ν′)p(y|ν′)

,

where p(y|ν) denotes the variational lower bound on the conditional likelihood p(y|ν).
Specification of the prior distribution for g is achieved using the following Infer.NET code:
VariableArray<double> g = Variable.Array<double>(index);
g[index] = Variable.GammaFromShapeAndRate(nu/2, 2/nu).ForEach(index); (30)

while the likelihood in (29) is specified by:

y[index] = Variable.GaussianFromMeanAndPrecision(
Variable.InnerProduct(betauWork, cvec[index]), g[index] * tauEps); (31)

The lower bound log p(y|ν) can be obtained by creating a mixture of the current model with
an empty model in Infer.NET. The learned mixing weight is then equal to the marginal log-
likelihood. Therefore, an auxiliary Bernoulli variable is set up:
Variable<bool> auxML = Variable.Bernoulli(0.5).Named("auxML");
IfBlock model = Variable.If(auxML); (32)

The normal code for fitting the model in (29) is then enclosed with

IfBlock model = Variable.If(auxML); (33)
and

model.CloseBlock(); (34)
Finally, the lower bound log p(y|ν) is obtained from:

double marginalLogLikelihood = engine.Infer<Bernoulli>(auxML).LogOdds; (35)
Figure 5 presents the results of the structured mean field variational Bayes analysis using
Infer.NET fitting of model (29) to a data set on a respiratory experiment conducted by Pro-
fessor Russ Hauser at Harvard School of Public Health, Boston, USA. The data correspond to
60 measurements on one subject during two separate respiratory experiments. The response
variable yi represents the log of the adjusted time of exhalation for xi equal to the time in
seconds since exposure to air containing a particulate matter. The adjusted time of exhalation
is obtained by subtracting the average time of exhalation at baseline, prior to exposure to
filtered air. Interest centers upon the mean response as a function of time. The predictor and
response variable were both standardized prior to Infer.NET analysis. The following hyper-
parameters were chosen: τβ = 10−10, Aε = 105, Au = 105 and κ = 10−10, while the number
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Figure 5: Structured mean field variational Bayesian, based on Infer.NET, and MCMC fit-
ting of the robust nonparametric regression model (27) to the respiratory experiment data.
Left: Posterior mean and pointwise 95% credible sets for the regression function. Right:
Approximate posterior function for the degrees of freedom parameter ν.

of variational Bayes iterations equaled 100. Bayesian inference via MCMC was performed
as a benchmark where a burn-in length of 5000 was used and a further 5000 samples were
obtained for inference.
Figure 5 shows that the variational Bayes fit and pointwise 95% credible sets are close to the
ones obtained using MCMC. Finally, the approximate posterior probability function and the
posterior from MCMC for the degrees of freedom ν are compared. The Infer.NET and MCMC
results coincide quite closely.

6. Semiparametric mixed model
Since semiparametric regression models based on penalized splines fit in the mixed model
framework, semiparametric longitudinal data analysis can be performed by fusion with clas-
sical mixed models (Ruppert et al. 2003). In this section we illustrate the use of Infer.NET
for fitting the class of semiparametric mixed models having the form:

yij|β, u, Ui, τε
ind.∼ N

(
β0 + β> xij + Ui +

K∑
k=1

uk zk(sij), τ−1
ε

)
,

Ui| τU
ind.∼ N(0, τ−1

U ), 1 ≤ j ≤ ni, 1 ≤ i ≤ m,

(36)

for analysis of longitudinal data sets such as the one described in Bachrach, Hastie, Wang,
Narasimhan, and Marcus (1999). Here xij is a vector of predictors that enter the model
linearly and sij is another predictor that enters the model nonlinearly via penalized splines.
For each 1 ≤ i ≤ m, Ui denotes the random intercept for the ith subject. The corresponding
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Bayesian mixed model is represented by

y|β, u, τε ∼ N(Xβ + Zu, τ−1
ε I), u| τU , τu ∼ N

(
0,
[
τ−1
U I 0
0 τ−1

u I

])
,

β ∼ N(0, τ−1
β I), τ−1/2

u ∼ Half-Cauchy(Au), τ−1/2
ε ∼ Half-Cauchy(Aε),

τ
−1/2
U ∼ Half-Cauchy(AU ),

(37)

where y, β and X are defined in a similar manner as in the previous sections and τβ, Au, Aε
and AU are user-specified hyperparameters. Introduction of the random intercepts results in

u =



U1
...
Um
u1
...
uK


, Z =



1 · · · 0 z1(s11) · · · zK(s11)
... . . . ...

... . . . ...
1 · · · 0 z1(s1n1) · · · zK(s1n1)
...

...
...

... . . . ...
0 · · · 1 z1(sm1) · · · zK(sm1)
... . . . ...

... . . . ...
0 · · · 1 z1(smnm) · · · zK(smnm)


.

We again use the auxiliary data vector a ≡ 0 to allow direct Infer.NET fitting of the following
Bayesian longitudinal penalized spline model:

y|β, u, τε ∼ N(Xβ + Zu, τ−1
ε I),

[
β
u

]
∼ N(0, κ−1I),

a|β, u, τU , τu ∼ N

[ β
u

]
,

 τ
−1
β I 0 0
0 τ−1

U I 0
0 0 τ−1

u I


 ,

τu| bu ∼ Gamma(1
2 , bu), bu ∼ Gamma(1

2 , 1/A2
u), τε| bε ∼ Gamma(1

2 , 1/bε),

bε ∼ Gamma(1
2 , 1/A2

ε), τU | bU ∼ Gamma(1
2 , bU ), bU ∼ Gamma(1

2 , 1/A2
U ).

(38)

Specification of the prior distribution for τU can be achieved in Infer.NET in a similar manner
as the prior specification in code chunk (17).
Figure 6 shows the Infer.NET fits of (38) to the spinal bone mineral density data (Bachrach
et al. 1999). A population of 230 female subjects aged between 8 and 27 was followed over
time and each subject contributed either one, two, three, or four spinal bone mineral density
measurements. Age enters the model nonlinearly and corresponds to sij in (36). Data on
ethnicity are available and the entries of xij correspond to the indicator variables for Black
(x1ij), Hispanic (x2ij) and White (x3ij), with Asian ethnicity corresponding to the baseline.
The following hyperparameters were chosen: τβ = 10−10, Aε = 105, Au = 105, AU = 105 and
κ = 10−10, while the number of mean field variational Bayes iterations was set to 100. The
MCMC fits used 5000 burn-in samples and 100,000 samples for inference. Figure 6 suggests
that there exists a statistically significant difference in mean spinal bone mineral density
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Figure 6: Spinal bone mineral density data. Fitted regression line and pointwise 95% credible
intervals based on mean field variational Bayesian inference by Infer.NET and MCMC. The
regression lines represent the smoothed fits for each group in the longitudinal study. Note
that the fitted regression lines for both Infer.NET and MCMC are nearly identical.

between Asian and Black subjects. This difference is confirmed by the approximate posterior
density functions in Figure 7. No statistically significant difference is found between Asian
and Hispanic subjects and between Asian and White subjects.

7. Geoadditive model
We turn our attention to geostatistical data, for which the response variable is geographically
referenced and the extension of generalized additive models, known as geoadditive models
(Kammann and Wand 2003), applies. Such models allow for a pair of continuous predictors,
typically geographical location, to have a bivariate functional impact on the mean response.
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Figure 7: Variational Bayes approximate posterior density functions produced by Infer.NET
and MCMC of the ethnic group parameters when fitting a simple semiparametric mixed model
to the spinal bone mineral density data set.

An example geoadditive model is given by

yi ∼ N
(
f1(x1i) + f2(x2i) + fgeo(x3i, x4i), τ−1

ε

)
, 1 ≤ i ≤ n. (39)

It can be handled using the spline basis described in Section 2.5 as follows:

yi|β, u1, u2, u
geo, τε

ind.∼ N
(
β0 + β1 x1i + β2 x2i + β3 x3i + β4 x4i

+
K1∑
k=1

u1k z1k(x1i) +
K2∑
k=1

u2k z2k(x2i) +
Kgeo∑
k=1

ugeo
k zgeo

k (x3i, x4i), τ−1
ε

)
, 1 ≤ i ≤ n,

(40)

where the z1k and z2k are univariate spline basis functions as used in each of this article’s
previous examples and the zgeo

k are the bivariate spline basis functions, described in Section 2.5.
The corresponding Bayesian mixed model is represented by

y|β, u, τε ∼ N(Xβ + Zu, τ−1
ε I), β ∼ N(0, τ−1

β I),

u =

 u1
u2
ugeo

 ∣∣∣∣∣ τu1, τu2, τgeo ∼ N

0,

 τ
−1
u1 I 0 0
0 τ−1

u2 I 0
0 0 τ−1

geo I


 ,

τ
−1/2
u ∼ Half-Cauchy(Au), τ

−1/2
ε ∼ Half-Cauchy(Aε),

τ−1/2
geo ∼ Half-Cauchy(Ageo),

(41)

where y, β, u and X are defined in a similar manner as in the previous sections and τβ, Au,
Aε and Ageo are user-specified hyperparameters. The Z matrix is

Z =

 z11(x11) · · · z1K1(x11) z21(x21) · · · z2K2(x21) zgeo
1 (x31, x41) · · · zgeo

Kgeo(x31, x41)
... . . . ...

... . . . ...
... . . . ...

z11(x1n) · · · z1K1(x1n) z21(x2n) · · · z2K2(x2n) zgeo
1 (x3n, x4n) · · · zgeo

Kgeo(x3n, x4n)

 .
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Figure 8: Sydney real estate data. Estimated housing prices for the Sydney metropolitan
area for variational Bayesian inference by Infer.NET.

Infer.NET can be used to fit the Bayesian geoadditive model using

y|β, u, τε ∼ N(Xβ + Zu, τ−1
ε I),

[
β
u

]
∼ N(0, κ−1I),

a|β, u, τu, τgeo ∼ N


[
β
u

]
,


τ−1
β I 0 0 0
0 τ−1

u1 I 0 0
0 0 τ−1

u2 I 0
0 0 0 τ−1

geo I


 ,

τu1| bu1 ∼ Gamma(1
2 , bu1), bu1 ∼ Gamma(1

2 , 1/A2
u1), τu2| bu2 ∼ Gamma(1

2 , bu2),

bu2 ∼ Gamma(1
2 , 1/A2

u2), τε| bε ∼ Gamma(1
2 , bε), bε ∼ Gamma(1

2 , 1/1A2
ε),

τgeo| bgeo ∼ Gamma(1
2 , bgeo), bgeo ∼ Gamma(1

2 , 1/A2
geo)

where a ≡ 0 as in all previous examples.
We illustrate geoadditive model fitting in Infer.NET using data on residential property prices
of 37,676 residential properties that were sold in Sydney, Australia, during 2001. The data
were assembled as part of of an unpublished study by A. Chernih and M. Sherris at the
University of New South Wales, Australia. The response variable is the logarithm of the
sale price in Australian dollars. Apart from geographical location, several predictor variables
are available. For this example we selected weekly income in Australian dollars, the distance
from the coastline in kilometers, the particulate matter 10 level and the nitrogen dioxide level.
The model is a straightforward extension of the geoadditive model conveyed by (39)–(41). In
addition, all predictor variables and the dependent variable were standardized before model
fitting. The hyperparameters are set to τβ = 10−10, Aε = 105 = Au1 = . . . = Au4 = Ageo =
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Figure 9: Sydney real estate data. Fitted regression line and pointwise 95% credible intervals
for variational Bayesian inference by Infer.NET.

105, while the number of variational message passing iterations was equal to 100 and κ set to
10−10.
Figure 8 summarizes the housing prices for the Sydney metropolitan area based on the fitted
Infer.NET model, while fixing the four predictor variables at their mean levels. This result
clearly shows that the sale price is higher for houses in Sydney’s Eastern and Northern suburbs
whereas it is strongly decreased for houses in Sydney’s Western suburbs.
Figure 9 visualizes the fitted regression line and pointwise 95% credible intervals for income,
distance from the coastline, particulate matter 10 level and nitrogen dioxide level at a fixed
geographical location (longitude = 151.10◦, latitude =−33.91◦). As expected, a higher income
is associated with a higher sale price and houses close to the coastline are more expensive.
The sale price is lower for a higher particulate matter 10 level, while a lower nitrogen dioxide
level is generally associated with a lower sale price.

8. Bayesian lasso regression
A Bayesian approach to lasso (least absolute shrinkage selection operator) regression was
proposed by Park and Casella (2008). For linear regression, the lasso approach essentially
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involves replacing

βj | τβ
ind.∼ N(0, τ−1

β ) by βj | τβ
ind.∼ Laplace(0, τ−1

β ), (42)

where βj is the coefficient of the jth predictor variable. Replacement (42) corresponds to
changing the form of the penalty from

λ
p∑
j=1

β2
j to λ

p∑
j=1
|βj |.

For frequentist lasso regression (Tibshirani 1996) the latter penalty produces sparse regres-
sion fits, in that the estimated coefficients become exactly zero. In the Bayesian case the
Bayes estimates do not provide exact annihilation of coefficients, but produce approximate
sparseness (Park and Casella 2008).
At this point we note that, during the years following the appearance of Park and Casella
(2008), several other proposals for sparse shrinkage of the βj appeared in the literature (e.g.,
Armagan, Dunson, and Lee 2013; Carvalho, Polson, and Scott 2010; Griffin and Brown 2011).
Their accommodation in Infer.NET could also be entertained. Here we restrict attention to
Laplace-based shrinkage.
We commence with the goal of fitting the following model in Infer.NET:

y|β0, β, τε ∼ N(1β0 +Xβ, τ−1
ε I), βj| τβ

ind.∼ Laplace(0, τ−1
β )

β0 ∼ N(0, τ−1
β0

), τβ ∼ Half-Cauchy(Aβ), τε ∼ Half-Cauchy(Aε).
(43)

The current release of Infer.NET does not support the Laplace distribution, so we require an
auxiliary variable representation in a similar vein to what was used for the t distribution in
Section 5. We first note the distributional statement

x|τ ∼ Laplace(0, τ−1) if and only if x|g ∼ N(0, g), g|τ ∼ Gamma(1, 1
2 τ), (44)

which is exploited by Park and Casella (2008). However, auxiliary variable representation (44)
is also not supported by Infer.NET, due to violation of its conjugacy rules. We get around
this by working with the alternative auxiliary variable set-up:

x| c ∼ N(0, 1/c), c| d ∼ Gamma(M,M d), d|τ ∼ Gamma(1, 1
2 τ), (45)

which is supported by Infer.NET, and leads to good approximation to the Laplace(0, τ−1)
distribution when M is large. For any given M > 0, the density function of x satisfying
auxiliary variable representation (45) is

p(x|τ ;M) =
∫ ∞

0

∫ ∞
0

(2π/c)−1/2 exp
(
−1

2 c x
) (Md)M

Γ(M) cM−1 exp(−Mdc)

× 1
2τ exp

(
−1

2 dτ
)
dc dd

=
τ1/2 Γ

(
M + 1

2

)
2Γ(M)M1/2 1F1

(
M + 1

2 ; 1
2 ; τx

2

4M

)
− 1

2 τ
1/2 |x| 1F1

(
M + 1; 3/2; τx

2

4M

)
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Figure 10: The exact Laplace(0, 1) density function p(x) = 1
2 exp(−|x|) and three approxima-

tions to it based on p(x|τ ;M) for τ = 1 and M = 1, 10, 30.

where 1F1 denotes the degenerate hypergeometric function (e.g., Gradshteyn and Ryzhik
1994). Figure 10 shows p(x|τ ;M) for τ = 1 and M = 1, 10, 30. The approximation to the
Laplace(0, 1) density function is excellent for M as low as 10.
The convergence in distribution of random variables having the density function p(x|τ ;M)
to a Laplace(0, τ−1) random variable as M →∞ may be established using (28) and the fact
that the family of t distributions tends to a Normal distribution as the degrees of freedom
parameter increases, and then mixing this limiting distribution with a Gamma(1, 1

2 τ) variable.
In lieu of (43), the actual model fitted in Infer.NET is:

y|β0, β, τε ∼ N(1β0 +Xβ, τ−1
ε I),

a|β0, β, c1, . . . , cp ∼ N

[ β0
β

]
,

 τ−1
β0

0
0 diag

1≤j≤p
(1/cj)I

 ,
[
β0
β

]
∼ N(0, κ−1I), cj | dj

ind.∼ Gamma(M,M dj),

dj |τβ
ind.∼ Gamma(1, 1

2τβ), τβ|bβ ∼ Gamma(1
2 , bβ), bβ ∼ Gamma(1

2 , 1/A2
β),

τε| bε ∼ Gamma(1
2 , bε), bε ∼ Gamma(1

2 , 1/A2
ε).

(46)

We use κ = 10−10,M = 100, τβ0 = 10−10, Aβ = Aε = 105.
Our illustration of (46) involves data from a diabetes study that was also used in Park and
Casella (2008). The sample size is n = 442 and the number of predictor variables is p = 10.
The response variable is a continuous index of disease progression one year after baseline.
A description of the predictor variables is given in Efron, Hastie, Johnstone, and Tibshirani
(2004). Their abbreviations, used in Park and Casella (2008), are: (1) age, (2) sex, (3), bmi,
(4), map, (5), tc, (6) ldl, (7), hdl, (8), tch, (9) ltg, and (10) glu. The number of mean field
variational Bayes iterations was fixed at 100. The number of burn-in samples and samples
used for inference by the MCMC fit were both set to 5000.
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Figure 11: Approximate posterior density functions of model parameters in fitting (46) to
data from a diabetes study.

Figure 11 shows the fits obtained from both Infer.NET and MCMC. We see that the corre-
spondence is very good, especially for the regression coefficients.

9. Measurement error model
In some situations some variables may be measured with error, i.e., the observed data are
not the true values of those variables themselves, but a contaminated version of these vari-
ables. Examples of such situations include AIDS studies where CD4 counts are known to
be measured with errors (Wu 2002) or air pollution data (Bachrach et al. 1999). Carroll,
Ruppert, Stefanski, and Crainiceanu (2006) offer a comprehensive treatment of measurement
error models. As described there, failure to account for measurement error can result in biased
and misleading conclusions.
Let (xi, yi), 1 ≤ i ≤ n, be a set of predictor/response pairs that are modeled according to

yi|xi, β0, β1, τε
ind.∼ N(β0 + β1xi, τ

−1
ε ), 1 ≤ i ≤ n. (47)

However, instead of observing the xis we observe

wi|xi
ind.∼ N(xi, τ−1

z ), 1 ≤ i ≤ n. (48)

In other words, the predictors are measured with error with τz controlling the extent of the
contamination. In general τz can be estimated through validation data, where some of the xi
values are observed, or replication data, where replicates of the wi values are available. To
simplify exposition we will assume that τz is known. Furthermore, we will assume that the
xis are Normally distributed:

xi|µx, τx
ind.∼ N(µx, τ−1

x ), 1 ≤ i ≤ n, (49)
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where µx and τx are additional parameters to be estimated.
Combining (47), (48) and (49) and, including aforementioned priors for variances, a Bayesian
measurement error model can be represented by:

y|x, β, τε ∼ N(Xβ, τ−1
ε I), w|x ∼ N(x, τ−1

z I), x|µx, τx ∼ N(µx1, τ−1
x I),

β ∼ N(0, τ−1
β I), τ−1/2

ε ∼ Half-Cauchy(Aε),

µx ∼ N(0, τ−1
µx ), and τ

−1/2
x ∼ Half-Cauchy(Ax),

(50)
where β = [β0, β1], X = [1, x], τβ, τµ, Aε and Ax are user-specified constants and the vectors
y and w are observed. We set τβ = τµ = 10−10 and Aε = Ax = 105.
Invoking (1), we arrive at the model

y|x, β, τε ∼ N(Xβ, τ−1
ε I), w|x ∼ N(x, τ−1

z I), x|µx, τx ∼ N(µx1, τ−1
x I)

β ∼ N(0, τ−1
β I), τε| bε ∼ Gamma(1

2 , 1/bε), bε ∼ Gamma(1
2 , 1/A2

ε),

µx ∼ N(0, τ−1
µx ), τx| bx ∼ Gamma(1

2 , 1/bx) and bx ∼ Gamma(1
2 , 1/A2

x).

(51)

Infer.NET 2.6 does not appear to be able to fit the model (51) under the product restriction

q(β, τε, bε, x, µx, τx, bx) = q(β0, β1) q(µx) q(x) q(τε, τx) q(bε, bx).

However, Infer.NET was able to fit this model with

q(β, τε, bε, x, µx, τx, bx) = q(β0)q(β1) q(µx)q(x) q(τε, τx) q(bε, bx). (52)

Unfortunately, fitting under restriction (52) leads to poor accuracy. One possible remedy
involves the centering transformation:

w̃i = wi − w.

Under this transformation, and with diffuse priors, the marginal posterior distributions of β0
and β1 are nearly independent.
Let q̃(β0), q̃(β1), q̃(µx), q̃(x), q̃(τε, τx) and q̃(bε, bx) be the optimal values of q(β0), q(β1),
q(µx), q(x), q(τε, τx) and q(bε, bx) when the transformed w̃is are used in place of the wis. This
corresponds to the transformation on the X matrix

X̃ = XR, where R =
[

1 0
−w 1

]
.

Suppose that

q̃(β0) ∼ N(µ̃q(β0), σ̃
2
q(β0)), q̃(β1) ∼ N(µ̃q(β1), σ̃

2
q(β1)),

q̃(µx) ∼ N(µ̃q(µx), σ̃
2
q(µx)), and q̃(xi) ∼ N(µ̃q(xi), σ̃2

q(xi)), 1 ≤ i ≤ n.

Then we can back-transform approximately using

q(β0, β1) ∼ N(µq(β),Σq(β)), q(µx) ∼ N(µq(µx), σ
2
q(µx)),

q(xi) ∼ N(µq(xi), σ2
q(xi)), 1 ≤ i ≤ n,
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where

µq(β) = R

[
µ̃q(β0)
µ̃q(β1)

]
, Σq(β) = R

[
σ̃2
q(β0) 0
0 σ̃2

q(β1)

]
R>,

µq(µx) = µ̃q(µx) + w, σ2
q(µx) = σ̃2

q(µx),

µq(xi) = µ̃q(xi) + w, σ2
q(xi) = σ̃2

q(xi), 1 ≤ i ≤ n,

q(τε, τx) = q̃(τε, τx) and q(bε, bx) = q̃(bε, bx).
To illustrate the use of Infer.NET we simulated data according to

xi
ind.∼ N(1/2, 1/36), wi|xi

ind.∼ N(xi, 1/100) and yi|xi
ind.∼ N(0.3 + 0.7xi, 1/16) (53)

for 1 ≤ i ≤ n with n = 50. Results from a single simulation are illustrated in Figure 12.
Similar results were obtained from other simulated data sets. From Figure 12 we see rea-
sonable agreement of posterior density estimates produced by Infer.NET and MCMC for all
parameters. The number of mean field variational Bayes iterations was fixed at 100. The
number of burn-in samples was and tge samples used for inference by the MCMC fit was set
to 50000. Extension to the case where the mean of the yis are modeled nonparametrically
is covered in Pham, Ormerod, and Wand (2013). However, the current version of Infer.NET
does not support models of this type. Such versatility limitations of Infer.NET are discussed
in Section 11.1.

10. Missing predictor model
Missing data is a commonly occurring issue in statistical problems. Naïve methods for dealing
with this issue, such as ignoring samples containing missing values, can be shown to be
demonstrably optimistic (i.e., standard errors are deflated), biased or simply an inefficient
use of the data. Little and Rubin (2002) contains a detailed discussion of the various issues
at stake.
Consider a simple linear regression model with response yi with predictor xi:

yi|xi, β0, β1, τε
ind.∼ N(β0 + β1xi, τ

−1
ε ), 1 ≤ i ≤ n. (54)

Suppose that some of the xis are missing and let ri be an indicator for xi being observed.
Specifically,

ri =
{

1, if xi is observed,
0, if xi is missing, for 1 ≤ i ≤ n.

A missing data model contains at least two components:

• A model for the underlying distribution of the variable that is subject to missing data.
We will use

xi|µx, τx
ind.∼ N(µx, τ−1

x ), 1 ≤ i ≤ n. (55)

• A model for the missing data mechanism, which models the probability distribution of
ri.
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Figure 12: Variational Bayes approximate posterior density functions produced by Infer.NET
for simulated data (53).

As detailed in Faes et al. (2011), there are several possible models, with varying degrees of
sophistication, for the missing data mechanism. Here the simplest such model, known as
missing completely at random, is used:

y|x, β, τε ∼ N(Xβ, τ−1
ε I), x|µx, τx ∼ N(µx1, τ−1

x I), ri
ind.∼ Bernoulli(p),

β ∼ N(0, τ−1
β I), τε| bε ∼ Gamma(1

2 , 1/bε), bε ∼ Gamma(1
2 , 1/A

2
ε),

µx ∼ N(0, τ−1
µ ), τx | bx ∼ Gamma(1

2 , bx) and bx ∼ Gamma(1
2 , 1/A2

x),

(56)

where β = [β0, β1], X = [1, x], τβ, τµ, Aε and Ax are user-specified hyperparameters. Again,
we will use τβ = τµ = 10−10 and Aε = Ax = 105.
The simulated data that we use in our illustration of Infer.NET involves the following sample
size and ‘true values’:

n = 50, β0 = 0.3, β1 = 0.7, µx = 0.5, τx = 36, and p = 0.75. (57)



28 Semiparametric Regression Analysis via Infer.NET

Putting p = 0.75 implies that, on average, 25% of the predictor values are missing completely
at random.
Infer.NET 2.6 is not able to fit the model (51) under the product restriction

q(β, τε, bε, xmis, µx, τx, bx) = q(β0, β1) q(xmis) q(τε, τx) q(bε, bx), (58)

where xmis denotes the vector of missing predictors, but is able to handle

q(β, τε, bε, xmis, µx, τx, bx) = q(β0) q(β1) q(xmis) q(τε, τx) q(bε, bx), (59)

and was used in our illustration of Infer.NET for such models.
We also used BUGS to perform Bayesian inference via MCMC as a benchmark for comparison
of results. For similar reasons as in the previous section fitting under this restriction (59)
leads to poor results. Instead we perform the centering transformation

x̃i = xi − xobs,

where xobs is the mean of the observed x values. This transformation makes the marginal
posterior distributions of β0 and β1 nearly independent.
Let q̃(β0), q̃(β1), q̃(µx), q̃(xmis), q̃(τε, τx) and q̃(bε, bx) be the optimal values of q(β0), q(β1),
q(µx), q(xmis), q(τε, τx) and q(bε, bx) when the transformed x̃is are used in place of the xis.
This corresponds to the following transformation of the X matrix:

X̃ = XR, where R =
[

1 0
−xobs 1

]
.

Suppose that

q̃(β0) ∼ N(µ̃q(β0), σ̃
2
q(β0)), q̃(β1) ∼ N(µ̃q(β1), σ̃

2
q(β1)),

q̃(µx) ∼ N(µ̃q(µx), σ̃
2
q(µx)), and q̃(xi) ∼ N(µ̃q(xmis,i), σ̃

2
q(xmis,i)), 1 ≤ i ≤ nmis,

which we back-transform approximately using

q(β0, β1) ∼ N(µq(β),Σq(β)), q(µx) ∼ N(µq(µx), σ
2
q(µx)),

q(xmis,i) ∼ N(µq(xmis,i), σ
2
q(xmis,i)), 1 ≤ i ≤ n,

where
µq(β) = R

[
µ̃q(β0)
µ̃q(β1)

]
, Σq(β) = R

[
σ̃2
q(β0) 0
0 σ̃2

q(β1)

]
R>,

µq(µx) = µ̃q(µx) + xobs, σ2
q(µx) = σ̃2

q(µx),

µq(xmis,i) = µ̃q(xmis,i) + xobs, σ2
q(xmis,i) = σ̃2

q(xmis,i), 1 ≤ i ≤ n,

q(τε, τx) = q̃(τε, τx) and q(bε, bx) = q̃(bε, bx).
Results from a single simulation are illustrated in Figure 13. Here the number of mean
field variational Bayes iterations was fixed at 100, and for MCMC fits the number of burn-in
samples was 5000 and the number of samples used for inference was set to 50000 Similar results
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Figure 13: Variational Bayes approximate posterior density functions produced by Infer.NET
data simulated according to (57).

were obtained from other simulated data sets. From Figure 13 we see reasonable agreement of
posterior density estimates produced by Infer.NET and MCMC for all parameters. Extension
to the case where the mean of y is modeled nonparametrically is covered in Faes et al. (2011).
However, the current version of Infer.NET does not support models of this type.

11. Comparison with BUGS
We now make some comparisons between Infer.NET and BUGS in the context of Bayesian
semiparametric regression.

11.1. Versatility comparison

These comments mainly echo those given in Section 5 of Wang and Wand (2011), and thus
are quite brief. BUGS is much more versatile than Infer.NET, with the latter being subject
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Section Semiparametric Time in seconds Time in seconds
number regression model for Infer.NET for BUGS

3 Simple semiparametric regression 3.14 (0.10) 6.98 (0.01)
4 Generalized additive model (logistic) 4.22 (0.04) 122.48 (5.91)
4 Generalized additive model (probit) 8.45 (0.07) 81.13 (3.63)
5 Robust nonparametric regression 103.61 (2.20) 22.15 (0.10)
6 Semiparametric mixed model 594.99 (3.60) 323.62 (0.70)
7 Geoadditive model 1383.63 (4.25) —— ——
8 Bayesian lasso regression 3.15 (0.05) 253.19 (1.44)
9 Measurement error model 3.72 (0.06) 5.51 (0.16)
10 Missing predictor model 5.57 (0.08) 6.11 (0.09)

Table 3: Average run times (standard errors) in seconds over 20 runs of the methods for each
of the examples in the paper.

to restrictions such as standard distributional forms, conjugacy rules and not being able to
handle models such as (14) without the trick manifest in (16). The measurement error and
missing data regression examples given in Sections 9 and 10 are feasible in Infer.NET for
parametric regression, but not for semiparametric regression such as the examples in Sections
4, 5 and 8 of Marley and Wand (2010). Nevertheless, as demonstrated in this article, there is
a wide variety of semiparametric regression models that can be handled by Infer.NET.

11.2. Accuracy comparison

In general, BUGS can always be more accurate than Infer.NET since MCMC suffers only from
Monte Carlo error, which can be made arbitrarily small via larger sample sizes. The Infer.NET
inference engines, expectation propagation and variational message passing, have inherent
approximation errors that cannot be completely eliminated. However, our examples show
that the accuracy of Infer.NET is quite good for a wide variety of semiparametric regression
models.

11.3. Timing comparison

Table 3 gives some indication of the relative computing times for the examples in the paper.
In this table we report the average elapsed (and standard error) of the computing times
over 100 runs with the number of variational Bayes or expectation propagation iterations
set to 100 and the MCMC sample sizes set to 10000. This was sufficient for convergence
in these particular examples. All examples were run on the third author’s laptop computer
(64 bit Windows 10 Intel i7-7600MX central processing unit at 2.8GHz with 2 hyperthreaded
cores and 32GB of random access memory). We concede that comparison of deterministic
and Monte Carlo algorithms is fraught with difficulties. However, convergence criteria aside,
these times give an indication of the performance in terms of the implementations of each of
the algorithms for particular models on a fast 2018 computer. Note that we did not fit the
geoadditive model in Section 7 via BUGS due to the excessive time required.
Table 3 reveals that Infer.NET offers considerable speed-ups compared with BUGS for most
of the examples. The exceptions are the robust nonparametric regression model of Section 5
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and the semiparametric mixed model of Section 6. The slowness of the robust nonparametric
regression fit is mainly explained by the multiple calls to Infer.NET, corresponding to the
degrees of freedom grid. The semiparametric mixed model is quite slow in the current release
of Infer.NET due to the full sparse design matrices being carried around in the calculations.
Recently developed streamlined approaches to variational inference for longitudinal and mul-
tilevel data analysis (Lee and Wand 2016) offer significant speed-ups. The geoadditive model
of Section 7 is also slow to fit, with the large design matrices being a likely reason.

12. Summary
Through several examples, the efficacy of Infer.NET for semiparametric regression analysis
has been demonstrated. Generally speaking, the fitting and inference is shown to be quite
fast and accurate. Models with very large design matrices are an exception and can take
significant amounts of time to fit using the current release of Infer.NET.
Our survey of Infer.NET in the context of semiparametric regression will aid future analyses of
this type via fast Bayesian inference software, by building upon the examples presented here.
It may also influence future directions for the development of fast Bayesian methodology and
software.
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A. Using Infer.NET to fit a simple semiparametric model
This section provides an extensive description of the Infer.NET program for semiparametric
regression analysis of the onions data set based on model (16) in Section 3. The data are
first transformed as explained in Section 3 and the transformed data are represented by y
and C = [X Z]. Thereafter, the text files K.txt, y.txt, Cmat.txt, sigsqBeta.txt, Au.txt,
Aeps.txt and nIterVB.txt are generated. The first three files contain the number of spline
basis functions, y and C, respectively. The following three text files each contain a single
number and represent the values for the hyperparameters: τβ = 10−10, Aε = 105 and Au =
105. The last file, nIterVB.txt, contains a single positive number (i.e., 100) that specifies
the number of mean field variational Bayes iterations. All these files were set up in R.
The following paragraphs explain the different commands in the C] script. Firstly, all required
C] and Infer.NET libraries are loaded:

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Reflection;
using MicrosoftResearch.Infer;
using MicrosoftResearch.Infer.Distributions;
using MicrosoftResearch.Infer.Maths;
using MicrosoftResearch.Infer.Models;

The values for the hyperparameters, number of variational Bayes iterations and number of
spline basis functions are imported using the commands:

double tauBeta = new DataTable(dir + "tauBeta.txt").DoubleNumeric;
double Au = new DataTable(dir + "Au.txt").DoubleNumeric;
double Aeps = new DataTable(dir + "Aeps.txt").DoubleNumeric;
int nIterVB = new DataTable(dir + "nIterVB.txt").IntNumeric;
int K = new DataTable(dir + "K.txt").IntNumeric;

Reading in the data y and C proceeds as follows:

DataTable yTable = new DataTable(dir + "y.txt");
DataTable C = new DataTable(dir + "Cmat.txt");

These commands make use of the C] object class ‘DataTable’. This class, which was written
by the authors, facilitates the input of general rectangular arrays of numbers when available
in a text file. The following line extracts the number of observations from the data matrix C:

int n = C.numRow;

The observed values of C and y, which are stored in objects C and yTable, are assigned to
the objects cvec and y via the next set of commands:

Vector[] cvecTable = new Vector[n];
for (int i = 0; i < n; i++) {
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cvecTable[i] = Vector.Zero(3 + K);
for (int j = 0; j < 3 + K; j++)

cvecTable[i][j] = C.DataMatrix[i, j];
}
Range index = new Range(n).Named("index");
VariableArray<Vector> cvec = Variable.Array<Vector>(index).Named("cvec");
cvec.ObservedValue = cvecTable;
VariableArray<double> y = Variable.Array<double>(index).Named("y");
y.ObservedValue = yTable.arrayForIN;

The function arrayForIN is member of the class ‘DataTable’ and stores the data as an array
to match the type of y.ObservedValue. The resulting objects are directly used to specify the
prior distributions. First, the commands in code chunk (17) in Section 3 are used to set up
priors for τu and τε, while the trick involving the auxiliary variable a ≡ 0 in (16) is coded as:

Vector zeroVec = Vector.Zero(3 + K);
PositiveDefiniteMatrix betauPrecDummy =

new PositiveDefiniteMatrix(3 + K, 3 + K);
for (int j = 0; j < 3 + K; j++)

betauPrecDummy[j, j] = kappa;
Variable<Vector> betauWork =

Variable.VectorGaussianFromMeanAndPrecision(zeroVec,
betauPrecDummy).Named("betauWork");

Variable<double>[] a = new Variable<double>[3 + K];
for (int j = 0; j < 3; j++) {

a[j] = Variable.GaussianFromMeanAndVariance(betauDummy[j], tauBeta);
a[j].ObservedValue = 0.0;

}
for (int k = 0 ; k < K; k++) {

a[3 + k] = Variable.GaussianFromMeanAndPrecision(betauDummy[3 + k], tauU);
a[3 + k].ObservedValue = 0.0;

}

The command to specify the likelihood for model (16) is listed as code chunk (18) in Sec-
tion 3. The inference engine and the number of mean field variational Bayes iterations are
specified by means of code chunk (19). Finally, the following commands write the estimated
values for the parameters of the approximate posteriors to files named mu.q.betau.txt,
Sigma.q.betau.txt, parms.q.tauEps.txt and parms.q.tauu.txt:

SaveData.SaveTable(engine.Infer<VectorGaussian>(betauWork).GetMean(),
dir + "mu.q.betau.txt");

SaveData.SaveTable(engine.Infer<VectorGaussian>(
betauWork).GetVariance(), dir + "Sigma.q.betau.txt");

SaveData.SaveTable(engine.Infer<Gamma>(tauEps),
dir + "parms.q.tauEps.txt");

SaveData.SaveTable(engine.Infer<Gamma>(tauu), dir + "parms.q.tauu.txt");

These commands involve the C] function named SaveTable, which is a method for the class
‘SaveData’. We wrote SaveTable to facilitate writing the output from Infer.NET to a text file.
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Summary plots, such as Figure 2, can be made in R after back-transforming the approximate
posterior density parameters.
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