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Abstract

The CDF-quantile family of two-parameter distributions with support (0, 1) described
in Smithson and Merkle (2014) and recently elaborated by Smithson and Shou (2017),
considerably expands the variety of distributions available for modeling random variables
on the unit interval. This family is especially useful for modeling quantiles, and also some-
times out-performs the other distributions. The distributions are very tractable, with a
location and dispersion parameter, explicit probability distribution functions, cumulative
distribution functions, and quantiles. They enable a wide variety of quantile regression
models with predictors for the location and dispersion parameters, and simple interpreta-
tions of those parameters. The R package cdfquantreg (Shou and Smithson 2019) (at least
R 3.2.0) presented in this paper includes 36 distributions from the CDF-quantile family.
Separate submodels may be specified for the location and for the dispersion parameters,
with different or overlapping sets of predictors in each. The package offers maximum
likelihood, Bayesian MCMC, and bootstrap estimation methods. Model diagnostics, in-
cluding the gradient, three types of residuals, and the dfbeta influence measures, are
available for evaluating models. The package also provides pseudo-random generators for
all of its distributions. Many of its functions and their usage have forms familiar to R
users, and the documentation is extensive. We also present a SAS macro for general linear
models using the CDF-quantile family that includes many of the same capabilities as the
cdfquantreg package. The paper provides examples of applications to real data-sets.

Keywords: quantile regression, unit interval, distribution, R.

1. Introduction

The most popular two-parameter distribution for modeling random variables on the (0, 1)
interval is the beta distribution (e.g., Ferrari and Cribari-Neto 2004; Smithson and Verkuilen
2006). Less commonly used are the Kumaraswamy (1980), lambda, logit-logistic, simplex,
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and triangular distributions (e.g., Barndorff-Nielsen and Jørgensen 1991; Kotz and Van Dorp
2004). The R (R Core Team 2018) package cdfquantreg (Shou and Smithson 2019) implements
general linear models using the recently developed CDF-quantile family of two-parameter
distributions with support (0, 1) described in Verkuilen and Smithson (2012) and Smithson
and Merkle (2014), and elaborated by Smithson and Shou (2017).
This family may be especially useful for modeling quantiles, and it also sometimes out-
performs the other distributions in fitting data. Modeling with quantile functions, of course,
has an extensive literature focusing mainly on non-parametric and semi-parametric methods
(e.g., Parzen 1979; Gilchrist 2000). More recent relevant semi-parametric transformational
techniques include Geraci and Jones (2015), as implemented in Geraci (2016). The approach
taken in this paper and by Smithson and Shou (2017) is parametric.
The background to the CDF-quantile family begins with Tadikamalla and Johnson (1982)
replacing the standard normal distribution in Johnson’s (1949) SB distribution with the
standard logistic distribution, thus producing the logit-logistic distribution. A natural exten-
sion of this approach is to employ other transformations from (0, 1) to either the real line or
nonnegative half of the real line, and to expand the variety of standard distributions as well.
Alzaatreh, Lee, and Famoye (2013) defined the so-called T-X family as follows:

G (x) =
W (S(x))∫
a

r (t)dt, (1)

where r(t) is the probability density function (PDF) of a random variable, T ∈ [a, b], for
−∞ ≤ a < b ≤ ∞; and W (S(x)) satisfies three properties:

1. W (S(x)) ∈ [a, b],

2. W (S(x)) is differentiable and monotonically non-decreasing, and

3. W (S(x))→ a as x→ −∞ and W (S(x))→ b as x→∞.

The cumulative distribution function (CDF) in Equation 1 can be written in terms of the
CDF of T :

G(x) = R[W (S(x))]. (2)

Aljarrah, Lee, and Famoye (2014) extended this family by proposing that W be the quantile
function of a third random variable, Y , say, whose support is the same as T , an idea whose
origins date at least as far back as Van Zwet (1964). Independently of these researchers,
Verkuilen and Smithson (2012) and Smithson and Merkle (2014, p. 158) described a distri-
bution family that is a special case of Aljarrah et al.’s family and also related to the Johnson
SB family.
Smithson and Shou (2017) refer to this family as the “CDF-quantile” family for the simple
reason that its members can be written as the composition of a CDF and quantile function, and
their paper explicates its characteristics and evaluates its advantages for modeling purposes.
The resulting family of distributions has the following useful properties:

1. Tractability, with explicit PDFs, CDFs, and quantiles.

2. Amenability to both maximum likelihood and Bayesian estimation techniques.
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3. The family enables a wide variety of quantile regression models for random variables on
the (0, 1) interval with predictors for both the location and scale parameters.

4. The family can model four distinct varieties of distribution shapes, with different skew
and kurtosis coverage from the beta or the Kumaraswamy.

5. Explicit quantiles render random generation of variates straightforward.

1.1. The distribution family

Let G(x, µ, σ) denote a CDF with support (0, 1), a real-valued location parameter µ and
positive scale parameter σ. G is defined as

G(x, µ, σ) = F [U(H−1(x), µ, σ)], (3)

where F is a standard CDF with support D1, H is a standard invertible CDF with support
D2 (so that H−1 : (0, 1) → D2 is the corresponding quantile function), and U : D2 → D1
is an appropriate transform for imposing the location and scale parameters. D1 and D2 are
either (−∞,∞) or (0,∞). If D1 = D2 = (−∞,∞) then

U(y, µ, σ) = (y − µ)/σ. (4)

All of the CDF-quantile distributions in the cdfquantreg package have this form. Explications
and examples of members with other combinations of D1 and D2 are provided in Smithson
and Shou (2017). The distributions in Equation 3 are related to the T-X family in Equation 2
by setting F = R and U [H−1(S(x), µ, σ)] = W (S(x)), with H differentiable and x ∈ (0, 1).
This reduces to Equation 3 by restricting S to be the uniform CDF, so that S(x) = x. One
way of interpreting the CDF-quantile family is that G redistributes X by first transforming
it via H−1 to a random variable whose domain is D1, and that variable is rescaled via µ and
σ and then fitted by a location-scale distribution, F . Because X and G both share the unit
interval as their domain, G provides a redistribution of X. Indeed, if H and F are identical,
and µ = 0 and σ = 1, then G simply returns X.
Lemonte and Bazán (2015) also describe a family of distributions with support (0, 1) as an
extension of the Johnson SB family. Theirs is a special case of the CDF-quantile family with
H restricted to the logistic CDF (details available from the first author). Lemonte and Bazán
(2015) do not cite Alzaatreh et al. (2013) or any related papers, so their research efforts
seem to have been unconnected with that group of researchers and with Smithson and his
co-authors.
If F is invertible, then the distribution has an explicit quantile. If G is differentiable then it
has an explicit PDF. All of the distributions in this package share both properties. There is
a relation between pairs of these distributions in which F and H exchange roles. These pairs
are “quantile-duals” of one another in the sense that one’s CDF is the other’s quantile, with
the appropriate parameterization. We name these distributions with the nomenclature F-H
(e.g., Cauchit-logistic and logit-Cauchy). Other relevant properties shared by the members of
the family included in this package are as follows (proofs are provided in Smithson and Shou
2017):
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1. The PDFs g(x, µ, σ) are self-dual in this respect: g (x, µ, σ) = g (1− x,−µ, σ).

2. When H = F the distribution includes the uniform distribution as a special case. Oth-
erwise, all distributions are symmetrical at x = 1

2 when µ = 0.

3. The median is a function solely of the location parameter µ.

4. Simple functions of the median and other particular quantiles yield expressions solely
in the scale parameter σ.

5. The likelihood function is explicit, as are the gradient and Hessian.

1.2. Example distribution

An example is the arcsinh-Cauchy distribution. This distribution employs the hyperbolic
arcsinh CDF

F (z) = 1
e−sinh−1(z) + 1

(5)

and the Cauchy CDF

H (z) = tan−1(z)
π

+ 1
2 . (6)

Inverting H and applying it and F to the equation above for G(x, µ, σ) gives the CDF

G (x, µ, σ) = 1

e−sinh−1
(−µ−cot(πx)

σ

)
+ 1

, (7)

and differentiating it gives the PDF

g (x, µ, σ) = πcsc2(πx)esinh−1
(
µ+cot(πx)

σ

)
σ
√

µ2+σ2+2µ cot(πx)+cot2(πx)
σ2

(
esinh−1

(
µ+cot(πx)

σ

)
+ 1

)2 . (8)

Inverting F and the appropriate substitutions give us the quantile:

G−1 (γ, µ, σ) =
tan−1

(
σ−2γσ

2(γ−1)γ + µ
)

π
+ 1

2 . (9)

As described in property 3 above in Section 1.1, the median is a function of just the location
parameter µ:

G−1
(1

2 , µ, σ
)

= tan−1(µ)
π

+ 1
2 , (10)

and therefore
µ = tan

(
πQ

(1
2

)
− 1

2

)
, (11)

where Q(γ) denotes the quantile at γ. Likewise, as in property 4, the scale parameter σ is a
simple function of selected quantiles:

G−1
(

2−
√

2
2 , µ, σ

)
= tan−1(µ− σ)

π
+ 1

2 , (12)
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so that
σ = µ− tan

[
π

(
2Q

(
2−
√

2
2

)
− 1

)/
2
]
. (13)

It also can be shown that this distribution has a finite density in the limits at 0 and 1, unlike
most distributions on the unit interval: lim

x→0
f (x, µ, σ) = lim

x→1
f (x, µ, σ) = πσ/2.

1.3. CDF-quantile regression

Maximum likelihood inference can be performed for this distribution family, and for all mem-
bers where the gradient also has an explicit expression. For all of the distributions in this
package, the PDF may be written as

g (x, µ, σ) =
q (x) f

(
H−1(x)−µ

σ

)
σ

, (14)

where f is the PDF corresponding to F, and q is the quantile density function corresponding
to H−1. Differentiating the log of g with respect to µ and σ drops q and gives the following:

∂ log (g (x, µ, σ))/∂µ = −
∂f
(
H−1(x)−µ

σ

)/
∂µ

σf
(
H−1(x)−µ

σ

) , (15)

∂ log (g (x, µ, σ))/∂σ =
(µ−H−1(x))

(
∂f
(
H−1(x)−µ

σ

)/
∂σ
)

σ2f
(
H−1(x)−µ

σ

) − 1/σ. (16)

Thus, the requirement for an explicit gradient is that f is differentiable with respect to µ and
σ.
The resulting regression model in our framework has two submodels, the “location submodel”
for µ and the “dispersion submodel” for σ:

Lµ (µ̂) = x>β,
Lσ (σ̂) = z>δ, (17)

where x and z are vectors of predictors and β and δ are vectors of coefficients. The location
submodel link function Lµ is the identity, and the dispersion submodel link function Lσ is
the log. The sets of predictors in x and z may or may not overlap.
Note that because this is maximum likelihood estimation, the parameter estimates may be
seen as determining the shape of both the PDF (or CDF) and the quantile function G−1.
Although this was illustrated in our example distribution, a more general understanding of this
point is available by rewriting Equation 3 by assigning a quantile value G(y, µ(x), σ(z)) = γ,
and rearranging it as in Equation 18.

F
[(
H−1 (y)− µ (x)

)/
σ (z)

]
= γ ⇒(

H−1 (y)− µ (x)
)/
σ (z) = F−1 (γ)⇒

H−1 (y) = µ (x) + σ (z)F−1 (γ)⇒
y = H

[
µ (x) + σ (z)F−1 (γ)

]
= G−1 (γ, µ (x) , σ (z)).

(18)

Note that the third line in this rearrangement also shows why this model is a generalized
linear model (GLM); the parameters are in a linear equation with the inverses of F and H
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acting as link functions. Furthermore, if F is a symmetric distribution around 0 (which it
always is in cdfquantreg) then F−1(0.5) = 0. So the median always is a function only of
µ and the location submodel provides a GLM for the median. Appropriate combinations
with the dispersion submodel provide GLMs for other quantiles. Thus, the predictors in the
location submodel influence the locations of all quantiles, whereas predictors in the dispersion
submodel influence all of them except the median.
As detailed in Smithson and Shou (2017), the maximum likelihood estimators are well-behaved
for the CDF-quantile family. Their sampling distributions closely approximate the normal
distribution for modest sample sizes, and they are relatively stable in the presence of outliers.
In these respects they compare favorably with the beta and Kumaraswamy distributions.

2. The R package cdfquantreg
Despite the fact that doubly-bounded variables are commonplace in many scientific disciplines,
relatively few distributions currently are available in software for fitting models to such data.
Beta distribution models for modeling both location and dispersion parameters are available
in the well-developed betareg package (Cribari-Neto and Zeileis 2010; Grün, Kosmidis, and
Zeileis 2012) and the Stata (StataCorp. 2015) package betafit (Buis, Cox, and Jenkins 2003).
The R package gamlss (Rigby and Stasinopoulos 2005; Stasinopoulos and Rigby 2008) also
provides beta distribution models, including 0- and 1-inflated models. A recent addition to
these resources is the simplexreg package (Zhang, Qiu, and Shi 2016), which also estimates
two-parameter models, using the simplex distribution.
The cdfquantreg package expands the variety of available distributions for such models by
including 36 members of the two-parameter CDF-quantile family of distributions for modeling
random variables on the (0, 1) interval. Separate submodels may be specified for the location
and for the dispersion parameters, with different or overlapping sets of predictors in each. The
package offers maximum likelihood, Bayesian MCMC, and bootstrap estimation methods, on a
par with the aforementioned packages, except for the regression tree and mixture distribution
models available in betareg. Package cdfquantreg is available from the Comprehensive R
Archive Network (CRAN) at http://CRAN.R-project.org/package=cdfquantreg.

2.1. General usage
The main function is cdfquantreg(), and the basic usage is:

cdfquantreg(formula, fd, sd, data)

The formula has two parts, using the Formula package (Zeileis and Croissant 2010). An
example formula is y ~ X1 + X2 | Z1 + Z2, where y on the left of ~ is the dependent variable
to be modeled. The two parts separated by | on the right-hand side include predictors or
independent variables in the model. The X1 + X2 on the left-hand side of | specifies the
location submodel, which is linked to the location parameter of y, µ̂. The Z1 + Z2 on the
right-hand of | specifies the dispersion submodel, which is linked to the dispersion parameter
of y, log(σ̂). A null model part (i.e., intercept only model) can be represented by 1. For
example, y ~ 1 | Z1 + Z2 specifies the location submodel as a null model.
The dependent variable y must have numerical values within the (0, 1) interval. For variables
that are on different scales, the function scaleTR() can be used to linearly transform the

http://CRAN.R-project.org/package=cdfquantreg
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variable into the (0, 1) interval. The user can specify the extent to which the variable’s
values are pushed away from the boundary (i.e., 0 or 1). scaleTR employs the method
suggested by Smithson and Verkuilen (2006) and applies a linear transformation to values
into the open interval (0, 1). It first transforms the values from their original scale by taking
y′ = (y − a)/(b− a), where a is the lowest possible value of that variable and b is the highest
possible value of that variable. Next, it compresses the range to avoid zeros and ones by taking
y” = (y′(N − 1) + c)/N , where N is the sample size and c is the compression parameter. The
smaller the value c is, the closer the extreme values are to 0 or 1, and the greater is the impact
they may have on the estimation of the dispersion parameter in the model. Typically, c is
chosen to be 1/2.
A CDF-quantile distribution can be specified by using the arguments fd and sd, where fd
refers to the parent distribution while sd specifies the child distribution. Specifications of
available distributions using fd and sd are available via the cdfqrFamily(shape = "all")
command. The help display also describes the shape of each distribution. We briefly review
them here; for more details see Smithson and Shou (2017). We have found that these distri-
butions exhibit four kinds of characteristic shapes, which can be described by their density’s
tail behavior at the boundaries of the (0, 1) interval:

1. Logit-logistic subfamily: For some value of s > 0 (depending on the distribution),

• ∀σ < s, lim
x→0

g (x, µ, σ) = lim
x→1

g (x, µ, σ) = 0,

• ∀σ = s, lim
x→0

g (x, µ, σ) = v (−µ) and lim
x→1

g (x, µ, σ) = v (µ), and

• ∀σ > s, lim
x→0

g (x, µ, σ) = lim
x→1

g (x, µ, σ) =∞;

2. Bimodal subfamily: lim
x→0

g (x, µ, σ) = lim
x→1

g (x, µ, σ) = 0;

3. Finite-tailed subfamily: lim
x→0

g (x, µ, σ) = lim
x→1

g (x, µ, σ) = u(σ); and

4. Trimodal subfamily: lim
x→0

g (x, µ, σ) = lim
x→1

g (x, µ, σ) =∞.

The first group is typified by the logit-logistic distribution, and thus is labeled “logit-logistic”.
Its tail behavior depends on σ and for s < 1, the densities at 0 and 1 go to 0, for s > 1 both
densities go to infinity, and for s = 1 the density at 0 is exp(−µ) while at 1 it is exp(µ). The
second group is the “bimodal” distributions, which are capable of having two modes within
the (0, 1) interval because the densities at 0 and 1 always are 0. The third group is labeled
“finite-tailed” distributions, which tend to be unimodal but with finite, identical, densities at
0 and 1 that are a function of σ. The arcsinh-Cauchy distribution described in Section 1.2 is a
member of this subfamily, with density of πσ/2 at 0 and 1. Finally, the fourth group contains
the “trimodal” distributions, which have one mode in the interior of (0, 1) and modes at 0
and 1 with infinite densities at the limit. Examples of the four subfamilies are displayed in
Figure 1 (reproduced from Smithson and Shou 2017, Figures 1–4).
As shown in Table 1, data takes the data set, including both the dependent and predictor
variables, in either matrix or data frame format. The variable (or corresponding column)
names in the data object should correspond to the variable names in the formula. In some
cases, users might use start to specify starting values for the mean and dispersion to improve
convergence. By default, the empirical median and σ of y are used as the starting values for
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Figure 1: Four CDF-quantile subfamilies.

Argument Description
formula A formula object, with the dependent variable (DV) on the left of a ~ opera-

tor, and predictors on the right. For the part on the right of ‘~’, the location
and dispersion submodels are separated by ‘|’. So y ~ X1 + X2 | Z1 + Z2
specifies that the DV is y, X1 + X2 specifies the location submodel, and Z1
+ Z2 specifies the predictors in the dispersion submodel.

fd, sd Arguments that specify the distribution. fd indicates the parent distribution,
while sd indicates the child distribution.

data Specifies the data object which is in a data.frame format. The columns are
variables while the rows are observations.

start User-specified starting values for estimation of the distribution mean and
dispersion.

control Other specifications for the estimation.

Table 1: Overview arguments for cdfquantreg().

the intercepts of the location and dispersion submodels. Finally, the control argument can
be used to specify a list of parameters in the optimization procedure, such as the maximal
number of iterations. The function cdfquantreg() returns a model object of S3 class ‘cdfqr’.
Model outputs can be extracted via common generic functions, which are described in Table 2.

2.2. Random number generator

The cdfquantreg package also contains probability functions that parallel rnorm() (i.e., rq),
qnorm() (i.e., qq), pnorm() (i.e., pq), and dnorm() (i.e., dq). With user-specified µ and σ,
these functions can be used to generate random variates, density values, quantiles, and cu-
mulative density values for a given distribution. These functions can be useful in simulations.
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Function Description
summary(), print() Display the main results of the model fit, including model coef-

ficients, log-likelihood, and gradient.
coef() Extracts the coefficient values of the model object.

deviance(), logLik(), Extract common model fit indices.
AIC(), BIC()

vcov() Extracts the variance-covariance matrix.
predict(), fitted() Extract predicted and fitted values.

residuals() Extracts residuals, including raw, Pearson’s, and deviance resid-
uals.

influence(), dfbeta() Tests the influence of cases, via dfbetas as an influence measure.

Table 2: Generic functions that can be used to extract output.

R> library("cdfquantreg")
R> (x <- rq(5, mu = 0.5, sigma = 1, "arcsinh", "cauchy"))

[1] 0.1048779 0.9005961 0.8874756 0.9287983 0.7308099

R> dq(x, mu = 0.5, sigma = 1, "arcsinh", "cauchy")

[1] 0.920862 1.580366 1.577277 1.580416 1.262578

R> (cpv <- pq(x, mu = 0.5, sigma = 1, "arcsinh", "cauchy"))

[1] 0.1251272 0.8432766 0.8225590 0.8878642 0.5931846

R> qq(cpv, mu = 0.5, sigma = 1, "arcsinh", "cauchy")

[1] 0.1048779 0.9005961 0.8874756 0.9287983 0.7308099

3. Examples
We present five examples applying the cdfquantreg package to real data-analyses. The first
example compares the performance of the CDF-quantile model with a beta-regression model.
The second example illustrates the incorporation of a continuous predictor into a CDF-
quantile model with a categorical moderator. The third example demonstrates how mul-
tivariate models of dependent observations on the (0, 1) interval can be constructed using the
CDF-quantile family and copulas. The fourth applies CDF-quantile distributions to model-
ing data from an experiment, and this is reprised using the SAS (SAS Institute Inc. 2013)
macro in Appendix A. The fifth example demonstrates the use of the cdfquantreg package’s
random-sampling capabilities for a simulation problem.
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3.1. Interpretation of uncertainty phases in the IPCC report

Budescu, Broomell, and Por (2009) conducted an experimental study of lay interpretations
of verbal phrases such as “likely” and “unlikely” to describe uncertainties. They used 13
sentences from the Intergovernmental Panel on Climate Change (IPCC) report (e.g., “The
Greenland ice sheet and other Arctic ice fields likely contributed no more than 4 m of the ob-
served sea level rise.”). They asked participants to provide lower, “best”, and upper numerical
estimates of the probabilities to which they believed each sentence referred.
The IPCC data-set includes the lower, best, and upper estimates for the phrases “likely” and
“unlikely” in six IPCC report sentences. Half of the six sentences used the term “likely” and
the remaining used “unlikely”. The “likely” sentences are categorized as having a “positive”
term while the “unlikely” sentences are categorized as having a “negative” term. A dummy
variable named valence codes the responses in the positive term condition as 1, and those
in the negative term condition as 0.
Using beta regression, Smithson, Budescu, Broomell, and Por (2012) reported two main
findings. The first was that the “best” estimates were nearer to the middle of the [0, 1] interval
in the negative-term condition than in the positive-term condition (estimated coefficient in
the mean submodel = 0.150, p = .004, indicating that the mean is further from 1/2 in
the positive-term condition). In addition, the responses were more variable (i.e., there was
less consensus among respondents) in the negative-term than in the positive-term conditions
(estimated coefficient in the precision submodel = 0.603, p < .001, indicating less variability
in the positive-term condition).
We retest both findings by modeling the data with members of the CDF-quantile distribution
family. The raw estimates themselves are in the variable named prob. The estimates for the
negative-valence sentences were subtracted from 1 to render them directly comparable to the
estimates for the positive-valence sentences. This variable was then transformed into a new
variable named probm for shifting values away from the boundary values of 0 and 1.
A CDF-quantile model can be fitted in the similar way as a regression model that uses
lm(). Here, we estimate a model using the t2-t2 distribution (where both parent and child
distributions are t-distributions with 2 degrees of freedom). The t2-t2 CDF is

G (x, µ, σ) = 1/2 + (w (x)− µ)/σ

2
√

2 + ((w (x)− µ)/σ)2
, (19)

where w (x) = q ·
√

(1− 2x)2
/√

2
√

(1− x)x, with x ∈ (0, 1) and q = −1 when x < 1/2 and
q = 1 when x ≥ 1/2. The t2-t2 distribution is a member of the finite-tailed subfamily and it
has density σ2 at 0 and 1.

R> library("cdfquantreg")
R> data("cdfqrExampleData", package = "cdfquantreg")
R> dataipcc <- subset(IPCC, mid == 1 & high == 0)
R> fit <- cdfquantreg(probm ~ valence | valence, fd = "t2", sd = "t2",
+ data = dataipcc)

The summary of model fit results are extracted by using summary(fit):

R> summary(fit)
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Family: t2 t2
Call: cdfquantreg(formula = probm ~ valence | valence, data = dataipcc,

fd = "t2", sd = "t2")

Mu coefficients (Location submodel)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.79843 0.03436 23.240 < 2e-16 ***
valence -0.18600 0.04120 -4.514 6.35e-06 ***

Sigma coefficients (Dispersion submodel)
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.36789 0.04500 -8.176 2.22e-16 ***
valence -0.42067 0.06228 -6.755 1.43e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Converge: successful completion
Log-Likelihood: 435.2941

Gradient: -0.0114 -0.01 0.0294 0.0203

The first part of the output labeled as “Mu coefficients” displays the parameter estimation
results for the location submodel. The results show that valence had a significant influence on
the median of participants’ probability estimates. The median of the probability estimates in
the positive-term condition is found to be lower than in the negative-term condition (estimated
coefficient = −0.186, p < .001). This is the opposite of the finding in Smithson et al. (2012)
(for a detailed comparison of their model with this one, see Smithson and Shou 2017). The
second part of the output shows the estimation results for the dispersion submodel. Our
model agrees with the finding reported by Smithson et al. (2012), because the probability
estimates in the positive-term condition have less dispersion (i.e., more consensus) than those
in the negative-term condition (estimated coefficient = −0.4207, p < .001). Also noteworthy
is that the log-likelihood for the beta regression model is 264.7 whereas the log-likelihood for
the t2-t2 model is 435.3, a substantially better fit than the beta.
General fit plots can be obtained via plot() (see Figure 2). For evaluating the fit for each of
the two conditions, we can examine the probability distribution given µ̂ and σ̂ estimated by the
model. For the negative-term condition (valence = 0) µ̂ = 0.7984, and σ̂ = exp(−0.3679). For
the positive-term condition (valence = 1) µ̂ = 0.7984−0.1860, and σ̂ = exp(−0.3679−0.4207).
Figure 3 shows the histograms of the responses in both conditions generated by the truhist()
function of the MASS package (Venables and Ripley 2002), and the PDFs estimated by the
CDF-quantile model using the t2-t2 distribution.

R> plot(fit)
R> ind <- which(dataipcc$valence == 0)
R> coefs <- coef(fit); fitv <- fitted(fit)
R> dneg <- dq(fitv[ind], coefs[1], exp(coefs[3]), "t2", "t2")
R> dpos <- dq(fitv[-ind], sum(coefs[1:2]), exp(sum(coefs[3:4])), "t2", "t2")
R> neg <- data.frame(x = fitv[ind], d = dneg)[order(fitv[ind]), ]
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Figure 2: Compare model estimates and a histogram whose area equals 1.
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Figure 3: Compare conditional model estimates and histograms whose area equals 1.

R> pos <- data.frame(x = fitv[-ind], d = dpos)[order(fitv[-ind]), ]
R> library("MASS")
R> par(mfrow = c(1, 2), mar = c(2, 2, 3, 0), oma = c(2, 2, 0, 0))
R> truehist(dataipcc$probm[ind], col = "white", ylim = c(0, 3),
+ main = "Negative Valence", ylab = "Density")
R> lines(neg$x, neg$d, lty = 1, lwd = 2)
R> truehist(dataipcc$probm[-ind], col = "white", ylim = c(0, 3),
+ main = "Positive Valence", ylab = "Density")
R> lines(pos$x, pos$d, lty = 1, lwd = 2)
R> mtext("Best Estimate", side = 1, outer = TRUE, line = 0.5)
R> mtext("Density", side = 2, outer = TRUE, line = 0.5)

Although this is not a statistics paper, given that non-parametric and semi-parametric quan-
tile regression methods are the conventional default approach to modeling quantiles, a brief
comparison of quantile regression with the CDF-quantile model in this example may be worth-
while. The quantile regression model for this example requires a unique intercept and regres-
sion coefficient for every quantile we wish to estimate, i.e., 2 × k where k is the number of
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quantiles. For example, for the 25th, 50th, and 75th percentiles, the quantile regression in-
tercepts estimated via the quantreg package (Koenker 2018) are {0.470, 0.749, 0.829} and the
coefficients for the valence variable are {0.119,−0.050,−0.040}. Of course, in this situation
these simply reproduce the empirical quantiles. The CDF-quantile model, on the other hand,
estimates all (uncountably infinitely many) quantiles with just the 4 parameters in its location
and dispersion submodels. Plotting the two models’ CDFs provides an illustration of their
similarities and differences adequate for our purposes.

R> xx <- seq(0.005,0.995,.005)
R> cdf_neg <- pq(xx, coefs[1], exp(coefs[3]), "t2", "t2")
R> cdf_pos <- pq(xx, sum(coefs[1:2]), sum(coefs[1:2]), "t2", "t2")
R> fitqtot <- quantreg::rq(probm ~ valence, tau = xx, data = dataipcc)

Figure 4 shows that the noticeable difference between the two models is in the lower half of the
distribution when valence is negative. The quantile regression model is capturing a “bump” in
the distributions that is not able to be accounted for with the limited number of parameters
in the CDF-quantile model. But this is simply because, with its arbitrarily many parameters,
in the two-sample case the quantile regression model is simply repeating the empirical CDFs
for the two samples. Moreover, we also note that there is very close agreement between
the two models for the upper half of the distribution when valence is negative and for the
entire distribution when valence is positive. All this is achieved with just two parameters in
each of the CDF-quantile submodels. The user must then decide whether to prefer the more
parsimonious parametric model or the slightly better-fitting so-called non-parametric model.

R> par(mfrow = c(1, 2))
R> plot(xx, cdf_neg, type = "l", lty = 1, main = "negative valence",
+ xlab = "probability", ylab = "cdf")
R> lines(coef(fitqtot)[1, ], xx, lty = 2)
R> plot(xx, cdf_pos, type = "l", lty = 1, main = "positive valence",
+ xlab = "probability", ylab = "cdf")
R> lines(colSums(coef(fitqtot)[1:2, ]), xx, lty = 2)
R> legend("topleft", c("Cdf-quantreg", "Quantreg"), lty = 1:2)

The relative influence of individual observations can be assessed via influence(), which
returns dfbetas for each of the parameters in the model. A dfbeta value for an observation
is the scaled difference between a parameter value estimated in a model M1 by using the
entire sample and a parameter value estimated in a model M2 by using the sample with this
particular observation deleted. The scale factor is the standard error of the parameter when
it is estimated in M2 (Belsley, Kuh, and Welsch 2005). Figure 5 shows the dfbeta values for
each of the four parameters.

R> infs <- influence(fit, plot = TRUE)

3.2. A continuous predictor and a categorical moderator

To supplement the preceding example, here we present a model that involves a continuous
predictor whose effect is moderated by a categorical covariate. The data are, as in the previous



14 cdfquantreg: CDF-Quantile Regression in R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Negative Valence

Probability

C
D
F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Positive Valence

Probability

C
D
F

Cdf-quantreg
Quantreg

Figure 4: Compare quantile regression and CDF-quantile model CDFs.
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Figure 5: Influence diagnosis by dfbeta values for IPCC data analysis.

example, people’s interpretations of the IPCC report verbal uncertainty phrase “likely” in the
sentence “Temperatures of the most extreme hot nights, cold nights and cold days are likely
to have increased due to anthropogenic forcing.” However, these data are from a different
study involving samples from 27 countries reported by Budescu, Por, Broomell, and Smithson
(2014). Our illustration uses the Australian sample of 393 respondents. The (reduced) data-
set contains each participant’s age, gender (0 = male, 1 = female), the probability that they
consider corresponds to their most typical use of “likely”, and their best estimate of the
probability intended in the sentence from the IPCC report.
Our model investigates the influence that a person’s own probability that they associate
with “likely” may have had on the probability they nominated for the IPCC report sentence
containing that term. The hypothesis being tested is that the personal probability is positively
related to the nominated probability. The first model tested (mod0 below) fits a conditional
logit-logistic distribution and verifies that this relationship exists and is positive (the location
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submodel coefficient for cfprob, the personal probability, is 2.1666).

R> mod0 <- cdfquantreg(bestprob ~ cfprob | 1, fd = "logit",
+ sd = "logistic", data = IPCCAUS)
R> summary(mod0)

Family: logit logistic
Call: cdfquantreg(formula = bestprob ~ cfprob|1, data=IPCCAUS,
fd="logit", sd="logistic")
Mu coefficients (Location submodel)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.6791 0.1518 -4.474 7.69e-06 ***
cfprob 2.1666 0.2431 8.912 < 2e-16 ***

Sigma coefficients (Dispersion submodel)
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.67413 0.04301 -15.67 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Converge: successful completion
Log-Likelihood: 138.7996
Gradient: 3e-04 3e-04 -6e-04

The second model (mod1 below) tests whether gender moderates the influence of personal
probability on the probability given as an interpretation of “likely” in the IPCC report sen-
tence. The interpretation of the moderator effect from gender is facilitated by using the qq
function to plot the model predicted median for values of cfprob from one standard deviation
below to one standard deviation above its mean. The conditional median for the logit-logistic
distribution in our model is 1/(1 + exp (−β0 − β1x1 − β2x2 − β12x1x2)), where x1 is cfprob,
x2 is gender (rescaled to take values 0 and 1), β0 = −0.3385, β1 = 1.5887, β2 = −0.7258,
and β3 = 1.2204. The females in this sample were more strongly influenced than the males
by their personal probability, as the slope of their medians is steeper than the males’ slope
(see Figure 6).

R> mod1 <- update(mod0, . ~ . + cfprob * gender)
R> anova(mod0, mod1)

Likelihood ratio tests

Resid. Df -2Loglik Df LR stat Pr(>Chi)
1 390 -277.60
2 388 -283.92 2 6.3229 0.04236 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(mod1)
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Figure 6: Effect of personal probability for “likely” on IPCC sentence interpretation by females
and males.

Family: logit logistic
Call: cdfquantreg(formula = bestprob ~ cfprob + gender + cfprob:gender | 1,
data = IPCCAUS, fd = "logit", sd = "logistic")
Mu coefficients (Location submodel)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3385 0.2069 -1.636 0.1018
cfprob 1.5887 0.3336 4.763 1.91e-06 ***
gender -0.7258 0.3028 -2.397 0.0165 *
cfprob:gender 1.2204 0.4851 2.516 0.0119 *

Sigma coefficients (Dispersion submodel)
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.68075 0.04296 -15.85 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Converge: successful completion
Log-Likelihood: 141.9611
Gradient: 0 0 0 0 0

3.3. Multivariate models of the IPCC data using copulas

An attractive approach to constructing multivariate distributions uses copulas, which are
functions of CDFs and quantile functions. The CDF-quantile family has explicit CDFs, so
copulas may be used to construct multivariate models of dependent doubly-bounded random
variables. The most direct method is to select a copula, C (e.g., T, Clayton, or Frank), and
derive an explicit expression for C(G1, G2, . . .), where C is the appropriate copula function
and Gj is the jth CDF. If C is differentiable in all of its parameters, then it has an explicit log-
likelihood function and thereby (in principle) is amenable to maximum likelihood estimation
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of its parameters. In R the copula package (Hofert, Kojadinovic, Maechler, and Yan 2017;
Yan 2007; Kojadinovic and Yan 2010) obtains maximum likelihood estimates of the marginal
distribution and copula parameters simultaneously. Moreover, user-defined marginal distri-
butions can be used in copula, so long as the CDF, PDF, and quantile functions (vectorized)
are available. The cdfquantreg package provides all three functions.
We illustrate the application of cdfquantreg and copula to modeling multivariate distribu-
tions of variables with support on the unit interval by constructing a trivariate copula for
the IPCC example data. The trivariate copula models the data from questions 4–6 (the
positive-valence probability expression “likely”). The copula package offers two alternative
estimation methods: a one-stage procedure in which the package estimates the marginal dis-
tribution and association parameters simultaneously, and a two-stage procedure in which the
marginal distribution parameters are estimated first and the association parameters there-
after. In the latter procedure, the quantile functions G−1

j are applied using the marginal
parameter estimates to generate pseudo-observations with uniform marginals, and the asso-
ciation parameters are then estimated from those pseudo-observations. We compare both
procedures, using cdfquantreg to estimate the marginal parameters in the two-stage process.
The marginal distributions are t2-t2 and the copula is the T copula, with degrees of freedom
as a free parameter.
The dialog below displays the way to form a trivariate t-copula that allows three association
parameters.

R> library("cdfquantreg")
R> library("lmtest")
R> library("copula")
R> dqt2 <- function(x, mu, sigma) dq(x, mu, sigma, "t2", "t2")
R> qqt2 <- function(x, mu, sigma) qq(x, mu, sigma, "t2", "t2")
R> pqt2 <- function(x, mu, sigma) pq(x, mu, sigma, "t2", "t2")
R> tCop1 <- tCopula(c(0.6, 0.3, 0.3), dim = 3, dispstr = "un",
+ df.fixed = FALSE)
R> margin1 <- list(mu = 1.5, sigma = 1)
R> MvdPV1 <- mvdc(copula = tCop1, margins = c("qt2", "qt2", "qt2"),
+ paramMargins = list(margin1, margin1, margin1))
R> start <- c(1.5, 1, 1.5, 1, 1.5, 1, 0.6, 0.3, 0.3, 4)
R> copfitPV1 <- fitMvdc(data = as.matrix(IPCC_Wide[, 1:3]),
+ mvdc = MvdPV1, start = start,
+ optim.control = list(trace = TRUE, maxit = 2000))

It is also possible to form a model that restricts the associations to a single parameter (as in
sphericity).

R> tCop2 <- tCopula(0.5, dim = 3, dispstr = "ex", df.fixed = FALSE)
R> MvdPV2 <- mvdc(copula = tCop2, margins = c("qt2", "qt2", "qt2"),
+ paramMargins = list(margin1, margin1, margin1))
R> start <- c(1.5, 1, 1.5, 1, 1.5, 1, 0.5, 4)
R> copfitPV2 <- fitMvdc(as.matrix(IPCC_Wide[, 1:3]),
+ MvdPV2, start = start,
+ optim.control = list(trace = TRUE, maxit = 2000))
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The likelihood-ratio tests using the lmtest package (Zeileis and Hothorn 2002) and AIC values
indicate that a single-parameter association model fits the data as well as its three-parameter
counterpart.

R> lrtest(copfitPV1, copfitPV2)

Likelihood ratio test

Model 1: copfitPV1
Model 2: copfitPV2
#Df LogLik Df Chisq Pr(>Chisq)
1 10 336.36
2 8 336.25 -2 0.2359 0.8887

R> AIC(copfitPV1, copfitPV2)

df AIC
copfitPV1 10 -652.7272
copfitPV2 8 -656.4913

The next dialog shows the two-stage estimation procedure. It begins with the cdfquantreg es-
timates of the marginal parameters, generates the uniformly-distributed pseudo-observations,
and then estimates a one-parameter trivariate copula using the pseudo-observations.

R> fit4 <- cdfquantreg(Q4 ~ 1 | 1, fd = "t2", sd = "t2", data = IPCC_Wide)
R> fit5 <- update(fit4, Q5 ~ 1 | 1)
R> fit6 <- update(fit4, Q6 ~ 1 | 1)
R> udat <- cbind(pqt2(IPCC_Wide[, 1], coef(fit4)[1], exp(coef(fit4)[2])),
+ pqt2(IPCC_Wide[, 2], coef(fit5)[1], exp(coef(fit5)[2])),
+ pqt2(IPCC_Wide[, 3], coef(fit6)[1], exp(coef(fit6)[2])))
R> copfitudatPV <- fitCopula(tCop2, udat, start = c(0.5, 2.5))
R> loglikMvdc(c(coef(fit4)[1], exp(coef(fit4)[2]),
+ coef(fit5)[1], exp(coef(fit5)[2]), coef(fit6)[1],
+ exp(coef(fit6)[2]), coef(copfitudatPV)),
+ as.matrix(IPCC_Wide)[, 1:3], MvdPV2)

[1] 334.5089

Table 3 displays the estimates from the one- and two-stage models, along with their respective
log-likelihoods. The ρ̂ estimate denotes the Spearman’s correlation coefficient and the ψ̂
estimate denotes the degrees of freedom in the T copula. Both models have similar log-
likelihoods and fairly similar parameter estimates. The standard errors for the cdfquantreg
estimates are somewhat larger than they are for the copula estimates. However, differences
such as these are not surprising given that these two packages are using different estimation
algorithms as well as different methods.
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Positive valence 1-stage 2-stage
Log-likelihood 336.25 334.51
Copula:
Parameter Estim. S.err. Estim. S.err.
ρ̂ 0.430 0.047 0.438 0.186
ψ̂ 3.265 0.474 3.299 —
Marginal dist.: cdfquant.
Parameter Estim. S.err. Estim. S.err.
µ̂4 0.634 0.039 0.643 0.045
σ̂4 0.480 0.034 0.517 0.039
µ̂5 0.582 0.032 0.553 0.035
σ̂5 0.385 0.027 0.401 0.030
µ̂6 0.632 0.035 0.653 0.039
σ̂6 0.417 0.030 0.451 0.034

Table 3: Estimates for one-stage and two-stage models.

3.4. Probability estimates under ambiguity and conflict

Smithson, Priest, Shou, and Newell (2018) conducted a study to examine lay people’s probabil-
ity judgments when receiving ambiguous or conflicting information. In each of four scenarios,
participants were presented with two pairs of expert forecasts regarding the number of days
on which it would rain or the probability of raining. The forecasts were presented in pairs.
For example, one expert predicts that 4 to 6 days out of the next 7 days will have rain, while
another predicts that 2 to 5 days out of the next 7 days will have rain. Based on this pair of
estimates (i.e., [4, 6] and [2, 5]), participants were requested to provide their own estimates
of how many days out of the 7 days will have rain. There were four scenarios in the study,
in which the first pair of estimates in Scenarios 1, 3 and 4 had identical intervals. One of the
research questions was whether the identical intervals yielded identical distributions of best
estimates by participants even though they were presented in different contexts.
To answer this question, we fitted the response variable using cdfquantreg() with several
distributions. We examined whether the responses in different scenarios had significantly
different location and/or dispersion parameters. The outputs below show the likelihood-
ratio tests assessing these effects via model comparisons. For all of the distributions fitted,
the location parameters did not significantly differ across the scenarios, but the dispersion
parameters did. We illustrate these findings with three of the distributions and their respective
models.
The results of model comparison for models using t2-t2 distribution are displayed below. The
likelihood-ratio tests show that the model with a scenario effect in the location submodel
does not improve model fit over the null model, but a model with scenario effects in both the
location and dispersion submodels does. This is due to the effect of scenario on dispersion.

R> Ambdata$prob <- scaleTR(Ambdata$value, high = 70, low = 0, N = 1570,
+ scale = 0.5)
R> fit1_t2t2 <- cdfquantreg(prob ~ 1 | 1, fd = "t2", sd = "t2",
+ data = Ambdata)
R> fit2_t2t2 <- update(fit1_t2t2, . ~ + scenario | 1)
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R> fit3_t2t2 <- update(fit2_t2t2, . ~ . | + scenario)
R> anova(fit1_t2t2, fit2_t2t2, fit3_t2t2)

Likelihood ratio tests

Resid. Df -2Loglik Df LR stat Pr(>Chi)
1 4708 -5226.1
2 4706 -5226.4 2 0.3285 0.84854
3 4704 -5233.5 2 7.0555 0.02937 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model comparisons for models using the logit-logistic distribution are shown next. As
with the t2-t2 distribution, there appears to be a dispersion submodel effect but no effect in
the location submodel.

R> fit1_loglog <- cdfquantreg(prob ~ 1 | 1, fd = "logit", sd = "logistic",
+ data = Ambdata)
R> fit2_loglog <- update(fit1_loglog, . ~ + scenario | 1)
R> fit3_loglog <- update(fit2_loglog, . ~ . | + scenario)
R> anova(fit1_loglog, fit2_loglog, fit3_loglog)

Likelihood ratio tests

Resid. Df -2Loglik Df LR stat Pr(>Chi)
1 4708 -3237.5
2 4706 -3240.4 2 2.9604 0.227592
3 4704 -3251.0 2 10.5527 0.005111 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The model comparisons for models using the arcsinh-t2 distribution, displayed below, yield
the same pattern in the model comparisons as the preceding distributions.

R> fit1_ac <- cdfquantreg(prob ~ 1 | 1, fd = "arcsinh", sd = "t2",
+ data = Ambdata)
R> fit2_ac <- update(fit1_ac, . ~ + scenario | 1)
R> fit3_ac <- update(fit2_ac, . ~ . | + scenario)
R> anova(fit1_ac, fit2_ac, fit3_ac)

Likelihood ratio tests

Resid. Df -2Loglik Df LR stat Pr(>Chi)
1 4708 -5800
2 4706 -5801 2 1.01 0.6
3 4704 -5830 2 29.31 4.3e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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However, the three distribution models provide different conclusions regarding where the
effect in the dispersion submodel occurred (as shown below). The results of the t2-t2 model
suggest that the dispersion is similar in Scenarios 3 and 1 (Scenario 1 is the base comparison
group), whereas the dispersion in Scenario 4 is significantly smaller than in Scenario 1. The
logit-logistic model, on the other hand, finds that Scenarios 4 and 1 have similar dispersion
whereas the dispersion in Scenario 3 is significantly greater than in Scenario 1. Finally, the
arcsinh-t2 model suggests that the estimates in both Scenarios 3 and 4 have significantly
less dispersion than Scenario 1. Which models should be trusted more? Returning to the
log-likelihoods in the output above, we can see that the arcsinh-t2 and t2-t2 models fit the
data considerably better than the logit-logistic model, with the arcsinh-t2 model best of the
three. The pattern of the coefficients is similar for the arcsinh-t2 and t2-t2 models as well,
whereas this pattern is not to be found in the logit-logistic model. We should therefore regard
the arcsinh-t2 and t2-t2 models as more trustworthy.

R> options(digits = 3)
R> fit3_t2t2$coefficients$dispersion

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.3640 0.0298 -45.757 0.00000
scenarioStm3 -0.0338 0.0438 -0.772 0.44036
scenarioStm4 -0.1140 0.0437 -2.610 0.00904

R> fit3_loglog$coefficients$dispersion

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8940 0.0222 -40.204 0.00000
scenarioStm3 0.0969 0.0316 3.068 0.00216
scenarioStm4 0.0199 0.0316 0.628 0.52991

R> fit3_ac$coefficients$dispersion

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.9774 0.0375 -52.71 0.00000
scenarioStm3 -0.2150 0.0570 -3.77 0.00016
scenarioStm4 -0.2939 0.0571 -5.15 0.00000

3.5. Simulating polarized attitudes

Suppose we wish to simulate populations in which an attitude on a controversial issue is
equally polarized, and we are interested in the effects of the extremity of this polarization. In
this case, the attitude in question is the proportion of one’s investment portfolio that should
be invested in high-risk but potentially very high-return shares. A conventional approach
would be to use a mixture of two distributions (e.g., two beta distributions), but a convenient
and simple method is to employ one of the bimodal distributions from the family in the
cdfquantreg package.
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Figure 7: Illustration of simulating polarized distributions.

The logit-Cauchy distribution, for instance, has a simple quantile function and we may use
it to control the degree of polarization in the simulated population. The 25th and 75th
percentiles for populations with µ = 0 (and therefore a median of .5) are

G−1(.25, 0, σ) = tan−1(−σ log(3))
π

+ 1
2

and
G−1(.75, 0, σ) = tan−1(σ log(3))

π
+ 1

2 .

Solving their difference for σ gives

σ =
tan

(πq
2
)

log(3) ,

where q is the difference between these quantiles. To simulate from three populations in
which the 25th and 75th percentiles are separated by q = .25, .5, and .75, we assign to σ
values 0.377033, 0.910239, and 2.19751, respectively. These yield a unimodal and two bimodal
distributions. The second distribution has modes at approximately .15 and .85, while the third
has modes at about .05 and .95. Figure 7 illustrates the shapes of the three distributions using
the PDF dq().

R> s <- seq(0.0001, 0.9999, length.out = 10000)
R> d1 <- dq(s, mu = 0, sigma = 0.377033, "logit", "cauchy")
R> d2 <- dq(s, mu = 0, sigma = 0.910239, "logit", "cauchy")
R> d3 <- dq(s, mu = 0, sigma = 2.19751, "logit", "cauchy")
R> par(mfrow=c(1, 3), mar = c(2,2,2,1), oma = c(3, 3, 0, 0))
R> plot(d1, type = "l"); plot(d2, type = "l"); plot(d3, type = "l")
R> mtext("Case Number", side = 1, outer = TRUE, line = 1)
R> mtext("density", side = 2, outer = TRUE, line = 1)

To illustrate how to simulate these distributions, we randomly generate 10,000 replicates from
each of these distributions and ascertain that the samples accurately reproduce the relevant
population characteristics.

R> simout <- matrix(data = c(rep(0, 12)), nrow = 3, ncol = 3)
R> rownames(simout) <- c("s1", "s2", "s3")
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R> colnames(simout) <- c("p25", "p50", "p75")
R> s1 <- rq(10000, mu = 0, sigma = 0.37703, "logit", "cauchy")
R> s2 <- rq(10000, mu = 0, sigma = 0.91024, "logit", "cauchy")
R> s3 <- rq(10000, mu = 0, sigma = 2.19751, "logit", "cauchy")
R> simout[1, ] <- quantile(s1, c(.25, .5, .75))
R> simout[2, ] <- quantile(s2, c(.25, .5, .75))
R> simout[3, ] <- quantile(s3, c(.25, .5, .75))
R> simout

p25 p50 p75
s1 0.370 0.497 0.626
s2 0.252 0.500 0.755
s3 0.125 0.499 0.878

We can compare the simulated quantiles with the population quantiles provided by qq():

R> s1 <- qq(c(.25, .5, .75), mu = 0, sigma = 0.37703, "logit", "cauchy")
R> s2 <- qq(c(.25, .5, .75), mu = 0, sigma = 0.91024, "logit", "cauchy")
R> s3 <- qq(c(.25, .5, .75), mu = 0, sigma = 2.19751, "logit", "cauchy")
R> rbind(s1, s2, s3)

[,1] [,2] [,3]
s1 0.375 0.5 0.625
s2 0.250 0.5 0.750
s3 0.125 0.5 0.875

4. Conclusion
The cdfquantreg package and SAS macro offer researchers the ability to construct and test
GLMs of random variates on the unit interval using the CDF-quantile family of distributions,
which provides a viable alternative to well-known distributions such as the beta and Ku-
maraswamy. As demonstrated by Smithson and Shou (2017), members of the CDF-quantile
family can model a variety of shapes unavailable to the beta or Kumaraswamy, and in the
data-fitting examples presented in their paper members of this family out-perform those distri-
butions. The family includes the logit-logistic distribution, and others that have not appeared
before in the literature.
The package and macro also present a framework for systematically modeling quantiles of
variates on the (0, 1) interval, thanks to the explicit quantile functions possessed by this
family. Like beta regression, the GLMs in this family have a location and a dispersion
submodel. Unlike beta regression, dispersion and location may be modeled independently
of one another. Smithson and Shou (2017) show that the location parameter determines
the median, and the dispersion parameter determines how far other quantiles are from the
median.
The cdfquantreg package also enables researchers to venture beyond classical maximum like-
lihood inference, by providing bootstrap and Bayesian MCMC options for model estimation.
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Model diagnostics, including the gradient, three types of residuals, and the dfbeta influence
measures, are available for evaluating models. The package also provides pseudo-random
generators for all of its distributions. Many of its functions and their usage have forms that
are familiar to R users, and the documentation is extensive. The package does not depend
extensively on other R packages, and (as demonstrated in the example involving the copula
package) is easy to work with in conjunction with other packages in the R environment.
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A. The SAS macro: %cdfquantreg

CDF-quantile regression also is implemented in the SAS macro %cdfquantreg, using the
NLMIXED (nonlinear mixed models) procedure to estimate model parameters. A variety of
optimization techniques such as BFGS can be chosen, while the default optimization used in
this macro is the trust region optimization. Successful convergence yields parameter estimates
along with their approximate standard errors based on the Hessian matrix.
The macro employs the following input statement:

%cdfquantreg(DATA, DV, FD, SD, LMIV, DMIV, INIT);

where:

• DATA is the name of a data set that includes the dependent variable and independent
variables. The dependent variable should be within (0, 1) interval.

• DV is the name of the dependent variable.

• FD, SD are the abbreviations (without quotes) for the parent and child distributions.
The family and usage are similar to those in R as outlined in Section 2.1.

• LMIV are the names of the independent variables in the location submodel. Dummy-
coded variables should be used to represent any categorical independent variables.

• DMIV are the names of the independent variables in the dispersion submodel.

• INIT are user-specified starting values for parameters, including intercepts. Different
starting values are separated by ’|’, and in the same order as the names in LMIV and
DMIV.

An example using the t2-t2 distribution to fit a null model is as follows:

%cdfquantreg(data, y, "t2", "t2");

The macro returns the usual NLMIXED model outputs including iteration history, conver-
gence results, fit statistics, parameter estimates, Hessian matrix, and covariance matrix of
the parameter estimates. The fit statistics consist of the common metrics including −2 log-
likelihood, AIC, AICC and BIC. A new data-set called “dataout” is generated and stored in
the working directory. In addition to the original data-set, “dataout” includes the fitted µi,
σi, and yi values, raw residuals, and Pearson residuals. The user can utilize these for further
model diagnoses.

A.1. Ambiguity and conflict study with SAS

We replicate the example analyses from the ambiguity and conflict study by using the SAS
macro. We first run the t2-t2 models to examine the model fit for an intercept-only model, a
model with location predictors, and a model with both location and dispersion predictors.
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%LET dir = ''; /* Specify the location of the macro files */
FILENAME tempdir &dir;
%INCLUDE tempdir(data); /* Load the ambiguity study data */
%INCLUDE tempdir(SAS_MACRO); /* Load the SAS cdfquantreg program */

/* Null Model */
%cdfquantreg(ambdata, prob, 't2', 't2');
/* Location model only */
%cdfquantreg(ambdata, prob, 't2', 't2', lmiv = scenarioStm3 scenarioStm4);
/* Dispersion + location model */
%cdfquantreg(ambdata, prob, 't2', 't2', lmiv = scenarioStm3 scenarioStm4,

dmiv = scenarioStm3 scenarioStm4);

The output window displays both fit statistics and parameter estimates for the three models.
We only shows the output for the last model as a demonstration below. SAS returns similar
−2 log-likelihood values to those produced by the cdfquantreg package: −5226,−5226 and
−5233 for the three models, respectively. The parameter estimates and their standard errors
likewise are very similar to those produced by cdfquantreg.

/*Output for the full model*/
Fit Statistics

-2 Log Likelihood -5233
AIC (smaller is better) -5221
AICC (smaller is better) -5221
BIC (smaller is better) -5183

Parameter Standard
Estimate Error DF t Value Pr > |t| Alpha Lower Upper Gradient

b0 -0.01446 0.008057 4710 -1.79 0.0727 0.05 -0.03026 0.00133 -1.39E-7
b1 -0.00663 0.01102 4710 -0.60 0.5474 0.05 -0.02824 0.01498 -2.44E-9
b2 -0.00278 0.01064 4710 -0.26 0.7935 0.05 -0.02364 0.01807 -1.36E-7
d0 -1.3640 0.02981 4710 -45.76 <.0001 0.05 -1.4225 -1.3056 -2.78E-8
d1 -0.03381 0.04382 4710 -0.77 0.4404 0.05 -0.1197 0.05209 -832E-13
d2 -0.1140 0.04369 4710 -2.61 0.0091 0.05 -0.1997 -0.02840 -2.79E-8

We also run the three models by using the logit-logistic distribution. Again, SAS returns
similar −2 log likelihood values, parameter estimates and standard errors to those produced
by the cdfquantreg package.

%cdfquantreg(ambdata, prob, 'logit', 'logistic');
%cdfquantreg(ambdata, prob, 'logit', 'logistic',

lmiv = scenarioStm3 scenarioStm4);
%cdfquantreg(ambdata, prob, 'logit', 'logistic',

lmiv = scenarioStm3 scenarioStm4, dmiv = scenarioStm3 scenarioStm4);

/*Output for the full model*/
Fit Statistics
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-2 Log Likelihood -3251
AIC (smaller is better) -3239
AICC (smaller is better) -3239
BIC (smaller is better) -3200

Parameter Standard
Estimate Error DF t Value Pr > |t| Alpha Lower Upper Gradient
b0 -0.01198 0.01689 4710 -0.71 0.4782 0.05 -0.04508 0.02113 2.862E-7
b1 -0.04324 0.02499 4710 -1.73 0.0837 0.05 -0.09224 0.00576 -1.75E-9
b2 -0.02270 0.02400 4710 -0.95 0.3441 0.05 -0.06975 0.02434 -828E-12
d0 -0.8940 0.02224 4710 -40.20 <.0001 0.05 -0.9376 -0.8504 -1.83E-7
d1 0.09691 0.03159 4710 3.07 0.0022 0.05 0.03498 0.1588 7.48E-10
d2 0.01986 0.03161 4710 0.63 0.5299 0.05 -0.04212 0.08183 1.419E-9

Finally, we replicate the arcsinh-t2 distribution run, and verify that SAS produces similar
parameter estimates and log-likelihood values to those from cdfquantreg.

%cdfquantreg(ambdata, prob, 'arcsinh', 't2');
%cdfquantreg(ambdata, prob, 'arcsinh', 't2',

lmiv = scenarioStm3 scenarioStm4);
%cdfquantreg(ambdata, prob, 'arcsinh', 't2',

lmiv = scenarioStm3 scenarioStm4, dmiv = scenarioStm3 scenarioStm4);

/*Output for the full model*/
Fit Statistics

-2 Log Likelihood -5800
AIC (smaller is better) -5796
AICC (smaller is better) -5796
BIC (smaller is better) -5783

Parameter Standard
Estimate Error DF t Value Pr > |t| Alpha Lower Upper Gradient
b0 -0.01697 0.00628 4710 -2.70 0.0069 0.05 -0.02928 -0.00466 1.093E-9
b1 0.00948 0.00768 4710 1.23 0.2171 0.05 -0.00558 0.02454 -311E-14
b2 0.00875 0.00749 4710 1.17 0.2428 0.05 -0.00593 0.02342 1.099E-9
d0 -1.9774 0.03751 4710 -52.71 <.0001 0.05 -2.0510 -1.9039 -1.28E-9
d1 -0.2150 0.05705 4710 -3.77 0.0002 0.05 -0.3269 -0.1032 1.03E-11
d2 -0.2939 0.05709 4710 -5.15 <.0001 0.05 -0.4058 -0.1819 -1.27E-9
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