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Abstract

We develop a SAS macro and equivalent Stata programs that provide marginalized
inference for semi-continuous data using a maximum likelihood approach. These software
extensions are based on recently developed methods for marginalized two-part (MTP)
models. Both the SAS and Stata extensions can fit simple MTP models for cross-sectional
semi-continuous data. In addition, the SAS macro can fit random intercept models for
longitudinal or clustered data, whereas the Stata programs can fit MTP models that ac-
count for subject level heteroscedasticity and for a complex survey design. Differences and
similarities between the two software extensions are highlighted to provide a comparative
picture of the available options for estimation, inclusion of random effects, convergence
diagnosis, and graphical display. We provide detailed programming syntax, simulated and
real data examples to facilitate the implementation of the MTP models for both SAS and
Stata software users.

Keywords: semi-continuous, marginalized two-part models, generalized gamma, log skew nor-
mal, complex survey design.

1. Introduction and background
Semi-continuous data are non-negative continuous data that are characterized by a point
mass at zero and positive values that usually follow a skewed distribution (Olsen and Schafer
2001). Some common examples of semi-continuous data in biomedical research are health
care expenditures, alcohol consumption, and levels of antibody concentrations in the blood.
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Currently, the most popular approach to analyze these types of data are two-part models
(TP; Cragg 1971). A TP model for semi-continuous data consists of two parts. The first
part (binary) models the probability of being a zero versus a non-zero, and the second part
(continuous) models the strictly non-zero outcomes using a continuous distribution defined on
a positive domain. Conceptually, two-part models for semi-continuous outcomes are similar
with hurdle models (Mullahy 1986) for zero-inflated count data, which model zero versus
non-zero values in a first step and then the strictly non-zero values in a second step, using a
discrete distribution truncated at zero.

TP models have been shown to be reliable when analyzing semi-continuous data (Schafer,
Olsen et al. 1999; Duan, Manning, Morris, and Newhouse 1983). Other methods such as
adding a small number to the zero value and then fitting an ordinary least squares (OLS)
regression on the log transformed values, or completely discarding the zero values and fitting
a model to the strictly non-zero values, would result in biased inference and/or loss of infor-
mation. Note that the former approach would only shift the point mass at zero and therefore
the transformed data would still fail to be normally distributed and the later approach would
treat zeroes as missing values and therefore lead to loss of information.

Despite their advantages, conventional TP models do not provide marginal inference on pop-
ulation of health care users and nonusers and therefore often fail to answer the main research
question. To address this issue, marginalized two-part models (MTP) were developed for dif-
ferent continuous distributions such as lognormal, gamma, Weibull, generalized gamma and
log skew normal (Smith, Preisser, Neelon, and Maciejewski 2014; Voronca, Gebregziabher,
Durkalski, Liu, and Egede 2015). Unlike the TP model, the MTP model provides coefficients
with a straightforward marginal interpretation, i.e., the coefficients are interpreted without
conditioning on observing a non-zero outcome.

Our work fills the existing gap in statistical software packages available to program these mod-
els. Moreover, since these are newly developed methods, there are no articles that compare
the SAS and Stata software for MTP models in terms of performance and available options
for the statistical analysis. Therefore, in this paper we 1) develop a SAS macro and Stata
programs that can fit MTP models for semi-continuous data; 2) compare the proposed soft-
ware extensions in terms of performance and availability of options for the statistical analysis;
and 3) provide simulated and real data examples to demonstrate the application of the SAS
macro and Stata programs.

2. Methods

A summary of the main concepts and formula used for the code development of the MTP
models is presented below. More detailed information on the methodology can be found in
Voronca et al. (2015) and Smith et al. (2014). In terms of notations, x(0)

i is the vector of
covariates used in the binary part specific to subject i, xi is the vector of covariates used in the
continuous part, yi is the semi-continuous outcome of interest, f is the probability density
function (pdf) of a continuous distribution defined on a positive domain, α is the vector
for model regression coefficients in the binary part, and δ and β are vectors for regression
coefficients in the continuous part of the TP and MTP model, respectively.
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The pdf of a standard TP model is defined in Equations 1 and 2 below (Cragg 1971):

gTP (yi) =

1− πi, if yi = 0,
πif

(
yi;xi>δ

)
, if yi > 0,

(1)

where the probability of being non-zero, πi, is usually modeled using a logit or a probit link,
and the location parameter in the continuous part, µi, is modeled using a log link and a
continuous distribution defined on a positive domain:

logit (πi) = x
(0)>
i α,

log(µi) = x>
i δ.

(2)

Each component of δ represents the change in the outcome on the log scale, for one unit
increase in the corresponding covariate, given that the outcome is strictly greater than zero.
The MTP models are derived for the standard TP models. The pdf of an MTP model can
be defined as in Equation 3 (Smith et al. 2014):

gMTP (yi) =

1− πi, if yi = 0,
πif

(
yi;x>

i β
)
, if yi > 0,

(3)

where the probability of being non-zero, πi, is modeled in the same way as for the TP models,
and the marginal mean is modeled as E (Yi) = exp(x>

i β) = ξi. The location parameter µi is
parameterized in terms of the marginal mean such that:

µi = x>
i β − log (πi)− C (σ, k) , (4)

where C (σ, k) takes different forms depending on the distribution assumed for the continuous
part. Assuming the pdf used in the continuous part is the generalized gamma family of
distributions with σ the scale and k the shape parameter (Manning, Basu, and Mullahy
2005), it follows that for the MTP lognormal Cgg (σ) = σ2/2, for the MTP gamma Cgg = 0,
for the MTPWeibull Cgg (σ) = log[Γ(1+σ)], and for the MTP generalized gamma Cgg (σ, k) =
σ log(k2)

k +log[Γ( 1
k2 + σ

k )]−log[Γ( 1
k2 )] (Voronca et al. 2015). Log skew normal does not belong to

the generalized gamma family. The C component associated with a log skew normal (Azzalini
1985) distribution is Clsn (ω, k) = log(2) + log

[
Φ
(

kω√
1+k2

)]
+ω2/2 where ω is the scale and k

is the shape parameter.
In terms of interpretation, exp(βj) represents the multiplicative effect of the covariate j on
the outcome and 1− exp(βj) represents the % change in the outcome for one unit increase in
the covariate j. The α coefficients in the binary part (for both TP and MTP models) have
the usual interpretation corresponding to a logistic regression.
The MTP models above can be extended to include random effects. Using the same notations,
the general form of such MTPmodels can be written as in Equation 5 (Smith, Neelon, Preisser,
and Maciejewski 2017):

logit (πi) = x
(0)>
i α+ z(0)>

i ai,

µi = x>
i β + z>

i ci − log (πi)− C (σ, k) ,
(5)
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where z(0)
i and zi are the vectors of random-effect covariates used in the binary part and for

the marginal mean, ai and ci are random effects corresponding to the binary part and to the
marginal mean, respectively. The random effects are assumed to follow a multivariate normal
distribution: (

ai
ci

)
∼ N

(
0,Σ =

[
Σaa Σac

Σac Σcc

])
. (6)

The subjects-specific marginal mean (for both users and non-users) corresponding to MTP
models with random effects is:

E (Yi|ai, ci) = exp(x>
i β + z>

i ci) = νi. (7)

3. SAS macro for customized likelihood functions

3.1. Overview

SAS and Stata are currently two of the most popular software packages used for statistical
analysis. The SAS software package facilitates data management, offers a variety of statistical
methods for small data, large data and data with missingness, and it operates on validated
algorithms. These features make it very popular among researchers from various fields, espe-
cially for those in the medical field. The most recent version of SAS is SAS 9.4 (SAS Institute
Inc. 2013) which is also used for the analysis performed in this article. A DATA step creates
and manipulates the data set, whereas a PROC step performs the statistical analysis. One
common procedure used for nonlinear mixed models in SAS is PROC NLMIXED which allows
for models with both fixed and random effects. The procedures allow for both pre-specified
as well as user-defined likelihood functions. When the likelihood is integrated over random
effects, an integral approximation is performed using the best available methods (default is
the Gauss-Hermite quadrature; Pinheiro and Bates 1995) and then different optimization
techniques are used for maximization (default is the dual quasi-Newton algorithm; Wolfinger
1999). Part of the standard PROC NLMIXED output are the convergence status, the number
of iterations to convergence, model fit information criteria, parameter estimates, and stan-
dard errors based on the second derivative matrix of the likelihood function. Currently, PROC
NLMIXED performs only maximum likelihood estimation with random effects from a multivari-
ate normal distribution. Like with any other procedure, the code can be easily documented
by using comments and the output can be stored in a text or PDF file using the ODS com-
mand with different options. Of note is that other SAS procedures such as PROC GLIMMIX can
also fit non-linear models but only for pre-specified likelihood functions, which do not include
likelihood functions for semi-continuous two-part models.

3.2. The %MTPmle SAS macro

The proposed %MTPmle SAS macro is using PROC NLMIXED to fit the marginalized two-part
models. Before fitting the macro, dummy variables need to be created for all categorical
covariates. The general syntax of the macro and an explanation of the arguments are presented
below:



Journal of Statistical Software 5

%MTPmle(modeltype = , data = , outcome = , vars0 = , vars1 = , c0 = false,
z0 = false, corr = false, initparms = 0.1, grid = 1, id = NONE,
tp = false, plot = false)

• modeltype: is the continuous distribution used in the second part of the MTP (or
TP) model; the available options are LN (lognormal), G (gamma), W (Weibull), GG
(generalized gamma), LSN (log skew normal).

• data: is the name of the data set where the variables of interest reside.

• outcome: is the semi-continuous outcome of interest.

• vars0: represents the names of variables and interaction terms included in the binary
part of the MTP (or TP) model.

• vars1: represents the names of variables and interaction terms included in the contin-
uous part of the MTP (or TP) model.

• c0: default value FALSE; it can be TRUE or FALSE; when its value is changed to TRUE,
a random intercept is included in the continuous part of the MTP (or TP) model; the
distribution of the random effect is assumed normal with mean zero.

• z0: default value FALSE; can be TRUE or FALSE; when its value is changed to TRUE, a
random intercept is included in the binary or the zero part of the MTP (or TP) model;
the distribution of the random effect is assumed normal with mean zero.

• corr: default value FALSE; can be TRUE or FALSE; when its value is changed to TRUE,
the intercept in the continuous and the binary part are assumed to be correlated; the
value of this argument has an effect only when random intercepts are included in both
parts of the model.

• initparms: default value 0.1; represents the initial values given to the model parameters
corresponding to the fixed effects specified in vars0 (a_) and vars1 (b_).

• grid: default value 1; it represents the initial values given to the variances (a_sigma2
and b_sigma2) of the random effects (z0 and c0, respectively); the value for this argu-
ment can be also specified as a range of values using an incremental step; for example
grid = 0 to 1 by 0.1.

• id: default value is NONE; it represents the name of the variable corresponding to the
unique identifier; the unique identifier is needed only when random effects are included,
in order to identify clusters or repeated measures.

• mtp: default value TRUE; can be TRUE or FALSE; when its value is TRUE it means that an
MTP models is fitted, which is the default; when its value is changed to FALSE, a TP
model is fitted instead.

• plot: default value FALSE; can be TRUE or FALSE; when its value is TRUE it graphs the
kernel densities associated with the observed and predicted values.
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Of note is that the macro will stop the execution and output an error message when no
data set is specified (“ERROR: No dataset supplied”), no outcome is specified (“ERROR: No
outcome variable supplied”), no model type is specified (“ERROR: No model type supplied”)
or when a TRUE or FALSE parameter (c0, z0, mtp, plot) is assigned a different string value
(for example the output error could be “ERROR: ‘mtp’ can be either TRUE or FALSE”). In
addition, for models that include random effects (c0 or z0 is TRUE) the id also needs to be
specified to avoid an error message (“ERROR: No id variable supplied”). The macro saves
the parameter estimates and other important statistics in a data set called _out_parm, the
run time in the data set called _time and the predicted means in a data set called _parm. The
data set _parm is used to graph observed versus predicted values. Using too many variables
relative to the size of the data set may lead to non-convergence. Also, the more variables are
used in the model, the longer the run time.

4. Stata programs for customized likelihood functions

4.1. Overview

Stata is a statistical package widely used by researchers, especially economists and health care
investigators. Some of the most powerful features of Stata are quick convergence, conservative
approach to declare convergence, an easy way to implement maximum likelihood estimation,
a search algorithm for optimal initial values, and a variety of post-estimation commands.
The software can be used for complex statistical analysis, data management, and to generate
publication quality graphs. The most recent version of the software, which is also used for
this article, is Stata 14 (StataCorp. 2015a). Stata commands can be stored in an ado-file
which is a standard text file that can be executed interactively in Stata by typing:

. do "filename.ado"

The output of an ado-file can be logged, similar to logging an interactive session, by using
the commands:

. log using "logname"

. log close

In addition to the built-in commands available in Stata, the user can develop flexible and
computational efficient models that perform maximum likelihood estimation (MLE) by writ-
ing a Stata program. A program can be fairly general and easily extended to a variety
of model specifications without changing the program syntax. The main advantage of us-
ing the Stata ml programming language is that it allows the user to implement customized
likelihood functions, such as the one used for marginalized two-part models. The default op-
timization technique is Newton-Raphson but other options are available such as Bendt-Hall-
Hall-Hausman, Davidson-Fletcher-Powell, or Broyden-Fletcher-Goldfarb-Shanno algorithms
(Gould, Pitblado, and Sribney 2006). To execute an ml program, one must type a sequence
of commands (Steenbergen 2012), some of which are optional but can prove useful in specific
situations. The programs can be defined interactively or stored in an ado-file. An important
note is that the Stata program is most straightforward to write and execute for likelihood



Journal of Statistical Software 7

functions that satisfy the linear form (lf) restriction, i.e., the observations are (condition-
ally) independent. Stata derives the first and second (partial) derivatives numerically and
uses these in the optimization algorithm. When this condition is not met, as for repeated
measures or clustered data, other options are available such as d0, d1, and d2 (StataCorp.
2015b). These options involve programming first and/or second order derivatives which com-
plicates the program syntax but in certain situations allows extensions of simpler models to
more complicated ones such as random effects models. This topic is considered for future
research.

4.2. The MTPmle Stata programs

In order to maximize the likelihood function for MTP models, we develop Stata programs
that are saved in an ado-file and can be loaded in Stata by using the command:

. do MTPmle.ado

Once the ado-file is loaded, the user can use the command:

. ml model lf model_type (outcome = vars0) (outcome = vars1) ///
> (outcome = ) (outcome = ), technique(nr)}

• model_type: identifies the continuous distribution used in the second part of the MTP
model; the options available are mtp_lognormal (MTP lognormal), mtp_gamma (MTP
gamma), mtp_Weibull (MTP Weibull), mtp_gengamma (MTP generalized gamma), and
mtp_logskewnormal (MTP log skew normal).

• outcome: is the name of the dependent semi-continuous variable.

• vars0: represents an array of names for the covariates included in the binary part
separated by spaces.

• vars1: represents the array of names for the covariates included in the continuous part
separated by spaces.

• (outcome = ) or (outcome = ) (outcome = ): correspond to the nuisance param-
eters; for example, lognormal, gamma and Weibull have only one nuisance parameter
(variance for log normal, gamma scale andWeibull scale, respectively) and therefore only
one set of (outcome = ) will be used; generalized gamma has two nuisance parameters,
the scale (lns2) and the shape (1/t) (Voronca et al. 2015), and therefore (outcome = )
(outcome = ) will be used; similarly, the log skew normal has two nuisance parameters,
scale (omega) and shape (k) (Smith et al. 2014) and therefore (outcome = ) (outcome
= ) will be used.

• technique(nr): (Newton-Raphson) is the default optimization algorithm; in addition
to nr, other available techniques are bhh (Bendt-Hall-Hall-Hausman), dfp (Davidson-
Fletcher-Powell), and bfgs (Broyden-Fletcher-Goldfarb-Shanno).

After the ml model statement, a variety of commands can be used for the fitted MTP model.
These commands are discussed in detail in the Stata documentation (StataCorp. 2015b) and
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other articles (Steenbergen 2012). We recommend the following: ml search which performs
an automated search for the best initial values for model parameters in order to optimize
convergence; ml maximize which maximizes the specified MTP likelihood function and gen-
erates output; the difficult option can be used with ml search when a direction vector
for a more difficult likelihood function is not found (suggested by the warning message “not
concave”); ml graph which produces a graph of the iteration path useful in monitoring the
convergence.

5. Simulations
To show that the proposed %MTPmle SAS macro and Stata programs are correctly estimating
model parameters, we provide two simulation examples with known true parameter values
from a lognormal distribution. Equations 8 and 9 describe the two models used for simulations
using the same notations as in Section 2. For both simulation scenarios, we generated data
for a sample size of 10000 with approximately 40% zeroes.
The first model used for simulation is a cross-sectional MTP LN:

logit (πi) = α0 + α1 × x1i + α2 × x2i,

µi = β0 + β1 × x1i + β2 × x2i − log(πi)− σ2/2,
(8)

where x1i ∼ N(10, 2) and xi2 ∼ Bernoulli(0.5). The true parameter values were chosen as
σ2 = 4, α = (5.7,−0.5,−0.5) and β = (7,−0.5,−0.5).
The second model used for simulation is a longitudinal MTP LN with uncorrelated random
intercepts:

logit (πi) = α0 + α1 × x1i + α2 × x2i + α3 × x3i + ai

µi = β0 + β1 × x1i + β2 × x2i + β3 × x3ij + ci − log(πi)− σ2/2
(9)

Cross-sectional MTP LN,
40% zeroes, N = 10, 000

Longitudinal MTP LN,
40% zeroes, N = 10, 000

Model True MTPmle Model True MTPmle
parameters values SAS or Stata parameters values SAS

β0 7.0 7.03 β0 10.0 9.90
β1 −0.5 −0.51 β1 −0.1 −0.09
β2 −0.5 −0.48 β2 −0.4 −0.37
α0 5.7 5.76 β3 −0.6 −0.58
α1 −0.5 −0.51 σ2

c 2.0 1.41
α2 −0.5 −0.51 α0 3.8 3.33
σ2 4.0 3.96 α1 −0.1 −0.08

α2 −0.1 −0.09
α3 −0.2 −0.22
σ2
a 1.0 0.68
σ2 4.0 4.03

Table 1: Validation of MTPmle SAS macro and Stata programs using simulations.
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where x1i ∼ N(30, 4) and xi2 ∼ Bernoulli(0.5). The true parameter values were cho-

sen as σ2 = 4,
(
ai
ci

)
∼ N

([
0
0

]
,

[
1 0
0 2

])
. α = (3.8,−0.1,−0.1,−0.2) and β =

(10,−0.1,−0.4,−0.6). The time variable x3ij , for j = 1, 2, 3 represents the 3 time points
at which repeated outcome measures were available for each subject.
Results are summarized in Table 1. Additional simulation scenarios are described in Voronca
et al. (2015).

6. Data examples

6.1. Data

The first data example is simulated from a longitudinal model with 500 subjects, randomized
in two treatment groups. The semi-continuous outcome (Y ) is measured at 3 time points and
has approximately 49% zeroes at time 3 and 45% zeroes overall. For simplicity, we assume
there is no missing data. The simulation is mimicking a randomized controlled trial (RCT),
such as an RCT for substance use, where subjects are randomized to an intervention or usual
care group (X2) and outcome measurements (Y ) are taken at different time points (baseline,
month 1 and month 2, for example). The usual aim of such RCTs is to investigate the effect of
the intervention (X2 = 1) in comparison to the control group (X2 = 0) on lowering substance
use (Y ), without conditioning on observing a non-zero outcome. One approach is to look at
differences in the outcome between the two treatment groups at the end of the study (Y_3)
after adjusting for outcome levels at baseline (Y_1) and possible confounders (X1). A second
approach is to analyze the data longitudinally and determine if there is a difference in the rate
of decline in the outcome levels over time between the two treatment groups, after adjusting
for possible confounders. Summary statistics for the simulated data are presented in Table 2.
For the second example, we used publically available data provided by the Medical Expen-
diture Panel Survey (MEPS), household component 2011 (HC-147), to show how the Stata
programs (Stata model 3) can be extended to account for a complex survey design. The aim
is to determine if there are any differences in emergency room (ER) expenditures in 2011,
between the adult (≥ 18 years) US noninstitutionalized non-Hispanic white and non-Hispanic
Asian civilians, after adjusting for confounders and without conditioning on observing a non-
zero expense. The total sample size to address this aim was 13,239 and the semi-continuous
outcome of interest (ERTEXP11) had 88% zeroes. Summary statistics of the sample variables
are provided in Table 3.

Treatment Y N Mean SD Zeroes (%)
X2 = 0 Time 1 252 1123.5 4951.6 41

(usual care) Time 2 252 716.6 2855.2 45
Time 3 252 274.9 1106.5 48

X2 = 1 Time 1 248 1670.4 19317.5 39
(intervention) Time 2 248 296.4 1961.9 46

Time 3 248 197.7 1165.7 49

Table 2: Summary statistics for the semi-continuous outcome Y at each time point by treat-
ment group.
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Variable Overall Whites Asians
Mean ± sd Mean ± sd Mean ± sd

Total ER exp. 178.07 ± 931.44 196.96 ± 988.35 60.30 ± 412.93
Age (years) 48.28± 18.10 48.83±18.21 44.86± 17.03

N (%) N (%) N (%)
Gender

Male 6,335 (47.85) 5,483 (48.06) 852 (46.56)
Female 6,904 (52.15) 5,926 (51.94) 978 (53.44)

Marital status
Married 7,406 (55.98) 6,290 (55.17) 1,116 (61.02)
Not married 3,030 (22.90) 2,537 (22.25) 493 (26.95)
Never married 2,794 (21.12) 2,574 (22.58) 220 (12.03)

Education
< High school 1,682 (12.96) 1,450 (12.94) 232 (13.08)
High school 3,867 (29.79) 3,505 (31.27) 362 (20.41)
College 5,739 (44.21) 4,898 (43.70) 841 (47.41)
Graduate 1,694 (13.05) 1,355 (12.09) 339 (19.11)

Income
Poor 2,242 (16.93) 1,973 (17.29) 269 (14.7)
Low 1,833 (13.85) 1,616 (14.16) 217 (11.86)
Middle 4,098 (30.95) 3,531 (30.9) 567 (30.98)
High 5,066 (38.27) 4,289 (37.59) 777 (42.46)

Insured
Yes 10,940 (82.63) 9,471 (83.01) 1,469 (80.27)
No 2,299 (17.37) 1,938 (16.99) 361 (19.73)

Region
Northeast 2,214 (16.72) 1,905 (16.70) 309 (16.89)
Midwest 3,465 (26.17) 3,266 (28.63) 199 (10.87)
South 4,190 (31.65) 3,825 (33.53) 365 (19.95)
West 3,370 (25.46) 2,413 (21.15) 957 (52.30)

Depression 1,071 (9.23) 972 (9.71) 99 (6.21)
Hypertension 4,354 (33.03) 3,898 (34.31) 456 (25.01)
Joint pain 4,601 (35.9) 4,252 (38.53) 349 (19.65)
Stroke 507 (3.85) 481 (4.23) 26 (1.43)
Emphysema 392 (2.97) 382 (3.36) 10 (0.55)
High Cholesterol 4,183 (31.75) 3,712 (32.69) 471 (25.86)
Arthritis 3,470 (26.32) 3,263 (28.71) 207 (11.36)
Asthma 1,191 (26.32) 1,092 (9.61) 99 (5.43)
CVD 1,990 (15.10) 1,876 (16.51) 114 (6.26)
Diabetes 1.205 (9.14) 1,048 (9.22) 157 (8.61)
Total ER exp.

Zeroes 11,640 (87.92) 9,908 (86.8) 1,732 (94.64)
Non-zeroes 1,599 (12.08) 1,501 (13.16) 98 (5.36)

Table 3: Summary statistics of MEPS data (used for Stata model 3); MEPS = Medical
Expenditure Panel Survey; ER = emergency room; CVD = cardio vascular diseases; exp. =
expenditure.
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6.2. Using the %MTPmle SAS macro

SAS model 1

For this example we use the simulated data described in Section 5. We assume only pre-
intervention (Y_1, baseline) and post-intervention (Y_3, follow-up) outcome measurements
are available for the primary analysis. The aim is to determine the magnitude and signifi-
cance of the treatment effect on the outcome post-intervention after adjusting for outcome
baseline levels. This type of research question is common for medical RCTs. For this sce-
nario, the recommended approach is ANCOVA (Vickers 2001). In a real data application,
the assumptions of ANCOVA (Miller and Chapman 2001) should be checked before fitting
the model. Of note is that statistical methods assuming a repeated measures design, such as
repeated measures ANOVA, could also be used. However, these methods answer a different
research question, namely whether the mean change from pre to post is different between
interventions. The SAS macro syntax used for the ANCOVA analysis is given below:

%MTPmle(modeltype = ln, data = ln_data_short, outcome = Y_3,
vars0 = X1 X2 Y_1, vars1 = X1 X2 Y_1, initparms = 0,
grid = 0.1 to 2 by 0.1, plot = true)

The fitted model is MTP lognormal which is specified by the modeltype = ln. The name of
the data set used for the analysis is ln_data_short and the outcome is Y_3 (semi-continuous
outcome at time 3). The covariates used in the binary part (vars0) are the same as the
ones used in the continuous part (vars1). These covariates are the treatment group (X2), the
semi-continuous outcome at baseline (Y_1), and the continuous covariate X1. For a real data
example, the same covariates or different covariates can be used in each part of the model,
depending on what is deemed more appropriate by the statistician or the clinical investigator.
To initialize model parameters, the initparms option was used with a value of 0 whereas
the initial value for the nuisance parameter which is the variance (sigma2) corresponding
to the lognormal distribution was chosen from a grid search from 0.1 to 2 by increments of
0.1 using the grid option. Alternative initial values or grid searches can be used when a
model does not converge. However, performing multiple grid searches does not necessary lead
to improved estimation or convergence, especially when more covariates are included in the
model. Moreover, it increases the run time and sometimes can even terminate the execution
of the macro. Therefore, the grid search is allowed only for the initial values of the nuisance
parameters but not for the model parameters. The method used for optimization is the
default dual quasi-Newton algorithm. The option plot = true displays a graph of the kernel
densities for the observed versus predicted values. Fit statistics, such as Akaike information
criterion (AIC; Akaike 1974) or Bayes information criterion (BIC) can be used to select among
the available option for the model type (MTP lognormal, MTP gamma, MTP Weibull, MTP
generalized gamma, MTP log skew normal). The lowest fit statistics across different models

Criteria MTP ln MTP g MTP w MTP gg MTP lsn
-2 Log 3753.7 3863.9 3788.7 NC 3753.7
AIC 3771.7 3881.9 3806.7 NC 3773.7

Table 4: Comparison of model fit based on -2 Log and AIC; NC = non-convergent.
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Parameter Estimate Standarderror p value
95%

Confidence limits
b_int 8.6635 1.1095 < 0.0001 6.4837 10.8433
b_X1 −0.08899 0.03590 0.0135 −0.1595 −0.01846
b_X2 −0.6013 0.3017 0.0468 −1.1941 −0.00844
b_Y_1 8.12E−6 7.664E−6 0.2899 −6.94E−6 0.000023
a_int 2.1809 0.7005 0.0020 0.8046 3.5572
a_X1 −0.07007 0.02269 0.0021 −0.1146 −0.02549
a_X2 −0.01768 0.1807 0.9221 −0.3727 0.3374
a_Y_1 4.93E−6 0.000012 0.6892 −0.00002 0.000029
sigma2 5.3608 0.4732 < 0.0001 4.4311 6.2905

Table 5: Parameter estimates: Selected output from %MTPmle SAS macro for SAS model 1
(MTP ln ANCOVA type model).

Figure 1: Graph of observed versus predicted values from %MTPmle SAS macro for SAS model 1
(MTP ln ANCOVA type model).

identifies the best fitting model. MTP lognormal was chosen because it had the smallest AIC
(Table 4) and is more parsimonious in terms of parameters estimated comparative to other
models such as MTP log skew normal.
The SAS output corresponding to the model parameter estimates, p values and the 95%
confidence intervals on the log scale are presented in Table 5. Parameters that start with
b_ represent the continuous part of the MTP model, whereas parameters starting with a_
represent the binary part of the MTP model. sigma2 is the variance on the log scale corre-
sponding to the lognormal distribution, which was used in the continuous part of the MTP
model. The parameters in the continuous part can be interpreted as the change in the out-
come on the log scale for one unit increase in the covariate. If we exponentiate the coefficients
in the continuous part and subtract from 1, we get an interpretation on the original scale
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as % change in the outcome. For example, b_X2 = −0.6 means that on average, subjects in
the intervention group had 0.6 units less in log(Y ) at time 3 comparative to the usual care
group. The corresponding relative risk, exp(b_X2) = 0.55, suggests that on average, there is
a 45% reduction in the levels of outcome Y at time 3 in the intervention group comparative
to the usual care group. For this model, the p value (0.047) and the 95% confidence interval
(−1.19,−0.01) suggest that the treatment effect is statistically significant at the 0.05 alpha
level. The parameters in the binary part have the usual interpretation corresponding to a logit
model. For example the odds ratio exp(a_X2) = 0.98 suggests that being in the intervention
group decreases the chances of having a zero outcome by 2%. The graph of observed versus
predicted values is presented in Figure 1. In addition, PROC NLMIXED outputs information
about the data set and observations used, the convergence status, initial parameter values,
and iteration history. The program for the above model runs in less than 1 second.

SAS model 2

An alternative analysis for the simulated data is to determine if there is a difference in the rate
of decline in the outcome levels over time between the two treatment groups, after controlling
for important covariates. Measurements of the outcome collected at time 1, 2 and 3 are used
in a longitudinal model that controls for correlations among repeated measures through the
random intercept which is included in both parts of the model. The syntax for the longitudinal
analysis with two uncorrelated random effects is presented below:

%MTPmle(modeltype = ln, data = ln_data_long, outcome = Y,
vars0 = X1 X2 time X2*time, vars1 = X1 X2 time X2*time,
z0 = true, c0 = true, corr = false, id = id, plot = false)

The data set used for analysis (ln_data_long) contains repeated measures of outcome Y over
3 time points in the long format. The variables used in both parts of the MTP lognormal
(given by var0 and vars1) are time as a continuous variable (time), treatment group as a
dichotomous variable (X2), and a continuous covariate (X1). The interaction term between
treatment and time (X2*time) is also included in both parts of the model. The id is the
subject unique identifier and needs to be provided in order to indicate the repeated/clustered
measures. The z0 and c0 are set to TRUE and represent the random intercepts used in the
binary and continuous part respectively, that follow a multivariate normal distribution. The
option corr = false (which is also the default value) suggests that the random intercepts
are not correlated. Based on model fit criteria, the smallest AIC corresponded to the model
that had uncorrelated random intercepts in each part of the model. The alternative models
were random intercept in the binary part only, random intercept in the continuous part only,
and correlated random intercepts in both parts of the MTP lognormal model which did not
converge. By adding the random intercept, a variance-covariance matrix with a compound
symmetry structure is assumed in each part of the model. Other variance-covariance struc-
tures for the mixed model cannot be specified directly with the proposed macro and this topic
is considered for future work.
Model parameters for the longitudinal analysis using the %MTPmle SAS macro are presented
in Table 6. The output suggests that there is a significant effect of time (p val < 0.001)
and that, on average, for every month (or unit increase in time) there is a .55 units drop
(b_time = -0.55) in the levels of Y . Similarly, exp(b_time) = 0.58 suggests that there is a
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Parameter Estimate Standarderror p value
95%

Confidence limits
b_int 9.6863 0.7765 < 0.0001 8.1606 11.2120
b_X1 −0.09221 0.02381 0.0001 −0.1390 −0.04543
b_X2 −0.5848 0.3978 0.1422 −1.3664 0.1968
b_time −0.5522 0.1264 < 0.0001 −0.8005 −0.3038
b_X2time −0.02097 0.1784 0.9065 −0.3715 0.3296
b_sigma2 1.9576 0.2955 < 0.0001 1.3770 2.5381
a_int 3.6683 0.6195 < 0.0001 2.4511 4.8855
a_X1 −0.09900 0.01874 < 0.0001 −0.1358 −0.06219
a_X2 0.1162 0.3248 0.7206 −0.5220 0.7545
a_time −0.1983 0.1005 0.0491 −0.3958 −0.00076
a_X2time −0.05900 0.1430 0.6800 −0.3399 0.2219
a_sigma2 1.1188 0.2381 < 0.0001 0.6510 1.5865
sigma2 3.6038 0.2442 < 0.0001 3.1240 4.0836

Table 6: Parameter estimates: Selected output from %MTPmle SAS macro for SAS model 2
(MTP ln with random intercepts).

42% reduction in levels of Y for each month. The interaction term (b_X2time = −0.02) is
not statistically significant (p val = 0.907). Therefore, we conclude that the average rates of
decline over time for the two treatment groups are not different. To run the above longitudinal
model took 43 seconds.
In order to fit other types of MTP models, a different option can be used for the modeltype.
For example, the syntax to fit an MTP generalized gamma is:

%MTPmle(modeltype = gg, data = ln_data_long, outcome = Y,
vars0 = X1 X2 time X2*time, vars1 = X1 X2 time X2*time,
z0 = true, c0 = true, corr = false, id = id, plot = false)

Of note is that all the MTP models available with the %MTPmle macro model the mean of a
specific continuous distribution (lognormal, Weibull, gamma, generalized gamma or log skew
normal) using a log link function. Therefore the interpretation of the resulting coefficients is
the same as the one described for the lognormal MTP models in SAS model 1 and 2.
In addition to the MTP models, the SAS macro has the capability to run the equivalent TP
model for comparison. This is done by setting the option mtp equal to FALSE. For example,
we can run the longitudinal TP lognormal model using the syntax below:

%MTPmle(modeltype = ln, data= ln_data_long, outcome = Y,
vars0 = X1 X2 time X2*time, vars1 = X1 X2 time X2*time,
z0 = true, c0 = true, corr = false, id = id, mtp = false, plot = false)

Unlike the MTP models, the coefficients in the continuous part of a TP model (also starting
with b_) are interpreted as conditioned on observing a non-zero value. The coefficients in the
binary (start with a_) part have the interpretation of a logit model, the same as for the MTP
models.
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6.3. Using the MTPmle Stata programs

Stata model 1

In order to determine if there is a treatment effect on the outcome at time 3 (y_3), after
controlling for baseline levels (y_1) and important covariates (x1), we can fit the ANCOVA
type of model in Stata, after loading the MTPmle ado-file. The Stata commands we used to fit
the MTP lognormal model, which gives equivalent results to SAS model 1, is given below:

. ml model lf mtp_lognormal (cont: y_3 = y_1 x1 x2) ///
> (binary: y_3 = y_1 x1 x2)(logvar: y_3 = )
. ml search
. ml maximize, difficult
. ml graph

The ml model lf mtp_lognormal performs maximum likelihood (ml) estimation on the MTP
lognormal customized likelihood which satisfies the linear form (lf) condition. The first
equation (cont: y_3 = y_1 x1 x2) represents the regression model with a log link for the
continuous part of the MTP model. The second equation (binary: y_3 = y_1 x1 x2)
represents the logistic model for the binary part. For this example the equations are the
same since we use the same covariates in both parts. The third equation (logvar: y_3 =)
represents the regression model with a log link for the variance of the lognormal distribution.
If no covariates are specified for the third equations, then the nuisance parameter is assumed
to be homogenous across all observations, similar to the SAS macro. Of note is that the
outcome (y_3) is the same for all equations but the covariates in the right side of each
equality can be different. The ml search command performs an automatic search for optimal
initial values for model parameters as well as for the nuisance parameter (here the variance
of the lognormal distribution). The ml search is not mandatory but we recommend using
it to improve convergence of the model. The ml maximize command performs a series of
iterations to maximize the likelihood function (the default Newton-Raphson algorithm is
used) and generates the output below:

. ml maximize, difficult

initial: log likelihood = -1917.0583
rescale: log likelihood = -1917.0583
rescale eq: log likelihood = -1917.0583
Iteration 0: log likelihood = -1917.0583 (not concave)
Iteration 1: log likelihood = -1884.9709
Iteration 2: log likelihood = -1876.8977
Iteration 3: log likelihood = -1876.8398
Iteration 4: log likelihood = -1876.8398

Number of obs = 500
Wald chi2(3) = 12.00

Log likelihood = -1876.8398 Prob > chi2 = 0.0074
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-----------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+---------------------------------------------------------------
cont |

y_1 | 8.12e-06 7.65e-06 1.06 0.289 -6.88e-06 .0000231
x1 | -.0889795 .035895 -2.48 0.013 -.1593323 -.0186267
x2 | -.6012197 .3017367 -1.99 0.046 -1.192613 -.0098267

_cons | 8.663247 1.110148 7.80 0.000 6.487396 10.8391
-------------+---------------------------------------------------------------
binary |

y_1 | 4.93e-06 9.06e-06 0.54 0.586 -.0000128 .0000227
x1 | -.0700666 .0226504 -3.09 0.002 -.1144605 -.0256727
x2 | -.0176199 .1807232 -0.10 0.922 -.3718309 .3365911

_cons | 2.180806 .6989016 3.12 0.002 .8109843 3.550628
-------------+---------------------------------------------------------------
logvar |

_cons | 1.679131 .0882371 19.03 0.000 1.50619 1.852073
-----------------------------------------------------------------------------

The ml maximize standard output displays the log likelihood value (−1876.84) that can be
used for model comparison. This value can be used to get −2 log likelihood and the other
information criteria such as BIC. The first equation (cont) represents the model parameters
corresponding to the continuous part of the MTP lognormal model, the second equation
(binary) represents the model parameters for the binary part of the MTP lognormal, and
the third equation (logvar) represents the nuisance parameter, which in this situation is
homogenous across all observations (the regression model is just the intercept model for
sec_3). Note that the model parameter estimates are the same as those from the SAS
model 1 and they have the same interpretation. The only difference is in the estimation of
the nuisance parameter: the SAS macro estimates the variance (sigma2 = 5.361) whereas the
Stata program estimates the log of the variance (log (sigma2) = 1.679). A good convergence
is suggested by a small number of iterations (12 or less) with a concave trajectory with
large changes in the log likelihood between initial iterations and smaller changes between the
final iterations. The warning “not concave” for iteration one suggests that Stata was not
able to find a direction vector to update the parameter estimates. However, the warning
appears early in the iterations and therefore can be ignored. If this message appeared for
final iterations, the convergence would have been questionable. One way to address this is
to use the ml maximize with the option difficult, as presented above, which could help
determine a direction vector for difficult log likelihood functions but may increase the run
time (Steenbergen 2012).
The ml graph displays the iteration history on a graph. This can be used to monitor the
convergence of the optimization algorithm. For our simulated example, the convergence was
attained in 4 steps and the trajectory is concave (Figure 2). The program for this example
ran in less than 1 second.

Stata model 2

The Stata model 1 can be extended to account for heterogeneous variances across observations.
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Figure 2: Graph of iterations to convergence from MTPmle Stata program for Stata model 1
(MTP ln ANCOVA type model).

For example, it is feasible to assume that the variability in the outcome may vary across
treatment groups. To address this issue, we allow for the variance of the lognormal distribution
to depend on covariate information and in this way allow for subject level heteroscedasticity.
Similarly, the scale (and/or shape) parameter for Weibull and gamma, generalized gamma
or log skew normal can depend on covariates (Liu, Strawderman, Johnson, and O’Quigley
2012). The syntax for the heteroscedastic MTP lognormal model is presented below:

. ml model lf mtp_lognormal (cont: y_3 = y_1 x1 x2 ) ///
> (binary: y_3 = y_1 x1 x2)(logvar: y_3 = x1 x2)
. ml search
. ml maximize, difficult
. ml graph

The syntax of this model is very similar to Stata model 1. The only difference is in the
third equation (logvar: y_3 = x1 x2) for the variance parameter of the lognormal which
is allowed to depend on the treatment group x2, and covariate x1. Stata output is presented
below:

. ml model lf mtp_lognormal (cont: y_3=y_1 x1 x2 ) ///
> (binary: y_3=y_1 x1 x2)(logvar: y_3= x1 x2)
. ml search
. ml maximize, difficult
. ml graph

The syntax of this model is very similar to Stata model 1. The only difference is in the
third equation (logvar: y_3= x1 x2) for the variance parameter of the lognormal which is
allowed to depend on the treatment group x2, and covariate x1. Stata output is presented
below:
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. ml maximize, difficult

initial: log likelihood = -1917.0583
rescale: log likelihood = -1917.0583
rescale eq: log likelihood = -1917.0583
Iteration 0: log likelihood = -1917.0583 (not concave)
Iteration 1: log likelihood = -1883.7531
Iteration 2: log likelihood = -1876.5294
Iteration 3: log likelihood = -1876.3917
Iteration 4: log likelihood = -1876.3911
Iteration 5: log likelihood = -1876.3911

Number of obs = 500
Wald chi2(3) = 6.46

Log likelihood = -1876.3911 Prob > chi2 = 0.0914

-----------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+---------------------------------------------------------------
cont |

y_1 | 7.46e-06 7.27e-06 1.03 0.305 -6.79e-06 .0000217
x1 | -.0809669 .0516609 -1.57 0.117 -.1822205 .0202867
x2 | -1.012837 .5648123 -1.79 0.073 -2.119849 .094175

_cons | 8.628227 1.617748 5.33 0.000 5.457499 11.79895
-------------+---------------------------------------------------------------
binary |

y_1 | 4.99e-06 9.13e-06 0.55 0.585 -.0000129 .0000229
x1 | -.0702338 .0226786 -3.10 0.002 -.114683 -.0257845
x2 | -.0170894 .1807306 -0.09 0.925 -.3713148 .3371361

_cons | 2.185556 .6996916 3.12 0.002 .8141851 3.556926
-------------+---------------------------------------------------------------
logvar |

x1 | .0053298 .017659 0.30 0.763 -.0292812 .0399408
x2 | -.1573651 .1779293 -0.88 0.376 -.5061001 .1913699

_cons | 1.594785 .5447993 2.93 0.003 .5269984 2.662573
-----------------------------------------------------------------------------

The Stata output suggests that that the variability, on the log scale, is increasing with higher
levels of covariate x1 (0.005 units increase for each unit increase in x1) and is lower in the
treatment group comparative to the usual care group (−0.16 units less). However, these
results are not statistically significant and the log likelihood (−1876.38) is not significantly
improved comparative to the homogenous MTP lognormal model. Thus, in a real data appli-
cation similar to this simulated example, we would prefer the homogenous MTP model over
heterogeneous MTP. To run the above Stata model it took less than one second.

Stata model 3
The proposed Stata programs can be easily extended to account for a complex survey design.
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We use national data from MEPS household component 2011 (HC-147) to determine if there
are any differences in emergency room (ER) expenditures in 2011 (ERTEXP11), between
the adult (≥ 18 years) US noninstitutionalized non-Hispanic white and non-Hispanic Asian
civilians, after adjusting for confounders and without conditioning on observing a non-zero
expense. The syntax for an MTP log skew normal model that accounts for the complex survey
design is given below:

. svyset [pweight = perwt11f], strata(varstr) psu(varpsu)

. ml model lf mtp_logskewnormal (cont: ertexp11 = asian age11x ///
> yes_married not_married insured sex lowinc middleinc highinc lesshs hs ///
> college northeast midwest south depression hypert jpain strk emph chol ///
> arth asta cvd diab) (binary: ertexp11 = asian age11x yes_married ///
> not_married insured sex lowinc middleinc highinc lesshs hs college ///
> northeast midwest south depression hypert jpain strk emph chol ///
> arth asta cvd diab) (scale:) (shape:), svy
. ml search
. ml maximize, difficult

The svyset command identifies the components of the complex survey design: the sam-
pling weights (perwt11f), the stratification (varstr) and cluster (varpsu) variables. The
same covariates are included in both parts of the models, based on clinical relevance (Bishu,
Gebregziabher, Dismuke, and Egede 2015). The main covariate (asian) is a dichotomous vari-
ables that identifies non-Hispanic whites (asian = 0) and non-Hispanic Asians (asian = 1).
The analysis is adjusted for important confounders, such as age, gender, marital status, edu-
cation, income as percent of poverty line, insured, region, depression, cardio vascular disease,
(any of myocardial infraction, angina, coronary heart disease, and other heart disease), and
comorbidities such as hypertension, joint pain, stroke, emphysema, high cholesterol, arthritis,
asthma, and diabetes. Of note is that dummy variables were created for each categorical
covariate so that the data set can also be analyzed with the SAS macro. However, this is
not necessary in Stata (one can use the i.categorcal_covariate to indicate a categorical
covariate). Partial Stata output after running ml maximize is presented below:

Number of strata = 165 Number of obs = 11435
Number of PSUs = 365 Population size = 152242200

Design df = 200
F( 25, 176) = 10.69
Prob > F = 0.0000

-----------------------------------------------------------------------------
| Linearized
| Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+---------------------------------------------------------------
cont |

asian | -1.021055 .1818156 -5.62 0.000 -1.379576 -.6625334
age11x | -.0166012 .0032848 -5.05 0.000 -.0230785 -.0101239

yes_married | -.062507 .1258404 -0.50 0.620 -.3106512 .1856371
not_married | -.090371 .1720982 -0.53 0.600 -.4297308 .2489888
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insured | .5128515 .1555027 3.30 0.001 .2062164 .8194866
sex | -.079255 .102883 -0.77 0.442 -.2821295 .1236195

lowinc | .0304053 .1517947 0.20 0.841 -.2689181 .3297286
middleinc | -.0356091 .1314086 -0.27 0.787 -.2947333 .223515

highinc | .0656249 .1563192 0.42 0.675 -.2426204 .3738702
lesshs | .0650234 .1818582 0.36 0.721 -.293582 .4236288

hs | .0823075 .1695638 0.49 0.628 -.2520547 .4166698
college | -.042609 .1677959 -0.25 0.800 -.373485 .2882671

northeast | -.1738288 .154799 -1.12 0.263 -.4790763 .1314186
midwest | .0873369 .1516209 0.58 0.565 -.2116439 .3863176

south | -.0450892 .1435097 -0.31 0.754 -.3280754 .2378971
depression | .5103851 .1173817 4.35 0.000 .2789205 .7418496

hypert | .3231374 .1270143 2.54 0.012 .0726784 .5735964
jpain | .1238056 .1028099 1.20 0.230 -.0789249 .3265362
strk | .5937053 .1997078 2.97 0.003 .1999022 .9875084
emph | .2806056 .1992571 1.41 0.161 -.1123087 .6735199
chol | -.1555047 .119409 -1.30 0.194 -.3909668 .0799575
arth | -.0065426 .1333081 -0.05 0.961 -.2694124 .2563272
asta | .3231915 .1482265 2.18 0.030 .0309042 .6154788
cvd | .5865401 .1267053 4.63 0.000 .3366904 .8363898

diab | .4277702 .1406552 3.04 0.003 .1504128 .7051276
_cons | 5.346928 .3195901 16.73 0.000 4.71673 5.977127

-------------+---------------------------------------------------------------

The results show that there is a significant difference in total ER expenditures for 2011
between whites and Asians living in US. More specific, after we exponentiate, the total ER
cost for 2011 was 64% (RR = 0.36, 95% CI: (0.25, 0.52)) lower for non-Hispanic Asians
comparative to non-Hispanic whites living in US. Similar interpretation can be given to other
model coefficients. To run the above model it took 25 seconds.

7. Conclusions
The proposed %MTPmle SAS macro and Stata programs facilitate the implementation and
comparison of different MTP models in terms of model fit as well as differences in parameter
estimates and predicted values, and therefore helping researchers make a more informed
decision on the final model choice. As a general rule, we recommend less complex models (such
as lognormal) for smaller data sets with less than 500 observations and a more complex model
(such as generalized gamma) for larger data sets. In simulations, we showed that in general,
these models result in precise estimates with low bias, increased power and expected type 1
error rate, regardless of the true distribution of the data (Voronca et al. 2015). In specific
situations depending on the distribution and sample size of the real data other models may
be preferred as indicated by AIC/BIC and/or the convergence status. The use of MTP versus
TP models depends on the aim of the research. If the goal is to compare the populations of
subjects with zero versus non-zero outcomes and then get final inference conditional on the
subjects having a non-zero outcome, the TP models are suitable. However, if final inference
is needed on the whole population, including subjects with zero as well as non-zero values,
then an MTP model should be used.
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Functionality %MTPmle (SAS) MTPmle (Stata)

ML estimation Yes Yes

MTP models (logistic regression is used for Yes Yes
zero versus non-zero; the distribution used for
the continuous part can be lognormal, gamma,
Weibull, generalized gamma, or log skew normal)

TP models (logistic regression is used for Yes No
zero versus non-zero; the distribution used for
the continuous part can be lognormal, gamma,
Weibull, generalized gamma, or log skew-normal)

Random intercept from a normal Yes No
(multivariate normal) distribution in the binary
and/or continuous part of the MTP/TP model

Heteroscedastic models No Yes

Automated search algorithm for best initial values No (see grid and Yes
and a graph of iteration history to convergence initparms options)

Graph of observed versus predicted values Yes No

MTP models for complex survey design No Yes

Table 7: Comparison of MTPmle SAS macro and MTPmle Stata programs.

A comparison of the functionality of the %MTPmle SAS macro versus the MTPmle Stata pro-
grams is presented in Table 7. Simple cross-sectional MTP models can be implemented by
using either the proposed %MTPmle SAS macro or the MTPmle Stata programs. Both software
extensions have the same types of MTP models available in terms of the distribution used in
the continuous part (lognormal, Weibull, Gamma, generalized gamma, log skew normal).
Longitudinal/clustered MTP models can be implemented with the SAS macro. However,
the macro can fit only random intercepts that follow a normal distribution (multivariate
normal). Currently, SAS PROC NLMIXED does not allow for other types of distributions for
the random effects and the convergence is difficult to reach when more than two random
effects are included in the model. If the researcher is interested in models with more than two
random effects, then other SAS procedures are more efficient in terms of convergence such
as SAS PROC MCMC (Smith et al. 2017). In the proposed SAS macro, the initial values can
be changed (use initparms or grid options) when convergence is not attained with default
values. The run time can be longer for the SAS macro especially when using the grid search
on a wide range with a small incremental step. The run time is significantly higher when
random intercepts are considered in the model.
Heteroscedastic models can be implemented with the proposed Stata programs. In addition,
the Stata programs can perform an automated search algorithm for best initial values that
may speed up convergence and save time when running different models. A suggestive graph
of the iteration history is also available. A variety of other options and commands that can
be used with the proposed Stata programs can be found on the Stata website. For example,
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the Stata programs can be easily extended to account for a complex survey design by using
the svy option. This emphasizes the flexibility and ease of model implementation in Stata.
The SAS macro is a more rigid approach and any new features must be hard coded in the
body of the macro.
In summary, the advantages of using the proposed Stata programs are automated search for
initial parameter values, condensed output, suggestive graphs to monitor convergence and
flexible syntax that can be easily extended to fit heteroscedastic models ad complex survey
designs, whereas the advantages of SAS macro are the option to fit MTP random intercept
models, the option to fit the corresponding two-part model, and suggestive graphs of observed
versus predicted values. In the future, it would be useful to extend the Stata capabilities to
fit MTP models with random effects. Moreover, development of similar macros or functions
for other popular statistical software such as SPSS (IBM Corporation 2017) and R (R Core
Team 2018) would further encourage and facilitated the use of MTP models.
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