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Hippocampal inhibitory interneurons exhibit a large diversity of dendritic Ca2+

mechanisms that are involved in the induction of Hebbian and anti-Hebbian synaptic
plasticity. High resolution imaging techniques allowed examining somatic Ca2+ signals
and, accordingly, the recruitment of hippocampal interneurons in awake behaving
animals. However, little is still known about dendritic Ca2+ activity in interneurons
during different behavioral states. Here, we used two-photon Ca2+ imaging in mouse
hippocampal CA1 interneurons to reveal Ca2+ signal patterns in interneuron dendrites
during animal locomotion and immobility. Despite overall variability in dendritic Ca2+

transients (CaTs) across different cells and dendritic branches, we report consistent
behavior state-dependent organization of Ca2+ signaling in interneurons. As such,
spreading regenerative CaTs dominated in dendrites during locomotion, whereas both
spreading and localized Ca2+ signals were seen during immobility. Thus, these data
indicate that while animal locomotion is associated with widespread Ca2+ elevations in
interneuron dendrites that may reflect regenerative activity, local CaTs that may be related
to synaptic activity become apparent during animal quiet state.
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INTRODUCTION

Neuronal dendrites exhibit a large variety of voltage- and ligand-gated ion conductances and,
therefore, may operate as independent signaling devices (Branco and Häusser, 2011). Calcium
(Ca2+) signaling represents an important aspect of dendritic integration. It may have different
spatial and temporal ranges of action, and can exert various functions from induction of synaptic
plasticity and local tuning of neuronal firing to the regulation of the expression of genes involved
in neurodegenerative processes (Verkhratsky, 2005; Higley and Sabatini, 2008; Camiré and
Topolnik, 2012; Camiré et al., 2012; Topolnik, 2012). Due to methodological limitations, our
current knowledge about the functional organization of dendritic Ca2+ signals stems mostly from
experiments on glutamatergic principal cells (PCs; Regehr and Tank, 1990; Markram and Sakmann,
1994; Schiller et al., 1997; Golding et al., 2002; Losonczy and Magee, 2006; Sheffield and Dombeck,
2015; Sheffield et al., 2017). In hippocampal CA1 area, the dendrites of PCs express voltage-gated
Ca2+ and sodium (Na+) channels and NMDA receptors. These mechanisms are involved in
generation of dendritic regenerative activity in form of back-propagating somatic action potentials
(bAPs) and local Ca2+ and Na+ spikes generated in single or multiple dendritic branches (Spruston
et al., 1995; Magee and Johnston, 1997; Ariav et al., 2003; Gasparini et al., 2004; Losonczy and
Magee, 2006; Grienberger et al., 2014). Activated by spatially and temporally coincident patterns of
activity, these mechanisms may provide for membrane depolarization and supralinear Ca2+ signal
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required for induction of Hebbian forms of synaptic plasticity
and important for place field firing (Magee and Johnston,
1997; Golding et al., 2002; Sheffield and Dombeck, 2015;
Sheffield et al., 2017).

Local circuit GABAergic inhibitory interneurons in
hippocampal regions control the integration and transfer of
information during different network and behavioral states
(Klausberger and Somogyi, 2008; Somogyi, 2010; Pelkey
et al., 2017). These cells exhibit a large repertoire of voltage-
and ligand-gated Ca2+ mechanisms, which are regulated
differentially by changes in pre- and postsynaptic activity, and
provide a means for a highly dynamic and versatile regulation of
synaptic plasticity (Topolnik et al., 2005, 2006, 2009; Evstratova
et al., 2011; Camiré and Topolnik, 2014; Hainmueller et al.,
2014). In most interneurons, bAPs and, accordingly, the
Ca2+ transients (CaTs) evoked by bAPs (bAP-CaTs) decline
with distance from the soma due to a large K+ and low Na+

channel density (Aponte et al., 2008; Hu et al., 2010; Evstratova
et al., 2011; Camiré and Topolnik, 2014). This means that
only proximal synapses may be influenced by bAPs and are
likely to exhibit the spike-timing-dependent forms of plasticity
(Sjöström et al., 2008). This situation, however, may change
rapidly, dependent on the level of on-going activity. In fact,
bAP-CaTs can be boosted locally on a different time scale by
the activation of additional voltage- and ligand-dependent Ca2+

mechanisms (Topolnik et al., 2009; Evstratova et al., 2011;
Chiovini et al., 2014). Moreover, some CA1 interneurons, for
example fast-spiking parvalbumin-expressing cells (including
basket and bistratified cells) can exhibit large amplitude Ca2+

elevations in the absence of voltage-dependent dendritic
mechanisms. In particular, we showed that Ca2+ entry
through GluA2-lacking Ca2+-permeable AMPA receptors
(CP-AMPARs) followed by Ca2+ release from internal stores
is important for generating the supralinear Ca2+ signals, which
control the direction of long-term plasticity at excitatory
synapses located distally (Camiré and Topolnik, 2014). Other
cell types, for example the CA1 oriens lacunosum-moleculare
(OLM) cells, may have a relatively high density of Na+ channels
in their dendrites and, subsequently, exhibit more wide-spread
back-propagation of somatic APs (Topolnik et al., 2009) or
even dendritic Na+ spike initiation (Martina et al., 2000), which
can be tightly controlled via dendritic inhibition (Tyan et al.,
2014; Francavilla et al., 2015). Taken together, these studies
reveal a highly dynamic nature of dendritic Ca2+ signaling in
interneurons. Yet, in vivo dendritic Ca2+ activity in these cells
received little attention (Katona et al., 2011; Chiovini et al.,
2014), and its regulation and functional significance during
different patterns of network oscillations and behavioral states
remain to be explored in details.

To begin examining the functional aspects of interneuron
dendritic computations in vivo, here we performed two-photon
Ca2+ imaging in CA1 oriens/alveus (O/A) interneurons of awake
head-fixed animals running on a treadmill. We found that
dendritic CaTs (dCaTs) exhibit the behavior-state fluctuations,
such as regenerative activity during locomotion and dendrite-
autonomous local signals during immobility. This state-
dependent Ca2+ signaling suggests that distinct forms of synaptic

plasticity can be induced in interneurons of awake mice during
different behavioral states.

MATERIALS AND METHODS

Mouse Surgery and Training
Experiments were performed on male C57BL/6 mice (P50–70)
according to the procedures approved by the Animal Protection
Committee of Université Laval (protocol #15-097-1). Mice
were anesthetized deeply with ketamine/xylazine mixture
(10/100 mg/kg) and fixed in a stereotaxic frame. A small
(∼0.5–1.0 mm) craniotomy was made over the hippocampus
(AP: 2.1, ML: 1.8). For single cell dendritic imaging a low
titer AAV1.Syn.GCaMP6f.WPRE.SV40 (Penn Vector Core) was
diluted [1:4 in phosphate buffer saline (PBS, Gibco)] and injected
(one injection of 100 nL) at a depth of ∼1,250 µm below the
dura surface, resulting in the expression of GCaMP6f in a sparse
population of CA1 neurons (Chen et al., 2013).

After 4–6 days of recovery, a 3-day water restriction procedure
was applied (0.8–1.0 mL/day) followed by a hippocampal
window and head-plate implantation surgery (as described in
Dombeck et al., 2010; Villette et al., 2017). Briefly, a bottom
glass cannula (2 mm diameter) was inserted on top of dorsal
hippocampus after cortex aspiration and secured with kwick-sil
at tissue interface and Superbond at the skull level. Head plate
was oriented using a 4-axis micromanipulator (MX10L, Siskiyou)
and fixed with several layers of Superbond and dental cement
(Villette et al., 2017). For dorsal hippocampus, a 7–13◦ medio-
lateral angle was applied.Mice were allowed to recover for several
days with post-operative pain killer treatment (Buprenorphine,
0.1 mg/kg, 48 h).

Behavioral handling with head fixation and training in a
circular treadmill system (one∼10–15min session permouse per
day) began ∼5 days after window implantation and continued
until mice routinely ran back and forth and demonstrated stable
running speed values as described previously (Villette et al.,
2017). Mouse locomotion speed and direction on the treadmill
were monitored using an optical quadrature encoder (HEDS-
5645#A06, Avago Technology). The immobility periods were
determined as periods with no animal motion for at least 3 s.
The locomotion periods were defined as periods of animal
locomotion with a speed >2.0 cm/s for at least 3 s. Data
was recorded using a Digidata1440A (Molecular Devices) data
acquisition system (Clampex 10.2), which allowed synchronizing
the animal speed and two-photon image frame timing (using the
external trigger at 10,000 sampling frequency) and an AxoScope
software (v10.5, Axon Instrument).

Two-Photon Imaging of Interneuron Soma
and Dendrites
Two-photon imaging was performed using Leica SP5
two-photon confocal microscope, the Ti:Sapphire laser
(Chameleon Ultra II, Coherent) tuned to 900 nm and a
25× objective (0.95 NA, 2.5 mm working distance, Leica
Microsystems). The laser power was modulated using a
Pockels cell and reached at the sample (after the objective)
10–75 mW. Green GCaMP6f fluorescence was routed to external
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photomultiplier tubes (PMTs) (non-descanned detectors, Leica
Microsystems). The Leica LAS software was used for microscope
control and image acquisition. Image series (128 × 128 pixels,
0.5 ms per line field of view of 207× 207 µm) in each plane were
acquired at 47 Hz in single plane acquisitions. Imaging sessions
lasted up to 30 ± 15 min and then the mouse was placed back
in its home cage. Ca2+ imaging time-series were followed by
z-series from each cell to obtain a detailed information on the
imaged dendrites using the following parameters: 1 µm z-stack
step size, 512× 512 pixels per frame, 1 ms/line. The interneuron
cell bodies were typically located 20–70 µm below the alveus
surface.

Data Analysis and Statistics
Analysis was performed using IgorPro (v.6.3, Wave Metrics)
and custom scripts written in MatLab (The MathWorks).
The time-series were motion corrected using whole frame
cross-correlation, as described previously (Dombeck et al.,
2010; Villette et al., 2017). Only dendrites that could be
unambiguously traced back to soma were included in the
analysis. Dendritic branches were traced off-line using Leica LAS
software (n = 10 interneurons; 11 cells were excluded from the
analysis because of a high brain motion during morphological
z-series preventing accurate dendrite tracing). The dendritic
distance to soma was calculated along the dendrite using the
maximal projections of morphological z-series.

For CaT analysis, regions of interest (ROIs) were drawn
manually on the mean soma or dendrite images following the
outline of the structure of interest, and traces of ∆F/F vs. time
were generated for each ROI as previously described (Villette
et al., 2017; Francavilla et al., 2018). All CaTs occurring during
immobility or consistent runs (speed >2 cm/s; longer than
3 s) were included in the analysis. Both average CaTs for the
entire period of immobility or run as well as peak CaTs during
individual events were analyzed. The local event detection was
performed semi-automatically using the TaroTools toolbox in
IgorPro. First, all events with peak amplitude exceeding the
mean ± 2 SD level of the ∆F/F trace were selected from both
somatic and dendritic traces recorded simultaneously. Then
∆F/F traces obtained from soma and dendrites were aligned
and local dCaTs were defined as those occurring in the absence
of concomitant somatic CaTs (sCaTs) within a 25-ms window.
Cross-correlation analysis in IgorPro was used for correlation
of dendritic and sCaTs with speed. The data are presented as
mean ± SEM. The sample size was determined in preliminary
experiments in compliance with ethical guidelines to reduce the
number of animals used. Statistical significance between groups
was determined using a Student t-test (in case of normal data
distribution) or Mann-Whitney test (if the distribution of data
was not normal as reported by the Shapiro-Wilk test).

RESULTS

To study dendritic Ca2+ signals in hippocampal interneurons
during different behavioral states, we performed chronic
two-photon Ca2+ imaging of CA1 O/A interneurons labeled
with a genetically-encoded calcium indicator GCaMP6f

in head-restrained mice running on a circular treadmill
(Figure 1A). Interneurons were identified based on the
soma location within CA1 O/A and horizontally oriented
dendrites located within the same focal plane (Figure 1B).
Therefore, all imaging and analysis were performed only on
horizontally oriented O/A interneurons and their dendritic
arbors (128 dendritic segments of 10 µm each from 39 branches,
n = 9 cells, 3.4 ± 0.3 min per interneuron per imaging session,
one or two imaging sessions/cell, five mice) during immobility
and locomotion. The imaging fields of view (207 × 207
µm) were selected to have in average 3–5 cells with clearly
identifiable dendritic branches connected to the interneuron
soma in the same focal plane (Figure 1B). The imaged dendritic
branches had a mean length of 43.3 ± 5.1 µm from the
soma (range: 7–145 µm; typical dendrite length in O/A
interneurons ∼200 µm) with a mean of 3.0 ± 0.6 branching
points (range: 0–8).

According to previous reports, sCaTs result mainly from
the AP firing, where the number of underlying APs correlates
with fluorescence change (Kerr et al., 2005; Greenberg et al.,
2008; Tian et al., 2009; Chen et al., 2013; Sheffield and
Dombeck, 2015; Sheffield et al., 2017). Thus, in line with
previous reports on the phase-dependent recruitment of different
types of O/A interneurons during locomotion and immobility
(Lapray et al., 2012), most O/A interneurons showed sCaTs
throughout different behavior states (Figure 1C). Moreover,
the mean sCaTs were significantly higher during locomotion
than during immobility (P < 0.001; Mann-Whitney test;
Figure 1D), consistent with phase-coupled rhythmic recruitment
of O/A interneurons during theta oscillations associated with
locomotion (Lapray et al., 2012; Katona et al., 2014; Lovett-
Barron et al., 2014). This difference in the amplitude of sCaTs
between the two behavioral states was not due to different basal
somatic fluorescence (F0; Figure 1E).

Similar to sCaTs, dCaTs were detected during both
locomotion and immobility (Figure 1C). Most of our recordings
have focused on proximal dendritic branches (5–50 µm from
the soma, 59%) made by primary dendrites, with the rest being
secondary and tertiary dendritic branches extending up to
145 µm from soma (Figure 1F). While the basal fluorescence
F0 was similar in dendrites during locomotion and immobility
(Figure 1E), the amplitude of individual dCaTs varied across cell,
individual dendritic segments and behavioral states (Figure 1C).
The latter could not be associated with inter-cellular difference
in GCaMP6f expression as variance in the basal fluorescence
(F0) was similar in soma and dendrites when compared
between different cells and behavioral states (sCaTLoc-F0:
CV = 0.41, sCaTImm-F0: CV = 0.45, dCaTLoc-F0: CV = 0.39,
dCaTLoc-F0: CV = 0.39; n = 9 cells). Overall, like in soma, the
average amplitude of dCaTs was significantly higher during
locomotion (dCaTLoc: n = 128 segments/10 cells; dCaTImm:
n = 112 segments/nine cells; P < 0.001; Mann-Whitney test;
Figure 1D), but it was also considerably smaller than in soma
(P < 0.001; Mann-Whitney test; Figure 1D).

As CaTs in dendrites of O/A interneurons can result
from activation of local excitatory inputs (Topolnik et al.,
2005, 2006) and regenerative activity (spread of bAPs or
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FIGURE 1 | Two-photon imaging of dendritic Ca2+ transients (dCaTs) in hippocampal CA1 oriens/alveus (O/A) interneurons of awake mice. (A) Schematic of
two-photon Ca2+-imaging and animal speed recording in awake head-restrained mice. (B) Two-photon images of the GCaMP6f-expressing interneurons in CA1 O/A
(maximal projection of a 100-µm Z-stack) acquired at a high laser power to illustrate the cell morphology. The area depicted with a white square is expanded on the
right. The numbers of different color indicate different dendritic branches (20 µm each), from which Ca2+ imaging data were obtained (C). (C) Representative
examples of soma and dCaTs, which were recorded in different dendritic branches and at different distance from the soma along with the animal speed (bottom
black trace). Recordings of dCaTs were obtained from dendrites illustrated in (B; right). (D) Summary bar graphs of average amplitude for somatic CaTs (sCaTs) and
dCaTs during locomotion and immobility, ∗∗∗P < 0.001. (E) Summary bar graphs of basal fluorescence (F0) in soma and dendrites during locomotion and immobility,
∗∗∗P < 0.001. (F) Summary cumulative histogram of the dendritic length (distance from the soma) at which recordings of dCaTs were obtained.

local dendritic spikes; Martina et al., 2000; Topolnik et al.,
2009), which can be characterized by different spatial extent
(Sheffield and Dombeck, 2015), we examined the properties
of CaTs during different behavioral states (Figures 2, 3).
Consistent with activation of local postsynaptic glutamate
receptors, we observed small amplitude dCaTs restricted to
single dendritic microdomains, with no apparent spread to

neighboring dendritic segments or soma, which were defined
as synaptic dCaTs (peak amplitude: 12.3 ± 0.7% ∆F/F;
spatial extent: 21.4 ± 10.4 µm, n = 10 cells; Figures 2A,B).
However, more frequently we observed large amplitude dCaTs
that occurred synchronously with sCaTs (peak amplitude up
to 50.0% ∆F/F, n = 10 cells; Figures 2C,D) and could
be detected in the entire recorded branch (up to 100 µm
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FIGURE 2 | Behavior state-dependent CaTs in dendrites of O/A interneurons. (A) Representative two-photon images showing the interneuron morphology (top,
maximal projection of a 10-µm Z-stack) and Ca2+ signals in soma and dendrites during immobility. Rectangle areas of different color indicate the dendritic regions of
interest (ROIs) where dCaTs were analyzed. (B) Example traces of sCaTs and dCaTs recorded in some ROIs depicted in (A) during immobility along with the animal
speed (black bottom trace). Local dCaTs that were not detected in soma are shown expanded on the right (labeled with stars). Panels (C,D) are the same as (A,B)
but recordings were obtained for a second neighboring cell during locomotion period. CaTs recorded during locomotion are also expanded on the right.

from soma; Figure 2D). These events were considered as
regenerative that could be evoked either by bAPs or dendritic
spikes or both.

We then compared dendritic Ca2+ activity during locomotion
with that during immobility. During locomotion, both soma and
dendrites showed Ca2+ elevations, which were simultaneously
detected over large dendritic distances (up to 100µm from soma;
Figures 3A,B). Using sCaTs as a surrogate measure of AP firing
(Dombeck et al., 2010; Chen et al., 2013), we explored whether
somatic AP firing was associated with dendritic regenerative
activity in interneurons. First, during many run episodes with
somatic firing, spreading dCaTs were observed (Figure 3A).
These events were similar in amplitude to local synaptic dCaTs
(15.4 ± 0.7% ∆F/F) but showed a strong linear correlation with
sCaTs (Figure 3C), and declined with distance from the soma
(r = –0.25, Pearson correlation, P < 0.01, Figure 3B), indicating
that they were likely evoked by bAPs. Furthermore, in six out
of nine cells, somatic Ca2+ activity correlated well with animal
running speed (Figure 3D). Similarly, all proximal (<50 µm
from soma) and some more distal (50–100 µm from soma)
dendritic branches in these cells showed a positive correlation
between dCaT amplitude and the running speed (Figure 3E).
Taken together, these data indicate that during locomotion,

dendritic Ca2+ signals in O/A interneurons correlate well with
somatic activity and animal speed.

During immobility, small amplitude dCaTs often occurred
independently of soma and remained localized within individual
dendritic segments, indicative of local synaptic activity (peak
amplitude dCaTs: 12.0 ± 0.7% ∆F/F, n = 22 segments/10 cells;
Figure 4A, shown with red arrowheads). These data suggest
that local isolated dendritic activity, such as postsynaptic Ca2+

elevations, can be more frequently seen in interneurons during
immobility than during locomotion state. Local CaTs were
detected in both proximal and distal dendrites and had the
same amplitude across dendritic tree (Figure 4B). Similar
to dendritic Ca2+ activity during locomotion, some small
amplitude dCaTs were recorded simultaneously with sCaTs
likely in relation to somatic firing during immobility, and could
spread between neighboring segments (Figure 4C). Also, some
sCaTs did not invade dendrites, indicative of local inhibition
(Figure 4C). Overall, during immobility, dCaTs showed
no significant correlation with sCaTs (Pearson correlation
coefficient: r = 0.3033; P = 0.2536; n = 18 segments/nine cells;
Figure 4D), indicating that they were likely associated with
activation of local Ca2+ mechanisms. The most distant dendritic
sites were also the least coupled to soma (Figure 4D), consistent
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FIGURE 3 | Soma-dendrite coupling in O/A interneurons during locomotion. (A) Representative heat-map of soma-dendrite Ca2+ activity in soma and dendrites
along with the animal speed trace (left) and corresponding CaTs recorded in soma and dendrites during locomotion/immobility periods. Note large amplitude sCaTs
that propagate to proximal dendrites (<60 µm from soma). (B) Summary plot illustrating the average dCaT amplitude as a distance from soma in comparison to that
of sCaT (distance = 0) in different cells during locomotion. Red line is a linear regression fit to the data, indicating a significant decline in CaT amplitude with distance
from the soma. (C) Summary plots illustrating relationships between dCaTs and sCaTs in proximal (0–50 µm from soma; left) and more distal (50–100 µm from
soma; right) dendrites. Red lines correspond to a linear regression fit to the data, indicating a significant positive relationship between the sCaT and dCaT amplitude
during locomotion. (D,E) Cross-correlation functions between the sCaTs (D) and dCaTs (E, proximal vs. distal) with animal running speed. Red traces indicate the
mean cross-correlation functions (n = 9 cells).

with previous observations in vitro (Camiré and Topolnik, 2014).
Thus, in average, the soma-dendrite coupling likely via bAPs
was stronger during locomotion, while the local synaptic activity
dominated in interneuron dendrites during immobility.

Furthermore, during immobility state, dCaTs were more
variable within a given cell. Overall, the variance in dCaTs
was significantly higher in segments showing local events than
in segments showing spreading events (Figure 4E). As some
dendritic segments showed both local events during immobility
and spreading dCaTs during locomotion, we assumed that
summation of postsynaptic and bAP-CaTs could occur in
such segments during locomotion. If this hypothesis is true,
then larger dCaTs in such segments could be associated with

coincident pre- and postsynaptic activity and induction of
Hebbian forms of plasticity. To explore this idea further, we
compared the amplitude of local dCaTs in such segments during
immobility with that of spreading events during locomotion
(Figures 4F,G). Our data showed that the mean amplitude of
dCaTs in such segments increased significantly with locomotion
(from 12.0 ± 0.7% ∆F/F to 15.2 ± 0.9% ∆F/F; P < 0.05;
n = 22 segments; Mann-Whitney test; Figures 4F,G), with the
majority of individual segments showing switch from small
amplitude local events to considerable dCaTs (increase to
173.1 ± 17.3% of local dCaT, n = 13/22 segments), indicative
of significant summation of dCaTs during spreading events. The
remaining segments showed no change (98.5 ± 4.6% of local
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FIGURE 4 | Soma-dendrite coupling during immobility. (A) Representative heat-map of Ca2+ activity in soma and dendrites along with the animal speed trace (left)
and corresponding CaTs recorded in soma and dendrites during immobility, showing localized dCaTs that are not seen in soma (indicated with red arrowheads). (B)
Summary plot showing the peak amplitude of dendritic local events as a function of distance from soma. Red line corresponding to a linear regression fit shows no
significant relationship between the dCaT amplitude and distance from the soma. Panel (C) is the same as in (A) but during higher activity in the soma. Note the
soma-dendrite spread of Ca2+ signals during some but not all events. (D) Summary plot illustrating relationships between dCaTs and sCaTs in proximal (0–50 µm
from soma; blue) and more distal (50–100 µm from soma; yellow) dendrites. Lines are the linear regression fits to the corresponding sets of data, indicating no
significant relationship between the sCaT and dCaT amplitude during immobility. (E) Summary bar graphs of the coefficient of variation for the peak amplitude of local
vs. spreading events. Note a significantly higher variance of local events (∗∗∗P < 0.001; n = 22 segments, nine cells). (F) Cumulative histograms of the peak
amplitude for local dCaTs during immobility (left) and spreading dCaTs within the same dendritic segments during locomotion (right), with Gaussian fits to the data
sets. (G) Cumulative distributions of dCaT peak amplitude for local and spreading events, recorded within the same dendritic segments during immobility and
locomotion, respectively. Note a significantly highly amplitude of spreading events during locomotion.

dCaT, n = 5/22 segments) or a slight decrease in dCaTs (decrease
to 79.4± 8.3% of local dCaT, n = 4/22 segments) when compared
to the local events. Taken together, these data point to a dominant
summation of dCaTs during spreading events, but also highlight
the segment-specific variability in local dendritic signaling, likely
due to specific spatio-temporal arrangements of excitatory and
inhibitory inputs converging onto interneuron dendrites.

DISCUSSION

Using high-resolution two-photon imaging, we explored
dendritic Ca2+ activity in hippocampal O/A interneurons
of awake mice during locomotion and immobility. Our data
showed that, despite a large variability in dCaTs across the
cells as well as within different dendritic segments of the same
interneuron, dendritic Ca2+ activity in interneurons reflects
the animal behavior, as different types of Ca2+ signals and
dendrite-soma interactions were observed in specific behavioral

states. As a rule, Ca2+ signals had larger amplitude and could
invade the entire dendritic tree in the focus of observation during
locomotion. While this type of Ca2+ activity was also present
during immobility, the signal amplitude was significantly lower
in both soma and dendrites. Moreover, a significant fraction
of dendrites showed spatially restricted CaTs, which were not
seen by soma. Based on these data, we propose a scenario in
which high soma-dendrite coupling, likely due to bAPs or
regenerative activity and associated dCaTs, may facilitate the
spike-timing-dependent or Hebbian forms of synaptic plasticity
in O/A interneurons during animal locomotion. In contrast,
during animal quiet state, this type of activity can be reduced or
even replaced by local dendritic Ca2+ signaling, which, if occurs
at the hyperpolarized level of membrane potential, may facilitate
the anti-Hebbian plasticity mechanisms.

Dendritic Ca2+ signals in interneurons are more complex
than in PCs as they arise from activation of differentmechanisms,
including the postsynaptic Ca2+-permeable receptors, such as
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NMDA, CP-AMPAR (Goldberg et al., 2003a,b; Topolnik et al.,
2005), kainate (Cossart et al., 1998, 2002) or α7 nicotinic
acetylcholine receptors (Griguoli et al., 2013), different types
of voltage-gated Ca2+-channels (VGCCs; Goldberg et al., 2004;
Topolnik et al., 2009) and peri- and extrasynaptic group I
metabotropic glutamate receptors (mGluR1/mGluR5; Topolnik
et al., 2005, 2006; Camiré et al., 2012; Hainmueller et al., 2014).
Activation of these Ca2+ sources usually triggers events of
relatively small amplitude with different kinetic properties (from
relatively fast to slow for ionotropic vs. metabotropic receptors),
which are restricted to individual dendritic microdomains or
branches. Consistent with activation of local excitatory inputs
within single dendritic segments, spatially restricted postsynaptic
dCaTs were observed in our study in vivo during both
locomotion and immobility states. In addition, bAP-CaTs can
be reliably evoked in proximal dendrites of CA1 interneurons
in vitro via VGCCs and Ca2+ release (Topolnik et al., 2009;
Evstratova et al., 2011). Our data in vivo indicate that such events
may dominate during locomotion and, to a less extend, during
immobility. Also, the Ca2+ -induced Ca2+ release (CICR) events
of large amplitude can be generated in some interneurons at rest
(e.g., fast-spiking cells; Camiré and Topolnik, 2014), and can be
seen during immobility given an overall lower spiking activity
of O/A interneurons (Lapray et al., 2012; Varga et al., 2012).
In summary, many Ca2+ sources can interact in interneuron
dendrites depending on the level of on-going network activity
and the functional state of a given Ca2+ source, indicating that
dendritic Ca2+ activity in interneurons in vivomay be even more
diverse than in vitro.

Indeed, we demonstrate significant variability in interneuron
dCaTs in vivo. First, we found that different dendritic segments
of the same cell could demonstrate different types of dCaTs
likely due to a high diversity of post- and extra-synaptic Ca2+

mechanisms expressed across dendritic arbors (Camiré and
Topolnik, 2012; Camiré et al., 2012; Topolnik and Camiré,
2019) and a different degree of bAP propagation or bAP-CaT
signal amplitude due to activity-dependent regulation of these
processes via synaptic inhibition (Tyan et al., 2014; Francavilla
et al., 2018) or mGluR5-dependent modulation (Topolnik
et al., 2009). In addition, the dCaT variability could arise
from different types of O/A interneurons sampled in our
study, including somatostatin-expressing OLM, bistratified and
long-range projecting cells (Sik et al., 1995; Halasy et al., 1996;
Jinno et al., 2007) as well as horizontal basket (Maccaferri, 2005)
or trilaminar (Ferraguti et al., 2005) cells. The detailed cell
type-specific organization of dendritic Ca2+ signaling remains
still to be examined in the in vitro and in vivo studies. However,
regardless of the inter-cell and intra-cell variability, dCaTs in our
study showed consistent behavior state-dependent organization,
indicating that similar mechanisms may drive dendritic Ca2+

activity in different inhibitory cell types during a particular
behavior state.

During locomotion, high power theta oscillations are
detected in the CA1 hippocampus, with different types of
O/A interneurons exhibiting rhythmic phase-dependent firing
(Lapray et al., 2012; Varga et al., 2012; Katona et al., 2014).
Dendrites of different types of O/A interneurons receive theta-

modulated excitatory input from CA1 PCs, which almost linearly
increase their firing rate with the animal speed (McNaughton
et al., 1983; Czurkó et al., 1999; Buzsáki, 2002). Accordingly,
analysis of somatic and proximal dendritic Ca2+ events revealed
a good correlation between these signals and the animal speed
in O/A interneurons. In addition, the local inhibitory inputs
that terminate onto O/A interneuron dendrites are made
by the type 3 interneuron-specific interneurons (IS3; Acsády
et al., 1996; Chamberland et al., 2010; Tyan et al., 2014) and
the long-range projecting vasoactive intestinal peptide (VIP)-
expressing GABAergic neurons (VIP-LRPs; Francavilla et al.,
2018). While IS3 cells may fire periodically during theta-run
epochs, their activation is often delayed and is rather irregular
(Luo et al., 2019), indicating that dendritic IS3 inhibitory input
may not be efficient in controlling interneuron dendrites during
locomotion. The VIP-LRPs are, in turn, the theta-off cells and
do not participate in dendritic input modulation during theta
(Francavilla et al., 2018). Thus, interneuron dendrites are likely
disinhibited during theta-run epochs, which may facilitate the
spread of bAPs or local spikes and generation of widespread
dCaTs, as observed in our study.

During animal quiet state and consummatory behavior,
large irregular activity (LIA) with periodic sharp-wave-
associated ripples (SWRs, 120–250 Hz) are recorded in the
CA1 hippocampus, with CA1 PCs firing mostly during SWRs.
The IS3 and VIP-LRP cells are active during LIA but do not
participate to SWRs (Francavilla et al., 2018; Luo et al., 2019),
indicating that interneuron dendrites are mostly inhibited
during animal quiet state with short periods of disinhibition
and excitatory drive received during SWRs. Our findings of
significantly reduced dCaTs during immobility are in line with
these observations. It remains to be determined whether the
spatially restricted dCaTs detected in our study are associated
with SWRs.

Dendritic Ca2+ activity in interneurons has been consistently
associated with induction of Hebbian and anti-Hebbian
long-term potentiation (LTP; Perez et al., 2001; Lamsa et al.,
2005, 2007; Topolnik et al., 2006; Topolnik, 2012; Camiré
and Topolnik, 2014; Hainmueller et al., 2014). In this context,
our observations of highly variable dCaTs in interneurons of
awake mice imply that distinct forms of synaptic plasticity
may be induced across different cells and synaptic inputs
terminating onto specific dendritic segments. Given a prevalent
regenerative dCaTs during locomotion, we propose that
Hebbian LTP can be induced in O/A interneurons during
locomotion, thus enhancing their somatic firing (Perez
et al., 2001; Lamsa et al., 2005; Croce et al., 2010). During
immobility, when the dendritic inhibitory drive to O/A
interneurons is increased (Francavilla et al., 2018; Luo et al.,
2019), the local membrane potential is likely hyperpolarized.
Accordingly, the strong excitatory inputs arriving during SWRs
and associated with local dCaTs may induce bidirectional
plasticity depending on the Ca2+ sources involved (Lamsa
et al., 2007; Griguoli et al., 2013; Camiré and Topolnik, 2014).
This simplified scenario does not consider other potential
mechanisms that may operate during different behavioral states,
including the septo-hippocampal cholinergic, glutamatergic
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and GABAergic projections as well as modulation of local
dendritic conductances. Additional studies will be required to
directly reveal how different types of dendritic Ca2+ activity
induce synaptic plasticity in vivo and which learning rules may
be specific for interneurons in behaving animals performing
cognitive tasks.
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