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Turnau K (2019) Are Fungal 
Endophytes Merely Mycorrhizal 
Copycats? The Role of Fungal 

Endophytes in the Adaptation of 
Plants to Metal Toxicity.

Front. Microbiol. 10:371.
doi: 10.3389/fmicb.2019.00371

Are Fungal Endophytes Merely 
Mycorrhizal Copycats? The Role of 
Fungal Endophytes in the Adaptation 
of Plants to Metal Toxicity
Agnieszka Małgorzata Domka1, Piotr Rozpądek2* and Katarzyna Turnau1
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The contamination of soil with toxic metals is a worldwide problem, resulting in the 
disruption of plant vegetation and subsequent crop production. Thus, remediation 
techniques for contaminated soil and water remain a constant interest of researchers. 
Phytoremediation, which utilizes plants to remove or stabilize contaminants, is perceived 
to be a promising strategy. However, phytoremediation’s use to date is limited because 
of constraints associated with such factors as slow plant growth rates or metal toxicity. 
Microbial-assisted phytoremediation serves as an alternative solution, since the impact 
of the microbial symbionts on plant growth and stress tolerance has frequently been 
described. Endophytic fungi occur in almost every plant in the natural environment and 
contribute to plant growth and tolerance to environmental stress conditions. Although 
this group of symbiotic fungi was found to form association with a wide range of hosts, 
including the non-mycorrhizal Brassicaceae metallophytes, their role in the response of 
plants to metal toxicity has not been thoroughly elucidated to date. This review summarizes 
the current knowledge regarding the role of endophytic fungi in the tolerance of plants to 
toxic metals and highlights the similarities and differences between this group of symbiotic 
fungi and mycorrhizal associations in terms of the survival of the plant during heavy 
metal stress.
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INTRODUCTION

The deposition of toxic metals (TMs) in the topsoils of a significant acreage of land has 
become a major problem over a wide range of countries from both highly developed and 
developing regions of the world. Increasing quantities of Zn, Cd, Pb, and Fe that are produced 
by sewage discharges, mining operations, and runoff from metal-refining industries have 
severely limited vegetation what negatively affects numerous branches of human activity 
including food production/agriculture, urbanization, tourism, and other human practices. 
Difficulties in restoration of metal polluted environments arise from: (1) metal toxicity, (2) 
low nutrient content, (3) poor physical structure of the substrate, and (4) degraded microbial 
communities (Rajkumar et  al., 2009).
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In the natural environment, plants interact with a multitude 
of symbiotic microorganisms. This interaction includes mycorrhizal 
fungi (ecto- and endomycorrhizae), other rhizosphere-borne plant 
growth promoting microorganisms (PGPMs), such as rhizobial 
and endophytic bacteria, including plant growth promoting 
rhizobacteria (PGPR) and endophytic fungi (Vandenkoornhuyse 
et  al., 2015). The role of beneficial fungal symbionts in plant 
metal accumulation and tolerance has been underestimated for 
many years; however, it has attracted more interest recently 
(Rajkumar et  al., 2009, 2012; Weyens et  al., 2009b; Burges et  al., 
2017). Significant progress has been made in understanding the 
role of mycorrhizae in metal stress tolerance, and several 
comprehensive reviews have recently been published (Meier et al., 
2012; Cabral et  al., 2015; Ferrol et  al., 2016; Coninx et  al., 2017; 
Das et  al., 2017; Miransari, 2017; Rozpądek et  al., 2017). Besides 
mycorrhiza, another group of symbiotic fungi – fungal endophytes – 
has been attracting the interest of the scientific community due 
to their potential beneficial impact on vegetation, including in 
the facilitation of plant growth metal polluted environments. 
Endophytic fungi are a taxonomically diverse group of ubiquitous 
cryptic microorganisms that reside inside their host without causing 
any visible symptoms of infection for at least part of their life 
cycle (Rodriguez et  al., 2009; Purahong and Hyde, 2011; Sridhar, 
2012). Based on the host range, in planta colonization, mode of 
the transmission and biodiversity, two primary groups (divided 
into 4 classes) of endophytic fungi have been distinguished. The 
group of clavicipitaceous (C) endophytes (class 1) is closely related 
species, colonizing systemically cool- and warm-season grasses 
(Bischoff and White, 2005). While, among non-clavicipitaceous 
(NC) endophytes, three broad-host range classes can 
be  distinguished, including fungi colonizing systemically host 

tissues (class 2), fungi growing exclusively in plant above-ground 
tissues (class 3), and those restricted to plant roots (class 4) that 
include dark septate endophytes (DSEs) belonging to Ascomycota 
and non-mycorrhizal members of Sebacinales, Basidiomycota 
(Rodriguez et  al., 2009; Andrade-Linares and Franken, 2013).

Fungal endophytes positively affect vegetation as follows: 
(1) indirectly by soil formation, which is particularly important 
in degraded environments and (2) directly by fine tuning the 
adaptation of the plant to metal toxicity and improving the 
plant biomass yield (Figure 1) (Li et  al., 2012b; Coninx et  al., 
2017; Rozpądek et  al., 2018). These traits of fungal endophytes 
make them attractive for plant-based environment restoration 
technologies (phytoremediation).

In this review, we  summarized the studies available on the 
role of endophytic fungi in conferring plant toxic metal tolerance, 
with a particular emphasis on NC endophytes. We also attempted 
to address the issue of the differences between this group of 
symbionts and other groups of fungal mutualists, particularly 
mycorrhizae, in the context of fungal-dependent mechanisms 
that enable the plant-microbe consortia to survive under the 
challenge of toxic metals.

ENDOPHYTIC FUNGI: LIFESTYLE AND 
TAXONOMY

Endophytic fungi exhibit a high degree of lifestyle versatility, 
and depending on the genetic traits of the partners, developmental 
stage, nutritional status, and other environmental factors, they 
can interact with their host in mutualistic, commensalic, or 
as latent pathogenic as summarized by Schulz et  al. (2002). 

FIGURE 1 | Influence of toxic metals (TMs) on the plant, symbiotic fungi, and their symbiosis. Metal toxicity exerts a substantial influence on plants and fungi 
leading to changes in the responses in the epigenome, transcriptome, proteome, metabolome, and secretome. Therefore, the interactions between the plant and 
symbiotic fungi (and also other microorganisms) may be affected through the effect on factors, such as the composition of the plant and fungal secretome.  
The resulting symbiotic associations subsequently affect both symbiotic partners leading to the enhanced response to metal toxicity.
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Such versatility and the loss of virulence can be  the result of 
a single mutation or an epigenetic change due to changes in 
the environment. However, plants colonized by the endophytic 
fungi show improved growth, better performance, induced 
resistance, and the biocontrol of nematodes, fungi, and pathogenic 
bacteria and fungi. The asymptotic colonization of the plant 
relies on the balance of the antagonism between the host and 
the endophyte. This balance can be  destroyed when the 
environmental factors change or the plant reaches the stage 
of senescence (Deckert et  al., 2001).

NC endophytes include Ascomycota, Basidiomycota, and 
Mucoromycotina (Huang et al., 2001; Rosa et al., 2010; Andrade-
Linares and Franken, 2013) that were shown to be able to inhabit 
bryophytes, ferns, gymnosperms, and angiosperms (trees, shrubs, 
and herbs), including the non-mycorrhizal Brassicaceae, particularly 
abundant in metallophytes and hyper-accumulators. The association 
of Mucoromycotina with ancient bryophytes and liverworts is 
thought to represent an ancestral plant-fungal interaction and 
probably played a crucial role in the terrestrialization of plants 
(Bidartondo et al., 2011). These fungi could have developed from 
saprophytes that first adapted to become endophytes, and later, 
those inhabiting the below-ground parts of the plants could have 
developed into mycorrhizal fungi (discussed in Strullu-Derrien 
et  al., 2018). The interaction certainly took place several times 
during evolution; thus, the endophytes evolved within distant 
phylogenetic groups of fungi in a manner similar to that of the 
mycorrhizal fungi, which facilitated the interaction with almost 
all plants. The beneficial interaction of the host and its microbiome, 
including bacteria, archea, and fungi, is responsible for maintaining 
the health of the plant (Syamala and Sivaji, 2017).

Endophytic fungi are facultative plant symbionts (facultative 
biotrophs) and according to Brundrett (2002), in contrast to 
mycorrhizal fungi, their development is not synchronized with 
the development of their hosts. Thus, fungal endophytes may 
complete their lifecycle outside the host organism and thus 
are able to grow on artificial media (Petrini, 1996), which 
facilitate the manufacture of pure inoculum under sterile 
conditions and eliminate the difficulty of their propagation. 
This fact is particularly important in relation to phytoremediation 
and the large-scale production of inoculum.

Another distinct feature of the fungal endophytes (species 
belonging to classes 1, 2, and 3) that distinguishes them from 
mycorrhizae is their ability to colonize the above-ground organs 
of the plant. In contrast to mycorrhizal fungi, NC endophytic 
fungi were found in plant leaves, stems, flowers, and seeds 
(Yuan et  al., 2010; Hardoim et  al., 2015), while mycorrhizae 
are restricted to the roots of plants. In addition, a large number 
of species can exist in the form of mycelia or form yeast-like 
structures or mycosomes (Atsatt and Whiteside, 2014). This 
aspect of endophytic fungal biology is particularly interesting 
because the morphological changes described may occur during 
the colonization of the plant host. This may facilitate the 
colonization process by evading the detection system of 
the  hosts.  The invader would lose virulence factors present 
on the surface  of the cell wall that allows detection by the 
plant. This step  would resemble the entrance of the arbuscule 

into the mycorrhizal plant cells that result in the formation 
of the specific interface between the partners that facilitate 
the transfer of substances between the partners (Brundrett, 
2002). Interestingly, endophytic  fungi lack this specialized 
interface and communicate with their hosts using relatively 
unspecialized hyphae (Brundrett,  2006).

In contrast to mycorrhizal fungi, endophytic fungi possess 
the ability to colonize plants belonging to the Brassicaceae, 
which are particularly abundant in metal hyper-accumulators 
and metallophytes; hyper-accumulators have been found in 45 
families of plants with a large number belonging to this family 
(van der Ent et  al., 2013). Similar to the mycorrhizal fungi, 
endophytic fungi were shown to promote plant growth under 
nutrient-limiting conditions (Hiruma et  al., 2018). Such 
conditions are frequently encountered in metalliferous soils. 
In general, the Brassicaceae do not associate with mycorrhizae, 
probably due to the loss of symbiotic genes and the lowered 
expression of the nucleotide-binding site leucine-rich repeat 
resistance proteins (NLRs) required for the arbuscular mycorrhizal 
fungi (AMF) (reviewed in Hiruma et al., 2018). However, there 
were a few reports of AM  fungi present in some Brassicaceae, 
such as the Cd hyper-accumulator Biscutella laevigata (Orłowska 
et  al., 2002) or the Zn hyper-accumulator Thlaspi caerulescens 
(Regvar et  al., 2003) collected from sites rich in TM. These 
cases are presently interpreted as the endophytic growth of 
mycorrhizal fungi, since the presence of arbuscules is mostly 
ephemeral, often only observed at the flowering stage, and 
the cases are rare, being observed only under field conditions 
and not confirmed under greenhouse conditions (Brundrett 
and Tedersoo, 2018). While endophytic fungi dominate 
non-mycorrhizal plants, mycorrhizal plants are also inhabited 
by numerous endophytes, including species of fungi that inhabit 
the Brassicaceae (Chen et  al., 2012; Wężowicz et  al., 2014; 
Sim et  al., 2018). This finding is particularly interesting in the 
context of symbiotic fungi function. If the roles of these different 
symbionts overlap, how do they affect each other’s function? 
Another pending question is what are the specific functions 
of the endophyte that distinguish them from mycorrhiza? It 
appears that the response of the plants to inoculation with a 
single fungus (mycorrhizal or endophyte) differs from the 
response to inoculation with species of both groups of fungi 
(Wężowicz et  al., 2017; Berthelot et  al., 2018; Ważny et  al., 
2018; Zhou et al., 2018). The costs of harboring multiple fungal 
symbionts are higher but increased gains compensate for this 
(Field et  al., 2016). The interaction between these two groups 
of fungi in planta or the effect of the presence of mycorrhizal 
fungi on the diversity and function of fungal endophytes has 
not been thoroughly investigated. Such studies would broaden 
our understanding of the role of different fungi in plant biology 
and the plasticity of the plant-fungus interaction. Available 
studies indicate that fungal endophytes may play a role similar 
to that of mycorrhizae (Rodriguez et  al., 2009; Rudgers and 
Swafford, 2009; Andrade-Linares and Franken, 2013; Hiruma 
et  al., 2018). How this role is affected by the presence of 
mycorrhizal fungi and how the fungal lifestyles change during 
the presence of a potential competitor remain to be investigated.
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TOXIC METAL TOLERANCE OF 
ENDOPHYTIC FUNGI

Certain strains of endophytic fungi exhibit extraordinarily high 
resistance to toxic metals. In culture, endophytic fungi can 
withstand TM concentrations in the mM ranges (Deng et  al., 
2011; Khan et  al., 2017a; Domka et  al., 2019). This adaptation 
provides a competitive edge over non-adapted fungi in colonizing 
plants in metalliferous habitats (Gadd, 2016). The role of 
symbiosis in the evolution of the fungal TM tolerance is 
unknown. It remains to be elucidated whether the TM tolerant 
plant served as shelter for the fungus, allowing it to evolve 
metal tolerance under the TM stress, or whether the metal-
tolerant fungus facilitates the growth of the host plant in 
metalliferous soils. In the case of the former, the ability to 
colonize plant tissues in addition to its metal tolerance would 
play a role in determining the adaptation of the endophytic 
fungi to metal toxicity.

Many TM-tolerant fungal species, such as representatives 
of the genera Phomopsis and Bipolaris (DSE, class 4), have 
been isolated from many plant families (Ban et  al., 2012; 
Wężowicz et  al., 2014; Zhang et  al., 2014; Sim et  al., 2018; 
Domka et  al., 2019). Studies indicate that endophytic fungi 
isolated from plants growing in areas polluted with TM are 
more tolerant to pollution and thus can be  potentially more 
appealing for use in microbial-assisted phytoremediation. For 
example, DSEs isolated from Alnus nepalensis were shown to 
possess a higher tolerance to Cd than isolates from less polluted 
stands (Xu et al., 2015). In another study, 50% of the endophytic 
fungi isolated from six dominant plant species growing on 
Pb-Zn wastelands were shown to be  tolerant to Pb2+ or Zn2+ 
(Li et  al., 2012a). In addition, the growth of some of these 
fungi was even stimulated by the TM. The authors suggested 
that certain fungal species could adapt to metal toxicity due 
to their long-time exposure to the TM. Two strains of the 
endophytic fungi isolated from Solanum nigrum L. growing 
in a Cd-contaminated environment possessed the highest 
tolerance to Cd concentrations of up to 2  mM (Khan et  al., 
2017b). Similarly, Sim et  al. (2018) isolated highly tolerant 
fungal endophytes species from Phragmites sp. utilized in 
wastewater cleanup. The majority of the fungi were able to 
withstand Pb, Zn, and Cu concentrations over 200  mg  l−1. 
Interestingly, Gadd (2016) reported that certain fungi that are 
not necessarily fungal endophytes not adapted to TM can 
exhibit significant TM tolerance and become dominant in 
environments polluted with heavy metals; thus, resistance is 
not necessarily related to their environmental origin. The TM 
tolerance of some non-adapted fungi was shown to be  similar 
to that of the fungal strains from the sites polluted with TM 
(Gadd, 2016). This finding suggests that inherent tolerance 
(probably not TM-related) mechanisms may have been the 
determining factor in the selection of the fungal endophytes 
that inhabit metalliferous environments.

High quantities of toxic metals deposited in soils cause 
qualitative and quantitative changes in microbial populations 
(Chodak et  al., 2013; Corneo et  al., 2013). Li et  al. (2016) 
investigated the diversity of endophytic fungi isolated from 

Dysphania ambrosioides occurring at two TM-polluted stands. 
These researchers identified significant differences in the fungal 
population structure and dominant genera that were present 
between the sites analyzed. The colonization rate of the plants 
selected from stands highly polluted with TM was significantly 
lower than those from less polluted locations. Among all the 
strains isolated, regardless of origin, 50% were shown to be TM 
tolerant. Dominant genera exhibited higher tolerance. However, 
more metal tolerant isolates were found in plants from the 
less polluted stand. There were no differences in the Shannon 
index (H′) between the sites, which indicate similarity in fungal 
diversity. Interestingly, according to Wężowicz et  al. (2014) 
fungal populations isolated from Verbascum lychnitis growing 
on post-mining tailings were more diverse than those from 
the non-polluted sites.

Mechanisms of Fungal Metal 
Tolerance – The Role of Glutathione
Metal tolerance mechanisms in fungi that are described most 
frequently involve glutathione (GSH) and GSH-related tolerance 
that are induced in response to a variety of environmental 
factors (Na and Salt, 2011; Saraswat and Rai, 2011). Thus, the 
tolerant fungal strains, not necessarily TM adapted, that possessed 
the ability to colonize plants would be  the driving force in 
the plant-fungal symbiosis in habitats polluted with heavy 
metals. Although endophytic fungi were shown to be  able to 
accumulate extremely high quantities of TM in their mycelia, 
there is a lack of a comprehensive description of the mechanisms 
of metal transport, sequestration, and detoxification for this 
group of fungi (Deng et  al., 2014; Zahoor et  al., 2017). Zhao 
et  al. (2015a) performed a transcriptome analysis of Exophiala 
pisciphila (DSE) growing in the presence of Cd using RNA-Seq. 
These researchers found several upregulated genes associated 
with TM binding, transport and detoxification, reactive oxygen 
species scavenging, redox homeostasis maintenance, and sulfur 
assimilation. The authors suggested that sulfate-containing 
molecules could increase during Cd stress, including glutathione 
(GSH), phytochelatins, and metallothioneins (Na and Salt, 2011). 
After uptake, the toxic metals are neutralized by complexation 
in the cytosol and translocated for storage in the vacuole. The 
vacuolar compartmentalization of metal chelates enables the 
fungi to isolate potentially dangerous pollutants from sensitive 
cellular compartments. Out of the numerous metal chelating 
molecules present in living organisms, the thiol-containing 
substances GSH (glutathione) and metallothioneins were shown 
to be  present in, e.g., mycorrhizal fungi (Saraswat and Rai, 
2011). The tripeptide GSH (γ-glu-cys-gly) is a non-protein 
thiol found abundantly in all cell compartments. In addition 
to its ability to sequester metals, it acts as a potent antioxidant 
and removes the damage caused by oxidative stress (Freeman, 
2004). In addition, Ban et  al. (2012, 2017) reported that Pb 
treatment leads to a transient GSH increase in non-pathogenic 
Gaeumannomyces cylindrosporus (DSE) that improves tolerance 
to Pb. Apart from GSH-dependent tolerance, Wei et  al. (2016) 
analyzed the role of an Nramp (natural resistance-associated 
macrophage protein) gene from the DSE E. pisciphila. This 
gene encodes the plasma membrane bivalent cation transporter. 
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The expression of EpNramp is downregulated after Cd exposure. 
Its heterologous expression in yeast Fe-uptake mutants leads 
to growth complementation. The authors suggested that this 
protein is partially involved in the tolerance of E. pisciphila 
to cadmium.

Fungal Endophytes Limit Metal Toxicity by 
Exuding Metal-Binding Molecules Into the 
Rhizosphere
In addition to immobilizing the TM within its hyphae, fungi 
can limit the toxicity of TM by secreting various types of 
agents that chelate metals (Meharg, 2003; Bellion et  al., 2006; 
Cabral et  al., 2015), such as citrates or oxalic acid (Gadd, 
1999). Available reports indicate that AMF are not able to 
secrete these types of organic acids but were shown to synthesize 
and release the glycoprotein glomalin (reviewed in Meharg, 
2003; González-Chávez et  al., 2004). Chelator exudation is 
an important mechanism of TM stabilization in the soil and 
prevents the entry of TM into the plant roots. The synthesis 
and secretion of metal-chelating molecules, including organic 
acids, siderophores, exopolysaccharides (EPSs), and phenolic 
compounds by fungal endophytes similarly to other  
mycorrhizal fungi with the exception of AMF, were reported 
(Bartholdy et  al., 2001; Koulman et  al., 2012; Zhao et  al., 
2015b; Garza et  al., 2016; Gupta and Joia, 2016; Yamaji et  al., 
2016; Tong et al., 2017). In addition, a small number of reports 
indicate that fungal endophytes may bind TM ions to their 
cell wall components, similar to mycorrhizae (Tong et  al., 
2017). The production of siderophores by endophytic fungi 
was reported on a few occasions. Koulman et al. (2012) showed 
that the clavicipitaceous endophyte Epichloë festucae synthesizes 
siderophores with an unusual structure. In another study, 
Johnson et  al. (2013) showed that the E. festucae sid gene, 
encoding a siderophore synthase, is necessary to establish 
symbiosis between the fungus and Lolium perenne. The plants 
infected with the ΔsidN mutants were stunted, and detailed 
microscopic studies revealed abnormalities in the distribution 
and localization of the mutant hyphae (Johnson et  al., 2013). 
Bartholdy et al. (2001) reported the production of siderophores 
by the DSE fungus Phialocephala fortinii. HPLC analysis 
identified ferricrocin, ferrirubin, and ferrichrome C in the 
culture filtrate. Experiments performed by Yamaji et al. (2016) 
showed that the two DSE strains P. fortninii and Rhizodermea 
veluwensis were able to produce siderophores that are probably 
involved in the TM immobilization in the rhizosphere. Ban 
et  al. (2012) reported that the melanin content in G. 
cylindrosporus increased following supplementation with Pb. 
Melanin is considered to be  the most important component 
of the fungal cell wall involved in the alleviation of TM stress. 
There are numerous studies reporting its ability to bind metal 
ions; however, the role of melanin in the TM tolerance of 
the DSE remains unclear (Bruenger et  al., 1967; Gadd, 1993; 
Fogarty and Tobin, 1996; Ban et  al., 2012).

In addition, most endophytic fungi studied to date were 
shown to possess the ability to form nanoparticles (NPs), what 
may subsequently reduce the metal toxicity exerted on the 
host plants, as well as on the fungi (Durán et  al., 2011). 

The efficiency of NPs mycosynthesis differed in between species 
of fungi (Shankar et  al., 2003; Qian et  al., 2013; Devi and 
Joshi, 2015). Recent studies indicate that NPs may be  used 
in agriculture as nanofertilizers (Liu and Lal, 2015) that facilitate 
uptake of micronutrients (Dimkpa et  al., 2015). Fungi utilize 
cellular enzymes, proteins, and membrane-bound molecules 
as electron donors in the reduction reaction. Reduced metal 
ions can be precipitated as NPs intracellularly or extracellularly 
(reviewed in El Enshasy et  al., 2018). It was proposed that 
during intracellular synthesis metal ions are at first electrostatically 
bound to the fungal cell wall or diffuse through it and are 
subsequently reduced and precipitated by enzymes present in 
the cytoplasmic membrane (e.g., ATPases, hydrogenases) (Vahabi 
and Dorcheh, 2014). This leads to nanoparticle formation. The 
extracellular synthesis of nanoparticles occurs through the 
release of reductase enzymes (e.g., nitrate reductase, NADPH-
dependent reductases, and FAD-dependent glutathione reductase) 
by metal exposed fungi and subsequent reduction of metal 
ions to form NPs (Kashyap et  al., 2013; Singh et  al., 2016; El 
Enshasy et al., 2018). Devi and Joshi (2015) reported the ability 
of three endophytic fungi to biosynthesize silver NPs. Similar 
properties were shown for the endophytic Epicoccum nigrum 
(DSE) and Colletotrichum sp. (Shankar et  al., 2003; Qian et  al., 
2013). Also, Netala et  al. (2016) have shown that the synthesis 
of silver NPs by the endophytic fungus Pestalotiopsis microspora 
VJ1/VS Yeasts from the Cryptococcus and Rhodotorula genus 
was also shown to produce silver NPs on several occasions 
(Salvadori et al., 2014; Fernández et al., 2016). Data concerning 
the ability of mycorrhizal fungi to synthesize NPs are scarce. 
Manceau et  al. (2008) investigated copper speciation at the 
soil-root interface and found that copper was biotically reduced 
to NPs by mycorrhizal plants. Also, González-Chávez et  al. 
(2002) reported the formation of electron-dense Cu granules 
within hyphae of AMF isolated from Cu- and As-contaminated 
soil, what suggests that mycorrhizal fungi also can produce 
nanoparticulate copper. However, more studies are required 
to understand the synthesis of the NPs in the plant rhizosphere, 
their effect on plants and microbial tolerance to TM, and their 
potential use in phytoremediation strategies.

PLANT METAL TOLERANCE INDUCED 
BY THE FUNGI

Plants inhabiting sites rich in toxic metals (TMs) developed a 
variety of mechanisms that allow them to survive in extremely 
adverse environments. Two primary strategies have evolved as 
an adaptation to metal toxicity. Plants may either accumulate 
high quantities of TM and internally neutralize toxic elements 
by a highly effective and complex detoxifying system or employ 
avoidance/exclusion strategies that limit metal toxicity (reviewed 
in DalCorso et  al., 2013). According to available studies, fungal 
endophytes may impact both strategies depending on the strategy 
employed by its host (Jiang et  al., 2008; Deng et  al., 2013, 2014; 
Zhu et  al., 2015; Zahoor et  al., 2017; Rozpądek et  al., 2018) 
(Figure 2) (Table 1). For example, Rozpądek et al. (2018) showed 
that endophytic Mucor sp. affects TM avoidance strategy of 
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Arabidopsis arenosa, leading to the decrease of Zn and Fe uptake 
by the plant and simultaneously to upregulation of root to shoot 
translocation of Zn, Fe, and Cd. During interaction with the 
endophyte, plant genes implicated in metal homeostasis were 
affected. In turn, Jiang et al. (2008) revealed that Brassica juncea 
inoculated with Acacia-derived endophytic fungi was able to 
accumulate more Cd and Ni, depending on TM present in the 
soil, than wild type. These findings imply that the metal tolerance 
mechanisms of the host affected by the symbiotic fungal endophytes 
are not specific or novel but rather are differentially expressed 
and regulated. An important aspect of plant metal stress tolerance 
is the optimal metal distribution between the plant organs and 
the cell compartments that enable effective metal detoxification 
and protect the sensitive cellular compartments from metal 
toxicity. The accumulation of high quantities of TM has received 
a substantial amount of attention due to the importance of 
hyper-accumulating plants in phytoremediation and phytomining 
(reviewed in Verbruggen et  al., 2009; van der Ent et  al., 2013). 
Plant metallophytes have evolved highly effective metal 
detoxification mechanisms. In the case of hyper-accumulators, 
these mechanisms allow them to translocate and accumulate 
high quantities of metals in their shoots, which are associated 
with the upregulation of the genes encoding metal transporters 
enabling them to optimize metal distribution within the plant 
(Verbruggen et  al., 2009). The number of studies describing the 
role of fungi, primarily AMF (Chen et  al., 2003, 2004; Leung 
et  al., 2006; Vogel-Mikuš et  al., 2006; Punamiya et  al., 2010), 
in the adaptation of hyper-accumulators is limited, and to our 
knowledge, the endophytic mycobiota of this group of plants 
has not been thoroughly investigated. In the work of Vogel-
Mikuš et  al. (2006), the influence of AM  fungi on uptake of 
Zn, Cd, and Pb by Thlaspi praecox was investigated. The authors 

revealed that AM colonization resulted in higher nutrient uptake 
and lower TM accumulation by plants. In contrast, Punamiya 
et  al. (2010) showed that Chrysopogon zizanioides accumulated 
more Pb in association with the AMF Funneliformis mosseae.

An Extension/Filter of the Root?
Fungi can efficiently immobilize TM and limit metal uptake 
by the plant due to the large surface of the mycelia and the 
development of various mechanisms to tolerate and detoxify 
metals. This finding is particularly important because the hyphae 
of symbiotic fungi spread out from the root into the surrounding 
soil and significantly extend the root surface area. It was suggested 
that the extraradical hyphae of the AMF could represent up 
to 90% of the total AMF biomass and account for approximately 
25% of the total microbial biomass in agricultural soils (Leake 
et  al., 2004). This allows the efficient supply of the plant with 
the simultaneous filtering of the uptake of nutrients and water 
(Joner, 2000). Arbuscular mycorrhizal symbiosis was shown to 
significantly alter the root morphology, usually leading to a 
reduction in the root/shoot ratio. These changes result in a 
high degree of dependence of the plant on the symbiosis; AMF 
are responsible for the majority of nutrient absorption and 
delivery to the host plant (Sanders et  al., 1977; Hetrick, 1991). 
In ectomycorrhizal roots (ECM), as an adaptation to symbiosis, 
the number and length of the root hairs are significantly limited. 
This finding implies that as in AMF, the majority of water and 
nutrient acquisition is transmitted through the fungal hyphae 
(Hetrick, 1991). Turnau et  al. (1996) revealed the filtering role 
of the ectomycorrhizal fungus Rhizopogon roseolus hyphal  
mantle formed on Pinus sylvestris roots. The authors investigated 
the distribution of potentially toxic metals within mycorrhizae 
and showed the enhanced accumulation of Cd and Al in the 

FIGURE 2 | Comparison of the effect of endophytic fungi on toxic metal (TM) uptake and translocation in an excluder (left) and a hyper-accumulator (right) plant. 
Plants inhabiting sites rich in toxic metals may express two different strategies: TM avoidance/exclusion or hyper-accumulation. Endophytic fungi affect these 
pathways directly through the regulation of endogenous host plant mechanisms involved in TM tolerance or/and indirectly by the accumulation of TM in the 
mycelium, TM sorption into fungal cell walls, or the secretion of chelating agents, such as organic acids, phenolic compounds, and exopolysaccharides. Thus, the 
influence of endophytic fungi leads to the enhancement of the excluder/hyper-accumulator phenotype expressed as changes in the TM level in plant organs.  
See the text for more detail.
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fungal mantle and their gradual decrease along the Hartig net 
toward the inside of the root. A similar filtering effect was 
observed in the Suillus luteus/P. sylvestris mycorrhizae in which 
Ca, Fe, Zn, and Pb were concentrated in the mantle and 
rhizomorph (Turnau et  al., 2001). A limited number of studies 
indicate that some species of root-bound endophytic fungi (e.g., 
Colletotrichum tofieldiae, Serendipita indica, Helotiales F229) may 
behave similarly to mycorrhizae and extend out of the root to 
increase the root surface area and transmit nutrients to the 
plant (Yadav et  al., 2010; Hiruma et  al., 2016; Almario et  al., 
2017). However, this phenomenon has not been confirmed in 
the presence of TM. The fungi’s role as a physical barrier 
preventing contact with TM cannot be  ruled out, but to the 
best of our knowledge, there are no studies that would provide 
clear evidence that endophytic fungi entwine plant roots and 
serve as a physical protection against TM. Additionally, several 
distantly related groups of endophytic fungi were shown to 
activate root hair elongation and induce other alterations in the 
root architecture leading to an increase in the root surface 
(Harman et  al., 2004; Stewart and Hill, 2014; Hiruma et  al., 
2016). One type of fungus, Mucor sp., was shown to activate 
the root hair elongation of its host A. arenosa in non-polluted 
soil, as well as in substrates polluted with TM (Rozpądek et  al., 

2018). In mycorrhizal plants, the fungal hyphae partly take 
over the root functions, enabling the plant to grow relatively 
smaller roots that are less specialized for water and nutrient 
uptake. Endophytic fungi activate root growth and thus allow 
the plant to penetrate the surrounding soil more thoroughly 
but with its own tissues. It cannot be  ruled out that fungal 
endophytes increase the surface of the plant root and 
simultaneously extend into the rhizosphere and serve as a filter 
that binds and prevents TM uptake by the plant. This situation 
may be  true in the case of non-mycorrhizal plants, but in 
nature, most plants are inhabited by endophytic fungi and other 
fungal symbionts, including mycorrhizae (Wężowicz et al., 2017). 
Fungal endophytes were shown to occur within the roots and 
form complex webs with mycorrhizal hyphae (Horton et  al., 
1998; Agler et  al., 2016). The majority of the studies available 
describe plant-fungal interactions in single inoculation 
experiments. This approach has several advantages but 
unfortunately neglects the full spectrum of the plant-fungus 
and symbiotic fungus-fungus interactions that occur in natural 
environments. The plant response to symbiotic microorganisms 
appears to be  far more complex than the responses described 
in single inoculation experiments, and its description needs to 
include the complexity of microorganisms inhabiting its host.

TABLE 1 | Comparison of plant toxic metal tolerance mechanisms activated by symbiotic fungi.

Mechanism Ectomycorrhizal fungi 
(ECM)

Arbuscular mycorrhizal 
fungi (AMF)

Endophytic fungi

TM avoidance Reduced TM transfer to the 
plant

•  Biosorption (Chalot et al., 
2000; Colpaert et al., 2011)

•  Bioaccumulation (Turnau 
et al., 1996)

•  Biosorption (Cabral et al., 
2015)

•  Bioaccumulation 
(Janoušková et al., 2006; 
Meier et al., 2012; Corneo  
et al., 2013)

•  Biosorption (Tong et al., 2017)

•  Bioaccumulation (Zahoor 
et al., 2017)

Reduced TM bioavailability •  Metal transformation (Gadd, 
1993)

•  Secretion of chelating agents 
(e.g., organic acids) (Bellion 
et al., 2006; Ray and 
Adholeya, 2009)

•  Metal transformation (Gadd, 
1993; Wu et al., 2015)

•  Secretion of chelating agents 
(e.g., organic acids, glomalin) 
(González-Chávez et al., 
2004; Cabral et al., 2015)

•  Metal transformation (Gadd, 
1993)

•  Secretion of chelating agents 
(e.g., organic acids, 
siderophores, phenolic 
compounds) (Bartholdy et al., 
2001; Koulman et al., 2012; 
Zhao et al., 2015b; Yamaji 
et al., 2016; Tong et al., 2017)

Increased TM concentration  
in the plant

Increased availability of TM •  Secretion of chelating agents 
(Fomina et al., 2005; 
Machuca et al., 2007; 
Vamerali et al., 2010)

•  Metal transformation (Gadd, 
1993)

•  Secretion of chelating agents 
(Göhre and Paszkowski, 
2006)

•  Metal transformation (Gadd, 
1993; Li et al., 2016)

•  Metal transformation (Gadd, 
1993)

Increased TM uptake and 
translocation

•  Indirectly through plant 
growth promotion (Sell et al., 
2005)

•  Regulation of the expression 
of host genes encoding 
metal transporters (Ma et al., 
2014)

•  Metal transport from fungal 
hyphae to plant cells (Göhre 
and Paszkowski, 2006)

•  Indirectly through plant 
growth promotion (Usman 
and Mohamed, 2009)

•  Regulation of the expression 
of host genes encoding 
metal transporters  
(Burleigh et al., 2003;  
Bona et al., 2010)

•  Indirectly through plant 
growth promotion (Zhu et al., 
2015)
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Endophytic Fungi Affect Toxic Metal 
Uptake and Distribution Within the Plant
After overcoming the physical barriers of the root, the TM efflux 
into the cell, vacuolar sequestration, and xylem loading is 
coordinated by a number of heavy metal transporters, a broad 
group of different proteins, such as CPx-ATPases for Cu or Cd, 
ABC transporters for Cd transport into the vacuole, ZIP transporters 
(ZRT- and IRT-related proteins for Fe or Zn, respectively), and 
Nramp transporters. Although this network is thought to balance 
the concentration and partitioning of essential metals, such as 
Zn, it also unselectively transports toxic elements, such as Cd 
(reviewed in DalCorso et al., 2013). Metal-specific and non-specific 
transporter proteins enable metal compartmentalization and 
subsequent stress alleviation by toxic metal complexation with 
organic molecules, such as metallothioneins, organic acids, and 
phytochelatins (PCs) that are synthesized by the plant. The 
abundance of these molecules based on studies with overexpression 
lines and hyper-accumulators correlates with the ability to 
accumulate TM (Freeman, 2004; Janoušková et  al., 2005).

There are several studies that confirm the influence of endophytic 
fungi on the TM uptake and distribution in the host plants. 
Inoculation with the fungal endophyte Mucor sp. (class 2) isolated 
from plants growing on soils heavily polluted with TM resulted 
in a decrease in Cr uptake of up to 90% by Brassica campestris. 
The fungus was able to bio-transform the metals deposited in 
the soil and accumulate them in its hyphae, thereby making 
them less available to the plant (Zahoor et  al., 2017). Recently, 
similar results were obtained for a strain of Mucor sp. isolated 
from A. arenosa inhibiting the “Bolesław” Zn, Cd, and Pb mine 
dump in southern Poland. Inoculation with the fungal strain 
UNIJAG.PL50 improved the production of plant biomass, decreased 
the accumulation of metals, and significantly affected the metal 
distribution within the plant, leading to more effective TM 
translocation to the above-ground parts and subsequently to more 
uniform TM distribution (Rozpądek et al., 2018). The same Mucor 
sp. strain was simultaneously used with Rhizoglomus intraradices 
and induced increased Zn uptake in Lactuca serriola growing 
on TM-rich industrial wastes. The concentration of Zn was higher 
in both the roots and shoots of the symbiotic plants (Ważny 
et al., 2018). In turn, the inoculation of maize with the TM-tolerant 
DSE E. pisciphila strain H93 alleviated the deleterious effects of 
the presence of TM by reducing the translocation of the HM 
ions from the roots to the shoots (Li et  al., 2011). Similarly, He 
et al. (2017) reported the positive effect of E. pisciphila on maize 
growth under high Cd and the reduced translocation of the Cd 
to the shoots. Yamaji et al. (2016) showed that Clethra barbinervis 
inoculated with its fungal endophytes accumulated less TM than 
the control plants, while Zhu et  al. (2015) reported that two 
species belonging to the Mucor genus, M. circinelloides (Z4) and 
M. racemosus (Z8), improved the growth and the accumulation 
of Pb and Cd of Guizhou oilseed rape. Both strains increased 
the accumulation of the TM in the plant by 117.6% for Cd and 
63.48% for Pb, simultaneously reducing their concentrations in 
the substratum by 60.57% and 27.12%, respectively. Another 
endophyte that was shown to improve the growth of Brassica 
napus and B. campestris in TM-polluted soil was Rhodotorula 
sp. This group of yeast endophytes (class 2) is particularly 

interesting due to their ability to produce exopolysaccharides 
(EPSs) with a high potential to absorb pollutants, including TM 
(Garza et  al., 2016; Fernández et  al., 2018). Inoculation with 
this Rhodotorula sp. increased the efficiency of the plant to extract 
Cd, Cu, and Pb (Wang et  al., 2013). In addition, Deng et  al. 
(2014) demonstrated that Lasiodiplodia sp. was an endophytic 
fungus of rape that showed promise for bioremediation. The 
fungal strain increases the translocation rate of the Cd from the 
roots to the shoots. Solanum nigrum was shown to accumulate 
more Cd in the roots and shoots after inoculation with the DSE 
Phomopsis fukushii strain PDL-10. He et al. (2017) showed similar 
results. Studies reported the influence of E. pisciphila on maize 
root-colonizing DSE and Cd tolerance. Plants inoculated with 
the fungus accumulated more Cd in the roots, and the metal 
translocation to the above-ground parts was limited (He et  al., 
2017). Ni uptake and most importantly extraction efficiency were 
positively affected in Brassica juncea inoculated with Trichoderma 
atroviride strain F6 (also belonging to class 4, root inhabiting 
Hypocreales). In addition, the inoculated B. juncea exhibited a 
higher tolerance to metal toxicity (Cao et  al., 2008).

Despite the increasing number of reports examining the 
influence of endophytic fungi on TM uptake and translocation 
in the host plant, only a small number of studies attempted 
to investigate the role of endophytic fungi with respect to the 
mechanism of this aspect of plant TM metabolism. Rozpądek 
et  al. (2018) showed that the reduction of metal accumulation 
and changes in their distribution within A. arenosa were 
accompanied by the upregulation of several metal homeostasis-
related genes involved in metal exclusion, sequestration in the 
vacuole, and ROS (reactive oxygen species) scavenging. The 
upregulated genes include hma3 (heavy metal associated 3), 
mtp1 (metal transport protein 1), zif1 (zinc induced facilitator 
1), and cax2 (cation exchanger 2) that encode tonoplast-bound 
vacuole carrier proteins (Rozpądek et  al., 2018). The 
overexpression or complementation with these genes conferred 
tolerance to metal stress to plants and yeast, respectively (Haydon 
and Cobbett, 2007; Koren’kov et  al., 2007; Morel et  al., 2009). 
In hyper-accumulating T. caerulescens and Arabidopsis halleri, 
phloem loading is accomplished by the highly expressed hma2 
(heavy metal associated 2) and hma4 (heavy metal associated 
4). To date, there have been no reports indicating that fungal 
endophytes may affect metal translocation from the root to 
the shoot by interfering with the expression of these metal 
transporters. However, the expression of pcr2 (plant cadmium 
resistance 2) involved in Zn phloem loading and metal efflux 
out of the root epidermal cells (Song et al., 2010) was upregulated, 
and metal accumulation was higher in the shoots of inoculated 
plants (Rozpądek et  al., 2018). In another study, Wang et  al. 
(2016) analyzed the response of maize inoculated with DSE 
in the presence of Cd. These researchers showed that inoculation 
with the endophytes led to the inhibition of an unspecified 
zip gene, which coincided with the decreased uptake of Cd 
following DSE infection. In addition, mpt1 expression was also 
activated in the plants inoculated with DSE during Cd toxicity.

Mycorrhizal fungi were also shown to affect the uptake of 
TM and their subsequent translocation and accumulation by the 
host plants (Table 1). The expression of metal transporter-encoding 
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genes, including proteins belonging to Nramp, Zip families, HMA4 
transporter, or arsenic putative transporter POR 29, was activated 
in the AMF plants (Burleigh et  al., 2003; Ouziad et  al., 2005; 
Bona et al., 2010; Ma et al., 2014). Based on the current knowledge, 
the AM  fungi, depending on the fungal and plant species, may 
inhibit the TM uptake by the host plant or increase the metal 
translocation to the above-ground parts of the plant (Joner and 
Leyval, 1997; Chen et  al., 2007). Ectomycorrhizal fungi were 
proven to serve as a barrier against TM uptake, since they were 
reported to inhibit the uptake, translocation, and accumulation 
of the TM in the upper parts of the plant (Adriaensen et  al., 
2004, 2005, 2006; Walker et  al., 2004). Depending on the fungal 
species, the TMs were shown to accumulate mostly in the hyphal 
mantle or in the extramatrical mycelia (Turnau et al., 1996, 2002).

The Influence of Endophytic Fungi on TM 
Detoxification by the Plant
Endophytic fungi were also shown to affect the expression of 
the stress-related genes of the host plant, thus triggering resistance 
against TM toxicity. In maize, inoculation with the DSE E. 
pisciphila (Wang et  al., 2016) led to the upregulation of pcs 
expression. The authors suggested that this could facilitate the 
transpeptidation of glutathione, as well as other thiols. Khan 
and Lee (2013) reported that soybean plants inoculated with 
the class 3 endophytic Penicillium funiculosum produced more 
reduced glutathione during Cu stress than control non-inoculated 
plants. In another study by the same authors, the interaction 
of the plant with endophytic strain RSF-6L led to increased 
catalase activity in S. nigrum during Cd toxicity (Khan et  al., 
2017a). The effect of inoculation on the activity and abundance 
of antioxidants was confirmed in several other studies (Wang 
et  al., 2016). Endophytic Trichoderma atroviride and T. virens 
(class 4) were shown to influence the levels of expression of 
the adc1 and adc2 genes implicated in spermidine biosynthesis 
in A. thaliana in the control (Salazar-Badillo et  al., 2015). The 
synthesis of the stress protective polyamines spermidine and 
spermine is often activated following exposure to TM, and 
their abundance often correlates with stress tolerance. However, 
there is a lack of studies indicating the role of polyamines in 
the resistance to TM triggered by the fungal endophytes.

Gene expression studies confirm the role of mycorrhizae 
in conferring plant tolerance against TM by regulating the 
expression of the plant stress response genes. The genes that 
encode plant defense compounds that are described the most 
frequently are those involved in the upregulation of sulfur 
metabolism (sulfur containing compounds), such as 
metallothionein, GSH-synthase, ascorbate peroxidase, or 
glutathione S-transferase (Bona et  al., 2010; Cicatelli et  al., 
2012; Lingua et  al., 2012; Shahabivand et  al., 2017).

Plant Growth Promotion Imposed by 
the Fungi
There is no unequivocal “mode” of fungal action in terms of 
the effect on metal uptake and distribution. Some species of 
fungi protect the plant by decreasing metal uptake, while other 
species increase uptake and translocation from the root to the 

shoot. In addition, there is no consensus regarding the mechanism 
of the alleviation of metal toxicity by fungi. It remains to 
be  elucidated whether symbiotic fungi improve plant growth 
during metal toxicity by facilitating water and nutrient uptake 
by the plant and thus indirectly by fine tuning the metal tolerance 
of the host or directly by upregulating specific mechanisms of 
metal tolerance. In the majority of studies available, the plants 
inoculated with endophytic fungi produce more biomass during 
metal toxicity than the non-inoculated plants (Zhu et  al., 2015; 
Wang et  al., 2016; Rozpądek et  al., 2018). However, it is not 
clear whether this is a result of fungal dependent stress alleviation 
or a strategy that allows the plants to “dilute” the accumulated 
metals due to improved growth as a result of enhanced nutrition. 
Interestingly, the ability to facilitate nutrient uptake was a trait 
that distinguished the fungal endophytes from the mycorrhizae. 
Endophytes were thought to be  unable to improve nutrient 
uptake by the plant, but in recent years, fungal endophytes 
were shown to participate in plant nutrition (Brundrett et  al., 
2002). Fungal endophytes improve plant water and nutrient 
uptake. It has been reported that toxic metals often interfere 
with the root uptake of nutrients, such as Fe, P, Mg, K, Ca, 
and Zn, and with the metabolic functions of the essential 
nutrients, leading to plant growth retardation (Ouzounidou et al., 
2006). In addition, soils augmented with toxic metals are often 
highly deficient in nutrients, which impose additional restraints 
to plant growth. Under such conditions, the fungal endophytes 
improve the acquisition of plant nutrients by mobilizing nutrients 
and making them available to the plant roots (Cui and Nobel, 
2006; Weyens et  al., 2009a; Rajkumar et  al., 2012). The 
Glomeromycota are obligatory biotrophs and lack saprotrophic 
capabilities. Thus, their ability to decompose organic matter and 
to liberate compounds that are absorbable for the plant into 
the soil is limited. In contrast, endophytic fungi are saprotrophic 
microorganisms that can improve plant nutrition by decomposing 
organic matter (Promputtha et  al., 2007; Purahong and Hyde, 
2011). This trait can be  particularly useful in environments 
polluted with TMs that are devoid of available nutrients.

AMF develop specialized structures – arbuscules – that allow 
an exchange between the fungus and the plant. Abuscules are 
branched intracellular hyphae that are present in the root 
cortex. The absence of these structures in fungal endophytes 
suggests that the mechanism of nutrient transfer at the plant-
endophyte interface differs from that employed by the AMF. 
Interestingly, the Mucoromycotina of the bryophytes formed 
characteristic intracellular coils of an unknown function (Field 
et  al., 2015). We  can only hypothesize that these structures 
may play a similar role in Mucoromycotina to that of the 
arbuscules in the AMF. Another possible way to improve plant 
nutrition by fungal endophytes is the rhizophagy cycle 
hypothesized to act in the interaction between plants and 
endophytic bacteria and yeast (Paungfoo-Lonhienne et al., 2010; 
White et  al., 2018). The rhizophagy theory suggests that fungi 
and endophytic bacteria can be  the prey of the plant root 
cells and serve as nourishing factors that enable the plants to 
survive even without available nutrients in the surroundings.

Endophytic fungi are associated with a wide range of plant 
growth promoting activities, including P solubilization and the 
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production of siderophores and phytohormones (Chhabra and 
Dowling, 2017). The role of fungal endophytes in the delivery 
of P to the plant was described in numerous studies. Hiruma 
et  al. (2016) showed that C. tofieldiae transfers P to the host 
plant and that the phosphate starvation response (PSR) mechanism 
that is active in plant tissues is responsible for the control of 
root colonization. In another study, Rozpądek et al. (2018) showed 
that Mucor sp. improved host plant nutrition by inducing the 
PSR and probably stimulating the plant to produce enzymes 
implicated in phosphorus acquisition. Yadav et al. (2010) reported 
that maize inoculated with S. indica accumulates higher levels of 
P than control plants. In addition, plants inoculated with S. indica 
with knocked down PiPT accumulated less P than plants inoculated 
with a wild-type fungus. This indicates that PiPT is involved in 
phosphorus transport and that S. indica improves the nutrition 
of the host plant. Improved host phosphorus acquisition by  
S. indica was conferred by Wu et al. (2018). The class 2 endophytic 
Fusarium tricinctum strain isolated from S. nigrum was shown 
to produce IAA and stimulate the growth of the shoots and 
roots during Cd toxicity (Khan et al., 2017a). Yamaji et al. (2016) 
reported that Clethra barbinervis, naturally occurring at mine sites, 
could tolerate high TM concentrations due to the support of 
DSE, including P. fortinii, Rhizodermea veluwensis, and Rhizoscyphus 
sp. Inoculation tests revealed that these fungal endophytes enhance 
plant growth by promoting the uptake of K.

HYPER-ACCUMULATORS AND 
SYMBIOTIC FUNGI

The role of microorganisms in the phenomenon of hyper-
accumulation remains unknown, even though much progress 
in this matter has recently been accomplished (reviewed in 
Furini et al., 2015). Only 10% of the metal hyper-accumulating 
species have been examined for their ability to interact with 
rhizospheric microorganisms, mostly for their associations with 
bacteria (Li et  al., 2007; Pal et  al., 2007; Kidd et  al., 2018).

Turnau and Mesjasz-Przybylowicz (2003) reported several 
Ni hyper-accumulating plants from ultramafic soils in 
South Africa that were abundantly colonized by AMF. Orłowska 
et  al. (2013) reported that the Ni hyper-accumulating perennial 
Berkheya coddii inoculated with mycorrhizal fungi accumulated 
P, K, Mn, and Zn in the cortical layer of the lateral roots and 
in the vascular stele more strongly, while Ni was detected 
particularly in the vascular tissue in non-inoculated plants. The 
inoculated plants translocated Ni to the above-ground parts of 
the plant more efficiently. The effect of the endophytic fungi 
on these plants that are strongly dependent on mycorrhizae 
still awaits investigation, which could be useful for phytoextraction.

In recent years, there has been an increase in studies on 
the influence of endophytic fungi on hyper-accumulating plant 
species. Khan et al. (2017b) characterized the endophytic fungal 
community associated with Cd-hyper-accumulating S. nigrum. 
They isolated 42 culturable fungal strains that belonged to the 
Ascomycota. In another study, Khan et  al. (2017a) tested 
endophytic fungal strains isolated from S. nigrum for Cd 

tolerance and accumulation potential. They showed that one 
of the strains isolated RSF-6L exhibited the ability to reduce 
Cd uptake in the plant. Both the translocation factor (TF) 
and the bio-concentration factor were lower in the plants 
inoculated with endophytes than the control (Khan et  al., 
2017a). Interestingly, earlier studies showed that inoculation 
with the mycorrhizal fungi Claroideoglomus claroideum and 
R. intraradices enhanced the accumulation of Zn in the plant 
tissues with the primary reservoir of Zn in the shoots (Marques 
et  al., 2006). It would be  interesting to compare these results 
with those of double inoculation and various metals. In addition, 
inoculation with the fungi conferred protection to the host 
plant, leading to an improvement in tolerance.

CONCLUSIONS

The pollution of soils with toxic metals not only affects the 
composition and diversity of microbial communities, leading to 
a reduction in the overall abundance of microbial species, but 
also results in the enrichment of metal-tolerant microbial strains 
(Yao et  al., 2003; Stefanowicz et  al., 2008; Azarbad et  al., 2013; 
Chen et  al., 2014). These strains are extremely tolerant to metal 
toxicity and based on the studies available may facilitate plant 
growth in environments polluted with metals. The role of 
mycorrhizae in the adaptation of plants to metal pollution has 
been extensively studied over the last three decades. However, 
the role of other microbial components of the mycorrhizosphere 
cannot be  overlooked. This is particularly important due to the 
fact that plants in their natural environments simultaneously 
interact with a wide array of microorganisms. In case of the 
Brassicaceae metallophytes and hyper-accumulators that lost the 
ability to interact with mycorrhizae fungal endophytes may play 
a role resembling mycorrhizae in the adaptation of non-mycorrhizal 
plants to metalliferous soils; however, the mechanisms of the 
action of endophytes may distinguish them from other symbiotic 
fungi (Table 1). In nature plants, both mycorrhizal and 
non-mycorrhizal and microorganisms form complex assemblages 
termed the holobiont. The functioning of this super organism 
is determined by relationships between the interacting organisms, 
thus understanding the complexity and routs of mutual 
communication will allow us to utilize the potential of plant-
based clean-up technologies more effectively. In general, the 
influence of toxic metals on fungi and plants encompasses induced 
changes on the level of the epigenome, transcriptome, proteome, 
metabolome, and secretome. In addition, these changes further 
influence the interactions between the plant and symbiotic fungi 
and other soil microorganisms (Figure 1). Endophytic fungi may 
alleviate TM stress in the host plants in various manners. They 
can serve as a barrier and prevent the entry of metal ions into 
plant tissues and optimize metal distribution within the plant. 
These roles of fungi have been described on several occasions; 
however, very little is known about how the symbiont induces 
the metal phenotype in plants. One of the most pending questions 
is whether the metal adapted fungus directly affects metal specific 
tolerance mechanisms or is improved adaptation to metal toxicity 
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a result of indirect action such as improving water and nutrient 
availability in the soil and their subsequent uptake by plants 
that confer plant fitness? Another question is how much the 
endophyte influence on the plant TM tolerance differs from the 
analogous impact of mycorrhizal fungi? To answer these questions 
more studies concerning the role of fungal symbionts in plant 
response to TM are needed. Bioremediation is a dynamically 
growing area of green biotechnology. Endophytes may have 
considerable potential applications not only in microbial-assisted 
phytoremediation practice but also in mycoremediation of the 
areas that cannot be  used for plant growth.
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