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Ischemia/reperfusion (I/R) injury induces irreversible oxidative stress damage to the cardiac 
myocytes. Many studies have revealed that propofol alleviates the important organelle-
mediated injury from oxidative stress in vitro. However, it remains unclear whether propofol 
prevents I/R-induced DNA damage in cardiomyocytes. In our study, we established an 
oxygen glucose deprivation/reoxygenation (OGD/R) model in H9c2 cells and found that 
propofol decreased reactive oxygen species (ROS) levels and suppressed cell apoptosis 
induced by OGD/R in H9c2 cells. In addition, propofol significantly reduced the molecular 
marker of DNA damage and inhibited double-strand breaks of DNA damage induced by 
OGD/R in H9c2 cells in a dose-dependent manner. Furthermore, we  investigated the 
molecular mechanisms and demonstrated that propofol inhibited forkhead box O 1 (FoxO1) 
phosphorylation and increased FoxO1 nuclear translocation through inhibition of protein 
kinase B (Akt) and adenosine 5’-monophosphate-activated protein kinase (AMPK) 
pathways. The protective effects of propofol against oxidative stress-induced DNA damage 
were reversed by silencing FoxO1. Taken together, our results suggest that oxidative 
stress aggravates DNA damage and apoptosis in H9C2 cells, which can be reversed by 
propofol via FoxO1 nuclear translocation.

Keywords: propofol, oxygen glucose deprivation and reperfusion, ROS, DNA damage, FoxO1

INTRODUCTION

Myocardial ischemia injury followed by reperfusion induces irreversible oxidative stress damage 
and cardiomyocyte cell death (Murphy and Steenbergen, 2008). However, the underlying 
mechanism of ischemia/reperfusion (I/R) injury remains to be  elucidated. A large amount of 
evidence suggests that pharmacological intervention for cardioprotection, which may offer novel 
therapeutic candidates to ameliorate the risk and progression of ischemic heart disease, and 
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heart failure (Thibault et al., 2008; Hausenloy and Yellon, 2011). 
However, clinically available agents for the patient with ischemic 
heart disease are limited.

Propofol (2-6-diisopropylphenol) is commonly used in clinical 
anesthesia induction (4–6  μg/ml) and maintenance as well as 
in sedation (2–3  μg/ml) (Chidambaran et  al., 2015). It has 
been shown that propofol exhibited cardioprotective effects in 
both cell and animal studies (Xia et  al., 2003; Zhao et  al., 
2015). In addition, propofol inhibits I/R injuries in various 
experimental animal and cellular models by reducing the 
generation of ROS, scavenging free radicals, protecting the 
cell membrane and mitochondrial function from lipid 
peroxidation, and suppressing apoptosis (Corcoran et al., 2006; 
Jovic et  al., 2012; Li et  al., 2015). Prolonged production of 
ROS causes irreversible damage not only to cell membrane, 
organelles, but also to the nucleus. It remains unexplored 
whether propofol protects against DNA damage induced by 
ischemia/reperfusion in cardiomyocytes.

Myocardial I/R can produce a large number of ROS, which 
can cause damage to protein, lipid modifications, and DNA 
(Finkel and Holbrook, 2000). The aberrant DNA structures 
generated upon DNA damage can trigger DNA damage response 
(DDR), which refers to a network of cellular processes in 
order to detect and repair DNA lesions. The failure of DDR 
and gene repair can cause secondary myocardial cell apoptosis 
and even senescence, which leads to heart failure and even 
death (Bersell et  al., 2013).

Three major antioxidant pathways (NF-E2-related factor-2 
(Nrf2), Sirtuin 1 (SIRT1), and FoxO1) play an important role 
in the DDR (DeNicola et  al., 2011; Pardo et  al., 2011; Sengupta 
et  al., 2011). We  hypothesize that propofol may alleviate DNA 
damage induced by I/R injury via antioxidant pathways. In the 
present study, we used H9c2 cell line subjected to oxygen glucose 
deprivation and reperfusion (OGD/R) as an in vitro model of 
cardiomyocyte ischemia and investigated the potential mechanism 
underlying the cardioprotective effect of propofol against I/R.

MATERIALS AND METHODS

Reagents and Antibodies
Dulbecco’s modified Eagle’s medium/F-12 (DMEM/F-12) and 
fetal bovine serum were purchased from Gibco-Invitrogen (Grand 
Island, NY, USA). Propofol and Dimethyl sulfoxide were purchased 
from Sigma-Aldrich (St. Louis, MO, USA). Akt inhibitor 
(wortmannin) and AMPK inhibitor (dorsomorphin) were 
purchased from Selleck. Akt activator (IGF-1) and AMPK activator 
(AICAR) were purchased from RD Systems. Antibodies against 
FoxO1 and Nrf2 were purchased from Abcam. Antibodies against 
BAX, phospho-ATM (Ser1981), phospho-ATR (Ser428), γ-H2AX 
(Ser139), phospho-CHK1 (Ser345), phospho-CHK2 (Thr68), 
phospho-P53 (Ser15), phospho-BRCA1 (Ser1524), Akt, 
phospho-Akt (Thr308), IRS-1, phospho-IRS-1 (Ser636/639), AMPK, 
phospho-AMPK (Thr172), and phospho-FoxO1 (Ser256) were 
purchased from Cell Signaling Technology (Danvers, MA, USA). 
Antibodies against NOX2, SIRT1, Cat, SOD1, Histone-H3, and 
GAPDH were purchased from Proteintech (Chicago, IL, USA).

Cell Culture
Rat cardiomyocyte H9c2 cell line was purchased from Shanghai 
Institute for Biological Sciences, Chinese Academy of Science 
(Shanghai, China). The cells were cultured in DMEM/F-12 
supplemented with 10% fetal bovine serum and 1% penicillin/
streptomycin at 37 °C in a humidified incubator containing 
5% CO2.

Oxygen Glucose Deprivation/
Reoxygenation (OGD/R) Model  
and Drug Treatment
Oxygen glucose deprivation/reoxygenation model and drug 
treatment were performed as previously described (Zhao et al., 
2015). Briefly, cells were exposed to hypoxic conditions (oxygen 
deprivation, 0.5% O2) for 24  h in culture medium deprived 
of glucose and combined with 1% fetal bovine serum. After 
hypoxia, the cells were oxygenated under normoxic conditions 
(reoxygenation) for 24  h in normal medium. Propofol with 
different concentrations (5, 10, 20, and 40  μM) was added, 
respectively, to the cells 1  h before and during the 
hypoxia-reoxygenation.

Cell Viability Assay
Cell viability was measured by the methylthiazolyldiphenyl-
tetrazolium bromide (MTT; Beyotime, Haimen, China) method. 
Cells were seeded in a 96-well cell at a density of 2  ×  104 
cells/well. After 24 h of culture, cells were treated with propofol 
or dimethyl sulfoxide for hypoxia-oxygenation, respectively. 
Then, 10  μl of MTT solution was added to each well at the 
final concentration of 0.5  mg/ml and incubated for 4  h at 
37 °C. A 100 ml dimethyl sulfoxide was then added to dissolve 
formazan crystals, and the absorbance at 570 nm was measured 
using an AMR-100 automatic enzyme analyzer (Allsheng, 
Hangzhou, China).

Intracellular ROS Detection
Cells were seeded in a 96-well plate at a density of 3  ×  104 
cells/well. After 24  h of incubation, the cells were exposed to 
OGD condition for 24 h and subsequently treated with propofol 
at 20  μM concentration under reoxygenation condition for 
12  h. For the detection of intracellular ROS, the cells were 
preloaded with 10 μM of 2,7-dichlorofluorescin diacetate (DCFH-
DA, Beyotime, Haimen, China) for 20  min at 37 °C, and then, 
the plates were washed using DMEM without serum five times 
at least. A fluorescence microplate reader with an excitation 
wavelength of 488  nm and an emission wavelength of 525  nm 
was used to determine the intensity of DCF fluorescence.

Cell Apoptosis Assay
Cells were seeded into a 6-well plate and treated as described 
in oxygen glucose deprivation/reoxygenation model and drug 
treatment above. Annexin V-FITC Apoptosis Detection Kit 
(Beyotime, Haimen, China) was used for the detection of 
apoptotic cells according to the manufacturer’s protocol. The 
proportion of apoptotic cells was calculated by FlowJo software.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Zhou et al. Propofol Alleviates DNA Damage

Frontiers in Physiology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 223

Cytoplasmic and Nuclear  
Protein Extraction
This assay was conducted by using NE-PER Nuclear and Cytoplasmic 
Extraction Reagents Kit (Thermo Scientific, USA) according to 
the manufacturers’ protocol. Briefly, the supernatant was carefully 
removed, and the cell pellet was left as dry as possible. CER I was 
added to the cell pellet, incubating for 10  min. Then, CER II was 
added, and supernatant (cytoplasmic extract) was collected after 
vortex and centrifugation. NER was added to the cell pellet, and 
nuclear extract was collected in the same way. The volume ratio 
of CER I:CER II:NER reagents was at 200:11:100, and all the 
procedures were performed on ice with the reagent being pre-cold.

FoxO1-Specific siRNA Silenced FoxO1
H9c2 cells were seeded in a 6-well plate at 5  ×  106 cells/well 
and incubated at 37 °C and 5% CO2. According to the 
manufacturer’s instructions, three different specific siRNA 
oligonucleotides (50  nM) or the scrambler oligonucleotides as 
control (provided by the Shanghai Tuo Ran biological company) 
were transfected into H9c2 cells with Lipofectamine 2000 to 
knockout FoxO1 in the following day. Six hours after transfection, 
the cells were updated with normal medium. The transfection 
reagent used in this study was the levels of FoxO1 protein in 
different clones that were determined by the western blot 
analysis. The FoxO1 knockdown siRNA:

Rn-FoxO1-si-1: 5′-CCAGGCACCUCAUAACAAA-3′
Rn-FoxO1-si-2: 5′-CAUGACAGCAAAGUGCCAA-3′
Rn-FoxO1-si-3: 5′-CAAGUCUUGUAUAUAUGCA-3′

Western Blotting
Cells were harvested and washed with cold phosphate buffered 
saline (PBS). Cells were lysed with RIPA buffer containing protease 
and phosphatase inhibitor cocktails (Roche, Germany). Insoluble 
material was removed by centrifugation at 16,000 rpm for 20 min 
at 4 °C. The supernatants were collected and quantified for protein 
concentration with bicinchoninic acid (BCA) kit (Beyotime, 
Haimen, China) according to the manufacturer’s instructions. 
Total proteins from cell lysates were denatured at 100°C for 
5  min; separated on 6, 10, and 12% SDS-PAGE; and transferred 
to polyvinylidene difluoride membranes (PVDF, Millipore, Billerica, 
MA, USA). The membranes were blocked with 5% BSA (albumin 
from bovine serum) in TBS containing 0.1% Tween-20 (TBST) 
for 2  h at room temperature and then incubated sequentially 
with primary antibodies at 4 °C overnight. The primary antibodies 
included goat GAPDH and Histone-H3, γ-H2AX, p-ATM, p-ATR, 
p-CHK1, p-CHK2, p-P53, p-BRCA1, BAX, NOX2, SIRT1, Nrf2, 
FoxO1, p-FoxO1, Akt, p-Akt, IRS-1, p-IRS-1, AMPK, p-AMPK, 
SOD1, and Cat. After primary antibody incubation, the membranes 
were washed with TBST three times and incubated with either 
goat anti-mouse or goat anti-rabbit horseradish peroxidase-
conjugated secondary antibodies at a dilution of 1:5,000 for 2  h 
at room temperature. Washed with TBST five times, the membranes 
were developed with electrochemiluminescence (ECL) reagent 
(Thermo-Pierce, Rockford, IL, USA). The density of immunoblotting 
bands was quantified using Gel-Pro Analyzer software (Media 
Cybernetics, Silver Spring, MD, USA).

Statistical Analysis
All experiments were repeated at least three times. The results 
were presented as the mean ± standard deviation (SD). Statistical 
analysis was performed using the software Statistical Package 
for the Social Science (SPSS, Chicago, IL, USA). Quantitative 
data were analyzed by one-way analysis of variance (ANOVA). 
Student-Newman-Keuls test was used for post hoc analysis to 
identify significant differences between groups. Differences with 
p <  0.05 were considered statistically significant.

RESULTS

Propofol Decreased ROS Levels and 
Inhibited Cell Apoptosis Induced by 
OGD/R in H9c2 Cells
As depicted in Figures 1 and 2, OGD/R significantly elevated 
intracellular ROS level and cell apoptosis compared with 
control. Administration of propofol at 20  μM concentration 
profoundly prevented the OGD/R-induced increase in ROS 
level (Figures 1A,B). Consistently, the apoptosis rates were 
also decreased after the application of propofol (Figure 2). 
These results demonstrated that propofol can prevent the 
OGD/R-induced increase in the intracellular ROS level and 
cell apoptosis rate in H9c2 cells.

Propofol Inhibited DNA Double-Strand 
Breaks Induced by OGD/R in H9c2 Cells
We next examined whether propofol could ameliorate the DNA 
damage induced by oxidative stress in OGD/R. As shown in 
Figures 3A,C, the phosphorylation level of H2AX, ATM, and 
CHK2 was markedly elevated after OGD/R exposure, which 
was significantly reversed by the application of propofol (5, 
10, 20, and 40  μM). However, phosphorylation level of ATR 
and CHK1 was comparable between the groups (Figures 3B,D).

Effect of Propofol on OGD/R-Induced DNA 
Damage in H9c2 Cells
We evaluated p-P53 and BAX expression using the western 
blotting. Compared with the control group, the relative gray 
value of p-P53, BAX was significantly increased during OGD/R 
insult in model group, and the level of p-P53 and BAX in 
propofol groups was decreased in a dose-dependent manner 
(Figures 3B,E). We  also measured the p-BRCA1 activation by 
using the relative gray value/total in each group. Compared 
with model group, propofol treatment greatly decreased the 
expression of p-BRCA1 (Figure 3B).

Effect of Propofol on OGD/R-Induced Cell 
Death Through the Regulation of FoxO1 to 
Reduce ROS in H9c2 Cells
NOX2 is considered one of the major producers of ROS, which 
play an important role in intracellular ROS homeostasis (Bedard 
and Krause, 2007). Nrf2, SIRT1, and FoxO1 play an important 
role in cellular adaptation to oxidative stress through regulation 
of antioxidant proteins, such as SOD1 and Cat, to reduce ROS 
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(Greer and Brunet, 2005; DeNicola et  al., 2011; Pardo et  al., 
2011). There was no significant statistical difference of the 
expression of NOX2, Nrf2, or SIRT1, among the groups (Data 
not shown). Compared with the model group, the levels of 
total-FoxO1 and nucleus-FoxO1  in propofol groups were 
increased in a dose-dependent manner (Figures 4A,B,E). 
However, the levels of cytoplasm-FoxO1 and phospho-FoxO1 in 
propofol groups were decreased (Figures 4A,C,D).

FoxO1 Silencing Aggravates the  
OGD/R-Induced DNA Damage in H9c2 Cell
To identify the role of FoxO1  in mediating the oxidative stress 
damage or anti-oxidative stress progress in H9c2 cell, we silenced 
FoxO1 using FoxO1-specific siRNA in H9c2 cells and evaluated 
the effects of propofol on OGD/R-induced DNA damage. 
We synthesized three sequences of siRNA-FoxO1 and screened 
out that transfection with 50  nM siRNA-FoxO1–1 markedly 

FIGURE 2 | Propofol inhibited cell apoptosis induced by OGD/R in H9c2 cells. Quantification of the apoptotic cell population by flow cytometry. Propofol decreased 
the percentage of apoptotic cells compared with the model. The data are presented as the mean ± SD of three independent experiments. *p < 0.05, **p < 0.01, 
***p < 0.001 versus control, #p < 0.05, ##p < 0.01, ###p < 0.001 versus OGD/R treated group without drugs.

FIGURE 1 | Effects of propofol on ROS contents during OGD/R in H9c2 cells. DMSO and propofol adopted during the entire ischemia/reperfusion phase. The ctrl 
group was defined as 100%. (A) Effects of propofol on OGD/R induced intracellular ROS contents increase in H9c2 cells. (B) Representative DCF fluorescent 
images, ×100. The results were shown as mean ± SD from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 versus control, #p < 0.05, ##p < 0.01, 
###p < 0.001 versus OGD/R treated group without drugs.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Zhou et al. Propofol Alleviates DNA Damage

Frontiers in Physiology | www.frontiersin.org 5 March 2019 | Volume 10 | Article 223

downregulated the level of FoxO1 expression (Figures 5A,B). 
Interestingly, after the significant knockdown of FoxO1 with 
FoxO1-specific siRNA, the levels of γ-H2AX and p-ATM 
expression in the OGD/R-induced and siRNA-FoxO1-transfected 
H9c2 cells were increased (Figures 5C–E), whereas the levels 
of Cat and SOD1 expression were decreased (Figures 5F–H).

Protective Effects of Propofol Against 
OGD/R-Induced DNA Damage via 
Inhibition of AMPK and Akt Pathway
The modulation of FoxO1 involves in Akt (Zhang et  al., 2018) 
and AMPK (Liu et  al., 2018) pathways. We  thus evaluated the 
expression of the proteins in these pathways. We demonstrated 

FIGURE 3 | The effects of propofol on the expression of DNA double-strand break-related proteins induced by OGD/R in H9c2 cells during OGD/IR insult. 
Representative bands of (A) γ-H2AX, p-ATM, p-CHK2, (B) p-ATR, p-CHK1, p-BRCA1, p-P53, Bax by western blotting. (C–E) Relative gray value of 
γ-H2AX, p-ATM, p-CHK2, p-ATR, p-CHK1, p-BRCA1, p-P53, and Bax. GAPDH was used as an internal control. The data are presented as the mean ± SD 
of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 versus control, #p < 0.05, ##p < 0.01, ###p < 0.001 versus OGD/R treated group 
without drugs.
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that OGD/R exposure elevated the phosphorylation level of 
Akt and AMPK, which was reversed by treatment with propofol 
in H9c2 cells (Figure 6A). We  further used inhibitors 
(wortmannin and dorsomorphin) and activators (IGF-1 and 
AICAR) of Akt and AMPK pathway to treat the cells and 
found that both inhibitors decreased the expression of p-FoxO1, 
while activators increased the expression of p-FoxO1 (Figure 6B), 
indicating that the inhibition of both Akt and AMPK pathways 
mediates the protective effects of propofol against OGD/R-induced 
DNA damage, which is consistent with the changes in cell 
viability detected by MTT assay (Figures  6C–E).

DISCUSSION

Our study elucidated a mechanism underlying the protective 
effect of propofol against OGD/R-induced DNA damage, possibly 
via FoxO1 nuclear translocation in H9c2 cells. We first established 
an in vitro model of myocardial cell injury induced by OGD/R 
in H9c2 cells. We  demonstrated that propofol enhanced the 
survival of H9c2 cells in a dose-dependent manner and decreased 
ROS level during OGD/R insult.

ROS are critically involved in the I/R injury (Finkel and 
Holbrook, 2000; Eltzschig and Eckle, 2011). Increased ROS 
can cause DNA damage (Finkel and Holbrook, 2000). DDR 
involves complex signaling pathways (Sancar et al., 2004), which 
can be  coordinated primarily by two distinct kinase signaling 
cascades, the ataxia telangiectasia mutated/checkpoint kinase 
2 (ATM–CHK2) and the Rad3-related protein/checkpoint kinase 

1 (ATR–CHK1) pathways, activated by DNA double-strand 
breaks (DSBs) and single-stranded DNA, respectively (Smith 
et  al., 2010). γ-H2AX, a phosphorylated histone variant H2AX 
at serine139, is widely believed to be a sensor of DNA damage 
signaling. γ-H2AX plays an important role in recruiting the 
DDR proteins to the DNA lesion sites and initiating the DDR, 
including DNA repair and cell cycle checkpoints (Paull et  al., 
2000; Rappold et  al., 2001; Huen et  al., 2010). We  found that 
the OGD/R-induced increase in phosphorylation of ATM, 
CHK2, and H2AX was reversed by propofol in a dose-dependent 
manner, while the level of phosphorylation of ATR and CHK1 
remained unchanged. We  also showed that OGD/R caused 
upregulation in the expression of p53 and p-BRCA1  in H9c2 
cells was prevented by propofol dose-dependently in comparison 
with the control group. These results suggested that ROS induced 
by OGD/R insult mainly caused DNA double-strand breaks, 
which led to upregulated expression of p53 and cell apoptosis. 
In addition, DNA repair was activated through ATM-CHK2 
pathway. Propofol significantly inhibited the production of  
ROS and promoted DNA repair in H9c2 cells, protecting 
cardiomyocyte from ischemic injury.

The production of ROS is related to many factors, and the 
increase of NADPH oxidase is one of the major sources (Hahn 
et  al., 2011). NOX2, also known as gp91phox, is the prototype 
NADPH oxidase. NOX2 antisense strongly inhibited hypoxia-
induced oxidative stress and apoptosis in cardiomyocytes  
in vitro. Propofol failed to inhibit the expression of NOX2 
after OGD/R insult, suggesting that propofol might not directly 
inhibit the production of ROS.

FIGURE 4 | Propofol inhibited FoxO1 phosphorylation and promoted FoxO1 shuttling into the nucleus in H9c2 cells during OGD/R insult. Representative bands of 
(A) t-FoxO1, p-FoxO1, c-FoxO1, and n-FoxO1. Relative gray value/GAPDH of (B) t-FoxO1, (C) p-FoxO1, (D) c-FoxO1, (E) n-FoxO1. The data are presented as the 
mean ± SD of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 versus control, #p < 0.05, ##p < 0.01, ###p < 0.001 versus OGD/R treated group 
without drugs.
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Sirtuin 1 (SIRT1) and NF-E2-related factor-2 (Nrf2) are 
critical regulators of cytoprotective proteins during oxidative 
stress (Evans-Anderson et  al., 2008; DeNicola et  al., 2011; 
Pardo et  al., 2011). However, we  did not detect the activation 
of SIRT1 and Nrf2 signaling pathways in cardiomyocytes during 
the OGD/R insult. FoxOs belong to the forkhead family of 
transcriptional regulators, including FoxO1, FoxO3, FoxO4, 
and FoxO6 (Evans-Anderson et  al., 2008) of which FoxO1 is 
highly expressed in adult cardiomyocytes. The FoxO1 plays 
an important role in cellular adaptation to oxidative stress 
through regulation of antioxidant genes as well as transactivating 
ROS-detoxifying enzymes (Furukawa-Hibi et  al., 2002; van 
den Berg and Burgering, 2011). The phosphorylation of FoxO1 
prevents its translocation to the nucleus and blocks its function. 
In our study, we  found that propofol enhanced the protein 

expression of t-FoxO1 and n-FoxO1 and decreased the expression 
of c-FoxO1 and p-FoxO1 induced by OGD/R. In addition, 
the FoxO1 silence significantly reversed the protective effect 
of propofol against DSBs induced by OGD/R in H9c2 cells. 
Therefore, propofol inhibited FoxO1 phosphorylation and 
promoted FoxO1 shuttle into the nucleus, which may help 
increase expression of antioxidants, decrease production of 
ROS, and alleviate DNA damage and cell death.

Forkhead box O regulation can be  principally achieved by 
post-translational modifications or protein-protein interactions 
(Daitoku et al., 2011). FoxO1 has been reported to be modulated 
by Nrf2 and SIRT1 signaling pathways (Lee and Goldberg, 
2013; Gille et al., 2019). FoxO1 is involved in various pathways, 
including Akt (Zhang et  al., 2018) and AMPK (Liu et  al., 
2018) pathways. We  demonstrated that propofol reversed the 

FIGURE 5 | The FoxO1 silence significantly reversed the effect of propofol on DSBs in H9c2 cells during OGD/R insult. (A) and (B) Representative image of FoxO1 
silence vesicles in H9c2 cells, which was, respectively, transfected with 50 nM siRNA-FoxO1–1, siRNA-FoxO1–2, or siRNA-FoxO1–3. (C), (D), (F), and (G): Relative 
level of γ-H2AX, p-ATM, Cat, and SOD1 in the OGD/R induced and siRNA-transfected H9c2 cells. (E) and (H) Expression of γ-H2AX, p-ATM, Cat, and SOD1 in 
protein level in H9c2 cells treated with 20 μM propofol, 50 nM siRNA-FoxO1–1, or both of them. The data are presented as the mean ± SD of three independent 
experiments. *p < 0.05, **p < 0.01, ***p < 0.001 versus control, #p < 0.05, ##p < 0.01, ###p < 0.001 versus OGD/R treated group without drugs.
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FIGURE 6 | Propofol inhibited FoxO1 phosphorylation through Akt and AMPK pathways. (A) The expression of proteins in FoxO1-related pathways in H9c2 cells. 
(B) The expression of p-FoxO1 after being treated with inhibitors and activators of Akt and AMPK pathways. (C) Cell viability was assessed by MTT assay after 
FoxO1 siRNA transfection in H9c2 cells. (D–E) Cell viability was assessed by MTT assay after being treated with inhibitors and activators of Akt and AMPK 
pathways. The data are presented as the mean ± SD of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 versus control, #p < 0.05, ##p < 0.01, 
###p < 0.001 versus OGD/R treated group without drugs.

FIGURE 7 | Diagram of DNA damage response via FoxO1 pathways.
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elevated phosphorylation level of Akt and AMPK pathways 
induced by OGD/R in H9c2 cells. Inhibitors (wortmannin 
and dorsomorphin) of Akt and AMPK decreased the expression 
of p-FoxO1, while the activators (IGF-1 and AICAR) increased 
the expression of p-FoxO1, indicating that both Akt and 
AMPK pathways were involved in protection of propofol 
against DNA damage induced by OGD/R, which was consistent 
with the changes in cell viability detected by MTT assay. It 
has been reported that propofol reduced oxidative stress through 
FoxO1 and AMPK pathways (Zhao et  al., 2015). But, it was 
controversial that only 10  μM of propofol decreased the 
p-AMPK level. A possible explanation is that there are more 
ways than one by which FoxO1 is phosphorylated. However, 
in our study, we  actually found that there was no significant 
crosstalk between FoxO1 and Nrf2 (or SIRT1) in the protection 
of propofol against DNA damage induced by OGD/R. It has 
been reported that both Nrf2 and SIRT1 can be  activated by 
AMPK signaling pathway. Since propofol significantly decreased 
the level of Akt and AMPK phosphorylation during oxidative 
stress, it is possible that propofol may mainly promote nuclear 
translocation of the FoxO1 via Akt and AMPK signaling 
pathways, instead of Nrf2 or SIRT1. GSK3β is also a 
cardioprotective enzyme. It is previously reported that GSK3β 
plays an important role in propofol cardioprotection. In our 
study, there is no evidence that GSK3β mediates the protective 
effect of propofol against DNA damage (data not shown).

CONCLUSIONS

The cardioprotective effect of propofol against OGD/R injury 
in the H9c2 was through the inhibition of FoxO1 phosphorylation 
and the promotion of FoxO1 shuttle into the nucleus via 

Akt and AMPK pathways, which helps to alleviate DNA 
damage and cell death by sequentially increasing the expression 
of antioxidants enzymes and decreasing the production of 
ROS correspondingly (Figure 7).
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