
Numerical simulation of fluid flow through simplified blade cascade with
prescribed harmonic motion using discontinuous Galerkin method
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Abstract. This paper deals with a numerical simulation of compressible viscous fluid flow around three flat
plates with prescribed harmonic motion. This arrangement presents a simplified blade cascade with forward
wave motion. The aim of this simulation is to determine the aerodynamic forces acting on the flat plates. The
mathematical model describing this problem is formed by Favre-averaged system of Navier-Stokes equations
in arbitrary Lagrangian-Eulerian (ALE) formulation completed by one-equation Spalart-Allmaras turbulence
model. The simulation was performed using the developed in-house CFD software based on discontinuous
Galerkin method, which offers high order of accuracy.

1 Introduction

In the forties of the 20th century, first papers focused on
the aero-elasticity of blades in axial turbines appeared [1].
Empirical criterion on arising of flutter is introduced in the
paper [2]. This criterion is based on a reduced blade fre-
quency for bending blade vibration. If the reduced blade
frequency is less than 0.33, the flutter is not excited. Nev-
ertheless, other influences such as geometric configuration
of blade cascade and angle of attack can also lead to flutter.

The problem of aero-elasticity is still subject of topical
interest because modern turbines are designed for higher
efficiencies and higher power under higher operational
temperatures and flow rates. Higher operational, safety
and economical demands force the designers to be more
precise during the process of determination of safe opera-
tional condition laying out of the area with loss of stabil-
ity. Originally, the term flutter was established for flow at-
tached to the vibration of blade when phase displacement
between blade motion and induced aerodynamic forces oc-
curs. In dependence on time shift between the moving
structure and unsteady aerodynamic forces acting on the
structure, following cases can occur:

• the energy of the flow is absorbed into the blade,

• kinetic energy of the blade is transmitted to the flow,

• the energy of the flow stays unchanged during particular
cycles of blade vibration.

If the blades add the energy to the flow, we talk about
damped vibration from the aero-elasticity point of view.
If the flow adds the energy to blades and their amplitudes
increase, we talk about unstable excited vibration. In the
work [3] it has been shown that the critical flutter point,
�e-mail: jvimmr@kme.zcu.cz
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i.e. the highest aero-dynamical excitation, arises by a par-
ticular inter-blade phase angle. Most of aerodynamic stud-
ies are based on the so called travelling wave mode of vi-
bration, where one assumes that all blades vibrate with
the same frequency, amplitude and inter-blade phase an-
gle. Other aerodynamic studies use the influence coeffi-
cient technique which is based on the calculation of aero-
dynamic forces of vibrating blade acting on non-vibrating
adjacent blades.

For purpose of this study, we choose the travelling
wave mode approach for the numerical modelling of the
unsteady flow and flutter analysis in the simplified blade
cascade formed by three flat plates. Thus, all flat plates in
the cascade vibrate and their mutual movement prescribes
the travelling waves in the cascade. The aim of this numer-
ical study is to determine aerodynamic forces acting on
the flat plates in cascade, when the harmonic motion with
phase delay is prescribed. The numerical simulation is per-
formed using developed in-house CFD software based on
the discontinuous Galerkin finite element method. In sec-
tion 4 we present numerical results of unsteady fluid flow
for the selected configuration of the simplified blade cas-
cade described in [3]. For the numerical simulation one
flow speed and forward travelling wave mode in the cas-
cade were considered.
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2 Mathematical model

The two-dimensional problem of compressible viscous
fluid flow through simplified blade cascade with pre-
scribed harmonic motion is described by Favre-averaged
system of Navier-Stokes equations, in dimensionless arbi-
trary Lagrangian-Eulerian (ALE) formulation written as
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where i, j = 1, 2, �̄ and p̄ are dimensionless time-averaged
values of density and pressure, ũi and ẽ are dimension-
less mass-averaged velocity components and energy, Re is
Reynolds number, Pr is Prandtl number, Prt = 0.89 is tur-
bulent Prandtl number for flow around flat plate, µ and µt

are dynamic and turbulent viscosity. U j are components of
mesh velocity. Mass-averaged stress tensor and Reynolds
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The symbol DA

Dt denotes the ALE derivative [5].
To include the influence of turbulent fluctuations on

the mean flow a one-equation turbulence model of Spalart
and Allmaras [4] is used. It is given by transport equation
for eddy viscosity ν̃ written as
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where D is the distance to the nearest wall and Ω̄ is the
vorticity magnitude.

The system of Favre-averaged Navier-Stokes equa-
tions (1) and the transport equation for eddy viscosity (2)
are numerically solved together, the whole mathematical
model can be written in a dimensionless compact flux vec-
tor form as
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where w is a vector of flow variables, f j(w) are the inviscid
fluxes, f vj(w,∇w) are the viscid fluxes and p(w,∇w) is a
production term. The vectors are then written as
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�̄ũ2

�̄ũ1ũ2
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ũ2(�̄ẽ + p̄)

�̄ν̃ũ2
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(�̄ũiũ j + p̄δi j) − U j

∂(�̄ũi)
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3 Discretization

The spatial discretization of equations (3) is performed
using the discontinuous Galerkin finite element method
(DGFEM), [6], [7], [8].

Let Th = {Ωk : Ωk ∈ Ω, k = 1, . . . ,K} be a triangula-
tion of the time varying computational domain Ω(t) ∈ R2,
with boundary ∂Ω. Let Γint and Γb ⊂ ∂Ω are sets of inner
and boundary edges of elements Ωk. The solution of non-
linear system of equations (3) is considered in the space of
vector functions Sh = S h × S h × S h × S h, where

S h = {v(x) : v(x) ∈ Pq(Ωk) if x ∈ Ωk,

v(x) = 0 if x � Ωk,∀Ωk ∈ Th}

and Pq(Ωk) is the space of polynomials of q-th order at the
most.

Multiplying the system of equations (3) by a test func-
tion v ∈ Sh, integrating it over the element Ωk and using
the Green’s theorem, the following integral identity is ob-
tained
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The key part of the method is an approximation of curve
integrals. They are evaluated in the same way as it is done
in the case of finite volume method. The inviscid fluxes
are evaluated as

2∑
j=1

f j(w)n j ≈H(w+,w−), on Γint,

2∑
j=1

f j(w)n j ≈H(wb,w−), on Γb,

whereH is Lax-Friedrichs flux, [9], n = [n1, n2]T is vector
of outer normal, values w− resp. w+ are the left resp. right

limits of the vector w on the edge Γint ∪ Γb and wb is a
boundary value of w computed from boundary conditions.

Similarly, the value of viscous fluxes are evaluated us-
ing the appropriate numerical fluxes. In present paper, the
approximation known as interior penalty (IP) method was
chosen, [8].

Let wk be a part of solution w corresponding to con-
trol element Ωk and ϕk,i be i-th basis function of the space
Pq(Ωk). The m components wm

k , m = 1, 2, ..., 4, of vector
wk can be expressed as a linear combination

wm
k =

q∑
i=1

wm
k,i(t)ϕk,i(x). (4)

Inserting it into the integral identity and evaluating the vol-
ume and curve integrals using the Gauss integration rules
of appropriate order, the following system of ordinary dif-
ferential equations is obtained

d(MW)
dt

= R(W), (5)

where vector W consists of coefficients of linear combi-
nation (4) and M is a mass matrix. In this study, linear
Lagrange polynomials are chosen as the basis functions of
the space Pq(Ωk).

Time integration of equation (5) is performed using the
implicit backward Euler method, which is solved by the
Newton’s method

W s=0 =Wn,[
Mn+1

∆t
− ∂R
∂W

(W s)
]
∆W = (6)

R(W s) − Mn+1W s − MnWn

∆t
,

W s+1 =W s + ∆W,
W s+1 −→Wn+1.

The system of linear equations (6) is solved iteratively us-
ing the GMRES method with block diagonal Jacobi pre-
conditioner.

For the computation of deformed mesh points coordi-
nates, the blending function approach was used [10], [11].
For our purpose, the blending function was generalized for
three independently moving blades. Let x0 denotes the
vector of initial coordinates of each mesh node. For each
blade (i = 1, 2, ..., n, in our study n = 3), the vector of
initial coordinates x0 is transformed into a new vector of
coordinates yi using the following formula:

yi = pi + T(α)ix0,

where pi = pi(t) is the time dependent translation vector
and T(α)i = T(α(t))i is the time dependent rotation matrix
of i-th blade. The coordinates x = x(t) of the new mesh
points are computed by applying the blending functions as

x =
1
n

n∑
i=1

(bi(x0)x0 + (1 − bi(x0))yi).

The key part of this algorithm is to determine the blending
functions bi. The blending function bi have to satisfy two
basic properties:
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1. the value of i-th blending function bi on the bound-
ary of i-th blade have to be equal to 0,

2. the value of i-th blending function bi on the bound-
ary of j-th blade or on boundary of computational
domain have to be equal to 1.

The blending function bi fulfilling these properties can be
obtained using the solutions of boundary value problems

d2bi

dx2 +
d2bi

dy2 = 0,

together with boundary condition bi = 0 on the i-th blade
and bi = 1 on the rest of boundaries.

4 Numerical results

The developed in-house CFD software based on the dis-
continuous Galerkin method was applied to the numeri-
cal simulation of compressible viscous fluid flow through
a simplified blade cascade with prescribed harmonic mo-
tion. The geometric configuration of the simplified blade
cascade and the angle of attack of the flow were adopted
from the test case no. 3, which was experimentally stud-
ied in [3]. The only difference is that the thin airfoils of
test cascade in [3] were replaced by 3 millimetres thick
flat plates. The geometric configuration of the simplified
test cascade is shown in Figure 1.

The considered two-dimensional computational do-
main and corresponding unstructured triangular mesh with
11932 elements is shown in Figure 2. The detailed view of
the mesh in the vicinity of the three flat plates is shown in
Figure 3. Each plate performs kinematic harmonic motion
in vertical direction y = A sin(2π f t + φ) with an inter-
blade phase angle φ = π/2 for the upper plate, φ = 0
for the middle plate and φ = −π/2 for the bottom plate.
The amplitude and the frequency of the harmonic motion
are A = 0.003 m and f = 20 Hz, respectively. At the in-
let of the computational domain, see Figure 2, the stagna-
tion pressure p01 = 101325 Pa, the stagnation temperature
T01 = 293.15 K and angle of attack α = 11.4 were pre-
scribed. At the outlet, the static pressure p2 = 95520 Pa
was prescribed. The value of p2 was calculated out of the
free stream velocity 100 ms−1 under the consideration of
standard sea level air conditions.

The pressure contours are shown at three selected
times t1 = 0.0433 s, t2 = 0.1109 s and t3 = 0.1345 s in
Figures 4-6. The times t1, t2 and t3 correspond respectively
to the zero, maximal and minimal vertical displacement of
the middle flat plate. The time evolution of y-component
of aerodynamic forces acting on upper, middle and bot-
tom plates is shown in Figure 7. The results produced
by the developed in-house solver were compared to the
results obtained by the commercial CFD software pack-
age ANSYS Fluent. The y-components of aerodynamic
forces acting on upper, middle and bottom plates obtained
by both the in-house and commercial solvers are shown in
Figure 8. Finally, vertical displacement of the middle plate
along with y-component of the aerodynamic force acting
on the middle plate are plotted in Figure 9.

Fig. 1. Test geometric configuration of the simplified cascade
which consists of three oscillating flat plates. The dimensions
are in millimetres. The width of the plates is 0.08 m.

Fig. 2. Computational domain and triangular mesh.

Fig. 3. Detail of computational mesh in the vicinity of simplified
cascade.
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which consists of three oscillating flat plates. The dimensions
are in millimetres. The width of the plates is 0.08 m.

Fig. 2. Computational domain and triangular mesh.

Fig. 3. Detail of computational mesh in the vicinity of simplified
cascade.

Fig. 4. Pressure contours at time t = 0.0433 s, where the middle
plate has a zero displacement.

Fig. 5. Pressure contours at time t = 0.1109 s, where the middle
plate reaches a highest displacement.

Fig. 6. Pressure contours at time t = 0.1345 s, where the middle
plate reaches a lowest displacement.

Fig. 7. Time development of y-components of aerodynamic
forces acting on the upper (red), middle (blue) and bottom
(black) plates.

Fig. 8. Time development of y-components of aerodynamic
forces produced by the developed solver in comparison to the
results obtained be the commercial CFD software package AN-
SYS Fluent.

Fig. 9. Time development of vertical displacement (green) and
y-component of aerodynamic force (blue) for the middle plate.
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5 Conclusion

The in-house CFD solver based on the discontinuous
Galerkin method was developed for the numerical solu-
tion of compressible viscous flow problems in domains
with moving boundaries. This solver was applied to the
numerical simulation of compressible viscous fluid flow
through the simplified blade cascade formed by three flat
plates with prescribed harmonic motion.

The paper presents numerical results in the form of
pressure distribution and time evolution of aerodynamic
forces acting on each flat plate for the free stream velocity
100 ms−1 and for the forward travelling wave mode, i.e.
the inter-blade phase angle φ = π/2. The y-components
of aerodynamic forces acting on the flat plates obtained
by the developed in-house CFD solver show qualitative
agreement with those from the commercial CFD software
package ANSYS Fluent. Comparing the time evolution of
the middle plate vertical displacement with the time evo-
lution of the y-component of aerodynamic force acting on
the middle plate, one can observe a small time delay of the
force. Such delay is typical for the case of forward wave
motion through cascade when kinetic energy of the plate
is transmitted to the flow.

The objective of our future study will be aimed at
numerical computation of the y-components of aerody-
namic forces acting on blades and their time delays to
the blade’s vertical displacements for different travelling
waves through the blade cascade in order to assess the
flutter stability of the cascade in the whole range of the
inter-blade phase angle φ from 0 to 2π. Obtained numeri-
cal results will be experimentally validated in the Institute
of Thermomechanics of the Czech Academy of Sciences.
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