
Int. J. Simul. Multidisci. Des. Optim. 10, A1 (2019)
© H.S. Gebremedhen et al., published by EDP Sciences, 2019
https://doi.org/10.1051/smdo/2019005

Available online at:
https://www.ijsmdo.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals
RESEARCH ARTICLE
Three-dimensional stress-based topology optimization using
SIMP method
Hailu Shimels Gebremedhen1,*, Dereje Engida Woldemicahel2, and Fakheruldin M. Hashim3

1 Bahir Dar Institute of Technology, Bahir Dar, Ethiopia
2 Addis Ababa Institute of Technology, Addis Ababa, Ethiopia
3 Universiti Teknologi PETRONAS, Perak, Malaysia
* e-mail: h

This is an O
Received: 24 November 2018 / Accepted: 9 February 2019

Abstract. Structural topology optimization problems have been formulated and solved to minimize either
compliance or weight of a design domain under volume or stress constraints. The introduction of three-
dimensional analysis is a more realistic approach to many applications in industry and research, but most of the
developments in stress-based topology optimization are two-dimensional. This article presents an extension of
two-dimensional stress-based topology optimization into three-dimensional using SIMP method. The article
includes a mathematical model for three-dimensional stress-based topology optimization problems and
sensitivity analysis. The article also includes finite element analysis used to compute stress induced in the design
domains. The developed model is validated using benchmark problems and the results are compared with three-
dimensional compliance-based formulation. From the results, it was clear that the developedmodel can generate
optimal topologies that can sustain applied loads under the boundary conditions defined.
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1 Introduction

Structural optimization problems that deal with an
assemblage of materials to sustain loads in the best way
have been solved using either size, shape, or topology
optimization. In the case of size and shape optimization,
some predefined size and shape of solid elements are
included in addition to the loading and boundary
conditions before the optimization starts. Structural
topology optimization is a method used for an optimal
material distribution in the design domain without prior
knowledge on the shape and size of the design domain. This
freedom gives the designer and end users to have structures
with lightweight, high performance, and aesthetically fit
and safe design.

Solid IsotropicMaterial with Penalization (SIMP) [1,2],
Homogenization Method [3,4], Level Set Method (LSM)
[5,6], Evolutionary Structural Optimization (ESO) [7,8],
and Bidirectional Evolutionary Structural Optimization
(BESO) [9,10] are among the methods that have been used
to formulate a structural topology optimization problem.
Among the methods used for formulation of optimization
problems, SIMP is the most common due to its simplicity
and high computational efficiency [11].
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Most of the developments and researches on
structural topology optimization are formulated and solved
for minimizing compliance [15–17]. The difficulty in
considering multiple loading, absence of consideration for
self-weight of a structure, and stress and displacement
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SIMP method focus on two-dimensional problems and
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consider a compliance minimization problem [15,20]. So
far stress three-dimensional structural topology optimi-
zation problems are formulated and solved using LSM
[21,22] and BESO [23]. This article aims to provide stress-
based topology optimization mathematical model for
three-dimensional optimization problem using SIMP
method.
mons Attribution License (http://creativecommons.org/licenses/by/4.0),
in any medium, provided the original work is properly cited.

https://core.ac.uk/display/201166686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hshimels278@gmail.com
https://www.edpsciences.org
https://doi.org/10.1051/smdo/2019005
https://www.ijsmdo.org
http://creativecommons.org/licenses/by/4.0


2 H.S. Gebremedhen et al.: Int. J. Simul. Multidisci. Des. Optim. 10, A1 (2019)
2 Problem formulation

A stress-based topology optimization (STO) is stated to
minimize the weight of a structure using SIMP method.
The problem stated in equation (1) is formulated using a
von Mises stress failure theory:

Min
X
V ¼

XN
e¼1

xe
Pve

Subjected to : g xeð Þ ¼ svm

syield
< 1

: KU ¼ F

0 � r � 1

ð1Þ
Fig. 1. Eight-node brick element.

Here,

V = the volume of structure to be minimized
Pe = design variable
v = elemental volume
P = penalization factor
svm = von Mises stress induced in each element
sY = yield strength of a material (yield stress)
K = global stiffness matrix
F = global force vector

According to this theory, a material will fail when the
von Mises stress induced in the material exceeds the yield
strength of a material as shown in equation (2).

See equation (2) below.

where s11, s22, and s33 are the principal stresses alongX,Y,
and Z axes, respectively; s12, s23, and s13 are the shear
stresses in XY, YZ, and XZ planes, respectively.

The stress constraint is relaxedbyanapproach suggested
by Duysinx [24] to avoid the singularity phenomenon
associated with the discontinuity of the constraint function
due to the removal of elements as shown in equation (3).

rsve

rpsyield
¼ jð1� rÞ ð3Þ

where j is a relaxation parameter value in the range of
[0.001–0.1].

For relating themacro stress to the micro stress levels, a
local stress interpolation proposed by reference [25] is used
as shown in equation (4):

sðxÞ ¼ DeðxÞeðxÞ
rqðxÞ ð4Þ

where s(x) is the local stress of material point.
The exponent q> 1 is used for preserving physical

consistency in the modeling of a porous SIMPmaterial [16].
Macroscopic elasticity tensor can be related to the
constitutive elasticity tensor using power law approach
as shown in equation (5).
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs11 � s22Þ2 þ ðs22 � s33Þ2 þ ðs11 �
hr
e(x) macroscopic average strain of a material point
De(x) macroscopic elasticity tensor

De ¼ rpD0 ð5Þ
Here,

D0= constitutive elasticity tensor (6):
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ð6Þ

The design domain is assumed to be rectangular and
discretized by brick finite elements as shown in Figure 1.
The average strain of an element at the centroid of an
element can be expressed as equation (7):

ee ¼ Beue ð7Þ
Be is the strain displacement matrix, which will be used

to calculate stiffness matrix ki(re) defined in equation (8),
can be calculated as shown in equation (10) and ue is an
elemental displacement vector.

KeðreÞ ¼ xPkoe ð8Þ

ki xeð Þ ¼
Z1

�1

Z1

�1

Z1

�1

ðBTDBÞ dj dh dg ð9Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s33Þ2 þ 6 s12

2 þ s23
2 þ s13

2ð Þ
i
� svm ð2Þ
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where j, h, and g are the natural coordinates along X, Y,
and Z axes, as shown in Figure 1, respectively.
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ð10Þ

Here, N1–N8 are shape functions in natural coordinate
systems defined by equation (11):

N1 ¼ 1� jð Þ 1� hð Þ 1� gð Þ
8

N5 ¼ 1� jð Þ 1� hð Þ 1þ gð Þ
8

N2 ¼ 1þ jð Þ 1� hð Þ 1� gð Þ
8

N6 ¼ 1þ jð Þ 1� hð Þ 1þ gð Þ
8

N3 ¼ 1þ jð Þ 1þ hð Þ 1� gð Þ
8

N7 ¼ 1þ jð Þ 1þ hð Þ 1þ gð Þ
8

N4 ¼ 1� jð Þ 1þ hð Þ 1� gð Þ
8

N8 ¼ 1� jð Þ 1þ hð Þ 1þ gð Þ
8

ð11Þ
The degree of freedom for an element as shown in

equation (13) is used to extract elemental displacement
vectors, using node numbers defined in terms of number of
elements defined in X,Y, and Z, as shown in equation (12):

n1¼ðnelxþ 1Þðnelyþ 1Þðelz� 1Þþðelx� 1Þðnelyþ 1Þþ ely

n2¼ðnelxþ 1Þðnelyþ 1Þðelz� 1Þþ elxðnelyþ 1Þþ ely

n3¼ðnelxþ 1Þðnelyþ 1Þelzþ elxðnelyþ 1Þþ ely

n4¼ðnelxþ 1Þðnelyþ 1Þelzþ ely

ð12Þ

edof ¼
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3n2þ 1 3n2þ 2 3n2þ 3
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3n3� 2 3n3� 1 3n3
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ð13Þ

where nelx, nely, and nelz are number of elements in X, Y,
and Z, respectively, and n1, n2, n3, and n4 are node
numbers of a brick element.
The global displacement matrix where elemental
displacements are extracted using an elemental degree of
freedom is a solution of the equilibrium equation (14):

KU ¼ F ð14Þ
where K is the global stiffness matrix and U and F are
the global displacement and force vectors, respectively.
The elemental displacements can be extracted from
the global using the degree of freedom as shown in
equation (15):

Ue ¼ U ðedofÞ ð15Þ
Having the definition for strain and constitutivematrix,

stress state defined in equation (4) can be expressed as
equation (16):

sðreÞ ¼ rP�q
e DoBue ð16Þ

From the above derivations and relations, the stress-
based topology optimization problem in equation (1) can
be expressed as shown in equation (17).

The design variable is relaxed from the lower boundary
to avoid the discontinuity of the stress constraints and
stiffness matrix.

Min
X

V ¼
XN
e¼1

xeð Þve

Subjected to:
PxP�q

e D0Bue

syield
< j 1� xeð Þ

: KU ¼ F

0 < xmin � xe � 1 ð17Þ

An optimality criteria method is used to solve the
defined problem, by which updating scheme for design
variables can be expressed as equation (18):

if xeb
h
e � max xmin;xe �mð Þ

xnew
e ¼ max xmin;xe �mð Þ

if max xmin;xe �mð Þ < xeb
h
e � min 1;xe þmð Þ

xnew
e ¼ xeb

h
e

if min 1;xe þmð Þ < xeb
h
e

xnew
e ¼ min 1;xe þmð Þ

ð18Þ

where m is a positive limit, which usually takes a value of
0.2,h is a numerical damping coefficient with a value of 0.5
[26,27],b is dependent on the type of problems defined as
shown in equation (19):

be ¼
∂v
∂x

l
∂g
∂x

ð19Þ

where ∂v
∂x and ∂g

∂x are derivative of objective and constraint
functions with respect to the design variable, respectively,



Fig. 2. Flowchart for the developed MATLAB code to solve
formulated problems.

Fig. 3. Loading and boundary conditions for classical cantilever
beam.

Fig. 4. Optimal material distribution (a) developed model and
(c) [15] and STL for optimal layout from (b) developed model and
(d) [15].
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and l is a Lagrangian multiplier, where the value can be
found using a bisectioning algorithm. The sensitivity
analysis can be found as shown in equation (20):

∂V
∂x
∂g
∂x

¼ ve

∂
svm

syield
� 1

� �

∂x

ð20Þ

The derivative of the objectiveV(re) with respect to the
design variable re can be calculated as

∂V ðreÞ
∂re

¼
XN
e¼1

∂ðreveÞ
∂re

¼
XN
e¼1

ve ð21Þ
The derivative of the constraint function g(re) with
respect to the design variable re can be calculated as

∂gðreÞ
∂re

⇒
∂
∂re

rP�q
e CoBue

sY
� 1 � &P � &

� �

⇒
∂ðrP�q

e Þ
∂re

CoBue

sY
þ rP�q

e CoB

sY

∂ue

∂re
ð22Þ

The derivative of displacement vector can be
calculated from the equilibrium equation defined in
equation (14) as

∂KðrÞ
∂r

UðrÞ þKðrÞ ∂UðrÞ
∂r

¼ ∂F
∂r

¼ 0 ð23Þ

which yields

∂UðrÞ
∂r

¼ �KðrÞ�1 ∂KðrÞ
∂r

UðrÞ ð24Þ



Fig. 5. Variation of (a) maximum stress induced and (b) compliance of a cantilever beam.
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Derivative of the stiffness matrix can be calculated from
equation (8) as

∂KeðreÞ
∂r

¼ ∂ðxPkoeÞ
∂r

⇒ pxP�1koe ð25Þ
Substituting the derivative of the stiffness matrix in
equation (25), the derivative of the displacement vector
becomes

∂UðrÞ
∂r

¼ �ðxPkoeÞ�1pxP�1koeUðrÞ ð26Þ



Fig. 6. Optimal material distribution (a) developed model and
(b) [15] and STL for optimal layout from (c) developed model and
(d) [15].
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The derivative of the constraint function can be expressed
as

∂gðreÞ
∂re

¼ ∂ðrP�q
e Þ
∂re

CoBue

sY
þ rP�q

e CoB

sY
ðpx�1UðrÞÞ ð27Þ

Therefore,

be ¼

XN
e¼1

ve

l
∂ðrP�q

e Þ
∂re

CoBue

sY
þ rP�q

e CoB

sY
ðpx�1UðrÞÞ

� �

3 Numerical results

Validating the developed model benchmark problems
includes simply supported beam, classical cantilever beam,
and L-shape beam, which are simulated using a MATLAB
code described by the flowchart in Figure 2. All the design
domains are discretized by a brick finite element. The
material considered for all benchmark problems described
in this article has a Young’s modulus of E=1.0MPa, a
Poison’s ratio of v=0.3, a von Mises stress of 10 Mpa
subjected to a unit load, and a penalization factor of 3.

A three-dimensional compliance-based structural to-
pology optimization developed by Liu and Tovar [15] is
used for validation of the proposed mathematical model.
The maximum stress induced in the design domains and
compliance is calculated and compared during each
iteration for both formulation techniques.

The design domain and loading conditions for each case
study are defined followed by STL (stereo lithography) file
for optimal material distribution. The maximum stress
induced in both compliance-based formulation is calculat-
ed during each iteration. Compliance of a design domain for
stress-based formulations is calculated during each itera-
tion and compared with corresponding compliance-based
formulations.
STL files for each optimal plot are generated using a
MATLAB code [15] by using 0.5 as a default cutoff value.
The developedmodel is compared with a three-dimensional
compliance-based model developed by Liu and Tovar [15].
All benchmark problems considered in this article are
simulated using MATLAB on Dell �i5-4 GB RAM (3.41)-
3.2GHz computer.
3.1 Classical cantilever beam

The first case corresponds to a cantilever beam under
loading and boundary conditions as shown in Figure 3. The
design domain is discretized into 60� 40� 4 [15] in X, Y,
and Z axes, respectively.

Figure 4a and Figure 4c show optimal material
distribution from the developed model and a compliance-
based topology optimization [15], respectively, forFigure 3a.
From the figures, the optimal plots, using stress-based
topology optimization yields a smaller number of transition
elements. The disconnected elements as shown from the
equivalent STLfiles inFigure 4b andFigure 4dwillmake the
manufacturing of the final optimal layout difficult.

Figure 5a shows a variation of maximum stress induced
in the design domain. As it can be seen from the figure, the
maximum stress induced in the design domain while
formulated using STO is less than the classical compliance
minimization formulation. This shows that for those
designs where stress is the main design variable, it is
advisable to consider optimal layouts from STO-based
formulations. Figure 5b shows a variation of compliance for
the design domain under the two formulation techniques. It
is noticeable from the figure that the difference in
compliance of the design domain is less as the optimization
converges.

The second case study considered is a cantilever beam
with a predefined shape in the design domain as shown in
Figure 3b. Figure 6a and Figure 6b show optimal material
distribution from the developed model and a compliance-
based topology optimization [15], respectively. The
equivalent STL files are shown in Figure 6c and 6d under
STO and compliance minimization formulation, respec-
tively. The number of disconnected is more in optimal
layouts from compliance minimization formulation, which
increases the existence of unwanted material in the final
output.

Figure 7a shows variation of maximum stress induced
in the design domain. As it can be seen from the figure, the
difference in maximum stress induced in the design
domain is less when the optimization is converged.
Figure 7b shows variation of compliance for the design
domain under the two formulation techniques. It is
noticeable from the figure that the difference in compli-
ance of the design domain is less as the optimization
converges and the formulation based on STO takes more
iteration number to coverage.
3.2 Simply supported beam

The third case study considered is a simply supported beam
under the loading and boundary conditions, as shown in



Fig. 7. Variation of (a) maximum stress and (b) compliance of a cantilever beam with predefined shape.
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Figure 8. The design domain is discretized into 60� 20� 4.
Figure 9a and Figure 9b show optimalmaterial distribution
from the developed model and a compliance-based
topology optimization [15], respectively. As it can be seen
from the figures, the optimal plots using stress-based
topology optimization yields a smaller number of transition
elements. The percentage of solid elements, transition, and
void elements in the respective formulation techniques is
59.58, 40.34, 0.08 and 59.58, 40.25, 0.16, respectively. From
the equivalent STL files in Figure 9c and Figure 9d, the
optimal layout based on STO is less complex when the
problem is formulated based on classical compliance
minimization.

Figure 10a shows variation of maximum stress induced
in the design domain. From the figure, maximum stress
induced is less when the design domain is formulated using
STO at the cost of computational time. This shows that for
those designs where stress is the main design variable, it is



Fig. 8. Boundary and loading conditions.

Fig. 9. Optimal material distribution (a) developed model and
(b) [15] and STL for optimal layout from (c) developed model and
(d) [15].

Fig. 10. Variation of (a) maximum stress and (b) [15] and STL for optimal layout from (c) developed model and (d) [15].
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advisable to consider optimal layouts from STO-based
formulations. Figure 10b shows variation of compliance for
the design domain under the two formulation techniques. It
is noticeable from the figure that the difference in
compliance of the design domain is less as the optimization
converges.

From the simulation results, it can be shown that the
developed model can generate optimal material distribu-
tion for three-dimensional stress-based structural topology
optimization.
4 Conclusion

Structural topology optimization that seeks optimal
material layout has been formulated and solved based on
compliance minimization. Some efforts have been done to
formulate and solve, including stress constraints. Though
considering stress in the formulation and solution of
optimization problem is more acceptable from an engi-
neering point of view, most of the developments are limited
to two-dimensional cases.

This article presents a mathematical model for three-
dimensional stress-based topology optimization based on
SIMP method. The developed model is tested with
benchmark problems. A brick element is used for discretiz-
ing design domains and finite element analysis where
stiffness matrix and displacements are calculated and used
for computation of objective and constraint functions. The
article also includes representation of nodal values and
formulation of degrees of freedom for each element in the
design domain. An optimality criteria method is used to
solve all the case studies considered in this article. For
validation of the developed model, the simulation results
are compared with compliance minimization results. From
the results, it was clear that the developed model can
generate optimal topologies that can sustain applied loads
under the boundary conditions defined.

The authors acknowledge Universiti Teknologi PETRONAS for
the financial support to produce this article. The work is partially
supported by Ministry of Higher Education (MOHE) Malaysia
under FRGS grant FRGS Phase 1 2014.
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