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Abstract. The design and development is a complex, repetitive, and more often difficult task, as design tasks
comprising of restraining and conflicting relationships among design variables with more than one design
objectives. Conventional methods for solving more than one objective optimization problems is to build one
composite function by scalarizing the multiple objective functions into a single objective function with one
solution. But, the disadvantages of conventional methods inspired scientists and engineers to look for different
methods that result in more than one design solutions, also known as Pareto optimal solutions instead of one
single solution. Furthermore, these methods not only involved in the optimization of more than one objectives
concurrently but also optimize the objectives which are conflicting in nature, where optimizing one or more
objective affects the outcome of other objectives negatively. This study demonstrates a nature-based and bio-
inspired evolutionary simulation method that addresses the disadvantages of current methods in the application
of design optimization. As an example, in this research, we chose to optimize the periodic segment of the cooling
passage of an industrial gas turbine blade comprising of ribs (also known as turbulators) to enhance the cooling
effectiveness. The outlined design optimization method provides a set of tradeoff designs to pick from depending
on designer requirements.

Keywords: Multi-objective optimization / Numerical simulation / Genetic algorithm / Evolutionary
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1 Introduction

The field of mechanical design is the one segment of the
industry that is not evolved the way other segments of the
industry evolved, for example, the materials innovation
and computer technology evolved significantly in fast-
paced than the mechanical design methods. Today, the
mechanical system and component design is still an awfully
slow process and takes an enormous amount of labor and
cost-prohibitive steps of iterations. In the sense, there is no
known method of autonomous feedback based design
process in place to design and optimization of a component
iteratively without human intervention. In the last two
decades, the advancement in computational power intro-
duced various mechanical simulation and design tools to
help ease the pain of mechanical component designers.
Now, numerical simulation tools and traditional experi-
mental techniques become an essential component of the
mechanical part design and therefore are readily utilized to
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identify and affirm numerous design options. However, the
main drawback of using experimental and simulation tools
is they are extremely time consuming, labor intense and
frequently cost-prohibitive. Additionally, these methods
fail to address the interactions of design variables and
objectives under consideration and their effects on various
physical and performance factors. The present conven-
tional designing methods do not address to satisfy multiple
and frequently contradictory design variables and objec-
tives which greatly influence the operation and price of the
part.

To address above shortcomings of the conventional
simulation and experimental design methods, the author
first proposed multi-objective optimization framework
integrated with commercial numerical simulation tool and
nature-inspired evolutionary based genetic algorithm (GA)
to solve for two conflicting objective functions [1]. In this
research article, the author introduced the third conflicting
objective function, iteratively selected suitable genetic
algorithm operators values (i.e., crossover and mutation
probability) and shown the effect of introducingmore design
variables while optimizing the design of the complex
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Fig. 1. A sectional view of the in-line axial gas turbine engine (courtesy of Siemens).
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mechanical component. An industrial gas turbine blade
internal coolingpassagedesign is selectedasthetestprogram
for the study of the suggested framework. Because of the
necessityofhighoperating temperature toobtainhighpower
output and harsh environment the turbine blades demand
most efficient coolingmethods to prolong the life span of the
highly expensive blades and in turn avoid power outage.

The proposed framework is introduced and tested by
selecting six design variables and three design objectives,
where all design variables directly affect the selected
objectives. The three objectives selected in this research are:

–
 heat transfer coefficient (h) of the blade cooling passage,
which will be the indication of amount of heat transfer to
improve the cooling and the aim here is to maximize h
value to improve the blade life expectancy and reliability
of the turbine;
–
 coolant pressure drop (Dp) in the cooling channel, where
the aim here is to minimize the pressure drop to sustain
the continuous flow of the coolant;
–
 geometric specification of blade cooling passage, espe-
cially the cavity area of (A) cooling passage, where the
aim here is to maximize this objective.

The increase in the blade cooling passage cavity area
results inminimizationof the expensivematerial used for the
blade fabrication. The objective functions selected are
conflicting and influence the effectiveness of cooling of the
blade and the amount of material used in its development.
The computational simulation results obtained reveal the
new optimization framework introduced is capable of
generating, evaluating, and identifying hundreds and
thousands of tradeoff design solutions in a fraction of time
compared to it might take using the conventional experi-
mental and simulation applications utilized for mechanical
design optimization. This framework is a vital step past the
present design optimization methods in the field of complex
mechanical system and components design optimization.

2 Design problem selection

To show the feasibility and optimization method followed
in the proposed framework, an industrial gas turbine blade
cooling channel design is chosen. For many decades, gas
turbines are known as energy workhorses and are in the
center of nearly all electric power generating systems of the
world. They are also widely utilized in aviation, space, sea
transportation along with many more industrial applica-
tions. The sectional view of Figure 1 below shows the
simplest form of gas turbine which is called an in-line axial
flow turbine. It operates similar to a well-known internal
combustion engine by burning fuel and compressed air
combinations. The combusted hot gas combination of fuel,
air and unburned hydrocarbons can attain ultra-high
temperatures as high as 1700 °C and create significant
pressure variations [2,3]. Ultra-high temperature gas from
combustor with higher than metal melting temperature
enters turbine stages, where each turbine stage contains set
of vanes and blades installed on the stator (stagnant) and
rotor (moving) discs respectively. At each one of these
stages, the combusted and compressed hot gas expands and
in turn runs the turbine to create rotational shaft power.
This mechanical rotational power is partially utilized to
drive the compressor, and the rest is used to run the
generator to produce power [4].

The component of our interest is 1st stage turbine
blades (Fig. 1) which are subjected to melting temperature
and also incorporates the complex design of the cooling
system. To lessen the simulation and computational effort,
we selected a periodic section of the blade-cooling channel.
Furthermore, the section is converted into a two-
dimensional (2D) geometry with ribs (turbulators) on
both the top and bottom walls, as shown in Figure 2. It is
the geometric form and design specification of these ribs
and their attachment to the walls should be optimized are
directly affect the objective functions values. Further, the
critical design variables selected to control the geometric
shape of the ribs. The ribs 1 and 2 radii (R1 and R2) and
fillet radii (R3, R4, R5, and R6) between ribs 1 and 2 and
blade wall surface are treated as vital design variables. In
cooling channels, ribs induce turbulent mixing by separa-
tion and reattachment of coolant flow to improve the heat
transfer. It is observed that the heat transfer is very high in
the reattachment locations, but it is significantly low at the
coolant flow separation location as a result of ribs. The
coolant flow separation and reattachment mechanism are
all directly affected by the radii of the ribs.



Fig. 2. Two-dimensional (2D) periodic section of the cooling channel and variables of interest.
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The three objective functions considered, maximization
of heat transfer coefficient (h), minimization of coolant
pressure drop (Dp) and maximization of cooling passage
cavity area of (A), are all directly influenced by the ribs
geometric specification. The variation in radii R1 and R2
increases/decreases the size of the ribs, turbulent mixing
and surface area inside the cooling channel to enhance/
reduce the heat transfer from the blade to the coolant.
However, the rib size increase causes the increase of coolant
flow pressure drop and at the same time increases blade
material usage. On the other hand, the fillet radii reduce
pressure drop and improve heat transfer rate from blade to
coolant by forming a smooth surface transition between
blade wall and ribs (refer to Fig. 2 for an exploded view of
blade’s periodic segment of cooling passage). Therefore,
varying these design variables may influence the heat
transfer coefficient h, the coolant pressure drop Dp and the
material consumed by changing cavity area A.

Furthermore or more detailed description for the
turbine cooling system and its significance, the selection
of periodic segment from cooling channel, selection of
design variables and genetic algorithm control parameters,
refer to author’s previous publications [1,14].
3 Literature review

The conventional methods in the design optimization of the
mechanical system or component in the engineering field
are bound to the experimental and numerical simulations
methods. Quite a bit of research was performed and
presented with these conventional methods in the last few
decades. In recent times, more andmore researchers turned
their research focus towards combinatorial and stochastic
design optimization and identified a wide range of methods
available to perform component design optimization using
computers. These optimization approaches are drawing
more attention and getting more popularity in engineering
design problems due to the increased availability of readily
affordable computers with higher computing power. In
recent studies, it is evident that combinatorial and
stochastic methods are broadly applied in engineering
design problems in which the attention is either maximiz-
ing or minimizing a specific objective or set of objectives.
These optimization methods covering various design
problems in engineering have been developed over time,
and they can be further widely categorized as shown in
Figure 3.

But noticeably few worked on these optimization
methods for components design and further even fewer
utilized the concept of evolutionary techniques for multiple
objectives optimization in a mechanical part or mechanical
system design problems. The literature review here focuses
on prior study linked to multi-objective optimization of
blade cooling passage specification which is the subject of
this study.

Over the past 50 years, there is a significant amount of
research has been conducted related to turbine blade
cooling methods. Scientists and engineers employed
theoretical, computational simulation and experimental
methods to design, optimize and enhance cooling
techniques for the gas turbine blades. Recent publications
focusing mainly on the gas turbine blade cooling
technologies and heat transfer related to the cooling is
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Fig. 3. Outline of optimization methods for engineering design problems.
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offered by Han et al. [4,5], Logan [6] and Goldstein [7]. The
usage of more than one objective or multiple objective
optimizations in mechanical engineering, specifically in
thermal-fluid design problems are comparatively new and
have attracted attention recently. Specifically, in the past
decade, we have observed a sharp rise in heat transfer and
fluid dynamics related optimization with evolutionary
algorithms (EAs). Gosselin et al. [8] published a
comprehensive review of the use of the genetic algorithms,
the most known representative of the family of EAs to
solve multi-objective optimization problems in the area of
heat transfer.

The well-established techniques to improve the cooling
by enhancing heat transfer in a blade cooling air flow
channel is to corrugate the internal walls with ribs (called
turbulators), so the surface area increases and helps
increase heat transfer from blade to cooling air and enhance
overall cooling of the blade to maintain the temperature
below the melting point. Researchers extensively studied
various configurations of cooling channel ribs design in the
gas turbine blade to improve the heat transfer and cooling
effectiveness [9]. On the other hand, the insertion of rib
turbulators creates other drawbacks like the drop in
coolant’s velocity and pressure. Therefore, it is ideal to
apply design optimization techniques with an ability to
solve a number of objectives concurrently. The adoption of
multi-objective optimization to internal cooling channel
design helps enhance the blade cooling and in turn its useful
life, and also it could eventually be applied in another area
of research in mechanical design optimization.

The design optimization of cooling channel design
specification is broadly researched by Kim and Kim [10],
who conducted the optimization of internal cooling
channels with rectangular ribs [11], V-shaped ribs [12]
with straight ribs design and the change in angle of the ribs
[13]. They chose the values of design variables with the
composite objective function described as a linear function
of friction drag coefficient (pressure drop) and heat transfer
coefficient. They further suggested that employing a
numerical simulation strategy presents a dependable and
economical means of designing and optimizing heat
transfer surfaces. It is also vital to note that both objective
functions considered within their research are the heat
transfer coefficient (h) and pressure drop (Dp). On the
other hand, the most important factor is these two
objective functions are integrated to build a composite
function with a single objective and to utilize the concept of
the vector of weights. Selection of these approximated
weights is entirely predicated on designer’s expertise and
discretion, which might lead to significant errors in design
optimization when the weight factors are not chosen
carefully.

In conclusion, because of the intricate design of cooling
channel, and the type of fluid flow and heat transfer
phenomena involved, only a few researchers tried to apply
multi-objective design optimizationmethods to gas turbine
blade cooling channel design. The limited research studies
in this area considered two objective functions and
combined them to form a composite function with a single
objective. However, no present study concurrently took
into account three different objectives separately and
independently to optimize the design under consideration
concurrently by giving significance to all objectives. The
current study investigates a multi-objective design opti-
mization technique by incorporating nature-inspired
evolutionary algorithms and commercial simulation tool
to discover a set of Pareto optimal solutions for the design
of ribs in the blade’s cooling channel.
4 Multiple objective optimization framework

The process of optimization is that solving the problems
where the major criterion is to either minimize or maximize
the objective function by choosing an arbitrary value of
actual and/or integer decision variables (design variables)
values inside the specified range. The process of deriving
the best solution for a problem with just one objective
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function is known as a single objective optimization
problem. Nevertheless, in the real world, it is evident that
problems involve multiple and conflicting objectives more
often. A Multi-objective optimization problem (MOOPs)
comprises more than one objective function. In such
problems, if the objectives were chosen are in contradictory
to each other, then there is no single optimal solution,
instead set of optimal and compromise solutions (tradeoff
solutions). A multi-objective optimization problem may be
described as the following form:

min maxð Þf xð Þ; ð1Þ
at which f(x) is the vector of m number of objective
functions needs optimization, i.e., f(x)= (f1(x), f2(x), …,
fm(x)), and solution x is a n-dimensional vector of decision
variable values which are real or integer or both. Eq. (1),
that is either converted to a minimization or maximization
problem, usually subject to the following type of
restrictions:

gj xð Þ � bj; j ¼ 1; 2; . . . ; k; ð2Þ

ai � xi � bi; i ¼ 1; 2; . . . ; n; ð3Þ
where, b is a k-dimensional vector of inequality constraints.
Eq. (3) constrains the values of decision variable xi
involving the lower (ai) and upper (bi) bound. Similar to
decision variable space, the objective functions will likewise
compose a multidimensional space related to the decision
variable space and is known as the objective spaceZ
(Fig. 4).

The main goal of this research study is to integrate
evolutionary algorithms and numerical simulation tech-
nique and test the feasibility of the design optimization of
the mechanical component with multiple conflicting
objectives. The novel framework of multi-objective
optimization is developed is illustrated in Figure 5 and it
is applied to test its feasibility of optimization. The
framework is divided into two main parts, consisting of an
optimizer component and a simulation/evaluation compo-
nent. The optimizer part repetitively produces multiple
candidate designs by varying design variables value inside
the user specified range. The numerical simulation perform
the Evaluation of the candidate designs, and this part can
be treated as a black box where:
–
 an input section that receives design variable values and
transforms into new design to evaluate;
–
 an output section that evaluates the objective function
values and transmits to the optimizer component.

In this study, a commercial code is used as the
simulation component to carry out heat transfer and fluid
dynamics simulation. Based on the candidate design
evaluation results received from the simulation component,
the optimizer creates the next set of design variable values
through the perturbation for candidate designs. The
iterative cycle continues until the designer prescribed
termination criteria are achieved.

The design optimization of a gas turbine blade is further
complicated by the addition of a cooling air system as
shown in Figure 6. The main scope of this feasibility study
of the proposed framework is to optimize the design of ribs
(turbulators) to increase the internal surface area of the
blade-cooling channel which is in direct contact with the
coolant. The ribs increase the surface area and also promote
turbulence to enhance the rate of heat transfer from the
blade to the coolant. Figure 6 shows the internal cooling
passage with rib-roughened walls, which is the focus of this
multi-objective optimization study.

4.1 Simulation/Evaluation component

The simulator builds the computational model of the
design and analyses the design to evaluate the objective
function values, i.e., h (heat transfer coefficient), Dp
(pressure drop) and A (cooling passage cavity area) for a
set of design variable values randomly chosen by the
optimizer from the user-specified range of values. As
described earlier, the radii (R1 and R2) of ribs 1 and 2, and
fillet radii (R3, R4, R5, and R6) are considered as design
variables (Fig. 2). To solve for the objective functions for a
particular rib design configuration (design variable values),
the heat transfer problem is simulated and solved for the



Fig. 6. Series of cooling channels in the gas turbine blade and
internal ribs arrangement.

Fig. 5. Illustration of the framework developed for multi-objective optimization of mechanical component [14].
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periodic section of the blade-cooling channel by numerical
simulation. To calculate the solution for three objective
functions, four steps are carried out:

–
 build computational geometric model of two-dimensional
(2D) periodic section of the blade cooling channel
utilizing design variable values;
–
 create the finite element mesh of the model;

–
 apply the initial and boundary conditions to the
computational model;
–
 solve heat transfer and fluid flow governing equations to
obtain the objective functions values.
4.2 Optimizer component
The exponential increase in computational power and a
significant decrease in hardware cost in recent times
resulted in a steep upward trend of using Evolutionary
algorithms (EAs) to solve multi-objective problems for
optimization [15]. EAs are known to use population-based
techniques in multi-objective optimization algorithms
which identify multiple Pareto optimal solutions at the
end of the final iteration or generation. Optimization
procedure begins with a randomly generated initial
population of size N solutions. Next, each solution from
population N is represented by binary strings and every
string is the representation of design variable values.
Individual strings in the population are assessed with
utilizing the simulator to solve for the corresponding fitness
values (objective function values). At each generation, a
new population is generated using three genetic operators:
selection, crossover, and mutation. Individual within the
new population is then sent to the simulation section for
analysis of objective function values. This process
continues iteratively until a user defined termination
criterion is fulfilled (number of iterations also called
generations). The elitist Non-dominated sorting genetic
algorithm II (NSGA II) introduced by Deb et al. [16], is
among the popular EAs utilized to solve real-world and
conflicting multi-objective design optimization problems.
The few salient features of NSGA II are its quick elitist
sorting technique that entails a joint pool of a population of
the parent and child also delivers a diverse population by
applying autonomous crowding distance process. The
NSGA II uses elitism by comparing the present candidate
solutions in the population using the previously identified
finest non-dominated solutions. NSGA II, the selection
method utilizes two procedures based on:
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–
 ranking by non-domination;

–
 assignment of crowding distance.

A more comprehensive description of Evolutionary
algorithms and NSGA II is well presented in Deb et al.
[16–18].

4.2.1 Genetic operator: selection (or reproduction) operator

The most important function of the selection operator
would be to carry over the better performing candidate
solutions (population) and drop the bad performing
candidate solutions from the population while keeping
the population size. This can be accomplished by carrying
out these steps:

–
 identify the better performing candidate solutions in a
population according to their fitness values (select at
least 50% better performing candidate solutions);
–
 discard poor performing candidate solutions from the
population;
–
 make copies of the better-performing candidate solutions
to maintain the initial population size and also to create
the mating pool.

4.2.2 Genetic operator: crossover

A crossover genetic operator is also known as the
recombination operator can be applied to the mating pool
of candidate solutions. Crossover operator initiates an
exchange of data between chosen better performing
solution pairs (called parents) at a particular segment of
strings using a probability of crossover c. The simulated
binary crossover operator (known as SBX) introduced by
Deb and Agarwal is applied in this algorithm [19].

4.2.3 Genetic operator: mutation

A crossover genetic operator is mainly accountable for
intensifying the solution search process and that the
mutation operator permits for diversifying the solution
search process to avoid the search from getting trapped at a
local optimum. After going through the crossover, the
newly-created candidate solutions experience a mutation
process, where the mutation operator changes a 0 to 1, and
vice versa, using a probability of mutation m. The
polynomial mutation operator released by Deb and Goyal
is applied by NSGA II in which the probability distribution
is polynomial [20].

5 Results and discussions

The solution evaluation is carried out with a commercial
numerical multiphysics simulation program COMSOL.
Additionally, the evolutionary algorithm called Non-
dominated sorting genetic algorithm II (NSGA II) [16] is
used as the optimizer as shown in Figure 5. On the other
hand, the implementation and success of the current
research study do not necessarily depend on using these
particular tools or steps.
5.1 Selection of design variables and input parameters

As discussed previously, the six design variables R1 and R2
(radii of ribs 1 and 2) and fillet radii R3, R4, R5, and R6 are
the main focus of this research investigation (Fig. 7). The
computational domain selected for simulation in COMSOL
is shown in Figure 7. The parameters and design variables
utilized both in COMSOL and NSGA II are assigned a
range of initial values and are described and outlined below.
The numerical value range of the design variables R1
through R6 are shown in Table 1. These ranges are
approximated and selected based on experimental out-
comes by Han et al. [4].

Next, flow physics parameters are applied to mimic the
realistic conditions of blade internal cooling channel flow to
accurately simulate the phenomenon and characteristics of
the fluid flow. Here, the compressed cooling air bled from
the gas turbine compressor with turbulent flow and non-
isothermal physics is utilized.

Table 2 outlines the properties (density, dynamic
viscosity) of air at atmospheric pressure and temperature.

Further, Table 3 outlines the starting boundary
conditions applied to solve the heat transfer and fluid
flow problem and in turn help calculate objective functions
using the COMSOL simulation. To create realistic



Table 1. Design variables range of values (in millimeters).

Parameters Rib 1 radius (R1)Rib 2 radius (R2)Fillet radius (R3)Fillet radius (R4)Fillet radius (R5)Fillet radius (R6)

Lower bound1 1 0.01 0.01 0.01 0.01
Upper bound5.5 5.5 0.04 0.04 0.04 0.04

Table 2. Initial conditions of coolant applied for the
numerical simulation.

Fluid Properties

Coolant air
Density (r)= 1.204 kg/m3

Dynamic viscosity m=1.983� 10�5 kg/m s

Table 3. Starting boundary conditions applied to heat
transfer and fluid flow simulation.

Boundary Starting boundary condition

(Condition 1)
Inlet-flow

Temperature (T)= 293K
Velocity (u)= 10m/s; Reynolds
number (Re)= 20,000

(Conditions 2 and 3)
Wall

Temperature=393K
Thermal wall function

(Condition 4)
Outlet-flow

Convective heat flux and pressure
(p)= 0

Table 4. NSGA-II input control parameters.

MOEA parameters Parameter values

Population size (N) 50
Generations (Genmax) 100
Selection / Reproduction Tournament selection

(rank and crowding distance)
Probability of crossover c= 0.90 (or, 90%)
Probability of mutation m=0.10 (or, 10%)
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conditions and to generate turbulence in the flow the
cooling passage Inlet Flow (condition 1) is applied a
temperature (T) and velocity (u). Fluid velocity is set to
zero at wall boundaries (conditions 2 and 3), and they are
maintained at constant wall temperature, higher than that
of the coolant to mimic the phenomenon of heat transfer
from blade wall to the coolant. At the Outlet Flow, the
convective heat flux and relative pressure are applied
(condition 4) indicating fluid departure. The boundary
conditions employed are used as starting conditions to
solve the heat transfer and fluid flow governing equations
iteratively to solve for approximate fluid flow and heat
transfer characteristics within the cooling channel.

A pilot study was carried out to study the influence of
control parameters of EAs on various problem settings.
Table 4 below lists the proposed multi-objective evolution-
ary algorithm (MOEA) control parameters identified from
the pilot study. The evolutionary algorithms work on the
principle of iteration, and each iteration is termed as
generation and hence the population size, N, is a number of
candidate design solutions remains constant at every
generation. It is identified from the pilot study that, using a
small population size can significantly hinder the ability of
exploration of the search area and limits the main intention
of crossover operations. However, using large population
size may increase the search effort but it can be
computationally cost prohibitive. For the current feasibili-
ty study, a population size of N=50 is identified to be
appropriate. The maximum number of iterations also
called maximum number of generations, Genmax, denotes
the number of generations after which to terminate the
MOEA and record the good collection of Pareto optimal
solutions (optimal design solutions). It is observed that
Genmax=100 generations seem to provide good conver-
gence in the solutions and also to avoid computation
burden 100 generations per each optimization study
seemed a good fit for this study. In EAs, generation of
fresh slightly varied solution (distinct from parents) is
obtained by applying the crossover genetic operator.
Where, crossover probability, c, determine how frequently
crossover is carried out in the mating pool. A very low
crossover probability reduces the rate of convergence of
solution because of reduced exploration rate of all possible
solutions. However, a higher probability might result in
premature convergence giving rise to the false optimal
solution. Generally, the best range of c is between 0.60 and
0.95 and this range is further confirmed from our pilot
study. Similarly, the mutation probability,m, signifies how
frequent sections of an individual candidate solution
undergoes arbitrary perturbations. It introduces diversity
to the candidate solutions (population) and this probabili-
ty value ought to be small to prevent the algorithm from
turning in to a random search all over the place without
proper direction towards the optimal solution. The
suggested range for m is between 0 and 0.20. In the pilot
study c=0.90 (or, 90%) and m=0.10 (or, 10%) are proven
to have greater convergence rate.

5.2 Discussion of the results

As described before, the focus of the study is to construct a
multi-objective design optimization framework for me-
chanical component design, and present at least three
conflicting design objectives to concurrently solve and
optimize all objectives. The suggested multi-objective
optimization framework is successfully formed by combin-
ing genetic algorithms and heat transfer and fluid flow
simulation tool. For the preliminary test, authors in the
beginning, applied the framework onto the single objective



Fig. 8. Pareto optimal front of 3 objectives and 2 design variables.
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and two-objective optimization problem successfully [14],
and at present introducing the third objective and its
results are presented here. The optimization results
obtained by addition of the 3rd objective function to
reduce the expensive blade material utilization by
maximizing the blade cavity area (A) within the cooling
passage is discussed and shared in this section. It can be
observed from the outcome presented that the multi-
objective problem at hand is modified to minimization
problem, though the two objectives heat transfer coeffi-
cient (h) and area (A) are to be maximized. The main
reason is, algorithms are in general developed to solve for
just one kind of optimization problem, i.e., either
maximization orminimization. Open source NSGAutilized
within this study is developed to evaluate the minimization
problems if applied without modification. The maximiza-
tion problems can be solved using the duality principle [21],
i.e., the problem is changed to a minimization problem by
multiplying the objective function by �1. The duality
principle allows one to use conflicting objectives where
some objectives need to be minimized and some are to be
maximized. Therefore, in our case, the objective functions
“heat transfer coefficient (h)” and “area (A)” are multiplied
by �1 to modify the multi-objective optimization problem
to minimization problem.

The three-objective optimization simulation experi-
ments are carried out using EA control parameters are also
utilized on the single and two-objective optimization are
shown in Table 4 and further elaborately discussed by
Nagaiah et al. [14] (i.e., Pop=50, Genmax=100, c=90%
and m=10%). Additionally, optimization is performed in
steps first by introducing 2 variables (R1 andR2), second by
introducing 4 variables (R1, R2, R3 and R4) and third by
introducing 6 variables (R1, R2, … R6) to study the
convergence phenomenon. It has been noticed from
three-step experimental runs, the introduction of more



Fig. 9. Pareto optimal front of 3 objectives and 4 design variables.
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design variables into the problem caused a decrease in the
convergence of the solution towards Pareto optimal front
(Figs. 8–10 ). From the observation, it is evident that the
additional number of variables made the solution space to
increase drastically and required more search effort
(iterations) and it demands the selection of appropriate
genetic algorithm control parameters. Figure 10 shows the
final graphical representation of all 3 objective functions
and 6 design variable Pareto optimal front at different
generation intervals. The x-axis represents the objective
function cooling air pressure drop (Dp), which is to be
minimized. The y-axis represents an objective function,
heat transfer coefficient (h), which is to be maximized. The
z-axis represents objective function of the area (A), which is
again to be maximized.

The graphical representation in Figure 10 (a) shows
the set of starting objective function values computed
before the application of multi-objective optimization.
Figure 10 (b), (c) and (d) present solutions converging
and progression towards Pareto optimal front after
computation of 25, 50 and 100 generations, respectively.
To illustrate in detail the significance of the final Pareto
optimal solutions, in Figure 1 (b), three objective
function solution values are selected from the Pareto
front from both ends and at the middle (as shown in
Fig. 11(b)) and their corresponding design variables
value as shown in the table in Figure 11 (a). These
design variabled represent three designs of cooling
passage ribs as shown in Figure 1. It can be noticed that
design 1 includes smaller rib radii (R1=1mm and
R2=1mm) leading to a reduced heat transfer coefficient h
(11.09W/m2K), reduced pressure drop Dp (0.1485N/m2),
and increased cavity areaA (0.002022m2). Similarly, on the
other extreme end, design3 has larger ribs (R1=5.49mm



Fig. 10. Pareto optimal front of 3 objectives and 6 design variables.

N.R. Nagaiah and C.D. Geiger: Int. J. Simul. Multidisci. Des. Optim. 10, A4 (2019) 11
and R2=5.49mm) resulting in increased heat transfer
coefficient h (15.43W/m2K), increased pressure drop Dp
(0.5789N/m2) and reduced cavity area A (0.00193m2).
Lastly, design 2 is chosen from themiddle of the Pareto front
with one larger and other smaller rib (R1=1.025mm and
R2=4.936mm) which results in moderate heat transfer
coefficient h (14.15W/m2K), pressure drop (0.2955N/m2)
and cavity area A (0.001985m2). These results further
demonstrate the significance of the multi-objective optimi-
zation framework developed. It is evident from our
framework that, one can solve for thousands of designs in
an automated technique and select best designs based on
objective functionvaluesordesignvariablevalues if there is a
constraint on design variable values.

The Pareto optimal front solutions can be further
split into clusters to accommodate three design types
and also to ease the design selection process for the
designer who is at the dilemma of choosing an
appropriate design to fulfill the particular requirements
(Fig. 2). The clustering technique can be demonstrated
as shown below in Figure 12 by forming a group of three
types of designs. Subset 1 (cluster) comprises of best
solutions which meet minimization of pressure drop
(Dp) and maximization of cavity area (A) objectives
better compared to any other solutions in Subset 2 and
3. In the same way, Subset 3 meets the maximization of
heat transfer coefficient (h) objective better compared
to any other solutions in the Subsets 1 and 2. Optimal
solutions in Subset 2 are between Subsets 1 and 3 with
moderate optimization of all three objective functions.
Therefore, clustering gives a quick visual comprehen-
sion into the solutions and helps the designer in
choosing solution according to his preferences for
objective function values.



Fig. 11. Illustration of the design of cooling passage for 3 distinct optimal solutions.

Fig. 12. Pareto optimal solution front separated into three subsets (clusters) of solutions.
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6 Conclusion

The proposed framework is comprising, evolutionary
algorithm NSGA-II and heat transfer and fluid flow
simulation program COMSOL is successfully integrated
and implemented to optimization of an industrial gas
turbine blade cooling passage design configuration. The
optimization is carried out in an automated manner to a
final single best solution through maximization of heat
transfer coefficient (h) in single objective optimization.
Following the introduction of the second objective function
resulted in the experimental outcome of non-dominated
Pareto optimal solutions of maximization of heat transfer
coefficient (h) and minimization of pressure drop (Dp) for
two objective optimizations. Lastly, the introduction of
third objective function provided non-dominated Pareto
optimal solutions for maximization of heat (h), minimiza-
tion of (Dp) and maximization cooling passage cavity area
(A) for three objective optimizations.

The experimental results shed more lights and provided
insight into understanding the physics of design by
demonstrating the correlation between design variables
and objective functions. The proposed automated optimi-
zation framework can be regarded as a stepping stone and
supporting tool at the beginning of any complex design
problem with conflicting objective functions. It is the
authors’ belief that the concept and framework developed
in this research will help others to implement and go
beyond simple component design and apply this technique
to more complex design problems.

Nomenclature
’
 Effectiveness of cooling

_m
 Rate of mass-flow rate (kg/s)

u
 Velocity of flow (m/s)

A
 Area of cooling channel under consideration

(m2)

R1 and R2
 Radii (ribs 1 and 2)

R3…R6
 Fillets radii (ribs 1 and 2)

N
 Size of the population

c
 Probability of crossover

m
 Probability of mutation
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