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1.1 PROSTATE CANCER 

 

1.1.1 Morphology, function, and development of the prostate 

 

 The human prostate has the size of a chestnut and envelops the urethra as it 

exits the bladder, below the bladder neck. It is the largest of the male accessory sex 

glands, which also include the seminal vesicles, and bulbourethral gland. The prostate 

is composed of glandular structures, which are tightly fused within a common capsule. 

The prostate can be subdivided in a transitional, a central, and a peripheral zone 

(Figure 1.1) (McNeal 1997). Histologically, the glandular structures are complex arrays 

of luminal structures. Except for the larger ducts near the urethra, the ductal-acinar 

system is lined by highly differentiated secretory columnar epithelial cells layered on 

undifferentiated nonsecretory basal epithelial cells, thus forming a continuous layer 

adjacent to the basement membrane (Figure 1.2). The glandular structures are 

supported by stroma. The stromal compartment encompasses all cellular and extra-

cellular elements outside the epithelial basement membrane and includes smooth 

muscle cells, blood vessels, lymphatic tissues, nerves, and fibroblasts embedded in a 

loose collagenous matrix (reviewed by Cunha et al. 1987)(McNeal 1997). 

 

 

 

 

Figure 1.1. Anatomy of the human 

prostate that shows the location of the 

peripheral zone (PZ), transition zone (TZ), 

and bladder neck (bn) (McNeal 1997).  

 

 Figure 1.2. Hematoxylin-eosin stained 

tissue section of a normal prostate. 

Columnar secretory epithelial cells (arrows) are 

layered on nonsecretory basal epithelial cells 

(arrow heads), which are scattered along the 

basement membrane. 
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 The function of the prostate is to add components to the ejaculate. Prostatic 

secretions contain many different proteins. A major component is prostate specific 

antigen (PSA),  which belongs to the family of kallikrein-like proteases. Two other 

major secreted proteins are prostatic acid phosphatase (PAP), and 

microseminoprotein beta (MSMB / PSP-94; Lilja and Abrahamsson 1988). PSA is 

known to be involved in semen liquefaction (Lilja 1985; Lundwall and Lilja 1987), but 

the physiological functions of PAP and MSMB are still unknown. Other products of the 

prostate are kallikreins, plasminogenactivator, pepsinogen II, metalloproteases, 

caseinolytic and gelatinolytic activities, and Zn-α2-Glycoprotein (reviewed by Wilson 

1995).  

The development of the prostate occurs via mesenchymal-epithelial 

interactions in which the urogenital sinus mesenchyme (UGM) is thought to induce 

ductal morphogenesis, and epithelial growth. This prostatic development is induced by 

androgens. In early development, androgenic effects on epithelial development are 

mainly elicited via androgen receptors (AR) in the mesenchymal cells. The stromal-

epithelial interactions in the prostate continue into adulthood (reviewed by Cunha 

1994; Marker et al. 2003).  

 

1.1.2 The epidemiology of prostate cancer 

 

Prostate cancer (PrCa) is the most frequently diagnosed cancer in men, and 

the second leading cause of male cancer death in Western countries (Greenlee et al. 

2001). Out of all cancers in men, the incidence of PrCa increases most rapidly with 

age (Carter and Coffey 1990; Jacobsen et al. 1995; Potosky et al. 1995; Merrill et al. 

1997; Post et al. 1998). From autopsy studies and from studies of radical 

cystoprostatectomy specimens removed for bladder cancer, it is known that 

approximately 10% of men in their fifties to 70% of men in their eighties, harbour 

microscopic foci of well or moderately differentiated adenocarcinoma in the prostate, 

although there is no clinical evidence of PrCa (latent PrCa; reviewed by Gittes 1991; 

Scardino et al. 1992; Matzkin et al. 1994; Ohori and Scardino 1994). Extrapolated to 

50-year-old American men, it is estimated that about one in four latent PrCas 

becomes clinically manifest (Carter and Coffey 1990; Coffey 1993), whereas about 

one of three patients with clinical PrCa eventually die of the disease (Scardino et al. 

1992).  
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Although the incidence of latent PrCa might be comparable worldwide, there 

are large variations in clinical incidence and mortality among different geographical 

and ethnic populations (Carter and Coffey 1990). The highest incidence rate was 

found in African-American men in the United States, followed by Caucasian men in 

Northern America, Western Europe and Australia. The lowest rates were found among 

Chinese and Japanese men (Coffey 1993). Some of these population differences may 

be attributed to life style and dietary factors (Hanley et al. 1995; Uchida et al. 1995). 

 

1.1.3 Clinicopathological aspects of prostate cancer 

 

1.1.3.1 Histological typing of prostate cancer 

 Most PrCa are adenocarcinomas that arise in the peripheral zone of the 

prostate. It is generally accepted that PrCa originates from stem cells or progenitor 

cells of the luminal epithelial cells (De Marzo et al. 1998). The clinical stages that are 

distinguished in PrCa are pre-malignant, locally confined, infiltrating, and metastatic 

disease (Figure 1.3). The pre-malignant stage is characterized by severe cytological 

aberrations in the luminal epithelial cells with preservation of the glandular 

architecture. These changes are also known as prostatic intraepithelial neoplasia 

(PIN), and are subdivided into a low- and high-grade form. High-grade PIN is 

considered to be the immediate precursor of locally confined PrCa (Bostwick et al. 

1997). Local prostate cancer is characterized by invasive tumour growth without 

penetration through the prostatic capsule. In locally advanced cancer, the tumour 

infiltrates the tissues surrounding the prostate after penetration of the capsule. When 

PrCa metastasizes, secondary deposits are found in lymphatic and bone tissue. In late 

stages, PrCa metastases can be found in skin, lung, and liver tissues. Two commonly 

used clinical staging systems for PrCa are the Whitemore-Jewlett classification 

(Catalona and Avioli 1987; Gittes 1991), and the TNM (tumour, nodes and metastasis) 

staging system (Schroder et al. 1992). 
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Figure 1.3. Morphological phases of PrCa progression. 

 

1.1.3.2 Diagnosis and therapy of prostate cancer 

 Until the late eighties in the 20th century PrCa was clinically established by 

digital rectal examination (DRE) in patients visiting the physician with clinical 

symptoms. About 15 years ago, transrectal ultrasound (TRUS) imaging and the serum 

prostate specific antigen (PSA) test were introduced. The final diagnosis is made on 

the basis of histological examination of a prostate biopsy. The serum PSA test 

resulted in the detection of PrCa at an earlier stage. However, it has to be realized that 

a positive PSA test can not only be due to PrCa, but many other explanations are 

possible. Before the introduction of the serum-PSA-test, a patient with PrCa would 

typically present in an advanced stage with micturation problems, lower urinary tract 

symptoms (LUTS), and / or complaints caused by metastases, for instance bone pain. 

The screening with the serum PSA test resulted in a dramatic increase in the 

incidence of diagnosed PrCa.  

Treatment decisions for PrCa depend on tumour characteristics (stage, 

pathological grade, and serum PSA levels), the patient’s life expectancy, and quality 

versus quantity of life trade-offs. Locally confined PrCa can be surgically removed by 

radical prostatectomy, or may be treated by radiation therapy. A third option is 

observation, also known as “watchful waiting”. Infiltrative or metastatic PrCa can be 

treated by endocrine therapy. This treatment modality includes surgical castration, 

chemical castration (e.g. gonadotropin-releasing hormone 1 (GNRH1) analogues), or 

therapy with anti-androgens. Endocrine therapy is based on the function of androgens 

in prostate growth and maintenance of its structural integrity. Androgen depletion 

dramatically affects normal prostate development, secretory function, maintenance of 

structural integrity, and ultimately results in apoptosis (Cunha et al. 1987; Lee 1997; 

Gao and Isaacs 1998). The majority of PrCas show a partial or complete response to 

endocrine therapy. However, after a mean period of less than 2 years, PrCa inevitably 

progresses to an androgen-independent stage. Transurethral resection (TUR) can be 
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carried out as a palliative treatment to diminish micturation complaints and lower 

urinary tract symptoms. Radiation therapy may be administered for symptomatic 

metastases. 

 

1.2 GENETICS OF TUMOUR DEVELOPMENT 
 

1.2.1 Oncogenes and tumour suppressor genes 
 

 Cell growth, programmed cell death (apoptosis), and differentiation are strictly 

controlled by the interplay of complex molecular mechanisms (Hanahan and Weinberg 

2000). Deregulation of these mechanisms can lead to aberrant cell growth, and 

eventually to the formation of a cancer. During the last decades, many theories regarding 

the molecular mechanisms of tumourigenesis have been proposed. Fundamentally, all 

theories postulate that cancer is a genetic disease. In a tumour cell, genes involved in 

the regulation of cell growth, apoptosis, differentiation and repair of DNA damage are 

mutated such that the encoded protein no longer functions properly. However, it is 

becoming more and more clear that altered gene expression also contributes to tumour 

growth.  

 Historically, genes involved in tumourigenesis have been subdivided into 

oncogenes and tumour suppressor genes (reviewed by Bishop 1987; Hahn and 

Weinberg 2002). Oncogenes are derived from cellular genes (proto-oncogenes) that 

have become oncogenic by activating mutations or by overexpression. If activated, 

(proto-)oncogenes function in cell growth stimulation or inhibition of apoptosis. 

Overexpression of an oncogene might be caused by amplification of the gene or by gene 

rearrangement (e.g. chromosomal translocation). In the latter situation, the gene is 

expressed under control of a different promoter. The aberrant allele of an oncogene is 

functionally dominant over the wild-type allele. The physiological function of many 

tumour suppressor genes is inhibition of cell growth or stimulation of apoptosis. In a 

tumour, a tumour suppressor gene might be inactivated by mutation, deletion or by 

down-regulation of expression by promoter methylation or other mechanisms. 

Classically, the wild-type allele is functionally dominant over an inactivated allele. 

Therefore, both alleles must be inactivated to produce an oncogenic effect. This 

hypothesis is generally known as Knudson’s  "two hit" theory (Knudson 1971). More 

recent insights in the malfunctioning of tumour suppressor genes provide evidence that 
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also loss of one functional allele (haplo-insufficiency) and epigenetics can contribute to 

tumourigenesis. 

 Although most human cancers result from somatic genetic alterations in tumour 

cells, rare cancers can run in families with a hereditary pattern. In these families 

individuals are prone to develop tumours because of an inherited genetic alteration.  

 

1.2.2 A genetic model of tumour development 
 

 Tumourigenesis is a multi-step process, as first proposed by Armitage and Doll 

(1954). The very first molecular events that underlie the initiation and progressive growth 

of human tumours were identified in the late eighties of the last century (reviewed by 

Bishop 1987; Weinberg 1989; Hanahan and Weinberg 2000). These observations 

constituted an essential contribution to a multi-step model for tumourigenesis. The first 

model describing a cascade of genetic changes was proposed for colorectal 

carcinogenesis (Fearon et al. 1990). This multi-step model described the sequential 

molecular and morphological transition of normal colon epithelium via hyperproliferating 

epithelium, benign adenoma, and malignant carcinoma to metastatic colon cancer. 

Furthermore, Fearon and Vogelstein (1990) assumed that (1) cancer involves the 

mutational activation of oncogenes and the inactivation of  tumour suppressor genes, (2) 

the mutational activation or inactivation of four to five genes is required, and (3) although 

the genetic alterations may occur in a preferred sequence, the accumulation of changes 

rather than their order determines the biological properties of the tumour. These 

stepwise genetic alterations are currently well accepted as a general model for 

tumourigenesis. 

 The colorectal tumour progression model has been modified by Kinzler and 

Vogelstein (1997 and 1998), and Lengauer et al. (1998). They proposed that tumour 

suppressor genes could be sub-divided into three functionally distinct groups. Genes in 

these 3 groups are called: gatekeepers, caretakers, and landscapers. Gatekeepers are 

genes directly involved in neoplastic growth and prevent cancer by inhibiting cell growth 

or promoting apoptosis. Examples of this group of  tumour suppressor genes are RB1, 

and APC. Restoration of a missing gatekeeper gene can result in suppression of 

neoplastic growth. Caretakers are indirectly involved in neoplastic growth. The normal 

function of these genes is to prevent DNA damage, chromosomal instability, and 

abnormal genetic recombination. Many genes with such a function are known nowadays 
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(Wood et al. 2001). Representatives of this group are the mismatch repair genes. 

Inactivation of certain caretaker genes results in a continuously increasing mutation rate 

in individual genes (domino effect) and thus genetic instability. Restoration of a defective 

caretaker function to cancer cells has no direct effect on neoplastic growth, because its 

loss has resulted in secondary mutations. Thus, inactivation of a caretakergene is not an 

immediate trigger to neoplastic growth.  It is the increased mutation rate that results in a 

higher probability of mutational inactivation of gatekeeper genes.  

 Cancer research has predominantly focussed on cancer cells and their genomic 

properties. However, the importance of intercellular signalling between diverse cell types 

in cancer is also being recognized. Tumours are complex tissues in which mutant cells 

may have recruited normal non-neoplastic cells to serve as active collaborators in their 

neoplastic growth (Skobe and Fusenig 1998). Genes with a role in this partnership are 

designated “landscapers”. An example of this group of tumour suppressor genes is 

MADH4 (SMAD4 / DPC4), which showed germline mutations in some JPS patients. 

Surprisingly, bi-allelic MADH4 inactivation was only found in the stromal cells of the 

hamartomatous polyps of these patients (Koyama et al. 1999). Landscaper genes are 

thought to promote the gatekeeper- or caretaker-pathways in at least some tumour types 

(Jacoby et al. 1997).  

 

1.3 GENETIC ALTERATIONS IN PROSTATE CANCER 
 

 The colorectal cancer models described above might be exemplary to tumour 

development in other human epithelial tumours, including PrCa. In PrCa, however, many 

of the molecular mechanisms underlying tumour development remain to be discovered. 

The focus of this thesis was to identify tumour suppressor genes that are involved in 

PrCa. 

 

1.3.1 Methods to detect genes involved in cancer 

 

 In general, the genetic strategy to identify genes involved in cancer is (1) 

genome-wide screening, (2) chromosome mapping, (3) gene mapping, (4) mutation 

analysis of candidate genes, and (5) functional screening of candidate genes. Genes 

involved in hereditary and sporadic cancers are identified by different approaches. 

Hereditary cancer genes are genome-wide and fine-mapped by genetic linkage 
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analysis. This positional cloning technique is a powerful tool for the identification of 

inherited disease genes based solely on their location within the genome. Many 

currently known cancer susceptibility genes have originally been identified by linkage 

analysis of cancer-prone families. In a linkage analysis, a genotype of such families is 

generated using polymorphic markers scattered throughout the genome. Subsequent 

correlation of the genotype with the segregation pattern of the disease within the 

family may reveal linkage of the phenotype with a particular chromosomal locus. 

Genes involved in sporadic cancers are genome-wide mapped by characteristic 

large chromosomal alterations (losses, gains, and translocations) in the tumour 

genomes. Chromosomal losses are an indication for the localization of a tumour 

suppressor gene, whereas gains and translocations are an indication for the location 

of an oncogene.  These larger chromosomal alterations may be identified by 

karyotyping (Brothman et al. 1994), multicolour spectral karyotyping (SKY; Schrock et 

al. 1996; Speicher et al. 1996), comparative genomic hybridisation (CGH; Kallioniemi 

et al. 1992), and array CGH (Pinkel et al. 1998). Karyotyping provides a complete 

scan of banded mitotic chromosomes. It is suitable for the identification of all kinds of 

chromosomal alterations, including aneuploidy and iso-chromosome formation. 

However, the technique requires metaphase cells, and the identification of 

chromosomal aberrations may thus necessitate culturing of the tumour cells. Apart 

from difficulties like slowly growing cultures and cell selection, the induction of genetic 

alterations during culturing may lead to misinterpretation of the results. SKY is a 

modernized karyotyping showing each chromosome in a specific colour, which is 

particularly helpful for the identification of chromosomal translocations. For the 

identification of both losses and gains preference is given to CGH, in which normal 

and tumour DNA are each labelled with a different fluorescent dye and then hybridised 

to a normal metaphase chromosome spread. For CGH, DNA from frozen tumour 

samples as well as formalin-fixed, paraffin-embedded tumours can be utilized. Larger 

chromosomal aberrations can easily be characterized, but alterations like 

translocations, aneuploidy, and iso-chromosome formation can not be identified 

because CGH is based on the utilization of total tumour DNA. Nowadays, array CGH 

becomes a robust alternative for CGH analysis. Although allelotypical differences still can 

not be distinguished by this new technology it maps losses and gains more precisely 

than CGH. 
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Chromosomal regions of loss and gain can be mapped by chromosome 

transfer and genetically mapped in detail by analysis of allelic imbalances. 

Chromosome transfer provides a host cell with a complete set of genes from an added 

chromosome or chromosomal region, including the putative tumour suppressor gene 

or oncogene that induces the host-cell to lose or gain tumourigenic characteristics 

(Ichikawa et al. 1991). Chromosome transfer is a functional approach for the mapping 

of cancer genes to larger chromosomal regions. A potential problem of the technique 

is that transferred chromosomes tend to loose genomic fragments. Furthermore, 

results obtained by chromosome transfer can be misinterpreted due to the properties 

of the in vitro system used or the occurrence of mutations or deletions of multiple 

genes in the host tumour cell line.  

Analysis of allelic imbalances does not easily discriminate between losses and 

gains of genomic DNA in the tumour cell. It can be carried out by analysis of restriction 

fragment length polymorphisms (RFLP; Vogelstein et al. 1989), analysis of 

polymorphic microsatellites (Weber and May 1989), or single nucleotide 

polymorphisms (SNP). Initially, analysis of allelic imbalance was done by RFLP 

analysis, which is a Southern blotting detection method for specific restricted genomic 

fragments. RFLP analysis is laborious and requires large amounts of tumour DNA 

sample. Much faster alternatives that require smaller amounts of sample DNA are 

microsatellite and SNP analysis. These two techniques are PCR-based detection 

methods of polymorphic mono-, di- and tri-nucleotide repeats (so-called 

microsatellites), and of single nucleotide polymorphisms (SNPs), respectively. SNPs 

can also be identified by oligo-hybridisation, allowing a high-throughput approach 

using microarrays. Allelic imbalance of informative markers specify the boundaries of 

a region of importance. Besides application in analysis of allelic imbalance, 

microsatellite analysis can also be informative in detecting genetic instability, which 

can be visualized by unstable microsatellite lengths (MSI, microsatellite instability). 

A next step in fine-mapping regions of genetic alterations can be (fluorescent) 

in situ hybridisation ((F)ISH; Pinkel et al. 1986; Brothman et al. 1999) or screening for 

homozygous deletions. ISH is based on hybridisation of labelled DNA probes to 

chromosome spreads, cells in metaphase or interphase nuclei in histological sections. 

FISH is very powerful in detection of high-level amplifications.  

Homozygous deletions are rare, but if found, they can map a tumour 

suppressor gene to a region of less than 1 Mbp. Homozygous deletions can be 
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identified in a defined chromosomal area by the absence of a PCR product, utilizing a 

large set of markers (Kamb et al. 1994; Hahn et al. 1996). A genome-wide search for 

homozygous deletions can be done by representational difference analysis (RDA). 

RDA identifies a small genomic fragment derived from normal DNA, which is not 

subtracted after reiterated hybridisation steps against tumour DNA (Lisitsyn and 

Wigler 1993). A search for homozygous deletions in DNA from primary tumour 

specimens can be severely complicated by the presence of contaminating DNA from 

normal cells. Nevertheless, a homozygous deletion narrows down a tumour 

suppressor gene region enormously.  

Conclusive evidence for the identification of a tumour suppressor gene or 

oncogene can be given by mutational analyses and functional studies. In particular, for 

tumour suppressor genes and mismatch repair (MMR) genes, strongest evidence is 

provided by sequence analysis, showing a deletion, frame-shift or nonsense mutation. 

Functional evidence can be obtained by gene transfer or anti-sense RNA (RNAi) 

approaches. However, the efficacy of the introduced or inactivated gene will depend 

on the properties of the host cell line studied.  

Alteration of gene expression may be a direct result from a mutation in a cancer 

gene. However, it also can be the result of an epigenetic event such as promoter 

hypermethylation. Therefore, down- or up-regulation of a candidate tumour gene 

provides indirect evidence for a role in cancer as it might be the result and not the 

cause of tumourigenesis. 

 

1.3.2 Hereditary prostate cancer 

1.3.2.1 Definition 
 Characteristic patterns for inherited cancer syndromes are familial aggregation 

of tumours and early disease onset (Bishop and Kiemeney 1997). Such patterns are 

found in nearly one quarter of all PrCa (reviewed by Carter et al. 1993; Narod 1999; 

Bratt 2000a, b; Karayi et al. 2000). By definition PrCa is familial if two first-degree 

relatives, father and son or brothers, develop the disease. Hereditary prostate 

carcinoma (HPC) refers to a subtype of familial PrCa in which there are either (1) at 

least three first degree cases of PrCa, (2) at least three successive generations of 

either maternal or paternal lineages with PrCa, or (3) a cluster of two relatives 

diagnosed with PrCa before the age of 55 years (Carter et al. 1993). Ninety percent of 
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PrCa cases are believed to be sporadic, the remaining ten percent displays a 

hereditary component (Carter et al. 1993; Keetch et al. 1996; Bratt et al. 1999). 

1.3.2.2 Hereditary prostate cancer loci and genes 

Various genome-wide scans of DNA samples from HPC families demonstrated 

linkage to loci on chromosomes 1p36, 1q42.2-q43, 1q24-q25, 8p22-p23, 11, 16q23, 

17p11, 20q13, and Xq27-q28 (see Appendix A1 - Table I for references and locus 

names). Most linkages were confirmed in other studies. Some groups however, were 

unable to demonstrate linkage to a specific locus in their set of high-risk families. It is 

difficult to determine to which extent confounding factors, like late age of onset, lack of 

distinguishing features between the hereditary and sporadic forms of the disease, and 

the difficulty in identifying HPC families, might have affected these investigations 

(Smith et al. 1996).  

Besides the age of onset, a few clinical features appear characteristic for HPC 

families. In families with linkage to 1p36, PrCa was found to aggregate with brain 

cancer (Gibbs et al. 1999; Xu et al. 2001b). In a subset of Swedish families, Gronberg 

et al. (2000) observed significant aggregation of PrCa with breast carcinoma and/or 

gastric carcinoma (Gronberg et al. 2000). In families with linkage to 1q24-q25, 

significantly more aggressive PrCa were diagnosed (Goode et al. 2001).  

Although many HPC loci have been described, only a few high-penetrant 

susceptible genes were proposed (see Appendix A1 - Table I). In two HPC families 

that showed linkage to the HPC1 locus at chromosome 1q24-q25, a nonsense 

mutation and a mutation in an initiation codon of the RNASEL gene were found to 

segregate (Carpten et al. 2002). In three HPC families that showed linkage to the 

HPC2 locus at chromosome 17p11, a frame-shift and two missense mutations of the 

ELAC2 gene were found to segregate (Rokman et al. 2001; Tavtigian et al. 2001; 

Wang et al. 2001). Besides these families, no additional RNASEL and ELAC2 

mutations or polymorphisms were found in HPC1 or HPC2 families, respectively. 

Subsequent studies of ELAC2 failed to demonstrate an increased risk of a 

polymorphism described before (Rokman et al. 2001; Suarez et al. 2001; Vesprini et 

al. 2001; Wang et al. 2001; Xu et al. 2001a). Therefore, the relative importance of the 

ELAC2 polymorphisms remains under debate. Other proposed high-penetrant 

susceptible genes are HSD3B1 and B2, TP73, PG1, LZTS1, and MSR1, but the roles 



24 |    Chapter 1 
 
 

 

of these genes are also disputable because the functional significance of the identified 

polymorphisms is not known. 

HPC has also been associated with polymorphisms in genes involved in steroid 

hormone metabolism and steroid hormone signal transduction, including AR, 

SRD5A2, and cytochrome P450 isoforms (CYP17A1 and CYP3A4), vitamin D 

metabolism including VDR, and carcinogen metabolism including GSTM1 (Reviewed 

by Coughlin and Hall 2002). These polymorphisms, however, are not highly penetrant 

alleles in families at high risk for PrCa.  

In summary, prostate cancer etiology involves several genetic loci, but so far no 

gene has been identified that accounts for a large proportion of susceptibility to the 

disease (reviewed by Nwosu et al. 2001). 

 

1.3.3 Sporadic prostate cancer 

 

1.3.3.1 Genome-wide search for sporadic prostate cancer loci  

In the genome-wide search for chromosomal alterations in PrCa an important 

contribution was made by CGH analysis (Visakorpi et al. 1995; Cher et al. 1996; 

Nupponen et al. 1998b; Alers et al. 2000). Differences were identified between various 

clinical stages and histological grades of PrCa, implicating that certain chromosomal 

regions have their specific role in prostate tumourigenesis. Although CGH is not 

suitable to specify in detail a region of loss or gain, it provides a strong indication of 

the chromosomal alterations in the various stages of PrCa. Nevertheless, several 

discrepancies were found between the CGH-studies described above (see Appendix 

A2 and A3 - Tables II and III for more details). These differences may be due to the 

contamination of tumour DNA with DNA from normal cells, a small number of samples 

analysed, and by differences in interpretation of the data. For example, the 

chromosomal regions 1p36, 9q34, 11q13, 19, and 22q, are known to be problematic in 

CGH studies (Kirchhoff et al. 1998), therefore, the data of Nupponen et al. (1998a) 

describing loss of 1p36, 19 and 22q are of some concern. 

In primary PrCa, chromosomal losses were found to predominate over gains in 

a 5 to 1 ratio (Visakorpi et al. 1995). Most frequently, deletions were found for 

chromosome arms 6q, 8p and 13q (Visakorpi et al. 1995; Alers et al. 2000). In 

metastatic PrCa a higher frequency of these three losses, and losses of 2q, 5q, 10q, 

and 16q were found. Furthermore, gains of 1q, 3q, 4q, 7q, 8q, 11p and 17q were 
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described (Cher et al. 1996; Alers et al. 2000). In local recurrences, that typically 

develop during endocrine therapy, a higher frequency of 8p and 16q losses, additional 

losses of 1p, 15q, 17p, 19, and 22q, and a higher frequency of 8q gain and gains of 

7p, Xp, and Xq were found (Visakorpi et al. 1995; Nupponen et al. 1998b). The results 

of the studies described above are summarized in Figure 1.4A and 1.4B (more details 

are listed in Appendix A2 and A3 - Tables II and III). As shown in Figure 1.4 and 

Appendix A2 and A3 – Tables II and III, loss of 2q, 5q, and 6q, and gain of 1q, 3q, 4q, 

9q, 11p, and 17q are more frequently found in metastases than in local recurrences. 

So far, little attention has been given to chromosomal alterations in PIN lesions 

(Qian et al. 1998; Zitzelsberger et al. 2001). Although losses of 8p and 13q, and gains 

of 7 and 8q were found in PIN, these studies are not included in Figure 1.4 and 

Appendix A2 and A3 – Table II and III, because a limited number of samples was 

studied and because inconsistencies were described that were not seen in any other 

stage of PrCa. These discrepancies are likely due to the small number of patients in 

each study, and by small tissue samples that necessitated PCR amplification. 

Genome-wide searches in PrCa have also been performed by allelic imbalance 

analysis (Cunningham et al. 1996). Cunningham et al. (1996) analysed DNAs from 

primary PrCa with a set of polymorphic markers scattered along all chromosomal 

arms. They reported an increased allelic imbalance for the same regions as described 

above in primary PrCa. Except for 8p, the frequencies found were less than those in 

the CGH studies. In addition, Cunningham et al. (1996) reported frequent allelic 

imbalance on 18q. Observed differences in frequency may be due to polymorphic 

markers with low heterozygosity, or to markers mapping outside the region of loss 

identified by CGH. If a marker maps in a region that is too small to be detected by 

CGH, allelotyping detects an additional genomic alteration. Furthermore, it is 

impossible to monitor by CGH loss of one allele combined with gain of the second 

copy. 
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1.3.3.2 Analysis of individual chromosomes 

Deletion of 8p is one of the most common chromosomal alterations in PrCa. 

Loss of this chromosomal arm occurs already in early stage PrCa and increases 

during tumour progression to approximately 60-75% in advanced cancers. Deletion of 

10q is observed in metastatic PrCa in particular, where it can be as high as 35-40%. 

Because this thesis focuses on chromosomes 8p and 10q, the remaining part of this 

chapter is limited to these two chromosomes.  

 

1.3.3.2.1 Chromosome 8  

 The picture of 8p loss in PrCa that emerged from genome-wide CGH studies 

was supported by many independent studies using FISH analysis (Macoska et al. 

1994; Oba et al. 2001), and analysis of allelic imbalance (Kunimi et al. 1991; Bova et 

al. 1993; Chang et al. 1994; MacGrogan et al. 1994; Trapman et al. 1994; Macoska et 

al. 1995; Suzuki et al. 1995; Vocke et al. 1996; Prasad et al. 1998, and reviewed in 

Isaacs 1995; Kallioniemi and Visakorpi 1996; Roylance et al. 1997; Abate-Shen and 

Shen 2000). Specifically, allelic imbalance studies demonstrated the presence of 

several separate regions of loss on this chromosomal arm. Comparison of these data 

indicated the presence of two, possibly three, regions of allelic loss at 8p, suggesting 

that this chromosomal arm contains several tumour suppressor genes that are of 

importance for PrCa tumourigenesis. The identified regions include 8p22-p23, 8p12-

p21, and 8p11-p12 (Figure 1.5).  
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Gain of 8q is the most common chromosomal amplification in PrCa (Visakorpi 

et al. 1995; Cher et al. 1996; Nupponen et al. 1998b). Gain of this chromosomal arm is 

frequently seen in combination with loss of 8p. Gain of 8q occurs occasionally in early 

stage PrCa and increases during tumour progression to 75%. Nupponen et al. (1998b) 

identified two independently amplified regions on the q-arm, 8q21 and 8q23-qter, 

suggesting the presence of at least two PrCa-related oncogenes on 8q. The latter 

region was narrowed to 8q24 by Alers et al. (2000). Gain of either region on 8q was 

shown to correlate with tumour progression and poor prognosis (Van Den Berg et al. 

1995; Sato et al. 1999; Alers et al. 2000), but the precise contribution of each region 

awaits the identification of the target genes. One of the strongest candidates is MYC, 

which maps at 8q24.2 (Reiter et al. 2000). A second candidate is EIF3S3, which maps 

at 8q24.1 (Saramaki et al. 2001). Detailed description of these target genes is beyond 

the scope of this thesis. 

Part of the 8p losses and 8q gains in PrCa were found to occur through 

isochromosome 8q formation (Webb et al. 1996; Virgin et al. 1999; Macoska et al. 

2000). However, there is also evidence for other mechanisms. In primary PrCa, loss of 

8p was found more frequently than gain of 8q (Visakorpi et al. 1995; Alers et al. 2000), 

implicating that loss of 8p occurs earlier in prostate tumourigenesis than gain of 8q. 

Additional evidence was provided by Sato et al. (1999), who found frequent loss of 8p 

(24%) without gain of 8q in a large cohort of high-grade, advanced, non-metastatic 

PrCa (Sato et al. 1999). 

Loss of 8p is not only common in PrCa, but also in many other tumour types, 

including carcinomas of the bladder (Kallioniemi et al. 1995; Takle and Knowles 1996; 

Wagner et al. 1997), breast (Kerangueven et al. 1997; Nishizaki et al. 1997; 

Anbazhagan et al. 1998), colon (Cunningham et al. 1993; Fujiwara et al. 1993; Chang 

et al. 1994), head and neck (Wu et al. 1997; El-Naggar et al. 1998), kidney 

(Schoenberg et al. 1995; Schullerus et al. 1999), lung (Ohata et al. 1993; Fujiwara et 

al. 1994; Lerebours et al. 1999), liver (Fujiwara et al. 1994; Pineau et al. 1999; Wang 

et al. 1999), ovary (Wright et al. 1998), stomach (Yustein et al. 1999; Baffa et al. 

2000), and uterus (Fujino et al. 1994; Ahmed et al. 2000). Not unexpected, most of 

these regions of loss partially or completely overlap with the regions depicted in Figure 

1.5. However, comparison of all data results in a complicated and rather confusing 

pattern. Besides experimental failures, these differences may reflect tissue specific 
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tumour suppressor genes. In this overview, only the smallest common deleted regions 

in PrCa will therefore be taken into account for further analysis. 

The various regions of 8p loss were also found to correlate with tumour grade 

and progression (Matsuyama et al. 1994; Macoska et al. 1995; Suzuki et al. 1995; 

Jenkins et al. 1998; Sato et al. 1999; Matsuyama et al. 2001; Oba et al. 2001). 

Specifically, losses of 8p22 and 8p21.3 occur in early stage PrCa and correlate with 

tumour grade, indicating that these regions may harbour a tumour suppressor gene. 

On the other hand, deletion of 8p21.1-p21.2 occurs mainly in advanced prostate 

cancer, showing capsular penetration or positive nodal metastases, and was found to 

correlate significantly with tumour progression. In particular, deletion of 8p21.1-p21.2 

was more frequently observed in PrCa cases with lymph node metastases than those 

without. These results implicate that this specific region may harbour a “metastatic” 

suppressor gene. No clinical pathological parameters were found to associate with 

deletions on 8p11-p12.  

Functional evidence for a tumour suppressor gene at 8p involved in PrCa was 

initially obtained by chromosome transfer studies. Transfer of human chromosome 8p 

into a rat prostate cancer cell line, resulted in suppression of its metastatic capacity 

(Ichikawa et al. 1994; Nihei et al. 1996). Recently, Nihei et al. (2002) limited a tumour 

suppressor gene region to a surprisingly small region of 60 Kbp at 8p12-p21 in a 

chromosome transfer study. Although the human genome sequence of this region is 

known, the authors did not mention any candidate gene within this region. Genes 

located in and near this region are RBPMS, 1D12A, AK057533, and GTF2E2 (April 

2003 freeze UCSC database). So far, none of these genes has been analysed in 

PrCa. No other small regions were identified in PrCa by chromosome transfer.  

In a human colorectal cancer cell line, transfer of chromosome 8p22-p23 

resulted in a less tumourigenic phenotype (Gustafson et al. 1996). Furthermore, 

transfer of 8p11.1-q11.1 restored the DNA-repair defect of murine SCID fibroblast cell 

lines SCVA2 and SCVA4 in response to ionising radiation (Kurimasa et al. 1994). 

Although both studies demonstrated reduction of tumourigenicity in a non-PrCa 

derived model system, the transferred tumour suppressor genes may also be involved 

in PrCa.  

 

8p22-p23  The best effort to date to localize a tumour suppressor gene at 8p22-p23 

was the identification of a 730-970 Kb homozygous deletion in a PrCa lymph node 
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metastasis (Bova et al. 1993; Bova et al. 1996). A candidate tumour suppressor gene 

located within this homozygously deleted region is the N33 gene (Macgrogan et al. 

1996). Although no mutations were found, N33 transcripts were undetectable in cell 

lines derived from lung, liver and colon cancers (see Appendix A1 - Table I). Absence 

of expression was strongly correlated to hypermethylation of a CpG island in the 

promoter region of the N33 gene, suggesting epigenetic inactivation of the gene. 

However, reintroduction of N33 cDNA in these colorectal cancer cell lines did not 

change their growth or tumourigenic properties (MacGrogan and Bookstein 1997). In 

the PrCa derived cell lines DU-145, TSU-PR1, LNCaP, and PPC-1, N33 inactivation 

was not detected. A second homozygous deletion (440-860 Kb) that partly overlapped 

with the deletion described by Bova et al. (1993) was found in a pancreatic tumour cell 

line (Levy et al. 1999). This overlap narrowed down the tumour suppressor gene 

region to less than 600 Kb and was found to contain, apart from N33, at least four 

ESTs that might represent a tumour suppressor gene (Bova et al. 1996; Macgrogan et 

al. 1996; Levy et al. 1999; Arbieva et al. 2000). To date however, no novel candidate 

gene has been identified in this region. Levy et al. (1999) speculated that this region of 

8p22 simply is a fragile site without any biological significance for cancer cells, 

implicating a tumour suppressor gene elsewhere on 8p22-p23 in PrCa. 

 PDGFRL (platelet-derived growth factor receptor-like) is another candidate 

tumour suppressor gene at 8p22 (Fujiwara et al. 1995; Bova et al. 1996). However, 

only one missense mutation was found in a large series of prostate tumours (see 

Appendix A4 - Table IV), implicating a minor role for PDGFRL in PrCa. Consistent with 

this low mutation frequency, mutations in PDGFRL were not detected in the cohort of 

43 prostate tumour DNA samples studied by us (Chapter 6; Van Alewijk et al., 

unpublished results).  

A more recently identified candidate tumour suppressor gene at 8p22 is LZTS1 

(Ishii et al. 1999), which showed mutations in primary oesophageal cancers and in the 

prostate cancer cell line PC-3 (see Appendix A4 - Table IV). Intriguingly, LZTS1 

mRNA expression was undetectable in over 60% of epithelial tumours from various 

anatomical sites. Ishii et al. (1999) therefore suggested a role for LZTS1 in multiple 

human tumour types, including PrCa. We found down regulation of LZTS1 expression 

in one xenograft, but no mutations in our cohort of 43 prostate tumour DNA samples 

and 15 PrCa derived xenografts and cell lines, including PC-3 (see Appendix A4 - 

Table IV). Although our results implicate a minor role for LZTS1 in PrCa, some support 
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for LZTS1 was provided by Cabeza-Arvelaiz et al. (2001). They demonstrated that 

transfer of YAC and BAC clones containing the LZTS1 gene into rat prostate AT6.2 

cells reduced their colony-forming efficiency. Subsequent experiments showed that 

over-expression of LZTS1 cDNA inhibited colony-formation in soft agar of AT6.2, 

HEK-293, and LNCaP cells (Cabeza-Arvelaiz et al. 2001). 

 

8p12-p21 Allelic imbalance studies strongly suggested that 8p12-p21 harbours a 

tumour suppressor gene involved in PrCa. The overall judgement of this region, 

however, is complicated by the heterogeneity of allelic losses (Figure 1.4). This may 

indicate that 8p12-p21 contains more than one tumour suppressor gene. The best 

evidence to date for a tumour suppressor gene in this region again is the identification 

of homozygous deletions. Four homozygous deletions were identified in PrCa (Kagan 

et al. 1995; Prasad et al. 1998; Van Alewijk et al. 1999). Kagan et al. (1995) reported 

two huge overlapping homozygous deletions, of 5 and 21 Mb, around the NEFL locus. 

The significance of these two homozygous deletions is unclear because of their size, 

but also because they are roughly defined, and because none of the deletions was 

flanked by a region of allelic loss. A homozygous deletion of the D8S87 locus at 8p11-

p12 was reported by Prasad et al. (1998). This deletion however, needs to be defined 

in further detail. The only nearby located genes are FLJ30656 and UNC5D (April 2003 

freeze UCSC database). 

The fourth homozygous deletion on 8p12-p21 was reported by our group 

(Chapter 4 of this thesis; Van Alewijk et al. 1999). We identified a 890 Kb homozygous 

deletion in a PrCa derived xenograft (Chapter 5; Van Alewijk et al., submitted). This 

work became feasible after the construction of a continuous high-density physical and 

transcript map of 8p12-p21, encompassing the region between the markers D8S87 

and D8S133 (Appendix A6 of this thesis). The interest for this specific region arose 

from previous results, showing frequent (69%) allelic loss in PrCa DNA samples 

(Trapman et al. 1994). Despite the availability of many markers, no second 

(overlapping) homozygous deletion was found in PrCa derived xenografts and cell 

lines. The Werner syndrome gene (WRN), which is disrupted by the homozygous 

deletion (Chapter 4; Van Alewijk et al. 1999), encodes a protein with DNA helicase 

and exonuclease activity involved in maintaining the integrity of the genome (Yu et al. 

1996a; Gray et al. 1997; Suzuki et al. 1999; Hickson et al., 2003). Werner syndrome 

(WS) is an autosomal recessive disease characterised by accelerated aging and 
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predisposition to rare cancers, including soft tissue sarcoma, thyroid cancer, 

meningioma, and melanoma (Epstein et al. 1966; Goto et al. 1996; Yu et al. 1996a; Yu 

et al. 1997). However, no mutations or aberrant WRN gene expression patterns were 

identified in our set of PrCa derived xenografts and cell lines (Chapter 5; Van Alewijk 

et al., submitted). These results suggest that functional loss of two copies of WRN 

plays a minor role in PrCa, although it may be that the loss of the WRN gene 

contributed to the growth of xenograft PC133. Except for WRN, no other bona fide 

gene has been detected in the homozygous deletion region (see also Chapter 5 of this 

thesis).  

The location and known function of clusterin (CLU; Fink et al. 1993), DNA 

polymerase ß (POLB; Cannizzaro et al. 1988; Dib et al. 1995), and epoxide hydrolase 

2 (EPHX2; Larsson et al. 1995), made these genes good candidates for tumour 

suppressor genes at 8p12-p21 (see Appendix A4 - Table IV). To test this hypothesis, 

we analysed 15 PrCa derived xenografts and cell lines, and 43 PrCa tumour samples 

for mutations and altered expression (Van Alewijk et al., unpublished results). In CLU, 

apart from silent polymorphisms, no sequence variations were identified. Although 2 

out of 12 PrCa samples were reported to have a mutation in POLB (Dobashi et al. 

1994), no ORF mutations were found in our cohort of 43 prostate tumour DNA 

samples (Chapter 6; Van Alewijk et al., unpublished results). Thus, we found no clear 

evidence for a role of any of these two genes in PrCa. Expression of EPHX2 was 

down-regulated in 2 samples. Furthermore, 6 other samples had retained an allelic 

variant with a unique amino acid substitution, which was also found in their normal 

tissue. Although 8p12-p21 has not been recognized as an HPC region, these results 

suggest a predisposition for PrCa due to EPHX2 polymorphisms. Yet, there is no 

further evidence for a role of EPHX2 in PrCa. 

 To date, the most promising candidate tumour suppressor gene at 8p12-p21 is 

the homeobox gene NKX3-1 (He et al. 1997). NKX3-1 encodes a homeodomain-

containing protein related to the Drosophila NK-3 gene family. Northern blot analysis 

revealed that NKX3-1 had a unique tissue expression pattern. The 3.5 Kb NKX3-1 

transcript was abundantly expressed in the prostate, at lower levels in the testis, and 

absent from all other tissues tested (He et al. 1997). Furthermore, expression was 

seen in the hormone-responsive, AR-positive PrCa cell line LNCaP, and was markedly 

increased upon androgen stimulation. NKX3-1 was not expressed in either of the two 

AR-negative cell lines PC-3 and DU-145 (He et al. 1997). Supported by frequent allelic 
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loss of 8p12-p21 in PrCa and the lack of expression in PC-3 and DU-145, He et al. 

(1997) suggested that NKX3-1 was a candidate tumour suppressor gene. So far, no 

NKX3-1 gene mutations or homozygous deletions have been identified in PrCa 

(Voeller et al. 1997; Ornstein et al. 2001; Chapter 6; Van Alewijk et al., unpublished 

results). However, we found low NKX3-1 expression in 4 out of 15 PrCa derived 

xenografts and cell lines (PC133, PC135, PC324, and PC-3) (Chapter 6; Van Alewijk 

et al., unpublished results). All 4 xenografts and cell lines are hormone independent 

growing tumours. 

 The NKX-like transcription factors are implicated in many aspects of cell type 

specification and maintenance of the functions of differentiated tissues. Sciavolino et 

al. (1997) demonstrated that Nkx3-1 was involved in murine prostate organogenesis 

(Sciavolino et al. 1997). In line with expectations, homozygous Nkx3-1 knockout mice 

showed defects in prostatic ductal morphogenesis and secretory protein production 

(Bhatia-Gaur et al. 1999). Notably, not only homozygous but also heterozygous Nkx3-

1 mutant mice displayed prostatic epithelial hyperplasia and dysplasia that increased 

in severity with aging (Bhatia-Gaur et al. 1999; Kim et al. 2002a), suggesting that loss 

of a single Nkx3-1 allele may be sufficient to initiate PIN-like lesions. Due to the role of 

Nkx3-1 in prostate organogenesis, conventional knockouts do not represent lifelike 

tumourigenesis. Conditional knockouts simulate a more realistic situation inducing a 

tumourigenic effect in normal matured tissue. Conditional Nkx3-1 inactivation in adult 

mice induced hyperplasia and apparent PIN lesions in the prostate (Abdulkadir et al. 

2002). Evidence for actual growth-suppressing activity of Nkx3-1 was recently 

provided by retroviral gene transfer of exogenous Nkx3-1 into a human (PC-3) and 

rodent (AT6) PrCA derived cell line (Kim et al. 2002a).   

 

1.3.3.2.2 Chromosome 10 

The picture of 10q loss in PrCa that was obtained by genome-wide CGH 

studies was supported by many allelic imbalance analyses. Several of these studies 

found additional losses of 10p, which were not seen by CGH analysis (Gray et al. 

1995; Ittmann 1996; Komiya et al. 1996; Trybus et al. 1996; Cairns et al. 1997; 

Feilotter et al. 1998; Chapter 3; Hermans et al., submitted). Comparison of the data 

revealed for both the 10p- and 10q-arm at least one, possibly two, regions of loss, 

suggesting that each chromosome 10 arm contains one or more PrCa tumour 
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suppressor genes. The identified regions are 10p12, 10p14-pter, 10q23, and 10q25-

q26 (Figure 1.6).  

Losses of 10p and 10q are not restricted to PrCa. High frequency loss of these 

chromosomal arms has also been described in bladder cancer (Cappellen et al. 1997), 

endometrial carcinoma (Peiffer et al. 1995; Nagase et al. 1997), hepatocellular 

carcinoma (Fujiwara et al. 2000), glioblastoma (Karlbom et al. 1993; Rasheed et al. 

1995), malignant melanoma (Herbst et al. 1994; Reiffenberger 1999), meningioma 

(Rempel et al. 1993), non-Hodgkin's lymphoma (Speaks et al. 1992), renal cell 

carcinoma (RCC; Morita et al. 1991), and small lung cell cancer (Kim et al. 1998). 

In many studies, losses of 10p and 10q were found to correlate with advanced 

clinical stages of PrCa, particularly metastases and local recurrences (Ittmann 1996; 

Komiya et al. 1996; Trybus et al. 1996; Dong et al. 1998; Ittmann 1998; Alers et al. 

2000; Ozen et al. 2000; Srivastava et al. 2001; Leube et al. 2002).  
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10p12 and 10p14 Functional evidence for prostate tumour suppressor genes at 10p 

was initially obtained by chromosome transfer studies. Transfer of human 

chromosome 10p to human prostate cancer cell lines, resulted in suppression of their 

growth capacity (Murakami et al. 1996; Sanchez et al. 1996). Fukahara et al. (2001) 

narrowed down this tumour suppressor gene region to 1.2 Mb at 10p14 (Fukuhara et 

al. 2001). The authors did not refer to any candidate gene within this region. Genes 

located in or near this region are GATA3 and CUGBP2 (April 2003 freeze UCSC 

database). So far, none of these genes has been analysed in PrCa. Transfer of 

chromosome 10p14-p15 into a human glioblastoma cell line resulted in a markedly 

suppression of its colony forming ability in soft agar (Kon et al. 1998). 

Within the overlapping region of loss at 10p12, no candidate tumour suppressor 

gene has been identified (Figure 1.6). The more telomeric loss at 10p14 encompasses 

the COPEB gene. This gene was found to be mutated in 55% of PrCa (Narla et al. 

2001). The authors also showed that wild-type COPEB up-regulates CDKN1A  in a 

p53-independent manner and significantly reduces cell proliferation, whereas tumour-

derived COPEB mutants did not. Despite the high mutation frequency, the tumour 

suppressor gene functioning of COPEB has so far not been confirmed in any other 

study. Neither did we find any structural nor expression alterations in the panel PrCa 

derived xenografts and cell lines (Chapter 3; Hermans et al., submitted).  

 

10q23 Transfer of 10q into a rat prostate cancer cell line resulted in suppression of its 

metastatic capacity (Nihei et al. 1995). No smaller regions of 10q were identified by 

chromosome transfer.  

 Shortly after the first allelic imbalance studies narrowed down the region of loss 

to 10q23 (see Fig. 1.8), the PTEN (phosphatase and tensin homologue deleted on 

chromosome 10) tumour suppressor gene  was identified within this region (Li and 

Sun 1997; Li et al. 1997; Steck et al. 1997). Especially the finding of homozygous 

deletions has been pivotal in the identification of PTEN (Li et al. 1997; Steck et al. 

1997). PTEN is also known as MMAC1 (mutated in multiple advanced cancers (Steck 

et al. 1997) and TEP1 (TGF-β-regulated and epithelial cell-enriched phosphatase (Li 

and Sun 1997).  

The initial molecular cloning studies reported PTEN mutations in a large 

fraction of glioblastoma multiforme cell lines, xenografts, and primary tumours, as 

well as in smaller samples of breast and prostate cancers (Li et al. 1997; Steck et 
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al. 1997). Subsequent analyses confirmed that homozygotic inactivation of PTEN 

occurs in a large percentage of glioblastomas (at least 30% of primary tumours and 

50-60% of cell lines) but not in lower-grade (i.e., less advanced) glial tumours. 

PTEN mutations also are very common in melanoma cell lines (>50%), advanced 

PrCa, and endometrial carcinomas (30-50%). Although PTEN mutations are 

predominantly found in advanced glial and prostate tumours, mutations occur with 

equal frequency at all stages of endometrial cancer, suggesting that PTEN 

activation is an early event in endometrial carcinogenesis. A significant percentage 

(~10%) of breast cancer cell lines has inactivated PTEN. PTEN mutations are rare 

in sporadic breast tumours, independent of severity. Although germ-line PTEN 

mutations lead to predisposition to breast cancer, PTEN mutations are not a 

frequent cause of familial breast cancer. Occasional PTEN mutations have been 

reported in head and neck cancers and in thyroid cancers (Cantley and Neel 1999). 

Germ-line mutations in PTEN have been detected in Cowden disease, 

Lhermitte-Duclos disease, and Bannayan-Zonana syndrome, all of which are rare 

diseases with an autosomal dominant inheritance pattern. These syndromes are 

associated with hamartomas of the skin, thyroid, breast, oral mucosa, and intestine, 

and a predisposition to cancer (Cantley and Neel 1999).  

Thus far, PTEN is the most frequently mutated tumour suppressor gene in 

PrCa. Li et al. (1997) reported homozygous deletions of PTEN in 2 out of 4 PrCa cell 

lines. We found a high frequency (60%) of PTEN deletions (5 out of 15) and mutations 

(4 out of 15) in PrCa derived xenografts and cell lines (Chapter 2; Vlietstra et al. 

1998). PTEN mutations are most common in metastatic PrCa (30-60%; Cairns et al. 

1997; Suzuki et al. 1998b), but less frequent in primary PrCa, (5-15%; Cairns et al. 

1997; Teng et al. 1997; Feilotter et al. 1998; Whang et al. 1998). This implies that 

complete PTEN inactivation occurs mainly in advanced stage PrCa, concordant with 

10q loss.  

PTEN encodes a widely expressed 5.5-kb mRNA. The protein consists of 403 

amino acids, it contains a catalytic domain of lipid and protein phosphatases and 

shows homology to the cytoskeletal proteins tensin and auxilin (Li and Sun 1997; Li et 

al. 1997; Steck et al. 1997). PTEN is involved in regulation of cell proliferation, cell 

survival, cell size, and chemotaxis (Figure 1.9; reviewed by Comer and Parent 2002).  
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Figure 1.9. Mechanisms of PTEN action. 

 

Although PTK2 (protein tyrosine kinase 2) and the adaptor protein Shc have been 

postulated as targets of the weak in vivo protein phosphatase activity of PTEN (Gu et 

al. 1998; Tamura et al. 1998), the most prominent function of PTEN is the negative 

control of phosphoinositidyl 3-kinase (PI3K) signaling by dephosphorylation of the 

phospholipid PIP3 (phosphoinositol-3-phosphate; Maehama and Dixon 1998; Myers et 

al. 1998; see for recent reviews Cantley and Neel 1999; Dahia 2000). A prominent 

downstream target of PIP3 is AKT/PKB, which subsequently phosphorylates a large 

variety of target proteins, including BAD, CASP9, CREB, eNOS, FOXO3A, GSK3, IKK, 

MDM2, FRAP1, and CDKN1A. These targets have a characteristic R-x-R-xx-S/T-F/L – 

motif that is phosphorylated at the serine or threonine residues by activated AKT. 

Several of the AKT target proteins are involved in more than one of the biological 

functions of PTEN. The functioning of AKT is further complicated by cross-talk of some 

of its downstream targets with other tumour related pathways (e.g. TP53-, and WNT-

pathway). In addition to the regulating mechanisms as mentioned above PTEN is 

thought to affect cell migration. Initially, FAK and Shc have been described as mediators 

for migration. However, evidence is growing that other downstream targets of Pi3k, like 

Rac / Cdc42, which might function upstream of Akt, have a more prominent role in cell 

migration (Higuchi et al. 2001). Little is known about the expression of PTEN in PrCa. 

Downregulation of PTEN expression was shown by McMenamin et al. (1999). 
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Recently, Yang et al. (2002) described an inverse correlation between PTEN (+) and 

CDKIN1B (+) expression, and the expression of the F-box protein Skp2 (-) (Yang et al. 

2002). 

Functional evidence for a role of PTEN in PrCa was primarily provided by Nihei 

et al. (1995), who showed that transfer of chromosome 10, particularily 10cen-q23 

(including PTEN), suppressed the metastatic ability of a rat prostate cancer cell line 

(Nihei et al. 1995). Ever since, several studies provided direct and indirect evidence 

for a role of PTEN in PrCa. Transfer of PTEN cDNA into PC-3 cells induced G1 cell-

cycle arrest, enhanced apoptosis, and reverted their invasive phenotype (Persad et al. 

2000; Kotelevets et al. 2001). Accordingly, adenovirus-mediated expression of PTEN 

was found to inhibit the in vitro growth capability of PC-3 cells, primarily by blocking 

cell cycle progression. In vivo these transfected cells did not lose their tumourigenicity, 

but showed a significant reduction in tumour size and complete loss of their metastatic 

ability (Davies et al. 2002). In LNCaP cells, adenovirus-mediated expression of PTEN 

or cDNA transfection was found to negatively regulate the PI3K/AKT pathway and 

enhance apoptosis (Wu et al. 1998; Yuan and Whang 2002). Furthermore, PTEN was 

found to induce chemosensitivity in LNCaP cells by suppression of BCL-2 expression. 

Specifically, the lipid-phosphatase activity of PTEN was found to be required for the 

inhibition of BCL-2. This inhibiting activity was blocked by overexpression of a 

constitutively active form of AKT (Huang et al. 2001). 

Intriguingly, part of the losses at 10q23 included the PTEN gene, yet mutations 

were not identified in the remaining PTEN allele (Cairns et al. 1997; Teng et al. 1997; 

Feilotter et al. 1998; Whang et al. 1998). These observations suggested that a second 

tumour suppressor gene located nearby PTEN might be involved in PrCa. 

Alternatively, this could point to PTEN haplo-insufficiency in tumour growth. Nearby 

candidate tumour suppressor genes are MINPP1, PAPSS2, and TNFRSF6 (see 

Appendix A5 - Table V). MINPP1, whose function overlaps with that of PTEN, had a 

missense mutation in a follicular thyroid tumour (Gimm et al. 2001). Gimm et al. (2001) 

therefore suggested a role for MINPP1 in the pathogenesis of at least a subset of 

malignant follicular thyroid tumours. In a large inbred Pakistani family with severe 

chondrodysplasia, a nonsense mutation was found in PAPSS2 (ul Haque et al. 1998). 

TNFRSF6 was found to be inactivated by DNA methylation in a limited number of 

PrCa and advanced bladder carcinomas (Santourlidis et al. 2001). Additionally, 

specific inherited TNFRSF6 mutations were correlated with a high risk factor for non-
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Hodgkin and Hodgkin lymphomas (Straus et al. 2001).  We screened 13 genes 

mapping in a 3 Mbp region around PTEN for expression alterations (Chapter 3; Hermans 

et al., submitted). Additionally, the genes MINPP1, PAPSS2, FLJ11218 and TNFRSF6, 

were selected on the basis of altered expression, frequent deletion or by virtue of their 

function (see also Appendix A5 - Table V) for a mutation screen in our panel of 

xenografts and cell lines. Especially, PAPSS2 and FLJ11218 appeared interesting due 

to altered expressions, polymorphisms, a few missense mutations and a nonsense 

mutation. However, the functional relevance of these alterations in PrCa remains to be 

established.  

 Homozygous Pten knockout mice are embryonically lethal (Di Cristofano et al. 

1998b; Suzuki et al. 1998a; Podsypanina et al. 1999). Heterozygous Pten knockout 

mice showed hyperplastic and dysplastic changes in the prostate, skin, and colon, 

which are characteristic for Cowden disease, Lhermitte-Duclos disease, and 

Bannayan-Zonana syndrome (Di Cristofano et al. 1998a). These mice also 

spontaneously developed germ cell, gonadostromal, thyroid, colon, T-cell and breast 

tumours. Analysis of PrCa progression in transgenic adenocarcinoma of mouse 

prostate (TRAMP) model mice crossed with Pten (+/-) heterozygous mice, revealed 

that haplo-insufficiency of the Pten gene promoted the progression of PrCa (Kwabi-

Addo et al. 2001). Evidence is growing that not only in PrCa but also in other human 

malignancies loss of one PTEN allele can contribute to tumourigenesis (Velickovic et 

al. 2002; Byun et al. 2003). 

 

10q25-q26 A fourth region of frequent loss of chromosome 10 includes 10q25-q26, 

which indicates a role for an additional 10q gene in PrCa (Cairns et al. 1997; Feilotter et 

al. 1998). This chromosomal arm harbours the candidate tumour suppressor genes 

MXI1 (10q25.2), and DMBT1 (10q26.1), which have been suggested to be involved in 

PrCa or other tumours (MXI: Eagle et al. 1995; Wechsler et al. 1996; Prochownik et al. 

1998) (DMBT1: Mollenhauer et al. 1997; Somerville et al. 1998; Mori et al. 1999; 

Takeshita et al. 1999; Wu et al. 1999). In accordance with Gray et al. (1995), Kawamata 

et al. (1996), and Kuczyk et al. (1998), who doubted the role of MXI1 in PrCa (Gray et al. 

1995; Kawamata et al. 1996; Kuczyk et al. 1998), we did not find any altered expression 

or structure of MXI1 (Chapter 3; Hermans et al., submitted). In one of our xenografts, 

analysis of DMBT1 revealed an internal homozygous deletion, including a repetitive 

region from which several DMBT1 variants are derived (Mollenhauer et al. 1999; 
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Chapter 3; Hermans et al., submitted). Although this deletion resulted in a shortened 

protein, its functional effect is as yet unknown (Mollenhauer et al. 1999). Down-regulation 

of DMBT1 expression was found in lung, oesophageal, gastric and colon cancers, 

implicating a general role in cancer (Mori et al. 1999; Takeshita et al. 1999). In addition to 

these studies, we found expressional down-regulation in 2 samples of our panel of 

xenografts and cell lines (Chapter 3; Hermans et al., submitted).  

 
 
1.4 SCOPE OF THIS THESIS 

 

The aim of this thesis was the isolation and characterization of tumour 

suppressor genes located on chromosome 8p and 10q. Chapter 1 is a general 

introduction of PrCa, genetics of cancer, and genetic alterations in PrCa. Chapter 2 

describes the expression and structural analysis of the PTEN gene in PrCa xenografts 

and cell lines. Chapter 3 describes the genetic analysis of chromosome 10. It also 

describes a refined characterization of the previously identified homozygous deletions 

disrupting the PTEN gene (Chapter 2), including the expression and structural 

analysis of genes flanking PTEN. Finally, chapter 3 describes the expression and 

structural analysis of the candidate tumour suppressor genes MXI1 and DMBT1 that 

are located on 10q. Chapter 4 describes the identification and characterization of a 

homozygous deletion at 8p12-p21 in xenograft PC133. Chapter 5 describes the genetic 

analysis of chromosome 8 in PrCa xenografts and cell lines using CGH and 

allelotyping. It further describes the screen for overlapping homozygous deletions and 

search for genes in the previously identified homozygous deletion. In addition, this 

chapter describes the expression and structural analysis of WRN. Chapter 6 describes 

the high-density screen for an homozygous deletion elsewhere on 8p12-p21 and the 

expression and structural analysis of the candidate tumour suppressor genes LZTS1, 

NKX3-1, and EXPHX2 that are located on 8p. Chapter 7 discusses the results 

described in this thesis, its implications for PrCa and future directions of research. 

 





 

CHAPTER 2 

FREQUENT INACTIVATION OF PTEN IN PROSTATE CANCER CELL 

LINES AND XENOGRAFTS 

Remko J. Vlietstra, Dirk C.J.G. van Alewijk, Karin G.L. Hermans, Gert J. van 

Steenbrugge, and Jan Trapman  
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ABSTRACT 

 

 Loss of chromosome 10q is a frequently observed genetic defect in prostate 

cancer. Recently, the PTEN/MMAC1 tumor suppressor gene was identified and mapped 

to chromosome 10q23.3. We studied PTEN structure and expression in four in vitro cell 

lines and eleven in vivo xenografts derived from six primary and nine metastatic human 

prostate cancers. DNA samples were allelotyped for eight polymorphic markers within 

and surrounding the PTEN gene. Additionally, the nine PTEN exons were tested for 

deletions. In five samples (PC3, PC133, PCEW, PC295, PC324) homozygous deletions 

of (parts of) the PTEN gene were detected. PC295 contained a small homozygous 

deletion, encompassing PTEN exon 5. In two DNAs (PC82 and PC346), nonsense 

mutations were found, and in two (LNCaP and PC374), frame-shift mutations were 

found. Missense mutations were not detected. PTEN mRNA expression was clearly 

observed in all cell lines and xenografts without large homozygous deletions, showing 

that PTEN down-regulation is not an important mechanism of PTEN inactivation. The 

high frequency (60%) of PTEN mutations and deletions indicates a significant role of this 

tumor suppressor gene in the pathogenesis of prostate cancer. 

 

INTRODUCTION 

 

 Prostate cancer is the most frequently diagnosed tumor in men in the United 

States and in western and northern Europe, and the second leading cause of male 

cancer death (Parker et al. 1997). The molecular events leading to the development and 

the progressive growth of prostate cancer are poorly understood. The most frequent 

chromosomal aberrations are losses of chromosomes 8p, 10q, 13q and 16q (Bergerheim 

et al. 1991; Visakorpi et al. 1995; Cher et al. 1996), indicating the localization of tumor 

suppressor genes at these chromosomal sites. Detailed allelotyping implicated deletion 

of chromosome 10 region 10q23-25 in prostate cancer (Gray et al. 1995; Komiya et al. 

1996; Li et al. 1997). 

 Recently, the PTEN gene, also known as MMAC1 or TEP1, which is located at 

10q23.3, has been found to be frequently mutated or deleted in glioblastomas (Li and 

Sun 1997; Li et al. 1997; Steck et al. 1997). PTEN encodes a dual-specific phosphatase 

and shows homology to the cytoskeletal proteins tensin and auxilin (Li and Sun 1997; Li 

et al. 1997; Myers et al. 1997; Steck et al. 1997). Structural analysis revealed mutations 
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of PTEN in many different tumor types. A high proportion of mutations was not only 

demonstrated in glioblastomas (Li et al. 1997; Rasheed et al. 1997; Steck et al. 1997; 

Wang et al. 1997) but also in endometrial carcinomas (Risinger et al. 1997; Tashiro et al. 

1997). Germ-line mutations in PTEN have been detected in Cowden disease, an 

autosomal dominant cancer predisposition syndrome, associated with an increased risk 

of breast, skin, and thyroid cancer (Liaw et al. 1997; Nelen et al. 1997).  

 PTEN has also been implicated in prostate cancer. Li et al. (Li et al. 1997) 

described two homozygous deletions and one frame-shift mutation in prostate cancer 

cell lines. More recently, PTEN mutations and deletions were reported in metastatic 

prostate cancers (Cairns et al. 1997; Suzuki et al. 1998b). In primary tumors, PTEN 

mutations were less frequent (Cairns et al. 1997; Teng et al. 1997).  

 Detailed molecular genetic analysis of prostate cancer DNA and gene expression 

is complicated due to the contamination by normal cells. In this study, we demonstrate a 

high proportion of PTEN mutations and deletions in fifteen prostate cancer xenografts 

and cell lines. We characterized these mutations, and studied PTEN mRNA expression. 

 

MATERIALS AND METHODS 

 

Prostate Tumor Cell Lines and Xenografts.  

 The in vitro growing cell lines LNCaP, PC3, DU145 and TSU were cultured under 

standard conditions. In vivo xenografts PC82, PCEW, PC133, PC135, PC295, PC310, 

PC324, PC329, PC339, PC346 and PC374 were propagated in male nude mice 

(Noordzij et al. 1996; Van Weerden et al. 1996; and references therein). 

 

DNA Preparation.  

 DNA from cell lines was isolated according to standard procedures (Sambrook et 

al. 1989). Genomic DNA from xenografts was isolated from 5 consecutive 5-µm cryostat 

tissue sections by overnight proteinase K incubation at 55oC, followed by phenol 

extraction and ethanol precipitation. DNA pellets were dissolved in TE [10 mM Tris.HCl 

(pH7.8)-1 mM EDTA]. 
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Allelotyping.  

 DNAs from prostate cancer cell lines and xenografts were allelotyped by PCR 

amplification of eight polymorphic markers within or flanking the PTEN locus at 

chromosome 10q23.3: D10S1687, D10S579, D10S215, PTENCA, AFMa086WG9, 

D10S541, D10S1753 and D10S583. PTENCA primers were from Ref. 12; other markers 

are described in Genome Data Base or in the Genethon database. PCR amplifications, 

using Taq polymerase (Promega, Madison, WI) were for 30 cycles of 1 min at 94oC, 1.5 

min at 50oC or 55oC and 1.5 min at 72oC in a 15 µl reaction volume, containing 1.5 mM 

MgCl2 and 1 µCi [alpha-32P]dATP (Amersham, Buckinghamshire, UK). The radio-

labelled PCR products were separated over a 6% polyacrylamide sequencing gel.     

 

Screening for Homozygous Deletions of PTEN.  

 PTEN exons and flanking sequences were PCR amplified according to standard 

protocols: 30 cycles of 45 s at 94oC, 45 s at 50oC (exons 1 to 6) or 55oC (exons 7 to 9) 

and 45 s at 72oC in the presence of 1.5 mM (exons 1 to 6) or 2.0 mM MgCl2 (exons 7 to 

9). Exons 5 and 8 were amplified as two overlapping fragments. Primers were from 

(Steck et al. 1997) (1R, 5F1, 5R2, 7F and 7R, 8R2), and (Guldberg et al. 1997) (1F, 2F 

and 2R, 3F and 3R, 4F and 4R, 5R1 and F2, 6F and 6R, 9F and 9R). Primers 8R1 (5-

CTTGTCATTATCTGCACGCT-3) and 8F2 (5-GAAAATGGAAGTCTATGTG-3) are 

novel. Control PCRs were with primers 791B9L-A (5-GAAGGTGGCAGTCTGATCTC-3) 

and 791B9L-B (5-GCAACTGGTTGAAACATACTC-3), which amplify a 410 bp fragment 

at chromosome 8p12-p21. Amplified products were separated over a 2% agarose gel. 

 

RT-PCR Analysis of PTEN Expression.  

 RNA was isolated by standard guanidium isothiocyanate (cell lines) or LiCl 

(xenografts) protocols (Sambrook et al. 1989). cDNA synthesis, followed by PCR 

amplifications with PTEN-specific primers were performed on 500 ng RNA in the Access 

RT-PCR system (Promega) according to the instructions of the manufacturer. Primers 

used for cDNA synthesis were as follows: 9R-cDNA, 5-

GGATGTGAACCAGTATATCACAA-3 (Fig. 3A); and 7R-cDNA, 5-

CCGTCGTGTGGGTCCTGAATTAA-3 (Fig. 3B). cDNA synthesis was for 45 min at 

48oC; amplification: 35 cycles of 30 sec at 94oC, 30 sec at 60oC, and 1 min at 68oC. 

Primer combinations for PCR amplification of cDNAs: 9R-cDNA and 8F-cDNA (5-

AGCCAACCGATACTTTTCTCC-3), and 7R-cDNA and 1F-cDNA (5-
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CCACCAGCAGCTTCTGCCATCTCT-3). Control RT-PCRs were carried out under the 

same conditions, using RNA polymerase II-specific primers: PolF-cDNA (5-

GCTGAGAGAGCCAAGGATAT-3) and PolR-cDNA (5-CACCACCTCTTCCTCCTCTT-

3). RT-PCR products were separated over a 2% agarose gel.  

 

PCR-SSCP Analysis.  

 Fragments for PCR-SSCP analysis were obtained for all exons of the PTEN 

gene, utilizing primer sets and PCR conditions described above. PCR reactions were in 

a 15-µl volume in the presence of 1 µCi [alpha-32P]dATP. Appropriate aliquots of the 

radiolabelled PCR products were separated over a 6% non-denaturing polyacrylamide 

gel containing 5 or 10% glycerol at 7 W overnight at room temperature.  

 

Structural Analysis.  

 RT-PCR fragments and amplified exons were purified over QIAquick spin 

columns (Qiagen, Hilden, Germany), cloned into pGEM-T Easy (Promega) and 

sequenced according to the dideoxy chain termination method.   

 

RESULTS 

 

Allelotyping of Prostate Cancer Cell Lines and Xenografts for Chromosome 10q23. 

 Genomic DNAs from 11 prostate cancer xenografts and 4 in vitro propagated cell 

lines were allelotyped for eight highly polymorphic markers, spanning ~9 cM around the 

PTEN locus at chromosome 10q23 (D10S1687, D10S579, D10S215, PTENCA, 

AFMa086wg9, D10S541, D10S1753, and D10S583). The results are summarized in Fig. 

1. For most markers, especially those mapping at 114 cM, only one amplified band was 

detected, suggesting hemizygosity. In DNAs from three xenografts (PC133, PC324 and 

PCEW) and one cell line (PC3), two or more polymorphic markers were completely 

deleted (see also (Li et al. 1997) for PC3 deletion). All four samples were negative for 

AFMa086wg9, which is situated at 114 cM, between exons 2 and 3 of the PTEN gene. 

Therefore, these tumors are expected to be completely or partially defective of PTEN. 

The homozygous deletion in PC3 is relatively large (>5 cM), other homozygous deletions 

seem to be much smaller. 
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Homozygous Deletion of the PTEN Gene.  

 To confirm PTEN losses and to determine more precisely the borders of the 

homozygous deletions, all nine exons of the PTEN gene, including flanking sequences, 

were individually amplified. Examples of exons 5 and 8 amplifications are shown in Fig. 

2A; results are summarized in Fig. 2B. The four tumors that lacked polymorphic marker 

AFMa086wg9 showed complete or partial deletion of PTEN (Fig. 2A, Lanes 1,3,7 and 

13). In PC133 and PCEW, PTEN was completely deleted; in PC324, PTEN exons 2-9, 

and in PC3 exons 3-9 were absent (Fig. 2B). Importantly, PC295 contained a very small 

homozygous deletion, encompassing only PTEN exon 5, which could not be detected by 

allelotyping (Fig. 2A, Lane 5).  
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Figure 1. Allelotyping of prostate cancer cell lines and xenografts at chromosome 10q23.3.  

Markers are described in more detail in Materials and Methods. Numbers between brackets indicate 

heterozygosity indices. Heterozygosity indices are not available for PTEN CA and AFMa086WG9. Genetic 

map positions of markers are from contig 10.7 of the Whitehead Institute map. The number of bands 

detected are indicated in each box (0, 1 or 2). Homozygous deletions are marked by shaded boxes.  
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Figure 2. Deletion analysis of PTEN in prostate cancer cell lines and xenografts. (A) Agarose 

gel electrophoresis of PCR amplified exons 5 and 8. The control is YAC end fragment 791B9L, located at 

chromosome 8p12-p21. (B) Overview of the results obtained for all PTEN exons. Deleted exons are 

indicated by a minus in the shaded boxes. 

 

Expression of PTEN.  

 Because of the absence of contaminating normal cells of human origin, 

xenografts and cell lines are preferable sources for the study of PTEN mRNA 

expression. In all RNA preparations from cell lines and xenografts without homozygous 

deletion, PTEN mRNA was easily detectable by RT-PCR, using human PTEN specific 

primers for amplification (Fig. 3A). In PC133 and PCEW, PTEN mRNA expression could 

not be visualized (Fig. 3A lanes 4, 15). However, PC3 and PC324, which also lack the 

PTEN gene showed a faint amplified band of the appropriate length (620 bp), which 

hybridized to a PTEN specific probe (data not shown). Sequencing of the RT-PCR 

product from PC324 and PC3 revealed that it was not identical to PTEN, but to a highly 

homologous processed PTEN pseudogene, located in a duplicated region of 

chromosome 7 to chromosome 9, near the T-cell receptor beta locus (GenBank, 

AF029308) (data not shown). This band was not detectable in controls, in which reverse 

transcriptase was omitted from the reaction mixture (data not shown). Therefore, we 

concluded that in PC324 and PC3 the pseudogene was expressed at a low level. 

Because PTEN pseudogene expression was low, or undetectable in the four tumors with 

chromosome 10q23 homozygous deletions, we presumed that the RT-PCR product from 

PTEN positive tumors was derived from the original PTEN gene. This was checked for 

PC295 (see below) and PC135. PTEN mRNA expression in PC135 is relatively low. 
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Digestions by slected restriction enzymes showed that most, if not all of the fragment 

amplified by RT-PCR was derived from wild type PTEN (data not shown). 

   Sequencing of a 530 bp exon 1 to exon 7 RT-PCR product of PC295 PTEN mRNA, 

confirmed the complete absence of exon 5 sequences in the transcript (Fig. 3B, and data 

not shown). The co-amplified 760 bp fragment was not derived from the human PTEN 

mRNA or the pseudogene, but from PTEN mRNA of mouse cells present in the 

transplanted tumor (data not shown). 
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Figure 3. PTEN mRNA expression in prostate cancer cell lines and xenografts. (A) Agarose gel 

analysis of a 620 bp RT-PCR amplified fragment. Primers used are located in exons 8 and 9, and are 

specific for human PTEN. (B) PTEN RT-PCR analysis of PC295 RNA. Primers used are located in exons 1 

and 7. PC310 RNA was used as a control. Primers detect both human and mouse PTEN mRNA. 

 

Structural Analysis of the PTEN Gene.  

 From PTEN positive DNAs, all nine exons were analyzed for mutations by PCR-

SSCP. Aberrant SSCP bands were sequenced. In four DNA samples, PTEN mutations 

were unambiguously established (PC82, PC346, PC374 and LNCaP). The exon 1, 

codon 6 AAA to A frame-shift mutation in LNCaP has been described previously (Li et al. 

1997; Steck et al. 1997). The other three mutations are depicted in Fig. 4. PC82 PTEN 

contained a CAA to TAA nonsense mutation at codon 87; PC346 a CGA130TGA 

nonsense mutation, and PC374 a TAT76T frame-shift, directly resulting in a TGA stop 

codon at position 76. All mutations will lead to the synthesis of a truncated protein, 

lacking the phosphatase domain. In none of the sequenced samples the corresponding 

wild type sequence was detected, confirming that the second PTEN allele was deleted. 

Both LNCaP and TSU PTEN were found to contain GGT(Gly) instead of GGC(Gly) at 

codon 44. This presumed rare polymorphism could not be detected in 34 control DNAs 

from healthy individuals (data not shown). The previously described ATG134TTG 

missense mutation in DU145 PTEN could not be confirmed (Li et al. 1997).  
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Figure 4. Sequence analysis of PTEN mutations in prostate cancer xenografts. In PC82 and 

PC346 nonsense mutations were detected; PC374 shows a TA deletion at codon 76, resulting in a TGA 

stop codon. 

 

DISCUSSION 

 

 In this study we describe five homozygous deletions, two frame-shift mutations 

and two nonsense mutations in fifteen prostate cancer cell lines and xenografts. 

Homozygous deletions were established by the complete absence of polymorphic 

markers in the PTEN region and by failure of PTEN exon amplifications. RT-PCR 

showed PTEN expression in all tumors, in which the gene was not deleted. 

 The four tumors containing mutated PTEN (PC82, PC346, PC374 and LNCaP) 

showed one amplified band for all five polymorphic markers at 114 cM, suggesting 

deletion of one chromosome 10 copy at these sites. Absence of wild type PTEN at the 

mutated site confirmed this observation. Complete or almost complete deletion of both 

PTEN copies was detected in five tumor samples. The homozygous deletion in PC3 is 

large [>5cM, Fig. 1; see also (Li et al. 1997)], that in PC295 is probably less than 20 Kbp 

as judged from preliminary data of the lengths of introns 4 and 5.5 In PC133, PC324 and 

PCEW, two or more markers at 114 cM are deleted. Minimal deleted regions in these 

tumors are estimated to be at least 100 Kbp. 

 Five out of six tumors, in which we could not find PTEN homozygous deletions or 

mutations (PC135, PC329, PC339, TSU and DU145), showed apparent allelic losses for 

the markers PTENCA and AFMAa086WG9, which are located within the PTEN gene. 

Three of these DNAs even showed one band for all five markers that map at 114 cM 

(Fig. 1). Although it cannot be completely ruled out, that a small proportion of point 

mutations in PTEN was missed, it is also possible that in these tumors a second PTEN 

deletion or mutation has not occurred, or that a gene different from PTEN is mutated. For 
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tumors with a large deletion, the MXI1 gene at 10q24-25 might be a candidate, as 

suggested previously (Eagle et al. 1995). However, others exclude a major role of MXI1 

in prostate cancer (Gray et al. 1995).  

 Additionally to deletions and mutations, down-regulation of expression by 

promoter methylation, mutation or other processes can be a mechanism of gene 

inactivation. Xenografts and cell lines have the advantage that mRNA expression can 

easily be monitored. The RT-PCR experiments (Fig. 3A) clearly showed that down-

regulation of PTEN expression is not a common mechanism of PTEN inactivation. An 

exception might be PC135, which shows a considerably lower PTEN mRNA level than 

the other samples. Additional experimental evidence must be collected to prove the 

physiological implication of this observation. The processed PTEN pseudogene, which 

most likely is expressed at a low level complicates expression studies. Previously, it has 

mistakenly been described as a mutated PTEN gene in breast cancer (Rhei et al. 1997). 

 Mutations or deletions were found in six out of nine xenografts/cell lines derived 

from metastatic sites and in three out of six, derived from primary tumors, obtained by 

prostatectomy or transurethral resection. Original tumor DNAs were available for PC346 

(primary tumor) and PC374 (metastasis). In both samples the mutations as shown in Fig. 

4 could be confirmed (data not shown), indicating that they were not introduced during 

propagation in nude mice. 

 During the course of our study, PTEN mutations were reported in primary and 

metastatic prostate cancer tissues (Cairns et al. 1997; Teng et al. 1997; Suzuki et al. 

1998b). In the study of Cairns et al. (Cairns et al. 1997), in 3/60 primary cancers and in 

7/20 lymph node metastases mutations or deletions were found. Teng et al. (Teng et al. 

1997) could not detect PTEN mutations in six primary tumors; Suzuki et al. (Suzuki et al. 

1998b) described PTEN abnormalities in twelve of nineteen tumors obtained from 

metastatic sites during autopsy. These numbers might be underestimations, because 

small deletions would have been missed. Like found in the present study, deletions, point 

mutations and frame-shifts were detected. In prostate cancer, PTEN mutations lead, 

almost without exception, to the synthesis of a truncated protein. The CGA130TGA 

nonsense mutation and the TAT76T frame-shift have now been reported in different 

studies in both glioblastomas and prostate cancer, indicating hot spots of mutation 

(Rasheed et al. 1997; Steck et al. 1997; Teng et al. 1997; Wang et al. 1997 and this 

study). 
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 Most frequently, PTEN aberrations were found in DNAs from metastatic disease 

(Cairns et al. 1997; Suzuki et al. 1998b and this study). However, PTEN abnormalities do 

also occur at the primary tumor site (Cairns et al. 1997). Not unexpected, in the cell lines 

and xenografts derived from the primary tumor site, as studied here, the percentage of 

PTEN abnormalities is much higher than that found at the primary tumor site by Cairns et 

al. (Cairns et al. 1997) (3/6 and 3/60, respectively). The difference might be explained by 

a growth advantage of the original xenografted material in case of the absence of 

functional PTEN.  

 Because PTEN is frequently completely absent or severely truncated, 

immunohistochemical staining, utilizing specific antibodies could be applied to address in 

more detail the question whether PTEN is a tumor progression marker. Specific 

antibodies are also additional tools for the detection of the complete spectrum of PTEN 

mutations and deletions in patient samples, including small deletions such as found in 

PC295. Both complete absence and aberrant cellular distribution of the PTEN protein 

can be expected.  

 So far, PTEN is the most widely mutated tumor suppressor gene in prostate 

cancer. Therefore, further elucidation of its function in prostate cancer is of utmost 

importance. 
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ABSTRACT 

 

 Detailed genetic studies are a prerequisite in deciphering the molecular 

mechanisms of tumour cell growth. Xenografts and cell lines are excellent starting 

materials for such studies. We examined 11 xenografts and 4 cell lines derived from 

human prostate cancers for chromosome 10 alterations. Comparative Genomic 

Hybridisation (CGH) revealed a pattern of loss of distal 10p (3/15), gain of proximal 10p 

and proximal 10q (5/15), and loss of distal 10q (6/15). Allelotype analysis confirmed the 

CGH data in all samples, which contained 10p deletions (PC310, PC324 and PC3) and 

in 5 samples with large 10q deletions (PC133, PC295, PC339, PC374, PC3). Previously, 

we identified PTEN inactivation by homozygous deletion or mutation in 9 of the 15 

xenografts and cell lines (Vlietstra et al. 1998). The present study excludes MXI1 and 

DMBT1 on distal 10q, and KLF6 on distal 10p as important tumour suppressor genes in 

prostate cancer. Remarkably, study of the PTEN flanking region by allelotype analysis 

frequently predicted a very small region of allelic loss of 5.8 Mbp or less with or without 

PTEN inactivation. These regions were not detected by CGH. Sizes of homozygous 

deletions around PTEN ranged from approximately 1.2 Mbp (PC133) to less than 30 Kbp 

(PTEN exon 5 in PC295). In both PTEN positive and PTEN negative samples, 16 

genes mapping in the PTEN region, were investigated for deletions and expression 

levels. Loss of 1 or 2 copies of PTEN was almost always accompanied by loss of the 

distal flanking gene FLJ11218 and the proximal flanking genes MINPP1, PAPSS2 and 

FLJ14600. Furthermore, differential expression was detected for FLJ11218 and 

PAPSS2. Four genes were selected for mutation analysis, MINPP1, which like PTEN 

metabolises phospholipids, the sulfatase PAPSS2, the tumour necrosis factor receptor 

TNFRSF6 and FLJ11218. Complete deletion or inactivating mutation of PAPSS2 was 

found in at least 3 samples. MINPP1 was deleted in PCEW, but not mutated in other 

samples. TNFRFS6 structure was normal in all samples. Additional to 4 homozygous 

deletions, 1 missense mutation was detected in FLJ11218. In conclusion, our data 

provide evidence for inactivation of both PTEN alleles as the major genetic defect on 

chromosome 10 in prostate cancer cell lines and xenografts. PTEN haplo-insufficiency is 

observed in 1 or 2 samples. PTEN inactivation is in part of the samples accompanied by 

loss of one MINPP1 allele, loss of one copy, mutation or low expression of PAPSS2 and 

most frequently with mono- or bi-allelic loss, or low expression of FLJ11218. 
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INTRODUCTION 

 

 Prostate cancer is the most frequently diagnosed cancer and the second 

leading cause of male cancer death in Western and Northern Europe, North America 

and Australia (Greenlee et al. 2001). At present, an adequate therapy of metastatic 

prostate cancer is not available. In order to identify novel therapeutic targets, 

knowledge of the major molecular alterations is urgently needed.  

 In prostate cancer, most frequent deletions were found for 6q, 8p, 13q and 16q, 

indicating the localization of tumour suppressor genes on these chromosomal arms 

(Visakorpi et al. 1995; Cher et al. 1996; Nupponen et al. 1998b; Alers et al. 2000). 

Less frequent chromosomal losses were found for 5q, 10q and 17p. The most 

frequently gained chromosome arm was 8q, followed by 7p, 7q and 20q. 

 Loss of 10q is generally considered as a late step in prostate cancer 

progression. Allelic imbalance studies indicated separate regions at 10q22-q26 to be 

affected, suggesting the inactivation of more than one tumour suppressor gene (Gray 

et al. 1995; Ittmann 1996; Komiya et al. 1996; Trybus et al. 1996; Cairns et al. 1997; 

Feilotter et al. 1998; Ittmann 1998; Leube et al. 2002). Loss of 10q is not unique for 

prostate cancer. Frequent loss of distal 10q has also been described in renal cell 

carcinoma (Morita et al. 1991), non-Hodgkin's lymphoma (Speaks et al. 1992), 

glioblastoma (James et al. 1988; Fujimoto et al. 1989), meningioma (Rempel et al. 

1993), malignant melanoma (Reifenberger et al. 2000), small lung cell cancer (Kim et 

al. 1998), bladder cancer (Cappellen et al. 1997), and endometrial carcinoma (Peiffer 

et al. 1995; Nagase et al. 1996).  

 The PTEN gene at 10q23.3, which encodes a lipid and protein phosphatase, is 

the most frequently altered tumour suppressor gene in prostate cancer (Cairns et al. 

1997; Teng et al. 1997; Feilotter et al. 1998; Gray et al. 1998; Vlietstra et al. 1998; Wang 

et al. 1998; McMenamin et al. 1999). Complete PTEN inactivation was detected at 

varying frequency in primary tumours and in up to 60% of metastases, cell lines and 

xenografts. PTEN is even more frequently implicated in glioblastoma (Li et al. 1997; 

Rasheed et al. 1997; Steck et al. 1997; Teng et al. 1997; Wang et al. 1997) and 

endometrial carcinoma (Tashiro et al. 1997), and to a lesser extent in many other 

tumours. Less is known about 10p alterations in prostate cancer. Variable frequencies of 

loss of distal 10p in prostate cancer have been described (Ittmann 1996; Trybus et al. 

1996; Fukuhara et al. 2001; Narla et al. 2001). Additional to PTEN, 10q harbors the 
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candidate tumour suppressor genes MXI1 at 10q25.2 and DMBT1 at 10q26.2 (Eagle et 

al. 1995; Mollenhauer et al. 1997). Recently, mutation of KLF6 on 10p15 in prostate 

cancer has been described (Narla et al. 2001; Chen et al. 2003).  

 Xenografts and cell lines are powerful tools in the search for genetic alterations in 

human cancer. They are available in unlimited quantities and, importantly, they lack 

normal cells of human origin, which simplifies the analysis of chromosomal alterations, 

and structural alterations and expression levels of individual genes. Previously, we 

described frequent PTEN inactivation in prostate cancer xenografts and cell lines 

(Vlietstra et al. 1998). In the present study we analyse the role of chromosome 10 in 

prostate cancer by CGH and allelotype analyses. We present data on the expression 

and structure of the candidate tumour suppressor genes MXI1, DMBT1 and KLF6. In 

addition, we studied the structure, deletion and expression of PTEN flanking genes. 

Furthermore, we address the issue of PTEN haplo-insufficiency in prostate cancer. 

 

MATERIALS AND METHODS 

 

Prostate Cancer derived Cell Lines and Xenografts  

 The in vitro growing cell lines LNCaP, PC-3, DU-145 and TSU were cultured 

under standard conditions. The in vivo xenografts PC82, PCEW, PC133, PC135, PC295, 

PC310, PC324, PC329, PC339, PC346 and PC374 were propagated on male nude 

mice (Hoehn et al. 1980; Hoehn et al. 1984; Van Weerden et al. 1996).  

 

DNA and RNA preparation  

 Genomic DNA from cell lines and xenografts was isolated utilizing the Puregene 

system from Gentra Systems (Minneapolis, MN) according to the procedure described 

by the manufacturer.  

 Cell line RNA was isolated by the guanidium isothiocyanate procedure; xenograft 

RNA was isolated by the LiCl protocol (Sambrook and Russell, 2001). mRNAs from fetal 

brain and normal prostate tissue were purchased from Clontech Labs (Palo Alto, CA). 

 

Comparative Genomic Hybridization  

 CGH was performed essentially as described (Kallioniemi et al. 1992). In brief, 

tumour DNA and normal male reference DNA samples were labeled by nick translation 
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(Nick translation system, Life Technologies, Rockville, MD) with bio-dUTP (Roche 

Diagnostics, Almere, The Netherlands) and digoxigenin (Roche Diagnostics), 

respectively. Labelled DNA samples (200 ng each) and 15µg COT-1 DNA was ethanol-

precipitated and dissolved in 10 µl hybridisation mix (50% formamid, 0.1% Tween-20, 

and 10% dextran sulfate in 2xSSC at pH7.0). The probe mixture was denatured (10 min, 

72oC), pre-hybridised (30 min, 37oC) and hybridized to normal male chromosome 

spreads (72 h, 37oC). Next, slides were washed, and fluorescent detection of the biotin- 

and dioxigenin-labelled DNA probes was by fluorescein isothiocyanate (FITC)-

conjugated avidin (Vector Labs, Burlingame, CA) and anti-digoxigenin-rhodamine 

(Roche Diagnostics) staining, respectively. Chromosomes were DAPI counterstained 

(4’6’-diamidino-2-phenylindole) (Sigma, St. Louis, MO) in Vectashield anti-fade solution 

(Vector Labs).  

 Images were acquired with an epifluorescent microscope equipped with a cooled 

CCD camera (Photometrics Inc., Tuscon, AZ), a triple-band pass beam splitter emission 

filters (P-1 filter set, Chroma Technology, Brattleboro, VT), and a Quips XL image 

analysis system (version 3.1 Vysis Inc., Downers Grove, IL). Chromosomal regions were 

scored as lost if the mean green to red ratio was below 0.85 and gained if this ratio was 

above 1.15. Eight or more metaphases were analysed per sample. 

 

PCR and PCR-SSCP 

 Standard PCR amplifications utilizing Taq polymerase (Promega, Madison, WI) 

included 35 cycles of 1 min at 95oC, 1 min at 50oC or 55oC, and 1 min at 72oC. For 

allelotyping and PCR-SSCP, 1 µCi [alpha-32P]dATP (Amersham, Buckinghamshire, UK) 

was added to a 15 µl reaction mix. Amplified, radio-labelled polymorphic microsatellite 

markers were separated on a sequence gel. SSCPs of radio-labeled gene specific PCR 

products were analysed on a 6% non-denaturing polyacrylamide gel containing 10% 

glycerol. Gels were run at 7W overnight at room temperature. For detection of 

homozygous deletions, PCR amplifications were performed in a 50 µl reaction volume. 

Amplified fragments were separated on a 2% agarose gel. 
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Allelotype analysis and screening for homozygous deletions 

 Polymorphic microsatellite markers applied for allelotype analysis and 

screening for homozygous deletions at 10p were: D10S602, D10S1745, CA237H5A, 

CA237H5B, D10S591, D10S1729, D10S189, D10S547, D10S191, D10S595, 

D10S197, D10S193), and at 10q: D10S220, D10S581, D10S537, D10S1688, 

D10S1730, D10S1686, D10S1687, CA163M19, D10S579, D10S215, D10S1765, 

AFMa086WG9, D10S541, CA13J3, CA80H5, D10S1753, D10S583, D10S1680, 

D10S1726, D10S192, D10S187, D10S209, D10S217. PCR primer sequences can be 

found in Genome Database (http://gdbwww.gdb.org/). Other primer sets are: 

CA237H5A: gcagagcagccttcagtaat and cacttggcaaactacagtgc; CA237H5B: 

caagagcatgagtcccattg and gaaccaatcagtcaccaagc; CA163M19: gttttgcccagttgaagtca 

and tccttccccaactattctatc; CA13J3: gattagcacaacactgggtag and accctctggggaagtactat; 

CA80H5: accagattggatgtgcatgc and caaccagcagtatctgtcac. Positions of markers on 

chromosome 10 were derived from the April 2003 freeze of the UCSC human genome 

map (http://genome. ucsc.edu). 

 Primer sets utilized in screening for homozygous deletions of KLF6, MINPP1, 

PAPSS2, FLJ14600, FLJ11218, LIPF, DKFZp761K1824, ACTA2, TNFRSF6, CH25H, 

LIPA, IFIT2, IFIT4, IFIT1, RI58, PANK, MPHOSPH1 and MXI1 are available upon 

request.  

 The 74K, 36K, G14Ext, G14 and 60K primer sets for detection of homozygous 

deletions in DMBT1 by PCR on genomic DNA are published previously (Mollenhauer et 

al. 1997). For more detailed analysis of the homozygous deletion in DMBT1 by PCR-

SSCP the primers DMBTME39-F (5’-ACTTCAGAGGTAGGAGGGT-3’) and 

DMBTME39-R (AGGTAGAGAGTGAGCCCTAG-3’) were utilized. 

 

mRNA expression  

 Analysis of mRNA expression was performed by semi-quantitative RT-PCR. 

cDNA was synthesized on 1 µg RNA template utilizing 200 U M-MuLV-RT (Life 

Technologies) and a T12-site primer (5-GCATGCGAATTCGGATCCT12-3) in a buffer, 

containing 10 mM DTT, 1 mM dNTPs, and 40 U RNAsin (Promega) for 1 h at 37°C. RNA 

polymerase II was utilized as a control. Specific cDNA fragments were amplified by 

standard PCR. Gene specific RT-PCR primers are available upon request. 
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Structures of candidate tumour suppressor genes and PTEN flanking genes  

 For PCR-SSCP analysis, fragments of appropriate sizes were amplified of all 

exons of MINPP1, PAPSS2, TNFRSF6, FLJ11218, MXI1 and KLF6. Primer sequences 

are available upon request. Selected amplified fragments were purified over QIAquick 

spin columns (Qiagen, Hilden, Germany), cloned into pGEM-T Easy (Promega), and 

sequenced according to the dideoxy chain termination method (Sambrook and 

Russell, 2001).  

 

RESULTS 

 

 Alterations of chromosome 10 are among the most frequent chromosomal 

changes in prostate cancer as determined by allelotype analysis (Gray et al. 1995; 

Komiya et al. 1996; Trybus et al. 1996; Ittmann 1998; Leube et al. 2002). However, 

this is not the case for several CGH studies (Nupponen et al. 1998b; Alers et al. 2000). 

To increase our insight into the role of chromosome 10 in prostate cancer, we studied 

overall chromosome 10 alterations in prostate cancer xenografts and cell lines by both 

CGH and allelotype analysis. 

 

Comparative Genomic Hybridisation  

 Eight out of 15 xenografts and cell lines showed gain or loss of specific parts of 

chromosome 10 by CGH (Figure 1). Deletion of the distal region of 10p was found in 

PC310 (p13-pter), PC324 (p14-pter) and PC3 (p13-pter). Small changes at the 

telomeres were not taken into account, because of limited reliability. The majority of 

amplifications were found around the centromere: PC135 (q11.2-q22), PC324 (p11.2-

p12 and q21-q24), PC339 (p11.2-p14), PC374 (p12-q21) and PC3 (p11.2-q22). Losses 

of distal 10q were most frequent. They were present in PC133 (q22-qter), PC135 (q23-

qter), PC295 (q21-q23), PC339 (q23-qter), PC374 (q22-q25) and PC3 (q23-qter). In 

PCEW, PC82, PC329, PC346, LNCaP, TSU and DU145 no clear chromosome 10 

alterations were detected by CGH. Summarizing, chromosome 10 was found to be 

frequently altered in prostate cancer xenografts and cell lines with a characteristic pattern 

of loss of distal 10p, gain of proximal 10p and proximal 10q, and loss of distal 10q. 
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Figure 1. Chromosome 10 alterations identified by comparative genomic hybridisation in prostate 

cancer xenografts and cell lines. A bar to the right of a chromosome ideogram indicates gain, a bar to the 

left indicates loss of the chromosomal region. 

 

Allelotype analysis of chromosome 10 

 To obtain more detailed information on chromosome 10 alterations, the 15 

genomic DNAs were screened for 35 polymorphic microsatellite markers along both 

chromosomal arms. A high marker density was chosen in a small region around the 

PTEN locus, which maps at 89.8 Mbp from the top of the p-arm, and around KLF6 at 3.9 

Mbp. The results are summarized in Figure 2. The previously published PTEN 

alterations are indicated at the bottom of Figure 2 (see also Vlietstra et al. 1998). 

Positions of markers were taken from the UCSC genome browser.  

 Because matching normal DNA samples were not available for comparison, 5 

consecutive mono-allelic bands of highly polymorphic markers was taken as indicative 

for loss of one copy of the corresponding chromosomal region. According to this 
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definition, complete loss of one copy of 10p was found for TSU. Loss of distal 10p, 

including KLF6, was detected in PC310, PC324 and PC3. Large regions of apparent loss 

at 10q were present in PC133, PC295, PC339, PC374 and PC3. A remarkable large 

number of small regions of loss of 10q23.3 were detected in samples with or without 

complete PTEN inactivation (PCEW, PC82, PC135, PC324, PC346, LNCaP and 

DU145). Homozygous deletions and mutation of PTEN were found both in small and 

large regions of allelic loss (PCEW, PC82, PC324, PC346 and LNCaP, and PC133, 

PC295, PC374 and PC3, respectively; see Figure 2). In PC346, PC374, LNCaP and 

DU145, several polymorphic markers showed microsatellite instability (MSI), which 

limited the accuracy of allelotype analysis. Gains, which might be scored by allelic 

imbalance, were not taken into account. 

 

Comparison of comparative genomic hybridisation and allelotype analysis 

 In general, large 10q deletions, as detected by CGH matched with allelotyping 

experiments. However, in contrast to allelotype analysis, CGH showed amplification of 

proximal 10q and deletion of distal 10q in PC135. CGH did not clearly detect loss of 

proximal 10q in PC339. The TSU cell line showed complete loss of one copy of 

chromosome 10 by allelotype studies and no loss by CGH. The large number of small 

mono-allelic regions or homozygous deletion of the PTEN locus explains the limited 

accuracy of CGH of 10q.    
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CA237H5A - 10p15.1 3.9 1 2 1 1 2 1 1 1 2 2 1 1 2 1 2
CA237H5B - 10p15.1 4.0 2 2 1 2 2 1 1 2 2 1 MSI 1 MSI 1 MSI
D10S591 71 10p15.1 4.5 1 1 2 1 2 1 1 2 2 1 2 1 MSI 1 1
D10S1729 72 10p15.1 4.9 2 2 1 1 2 1 1 2 1 2 MSI 1 2 1 MSI
D10S189 73 10p14 6.9 2 1 1 2 1 1 1 2 1 2 2 1 2 1 1
D10S547 74 10p14 10.7 1 1 2 2 1 1 2 2 2 2 2 1 2 1 1
D10S191 81 10p13 14.7 1 1 1 2 2 1 2 2 2 2 MSI 1 MSI 1 MSI
D10S595 85 10p12.31 20.8 2 2 2 2 2 2 2 2 2 2 2 1 MSI 1 MSI
D10S197 75 10p12.1 26.7 1 2 2 2 2 2 2 1 2 MSI MSI 1 2 1 MSI
D10S193 81 10p11.23 30.7 2 1 2 2 2 2 2 2 1 2 2 1 2 1 MSI
D10S220 84 10q11.23 52.2 1 2 1 1 2 2 1 2 1 2 2 2 1 1 MSI
D10S581 80 10q21.3 65.7 2 1 1 1 2 1 1 1 1 1 2 1 2 1 MSI
D10S537 83 10q22.1 72.3 2 2 1 1 1 2 2 2 1 MSI 1 1 MSI 1 MSI
D10S1688 86 10q22.1 72.5 1 1 2 1 1 1 2 2 1 2 1 1 MSI 1 1
D10S1730 83 10q22.3 78.8 1 2 2 1 1 2 1 1 1 MSI MSI 1 2 1 MSI
D10S1686 86 10q23.1 85.7 2 2 1 2 1 2 2 2 1 2 MSI 1 2 1 MSI
D10S1687 81 10q23.2 88.8 2 2 1 2 1 2 2 2 2 2 1 1 1 1 2
CA163M19 - 10q23.2 89.1 1 2 1 2 1 2 2 2 2 1 1 1 1 1 MSI
D10S579 59 10q23.31 89.5 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1
D10S215 81 10q23.31 89.6 0 1 1 1 1 2 1 2 2 1 1 1 1 1 1
D10S1765 83 10q23.31 89.7 0 1 0 1 1 2 1 2 2 1 1 1 1 1 1
AFMa086WG9 - 10q23.31 89.8 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1
D10S541 78 10q23.31 90.1 0 1 0 1 1 2 0 2 1 1 1 0 1 1 1
CA13J3 - 10q23.31 90.5 2 2 0 1 1 1 1 2 1 2 1 1 MSI 1 1
CA80H5 - 10q23.31 91.5 2 1 1 2 1 2 2 1 1 2 2 1 2 1 2
D10S1753 74 10q23.31 92.5 1 2 1 1 1 2 2 1 1 2 1 1 1 1 1
D10S583 84 10q23.33 94.5 1 2 1 2 1 2 1 1 1 2 1 1 1 1 1
D10S1680 82 10q23.33 95.7 2 2 1 1 2 2 1 2 1 MSI 1 1 1 1 MSI
D10S1726 76 10q24.2 100.8 2 1 1 2 2 2 1 1 1 MSI MSI 1 MSI 1 MSI
D10S192 78 10q24.31102.6 2 2 1 2 1 2 2 2 1 MSI 1 1 1 1 MSI
D10S187 84 10q25.3 118.8 2 2 1 1 2 2 2 2 1 2 MSI 1 MSI 1 MSI
D10S209 74 10q26.12122.4 2 2 1 1 2 2 1 2 1 2 1 1 2 1 MSI
D10S217 81 10q26.2 129.5 1 2 1 1 2 2 2 2 1 MSI MSI 1 2 1 MSI
* April 2003 freeze Genome Browser UCSC

PTEN

PTEN 10q23.31 89.8 - - - + - + - + + - - - - + +  

 

Figure 2. Chromosome 10 alterations identified by allelotype analysis in prostate cancer xenografts 

and cell lines. If two bands of different length were detected, two allelic forms were retained in the DNA. 

One band indicates the presence of one allele or two alleles of identical length. One and two allelic forms 

are represented by “1” and “2”, respectively. The homozygous deletions in PCEW, PC133, PC295, PC324, 

and PC-3 are represented by “0”. The status of the PTEN gene is shown at the bottom of the figure. (+) 

indicates wild-type PTEN; (-) indicates inactivated PTEN. 
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Analysis of candidate tumour suppressor genes  

 Chromosomal studies (see Figures 1 and 2; Ittmann 1996; Komiya et al. 1996; 

Trybus et al. 1996; Leube et al. 2002) indicated that PTEN might not be the only tumour 

suppressor gene on chromosome 10. Distal to PTEN the candidate tumour suppressor 

genes MXI1 (10q25.2) and DMBT1 (10q26.2) have been mapped (Edelhoff et al. 1994; 

Shapiro et al. 1994; Mollenhauer et al. 1997). MXI1 antagonizes MYC in modulation of 

gene expression and tumorigenesis (Lahoz et al. 1994). DMBT1 easily recombines in 

cancer cells and might play a role in immune defense and epithelial cell differentiation 

(Mollenhauer et al. 1997; Mollenhauer et al. 2000). We examined the expression and 

structure of both genes in the 15 prostate cancer cell lines and xenografts. No 

homozygous deletions of MXI1 were detected, and MXI1 mRNA was present in all RNA 

samples (data not shown). Structural analysis revealed polymorphisms, but no somatic 

mutations in the MXI1 gene. One polymorphism was in the open reading frame (GGC-

GGT, G23G), all others were in intron sequences. In the DMBT1 gene, an intragenic 

homozygous deletion of the markers G14EXT and G14 was found in PC135 (Figure 3A). 

This homozygous deletion was further examined by PCR-SSCP, utilizing a primer set, 

which amplified the repeat units in DMBT1 (Figure 3B; Mollenhauer et al. 1999). 

Sequencing of the amplified fragments combined with the presence of marker 36K 

(Figure 3A) indicated that the maximum size of the homozygous deletion in DMBT1 is 

between exons 16 and 27 (Figure 3C). No deletions were detected in the other 14 DNA 

samples. Semi-quantitative RT-PCR indicated low expression of DMBT1 in PC82 and 

PCEW (data not shown). 

 Recently, inactivating mutations in KLF6 on 10p15 has been described in prostate 

cancer (Narla et al. 2001; Chen et al. 2003). However, examination of KLF6 in the 15 

xenografts and cell lines revealed clear expression and absence of homozygous 

deletions or inactivating mutations (data not shown).  
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Figure 3. Characterization of the homozygous deletion in DMBT1 in PC135. (A) Agarose gel 

analysis of the indicated amplified DMBT1 genomic fragments. (B) PCR-SSCP of the repeat units of 

DMBT1 in prostate cancer xenografts and cell lines. (C) Schematic representation of the deleted segment 

in DMBT1. 

 

Loss of the PTEN flanking region at 10q23.3 

 In mouse prostate cancer models not only complete PTEN inactivation, but also 

PTEN haplo-insufficiency has been implicated in tumorigenisis (Di Cristofano et al. 2001; 

Kwabi-Addo et al. 2001; Kim et al. 2002b; You et al. 2002). The role of PTEN haplo-

insufficiency in human prostate cancer is not well defined. Investigation of the PTEN 

locus (Figure 2), compared with PTEN inactivation data (Figure 2, bottom; Vlietstra et al. 

1998) learned that the xenografts PC310 and PC329 contain two wild-type PTEN alleles. 

In 9 DNA samples both PTEN alleles were inactivated by homozygous deletion (PCEW, 

PC133, PC295, PC324 and PC3) or deletion of one allele combined with a point 

mutation (PC82, PC346, PC374 and LNCaP). Loss of 1 copy of PTEN might have 

occurred in PC135, PC339 and DU145 (Figure 2). TSU was not taken into account, 
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because all chromosome 10 markers showed 1 allelic form. More detailed studies also 

excluded PC339 (see below). So, PTEN haplo-insufficiency might be present in 2 out of 

15 xenograft and cell line DNAs. 

 Flanking genes might be complementary or independent candidate genes 

involved in prostate cancer. We searched 16 genes flanking PTEN for homozygous 

deletions, and the borders of small regions of allelic loss or homozygous deletion were 

accurately mapped. The order of genes and candidate genes was taken from the UCSC 

genome browser (see also Figure 5A). Figure 4 illustrates the genes at 10q23.3, which 

were completely deleted in the xenografts and cell lines, as determined by PCR. The first 

distal PTEN flanking gene, FLJ11218, was completely or partially deleted in all samples 

with PTEN deletion, except for PC295. MINPP1, PAPSS2, FLJ14600 and LIPF were 

deleted in part of the samples. None of the DNAs without complete deletion of PTEN 

contained a homozygous deletion of one or more of 16 flanking genes (data not shown; 

see for genes investigated Materials and methods and Figure 5A).  
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Figure 4. Genes inactivated by homozygous deletion in the prostate cancer xenografts PCEW, 

PC133, PC295 and PC324 and the cell line PC3. The figure indicates agarose gel electrophoresis of 

amplified exons of the indicated genes. The positions of the genes on chromosome 10 in Mbp from the top 

are indicated at the right.  
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 Figure 5 summarizes the calculations of the lengths of homozygous deletions and 

mono-allelic regions in the PTEN region. These calculations not only took into account 

the outcome of microsatellite repeat analyses, but also single nucleotide polymorphisms 

in MINPP1, PAPSS2, FLJ11218 and TNFRSF6 genes (see Materials and Methods). The 

homozygous deletions in PCEW, PC133, PC295, PC324 and PC3 ranged in size from 

more than 1.2 Mbp (PC133) to less than 30 Kbp (PC295) (Figure 5B, see also Figures 2 

and 4). In both PC324 and PCEW, the telomeric border of the deletion is in intron 5 of 

FLJ11218. In PCEW, the deletions in both copies of 10q are small and almost identical in 

lengths. In PC324, the mono-allelic region around PTEN is less than 2 Mbp. The mono-

allelic regions in PC82 and PC346, which both contain a PTEN point mutation, and in 

DU145 and PC135, which do not show structural alterations of PTEN , are also small 

(Figures 2 and 5C,D). So, in many samples small mono-allelic regions around the PTEN 

locus could be precisely determined. All samples had in common that they lost one or 

two copies of PTEN. Most DNAs lost one or two copies of FLJ11218 and one copy of 

MINPP1, PAPSS2 and FLJ14600. Most likely, PC339 is an exception, because the 

mono-allelic region starts in FLJ11218, distal from PTEN.  
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Figure 5. Schematic representation of the homozygous deletions and mono-allelic regions flanking 

the PTEN locus in prostate cancer xenografts and cell lines. (A) Genes flanking PTEN. Data are from the 

April 2003 freeze UCSC gene map. (B) Homozygous deletions (open bars) and mono-allelic regions (gray 

bar) in PC295, PC324, PCEW, PC133 and PC3. Grey blocks indicate unknown border (C) Mono-allelic 

regions (gray bars) in PC82, PC346, PC374 and LNCaP. A cross indicates PTEN inactivation by point 

mutation. (D) Mono-allelic regions in PC135, DU145, PC339 and TSU, which lack complete PTEN 

inactivation. 
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Expression and structure of genes flanking the PTEN locus 

 To investigate further a possible contribution of PTEN flanking genes in prostate 

cancer, the expression patterns of 14 genes in 3 Mbp flanking the PTEN  locus, bordered 

by the polymorphic markers D10S1687 and D10S1753 (see Figure 5A) were analysed 

by semi quantitative RT-PCR The results are summarized in Table I. Two 1 exon genes, 

DKFZp761K184 and CH25H were omitted. MINPP1, PAPSS2 and FLJ11218 

expressions are shown as examples in Figure 6. A mixed pattern of expression profiles 

was found. Obviously, in all examples except for PTEN in PC295, homozygous 

deletion of a gene correlated with absence of expression. In the semi-quantitative RT-

PCR no clear-cut correlation was found between the copy number and expression 

level of a gene, indicating gene-copy independent regulatory mechanisms to be more 

important. The stomach-specific gene LIPF was hardly expressed in the prostate 

tumour cells. Most other genes showed a rather stable expression level. Potentially 

interesting variable expression patterns were seen for PAPSS2, FLJ11218, and the 

interferon-regulated gene family IFIT1, 2, 4, RI58. High expression of the latter gene 

family almost perfectly correlated with androgen independence of a xenograft or cell 

line (PC82 is the exception; see Table I). PAPSS2 not only showed absence of 

expression due to homozygous deletion of the gene (PCEW), but expression was also 

undetectable or very low in PC133, PC324, PC329 and LNCaP. FLJ11218 expression 

was not only absent in the 4 samples, where the gene was completely deleted, but 

also absent or very low in PC135, PC346, LNCaP and TSU. 
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Figure 6. Expression of MINPP1, PAPSS2 and FLJ11218 mRNA in prostate cancer xenografts and 

cell lines. Expression was monitored by agarose gel electrophoresis of semi-quantitative RT-PCR products, 

indicated by “+” or “-“ reverse transcriptase. RNA pol II was used as a control.  

 

 

PCEW PC82 PC133 PC135 PC295 PC310 PC324 PC329 PC339 PC346 PC374 PC3 LNCaP TSU DU145

mRNA

MINPP1 - +++ +++ +++ ++ +++ +++ +++ +++ +++ +++ +++ ++ +++ +++
PAPSS2 - +++ +/-- +++ +++ +++ - +/- +++ + ++ ++ +/-- +++ +++
FLJ14600 - +++ + +++ +++ +++ +++ +++ ++ +++ +++ +++ +++ +++ +++
PTEN - +++ - + +++ +++ - +++ ++ +++ +++ - +++ ++ +++
FLJ11218 - +++ - - +++ ++ - + ++ - + - +/-- - ++
LIPF +/- + - - + - - - - - +/- - - - -
ACTA2 ++ ++ - ++ ++ ++ ++ ++ ++ - ++ ++ ++ ++ ++
TNFRSF6 +++ +++ +++ +++ +++ +++ +++ +++ +++ + +++ +++ +++ +++ +++
LIPA +++ +++ +++ +++ +++ +++ +++ +++ +++ +/- +++ +++ +++ +++ +++
IFIT2 +/- + + ++ +/- + +++ +/- + +/- +++ +++ +/- + ++
IFIT4 - ++ ++ ++ - +/- +++ +/- ++ - ++ +++ - + +++
IFIT1 - ++ ++ +++ - + +++ - +++ +/- +++ +++ +/- +++ +++
RI58 - ++ ++ ++ - + +++ - ++ - ++ +++ + ++ ++
PANK ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
MPHOSPH1 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++

Xenografts Cell lines

dependent + + - - + + + + ++/-- - - - -
Androgen

PCEW PC82 PC133 PC135 PC295 PC310 PC324 PC329 PC339 PC346 PC374 PC3 LNCaP TSU DU145

mRNA

MINPP1 - +++ +++ +++ ++ +++ +++ +++ +++ +++ +++ +++ ++ +++ +++
PAPSS2 - +++ +/-- +++ +++ +++ - +/- +++ + ++ ++ +/-- +++ +++
FLJ14600 - +++ + +++ +++ +++ +++ +++ ++ +++ +++ +++ +++ +++ +++
PTEN - +++ - + +++ +++ - +++ ++ +++ +++ - +++ ++ +++
FLJ11218 - +++ - - +++ ++ - + ++ - + - +/-- - ++
LIPF +/- + - - + - - - - - +/- - - - -
ACTA2 ++ ++ - ++ ++ ++ ++ ++ ++ - ++ ++ ++ ++ ++
TNFRSF6 +++ +++ +++ +++ +++ +++ +++ +++ +++ + +++ +++ +++ +++ +++
LIPA +++ +++ +++ +++ +++ +++ +++ +++ +++ +/- +++ +++ +++ +++ +++
IFIT2 +/- + + ++ +/- + +++ +/- + +/- +++ +++ +/- + ++
IFIT4 - ++ ++ ++ - +/- +++ +/- ++ - ++ +++ - + +++
IFIT1 - ++ ++ +++ - + +++ - +++ +/- +++ +++ +/- +++ +++
RI58 - ++ ++ ++ - + +++ - ++ - ++ +++ + ++ ++
PANK ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++
MPHOSPH1 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++

Xenografts Cell lines

dependent + + - - + + + + ++/-- - - - -
Androgen

Table I

Expression of the PTEN flanking genes in prostate cancer xenografts and cell lines
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 Four flanking genes, which were selected on the basis of frequent deletion and 

low expression (FLJ11218) or function, the phospholipid phosphatase MINPP, the 

sulfatase PAPSS2 and the tumour necrosis factor receptor TNFRSF6, were searched 

for point mutations. In MINPP1 and TNFRSF6, polymorphisms, but no somatic 

mutations were detected. In PAPSS2 a polymorphism, which is presumed to decrease 

its function (Met295 in PC133; see Xu et al. 2002b), one frame-shift (deletion C in 

codon 355 in LNCaP) and a missense mutation [GTG to ATG (V45M) in PC346] were 

found. In FLJ11218 we frequently observed the polymorphism GAG/GAC (E37D) in 

exon 1, and polymorphisms in introns 4 and 6. In addition, we detected in PC374 the 

missense mutation ATT to AGT (N232S) in exon 5. 

 Summarizing, inactivation of PTEN always paralleled low expression or 

inactivation of 1 or 2 copies of the telomeric flanking gene FLJ11218. Less frequent 

alterations in PAPSS2 copy number, structure or expression were detected. In 

approximately half of the DNAs one copy of MINPP1 was lost. 

 

DISCUSSION 

 

In this study, we describe the genetic characterization of chromosome 10 in 

xenografts and cell lines derived from human prostate cancer. Although it can be 

argued that xenografts and cell lines acquire extra genetic alterations during in vivo 

and in vitro culturing, it is our experience (Vlietstra et al. 1998; Trapman, unpublished 

data), that as far as we were able to check for xenografts, most genetic alterations are 

already present in the tumour tissue from which they are derived. We choose for 

xenogafts and cell lines because they lack normal human cells, which enabled 

accurate study of homozygous deletions, regions of allelic loss and gene expression.  

First, overall chromosome 10 losses and gains were investigated by CGH. Our 

findings indicated a pattern of loss of distal 10p, gain of proximal 10p and 10q and loss 

of distal 10q. Previous CGH studies of DNA from prostate cancer patients showed a 

similar pattern, although at a lower frequency and less clear (Cher et al. 1996; 

Nupponen et al. 1998b; Alers et al. 2000). Like in this study, in previous studies loss of 

distal 10q was the most frequent chromosome 10 alteration. Absence of chromosome 

10 alterations in LNCaP and TSU, and the loss-gain-loss pattern in PC3 were in 

accordance with previous CGHs (Nupponen et al. 1998a). In PC3, chromosome 10 
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seems to be involved in several translocations (Pan et al. 1999). A frequently detected 

breakpoint in PC3 and other prostate cancer cell lines maps at band 10q22 (Pan et al. 

2001). A similar breakpoint at 10q22, combined with amplification of centomeric 10q 

and loss of telomeric 10q might be present in xenograft PC135. A recent CGH study 

on a different panel of xenografts provided an overall picture as shown here, loss of 

distal 10p and distal 10q and gain of the middle part of chromosome 10 (Laitinen et al. 

2002).    

Allelotype analysis confirmed loss of distal 10p in PC310, PC324 and PC3. We 

did not find alterations in KLF6 at 10p15, as previously reported (Narla et al. 2001; 

Chen et al. 2003). Although it can be argued that the number of samples studied is 

small, we favour the hypothesis that the most frequently affected tumour suppressor 

gene on 10p remains to be detected. 

CGH data did not match allelotype data for 10p and 10q in TSU. No 

chromosome copy change was seen in CGH, but allelotype analysis showed one 

allelic form for all markers. This is strong evidence for chromosome 10 isodisomy in 

this cell line. A similar observation has been made for chromosomes 6 and 8 

(Verhagen et al. 2002; Van Alewijk, unpublished), suggesting defective chromosome 

segregation in TSU. 

CGH data for 10q are less informative than allelotype studies. Although in some 

DNAs hampered by microsatellite instability, allelotype analysis was more informative, 

due to the occurrence of many small regions of chromosomal loss at the PTEN locus. 

Six small deletions were not detected by CGH. It can be assumed that CGH of 

prostate cancer tissues also frequently misses loss of PTEN alleles, underestimating 

complete inactivation or haplo-insufficiency of PTEN in patients.   

 Allelotype analysis of 10q23.3 in tumours from patients frequently showed a 

higher percentage of allelic loss at the PTEN locus than PTEN alterations (Feilotter et 

al. 1998; Pesche et al. 1998). There might be several explanations for this 

discrepancy. First of all, complete inactivation of PTEN by point mutation or 

homozygous deletion might have been missed, because many studies were 

incomplete. Secondly, it has long been thought that in these samples not PTEN, but a 

more distal gene was inactivated. Although this cannot be excluded completely, our 

present study supports the assumption that this is not the case. We could not detect 

alterations in MXI1, a gene at 10q25.2, previously implicated at low frequency in 

prostate cancer (Eagle et al. 1995; Prochownik et al. 1998). Neither did we detect at 
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high frequency deletions in the unstable DMBT1 gene, which has been described as a 

candidate tumour suppressor gene in several other tumour types (Mollenhauer et al. 

1999). We also could not find complete inactivation of one of the PTEN flanking genes 

in the absence of PTEN alteration. Therefore, an attractive alternative is PTEN haplo-

insufficiency as the underlying genetic defect on 10q in early stage prostate cancer. 

PTEN haplo-insufficiency seems to be present in only 1 xenograft (PC135) and 1 cell 

line (DU145), which represent late stage prostate cancer. Careful examination of DNA 

from micro-dissected prostate cancer samples with a variety of experimental 

approaches should be carried out to address this important question. Complementary 

to mutation analysis, array CGH on a distal 10q tilted BAC contig should provide this 

important information. In favour of an important role of PTEN haplo-insufficiency in 

human prostate cancer are mouse model studies. In 4 prostate cancer models based 

on prostate specific SV40-Tag expression (TRAMP model), inactivation of Ink4a/Arf, 

Cdkn1b or Nkx3.1 Pten haplo-insufficiency contributed to tumorigenesis (Di Cristofano 

et al. 2001; Kwabi-Addo et al. 2001; Kim et al. 2002b; You et al. 2002). 

Although we could not find evidence for a PTEN independent role of flanking 

genes in tumourigenesis, a complementary role cannot be excluded. Two 

observations are important in this regard: the high frequency of PTEN inactivation by 

homozygous deletion, and the remarkable large number of small mono-allelic regions 

that accompany PTEN inactivation. The latter observation limits the candidate genes 

to those directly flanking PTEN. We did not study in detail FLJ14600, because it is 

clearly expressed in all xenografts and cell lines except PCEW and PC133. MINPP1 

would have been an interesting candidate, because like PTEN it is able to affect 

phospholipid metabolism. However, the specificity of MINPP1 seems different from 

PTEN, and MINPP1 is, with the exception of PCEW only affected by loss of one gene 

copy in part of the samples. The sulfatase gene PAPSS2 is more frequently affected 

by loss of one copy of the gene. In addition, PAPPS2 is not expressed or expressed at 

a low level in several xenografts and cell lines. Interestingly, also 2 presumed 

inactivating mutations were detected, although both are in samples (PC133 and 

LNCaP), which already show a low level of PAPSS2 expression. Arguing against a 

role of PAPSS2 deficiency in prostate cancer is the expression of the related gene 

PAPSS1 in all cell lines and xenografts (data not shown). The strongest candidate to 

complement PTEN in tumourigenesis is the candidate gene FLJ11218. It is inactivated 
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by homozygous deletion in 4 DNAs, and loss of 1 copy or low expression is found in 

many other samples (Figures 5 and 6). Unfortunately, so far the function of FLJ11218 

is unknown. Elucidation of this function, combined with study of deletion and 

expression of the gene in prostate cancer tissues should be carried out to substantiate 

the hypothesis. 
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ABSTRACT 

 

 One of the most frequent genetic abnormalities in prostate cancer is loss of 

the complete, or part of the short arm of chromosome 8, indicating the localization of 

one or more tumor suppressor genes on this chromosomal arm. Using allelotyping, a 

frequently deleted region in prostate cancer in a genetic interval of approximately 

17cM between sequence tagged sites D8S87 and D8S133 at chromosome 8p12-21 

was previously detected. A detailed physical map of this region is now available. Using 

known and novel polymorphic and nonpolymorphic sequence tagged sites in this 

interval, a search for homozygous deletions in DNAs from fourteen prostate cancer 

derived cell lines and xenografts was carried out. In DNA from xenograft PC133, the 

presence of a small homozygously deleted region of 730-1320 Kb was unambiguously 

established. At one site, the deletion disrupts the Werner syndrome gene. Data from 

allelotyping were confirmed and extended by fluorescence in situ hybridization 

analysis of PC133 chromosome spreads using centromere, YAC, and PAC 

chromosome 8 probes. 
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INTRODUCTION 

 

 Prostate cancer is the most frequently diagnosed cancer in men in Western 

countries, and the second leading cause of male cancer death (Parker et al. 1997). 

Frequent chromosomal abnormalities in sporadic prostate cancers are deletions of 

chromosome arms 8p, 10q, and 16q (Carter et al. 1990; Bergerheim et al. 1991; 

Kunimi et al. 1991), which indicate the localization of tumor suppressor genes (TSGs) 

at these regions. So far, only the TSG at 10q (PTEN / MMAC1) has been identified 

(Cairns et al. 1997; Vlietstra et al. 1998). 

 Fluorescence in situ hybridization (FISH) analysis with chromosome specific 

probes and comparative genomic hybridization (CGH) studies have confirmed and 

extended the previous allelotyping data showing frequent deletion of 8p (Isaacs 1995; 

Cher et al. 1996; Kallioniemi and Visakorpi 1996). Several groups have focused on 

more precise mapping of a deleted region at 8p, as a first step to identify candidate 

TSGs (Isaacs 1995; Kallioniemi and Visakorpi 1996). In many tumor DNAs, the 

complete or almost complete short arm of one chromosome 8 was deleted. 

Furthermore, comparison of the different data showed a complex pattern of 

overlapping and non-overlapping regions of allelic imbalance, suggesting the 

presence of at least two separate regions involved in prostate cancer, 8p22 and 8p12-

21, respectively. Chromosome arm 8p deletions have also been found in cancers 

derived from colon, lung, liver, and breast. Functional evidence for a TSG on 8p has 

been provided by transfer of the complete or part of chromosome arm 8p to colorectal 

or prostate cancer cell lines, resulting in a less tumorigenic phenotype (Ichikawa et al. 

1994; Gustafson et al. 1996; Nihei et al. 1996; Tanaka et al. 1996). 

 To fine-map the position of a TSG, the search for a homozygous deletion (HD) 

is an important first step. This procedure was pivotal in the identification of the BRCA2 

gene in hereditary breast cancer (Wooster et al. 1995), the DPC4 gene in pancreatic 

cancer (Hahn et al. 1996), and the PTEN/MMAC1 gene in neuroblastoma (Li et al. 

1997; Steck et al. 1997). In prostate cancer, an HD of approximately 1 Mb at 8p22 has 

been described by Bova et al. (1993, 1996) (Bova et al. 1993; Bova et al. 1996). 

Additionally, Kagan et al. (1995) reported less defined large HDs in three different 

prostate tumors (Kagan et al. 1995). In the present study, the identification of a small 

HD at 8p12-21 in a human prostate cancer xenograft is presented. 
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MATERIALS AND METHODS 

 

Prostate Cancer Cell Lines and Xenografts 

The in vitro growing cell lines DU-145, PC-3, and LNCaP were cultured under 

standard conditions. PC82, PC-EW, PC133, PC135, PC295, PC310, PC324, PC329, 

PC339, PC346, and PC374 were grown by serial transplantation as xenografts on 

male nude mice (van Weerden et al. 1996). 

 

Genomic DNA 

Standard protocols were used to isolate genomic DNA from DU-145, PC-3, and 

LNCaP cell pellets (Sambrook et al. 1989). Genomic DNA from xenografts was 

isolated from five consecutive 5 µm cryostat tissue sections according to standard 

procedures (overnight proteinase K incubation at 55°C, phenol extraction, and ethanol 

precipitation). DNA was dissolved in TE (10 mM Tris.HCl, pH 7.8; 1 mM EDTA). 

 

Chromosome Markers 

D8S278, D8S283, D8S540, D8S1733, D8S1769, AFMa224wh5 (Dib et al., 

1996), D21S275 (Chumakov et al. 1992), D8S87 (Weber et al. 1991), D8S133 (Wood 

and Schertzer 1992), D8S136 (NIH/CEPH Collaborative Mapping Group 1992), and 

D8S2162 (Yu et al. 1996b) are polymorphic STSs. Other STSs are from YAC end 

fragments: 721D7-R (forward: aggtttgtatcccagcttttccag; reverse: 

caggctctatactaagctcttctc), 896F4-L (forward: tccatcaccctatttggcca; reverse: 

ttctacaggcaagaagcagg), 721D7-L (forward: ctaactcaaggcacaggcggca; reverse: 

gtgttggcatctgtggaaaggag), and 761A2-L (forward: gcatcgatttgtaagtcaacatgac; reverse: 

tgagtttcaagtcctgggtatca). MSR exon 4 (forward: gatgtgacagtggaagctatgg; reverse: 

ggaaaaatgtggtatatctgaagctc), POLB exon 12 (forward: ttaagccttaagtttagaacatc; 

reverse: gagggagaaaacgagacaag), WRN exon 1 (forward: tgctgatttggtgtctagcct; 

reverse: cgagaagatccagtccaacag), exon 26 (forward: cttgtgagaggcctataaactgg; 

reverse: ggtaaacagtgtaggagtctgc) (Yu et al. 1996a), and exon 35 (forward: 

tcttctgggagcctacgtgag; reverse: tgcggtttcattttcactgccctg) are gene specific markers. 

Detailed mapping of novel chromosome 8 STSs will be published elsewhere. 
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PCR Analyses 

PCR amplifications, using Taq polymerase (Promega, Madison, WI), included 

30 cycles of 1 min at 95°C, 2 min at 55°C, and 2 min at 72°C in a 50 µl reaction 

volume. In radioactive multiplex PCRs, 1 µCi [α32P]dATP (Amersham, 

Buckinghamshire, UK) was added to the 15 µl reaction mix. Radio-labeled PCR 

products were separated on a sequence gel. Gels were dried and overnight exposed. 

Unlabeled PCR fragments were separated on a 2% agarose gel. 

 

YACs and PACs  

YACs y721D7, y953H12, and y888D12 were identified and selected by PCR 

screening and Southern blotting of the CEPH-YAC libraries (Albertsen et al. 1990; 

Chumakov et al. 1992). YAC DNA was isolated as described by Green and Olson 

(1990) (Green and Olson 1990). PACs were obtained from Genome Systems (St. 

Louis, MO) after screening gridded filters with specific hybridization probes derived 

from the markers MSR (p23G19), AFMa224wh5 (p243O21), D8S1769 (p81H5), 

761A2-L (p252H7), and POLB (p65P22), respectively. PAC DNA was isolated as 

described by the protocol of the manufacturers. 

 

Fluorescence In Situ Hybridization 

Chromosome preparations were made from phytohemagglutinin stimulated 

lymphocytes and from xenograft PC133 according to standard protocols. Slides 

containing chromosome spreads were washed in PBS for 5 min at room temperature. 

Next, they were incubated in 0.01 N HCl, containing 5 mg pepsin (Serva, Heidelberg, 

Germany) per 100 ml, for 10 min at 37°C, subsequently rinsed in 2xSSC, directly 

denatured in 70% formamide (Merck, Darmstadt, Germany)/2xSSC for 5 min at 75°C, 

and serially dehydrated. YAC and PAC DNAs were either biotin-14-dATP or 

digoxigenin-11-dUTP labeled by nick translation (nick translation kit, Gibco-BRL, 

Gaithersburg, MD). The biotin labeled chromosome 8 specific probe was obtained 

from Cambio LTD (Cambridge, UK). The chromosome-specific α-satellite probe D8Z2 

(Donlon et al. 1986) was directly labeled with tetra methyl rhodamine-6-dUTP by nick 

translation (nick translation kit, Boehringer Mannheim, Germany). Hybridizations were 

done after preannealing with 1-3 µg human Cot-1 human DNA (Boehringer 

Mannheim, Germany) for 1 h at 37°C. All hybridizations were performed in 50% 
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formamide, 2xSSC, and 10% dextran sulfate in a moist chamber for 16 h at 37°C. 

Slides were washed twice in 50% formamide / 2xSSC for 5 min at 45°C, twice for 5 

min in 2xSSC at 45°C, and once in 0.1xSSC for 5 min at 45°C. The hybridization 

signal was visualized by incubation with FITC conjugated avidin (Vector, Burlingame, 

CA), or anti-dig-rhodamine (Boehringer Mannheim, Germany). The FITC signal was 

amplified with two additional layers of biotinylated goat anti-avidin and FITC 

conjugated avidin. The slides were mounted in Vectra Shield (Vector, Burlingame, CA) 

containing 0.1 ng/µl DAPI (Sigma, St. Louis, MO). Analyses were performed with a 

Leica DM-RXA microscope equipped with a PowerGene image analyses system (PSI, 

Chester, UK). 

 

RESULTS  

 

Screening of Human Prostate Cancer Cell Line and Xenograft DNAs for 

Homozygous Deletions 

Previously, the 8p12-21 region between markers D8S87 and D8S133 was 

found to be frequently deleted in prostate cancer (Trapman et al. 1994). Ten sequence 

tagged sites (STSs) that mapped between D8S87 and D8S133 were used to screen 

for HDs in DNAs from fourteen prostate cancer cell lines and xenografts (Fig. 1A, and 

J. Trapman, unpublished observations). For nine STSs, an amplified fragment could 

be detected in all DNA samples in multiplex PCRs, using chromosome 21 STS 

D21S275 as an internal control (see as an example the polymorphic marker D8S1733; 

Fig. 1B). In contrast, in PC133 DNA a specific fragment was absent in the D8S1769 

amplification reaction, suggesting that part of 8p12-21, encompassing the D8S1769 

fragment, was lacking in this DNA. In some DNAs, two bands of different length were 

detected, showing that two allelic forms are retained in the tumor DNA. One band 

indicates the presence of one allele or two alleles of identical lengths. In PC133 DNA, 

each polymorphic marker gave rise to one fragment, with the exception of the negative 

D8S1768 (Fig. 1B), and D8S87, which showed two bands (data not shown). 
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Figure 1. (A) Physical map of the region between markers D8S133 and D8S87 at 8p12-21, which is 

frequently deleted in prostate cancer. (B) Radioactive multiplex PCR analysis of D8S1733 (telomeric of 

HD region) and D8S1769 (in HD region) in fourteen prostate cancer cell lines. D21S275 is used as the 

internal control. 

 

Fine-mapping of the HD Region in PC133 

To obtain more detailed information about the HD in PC133 DNA, additional 

amplification reactions were carried out with STSs flanking D8S1769, and between 

D8S540 and D8S278, the two markers which were found to be present in PC133 DNA 

(Fig. 2). AFMa224wh5 and 761A2-L, located telomeric and centromeric to D8S1769, 

respectively (Fig. 2A), gave a PCR product in PC133. In contrast, PC133 genomic 

DNA was negative for STSs 721D7-R, D8S2162, 896F4-L, and 721D7-L, which are 

more closely linked to D8S1769 (Fig. 2B). From these data it was concluded that the 

boundaries of the deleted region in PC133 DNA were given by AFMa224wh5 and 

761A2-L. YAC 721D7 has an estimated length of 730 Kb (CEPH-Genethon database). 

Both end-fragments of this YAC could be mapped at 8p, showing that it was not 

chimeric. Both end-fragments were absent in PC133 DNA, which indicates that the HD 

has a length of at least 730 Kb (Fig. 2A). 
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Figure 2. (A) Schematic representation of the markers used in the fine mapping of the HD region in 

PC133. (B) Fine-mapping of the HD region in PC133. (C) Mapping of WRN in the HD region by 

amplification of specific exons. 
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Genes in the HD Region 

The marker D8S2162 has been mapped close to the Werner syndrome gene 

(WRN) (Yu et al. 1996a; Yu et al. 1996b). Using WRN exon 1, 26, and 35 specific 

primers, the position of WRN to the HD region was determined. No PCR products 

could be detected for WRN exon 26 or 35, whereas WRN exon 1 was found to be 

present (Fig. 2C). This finding shows that the HD in PC133 interrupts the WRN gene.  

 

Characterization of Chromosome 8 in PC133 

To extend our knowledge of the chromosomal composition of PC133, especially 

focussing on chromosome 8, FISH analyses of chromosome spreads with a variety of 

hybridization probes was done. First, the number of chromosome 8 copies in PC133 

was determined by chromosome 8 painting and hybridization with the centromere 

probe D8Z2. This resulted in the detection of two apparently intact chromosomes 8, 

one 8p-, one copy of a dicentric chromosome 8, one solitary chromosome 8 

centromere fragment, and a chromosome 8 fragment in a marker chromosome (Fig. 

3A). 

In a second experiment, YAC 721D7, which is in the HD region, and YAC 

888D12, which is centromeric to the HD (J. Trapman, unpublished observations) were 

used as hybridization probes (Fig. 2A). YACs 721D7 and 888D12 are linked by YAC 

953H12, which has a length of 1320 Kb (Fig. 2A and CEPH-Genethon database). 

Although 721D7 provided a clear signal at normal control lymphocyte chromosomes 

(Fig. 3B), as expected, no signal could be detected in PC133 chromosome spreads 

(Fig. 3C). Hybridization with the control YAC 888D12 gave rise to a signal at the two 

apparently intact chromosomes 8 and two signals at the dicentric chromosome 8. 

Other chromosome 8 fragments were negative for 888D12 (Fig. 3C).  

Subsequently, PACs 243O21 and 252H7, which are located directly telomeric 

and centromeric to the HD region, respectively (Fig. 2A), were used as hybridization 

probes. In a double FISH experiment on PC133 chromosome spreads, probes derived 

from both PACs gave signals on the two apparently intact chromosome 8 copies (Fig. 

3D). However, other chromosome 8 fragments, including the dicentric chromosome 8, 

which was positive for YAC 888D12, were negative. PAC 81H5, which is completely 

located within the HD region (Fig. 2A) did not hybridize with any of the chromosome 8 

copies (data not shown). A double FISH experiment with PAC 23G19, which contains 

the more telomeric MSR gene, and with the more centromeric POLB positive PAC 
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65P22 (Fig. 2A) provided additional information about the different chromosome 8 

fragments, including the dicentric chromosome (Fig. 3E). PAC 23G19 (MSR; green) 

gave only a signal on the two apparently intact chromosomes 8, whereas 65P22 

(POLB; red) hybridized to all chromosomes 8, including the small centromeric 

fragment, but excluding the chromosome 8 fragment in the marker chromosome.  

 
Figure 3. Characterization of chromosome 8 fragments in PC133 by FISH analysis. (A) A paint of 

chromosome 8 (green) in combination with the D8Z2 (red) chromosome 8 centromere probe. (B) 

Double FISH of YAC 721D7 (green) and YAC 888D12 (red) on lymphocyte and (C) on PC133 

chromosome spreads. (D) Double FISH of PAC 243O21 (green) and PAC 252H7 (red) on a PC133 

metaphase. (E) Double FISH of PAC 23G19 (green) and PAC 65P22 (red) on PC133 chromosomes. 
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A summary of the FISH data is schematically depicted in Figure 4. Six 

chromosome 8 fragments were detected (see also Fig. 3A). Two copies seemed 

completely identical, and contained the small 8p12-21 deletion (A and B in Fig. 4). 

One chromosome 8 had a deletion of the major part of 8p (C in Fig. 4). The dicentric 

chromosome contained a duplicated 8p fragment, and most likely an intact q arm (E in 

Fig. 4). The 8p deletion in E (Fig. 4) was much smaller than in C (Fig. 4), but larger 

than in A and B (Fig. 4). Furthermore, two less well defined small fragments (D and F 

in Fig. 4) were found to be present. 

 

 
Figure 4.  Schematic representation of the chromosome 8 composition of xenograft PC133. 

 

DISCUSSION 

 

In this study, we describe a homozygous deleted region at chromosome arm 8p 

in the prostate cancer xenograft PC133, derived from a skeletal metastasis. Original 

patient material was not available for further study. However, the HD was already 

found in the first passage of PC133 on nude mice, showing that it was not the result of 

selection during subsequent transplantation steps. The HD was detected by PCR on 

genomic DNA, using five different markers, and confirmed by FISH analyses. The HD 

is located at 8p12-21 between D8S133 and D8S87, a region frequently showing allelic 
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loss in prostate cancer (Trapman et al. 1994). The length of the HD is less than 1320 

Kb and more than 730 Kb, as judged from the lengths of YACs 953H12 and 721D7.  

FISH analyses showed that the HD is present in a duplicated, but otherwise 

intact chromosome 8. Further, PC133 shows a complex chromosome 8 composition: 

8p-, a dicentric chromosome 8, one solitary chromosome 8 centromere, and a small 

fragment in a marker chromosome. All these chromosome 8 copies lack parts of the p 

arm, which are larger than the minimal HD, as judged from the absence of p23G19 

(MSR) and p252H7 (Fig. 4). The centromeric breakpoints in the dicentric chromosome 

must be close to the centromeric side of the HD, because FISH results with YAC 

888D12 are positive. It is not possible to deduce with certainty from the complex 

chromosome 8 profile the order of genetic changes. Obviously, the small HD has 

arisen prior to duplication of this particular chromosome 8 copy, suggesting that the 

deletion is a relatively early event (Fig. 4 A and B). Furthermore, because two allelic 

forms of the polymorphic marker D8S87 could be detected, some of, or all 

chromosomes C-F in Figure 4 must be derived from the other chromosome 8 

homologe. 

So far, we have not been able to identify an HD, overlapping the PC133 HD, in 

a different xenograft or cell line. This suggests that HDs at 8p12-21 are relatively rare 

events in prostate cancer and that inactivation of the putative TSG located in this 

region by complete or partial deletion is infrequent. Small or overlapping larger HDs 

have been pivotal in the identification of TSGs like BRCA2 (Schutte et al. 1995; 

Wooster et al. 1995), DPC4 (Hahn et al. 1996), and, more recently, PTEN/MMAC1 (Li 

et al. 1997; Steck et al. 1997). Four other HD regions at 8p have been described in 

prostate cancer. A small (0.7 to 1 Mb) HD region has been identified at the MSR locus 

(8p22). Several genes have been mapped within this HD region (Macgrogan et al. 

1996). However, there is, as yet, no evidence that one of these genes is a TSG. 

Additional HDs have been described at 8p21 and 8p22 by Kagan et al. (1995) (Kagan 

et al. 1995). However, these HDs are very large, and the experiments lack proper 

controls. 

The HD region in PC133 is expected to contain approximately 30 genes. One of 

the 8p prostate cancer TSGs is expected to be one of these genes. So far, the only 

gene found to be located within the HD is the WRN gene. One copy is completely 
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absent, whereas the second copy misses at least the last 10 exons. Werner syndrome 

is an autosomal recessive disease characterized by accelerated aging and by 

predisposition to certain cancers. WRN shows significant similarity to DNA helicases 

(Yu et al. 1996a; Yu et al. 1997). Because of its function and the localization in the HD 

region, WRN might be a candidate TSG involved in prostate cancer. The structure of 

WRN in other xenografts and tumor DNA samples is under investigation. 
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ABSTRACT 

 

 Chromosome 8p deletions have frequently been described in prostate cancer. 

Previously, we identified a homozygous deletion at 8p12 in prostate cancer xenograft 

PC133, which disrupts the Werner Syndrome gene (WRN). In the present study we 

extend our search for the role of chromosome 8 alterations in prostate cancer, mainly 

focused on 8p12-p21. Eleven xenografts and four cell lines derived from human 

prostate cancers were searched for chromosome 8 alterations by Comparative 

Genomic Hybridisation (CGH) and allelotyping. CGH showed 8p loss in ten DNAs. In 

eight of the samples loss of 8p included the 8p12-p21 interval. In most DNAs 

allelotyping matched CGH data. The homozygous deletion in PC133 was found to be 

890 Kbp. Thirty-seven STSs mapping in the homozygous deletion were selected for 

screening of the xenografts and cell lines for overlapping homozygous deletions. 

However, further homozygous deletions were not detected. To identify candidate 

tumour suppressor genes in the homozygous deletion, two approaches were used. 

Search for genomic sequences encoding novel genes identified processed 

pseudogenes of IDH3A, SMT3H2 and FLJ20038, but no functional genes. RT-PCR 

showed that EST sts-N22494 was part of the 3'-UTR of a long WRN transcript. Also, 

exon trapping with appropriate restriction fragments from six PACs overlapping the 

homozygous deletion failed to detect novel genes. Finally, to test WRN as a candidate 

tumour suppressor gene in prostate cancer, mutation analysis of this gene in the 

xenografts and cell lines was performed. Except for PC133 no alteration in WRN were 

found. So, although complete absence of functional WRN might contribute to PC133 

tumour growth, in none of the other xenografts and cell lines evidence was found for a 

role of complete inactivation of WRN in tumour development. 

 

INTRODUCTION 

 

Prostate cancer is the most frequently diagnosed cancer and the second leading 

cause of male cancer death in countries with a Western lifestyle (Greenlee et al. 2001). 

At present, an adequate therapy of metastatic prostate cancer is not available. In order 
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to develop novel, targeted therapeutic regimens, knowledge of the major molecular 

defects in prostate cancer is urgently needed.  

 Tumour cells are characterized by specific chromosomal alterations, mutations in 

tumour suppressor genes and oncogenes, and modulated gene expression patterns by 

chromatin modification, promoter hypermethylation and epigenetic events. Comparative 

Genomic Hybridization (CGH) has been utilized for genome-wide screening of 

chromosomal amplifications and deletions in sporadic prostate tumours (Visakorpi et al. 

1995; Cher et al. 1996; Nupponen et al. 1998b; Alers et al. 2000; El Gedaily et al. 2001). 

Most frequent deletions have been found for chromosome arms 6q, 8p, 13q and 16q, 

indicating the localization of important tumour-associated genes on these chromosome 

arms. Other common chromosomal deletions in prostate cancer were losses of 5q, 10q, 

17p and 18q. The most frequently amplified chromosome arm was 8q, followed by 1q, 

3q, 7p, 7q, 17q and 20q. Frequent deletion of 8p is not only found in prostate cancer, 

but also in many other tumours, including colon, lung, liver and breast cancer (Emi et al. 

1992; Emi et al. 1993; Fujiwara et al. 1993; Becker et al. 1996; Yaremko et al. 1996; 

Chughtai et al. 1999; Pineau et al. 1999; Wistuba et al. 1999). 

Although allelotyping has been used in genome-wide screening studies of 

prostate cancer (Kunimi et al. 1991; Cunningham et al. 1996; Saric et al. 1999), it is 

generally applied in the accurate mapping of a deleted or amplified chromosomal 

region. At least two separate regions of allelic loss on chromosome 8p have been 

found, which is indicative for the localization of two or more distinct tumour suppressor 

genes on this chromosome arm (Bova et al. 1993; MacGrogan et al. 1994; Trapman et 

al. 1994; Macoska et al. 1995; Suzuki et al. 1995; Vocke et al. 1996; Prasad et al. 1998). 

Deletion of 8p22-p23 has been implicated in tumour initiation, whereas 8p12-p21 

deletion may play a more significant role in tumour progression (Oba et al. 2001).  

An important first step in the identification of tumour suppressor genes can be the 

detection of a homozygous deletion. Well known examples of tumour suppressor genes 

in sporadic tumours isolated by this approach are DPC4 at 18q and PTEN at 10q (Hahn 

et al. 1996; Li et al. 1997; Steck et al. 1997). In prostate cancer tissues, homozygous 

deletions of chromosome arm 8p have been identified at 8p22 (Bova et al. 1993; Levy et 

al. 1999), 8p21 (Kagan et al. 1995), and at 8p12 (Prasad et al. 1998). Although the gene 

N33 mapping in the homozygous deletion at 8p22 has been suggested as a candidate 

tumour suppressor gene, conclusive evidence for such a role is lacking (Macgrogan et 

al. 1996; Arbieva et al. 2000).  
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Xenografts and cell lines are powerful tools in the analysis of human cancer, 

because they are available in unlimited quantities, and they can be manipulated by 

modifications of growth conditions. Additionally, xenografts and cell lines facilitate 

reliable mRNA and protein expression profiling. Importantly, they lack contaminating 

normal cells of human origin, which simplifies the detection of homozygous deletions 

and small mutations in their genomic DNAs. Previously, we identified a small 

homozygous deletion at 8p12-p21 in the prostate cancer xenograft PC133 (Van Alewijk 

et al. 1999). This deletion disrupted the Werner syndrome gene (WRN).  

 In this study we extend our search for the role of chromosome region 8p12-p21 

in prostate cancer, by detailed comparison of CGH and allelotyping in human prostate 

cancer derived xenografts, which were generated in our laboratory (Hoehn et al. 1980; 

Hoehn et al. 1984; Noordzij et al. 1996; Van Weerden et al. 1996), and in prostate 

cancer cell lines. In addition, we present the characterization of the homozygous 

deletion in PC133, including the gene content search, and the expression and structural 

analysis of WRN in prostate cancer xenografts and cell lines. 

 

MATERIALS AND METHODS 

 

Prostate Cancer derived Xenografts and Cell lines  

The in vitro growing cell lines LNCaP, PC-3, DU-145 and TSU were grown under 

standard cell culture conditions. The in vivo xenografts PC82, PCEW, PC133, PC135, 

PC295, PC310, PC324, PC329, PC339, PC346 and PC374 were propagated on male 

nude mice as described (see Van Weerden et al. 1996).  

 

DNA and RNA preparation  

Genomic DNA from xenografts and cell lines utilized in PCR was isolated 

according to standard procedures, including overnight proteinase K incubation at 55oC, 

phenol extraction and ethanol precipitation. DNA pellets were dissolved in TE buffer (10 

mM Tris.HCl, pH7.8; 1 mM EDTA). Genomic DNA for CGH was further purified by 

RNAse treatment. Normal mouse DNA was used as a control in allelotyping studies. 
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RNA was isolated by standard guanidinium isothiocyanate (cell lines) or LiCl 

(xenografts) protocols (Sambrook et al. 2001). Total RNAs from fetal brain and normal 

prostate were purchased from Clontech (Palo Alto, CA). 

 

Comparative Genomic Hybridisation 

CGH was performed essentially as described (Kallioniemi et al. 1992). In brief, 

tumour DNA and normal male reference DNA samples were labeled by nick translation 

(nick translation system, Life Technologies, Rockville, MD) with biotinylated dUTP 

(Roche Diagnostics, Almere, The Netherlands) and digoxigenin (Roche Diagnostics), 

respectively. Labeled DNA samples (200 ng each) and 15 mg Cot-1 DNA (Roche 

Diagnostics) were ethanol-precipitated and dissolved in 10 ml hybridization mix (50% 

formamide, 0.1% Tween-20, and 10% dextran sulphate in 2x SSC, pH7.0). The probe 

mixture was denatured and hybridized to normal male chromosome spreads (Vysis Inc., 

Downers Grove, IL) for 72 h at 37°C. After the slides were washed, fluorescent detection 

of the biotin- and digoxigenin-labelled DNA probes was accomplished by fluorescein 

isothiocyanate (FITC)-conjugated avidin (Vector Labs, Burlingame, CA) and anti-

digoxigenin-rhodamine (Roche Diagnostics), respectively. Samples were counterstained 

with DAPI (4’6’-diamidino-2-phenylindole) (Sigma, St. Louis, MO) in Vectashield anti-

fade solution (Vector Labs).  

Analyses were performed with a Leica epifluorescent microscope, equipped with 

a cooled CCD camera (Photometrics Inc., Tuscon, AZ), triple-band pass beam splitter 

emission filters (P-1 filter set, Chroma Technology, Brattleboro, VT), and a Quips XL 

image analysis system (version 3.0.1; Vysis Inc.). Chromosomal regions were scored as 

deleted if the mean green to red ratio was below 0.85, and gained if the ratio was above 

1.15. 

 

PCR amplification, allelotyping and SSCP 

PCR amplifications, using Taq polymerase (Promega, Madison, WI) included 30 

cycles of denaturation for 1 min at 95oC, 1 min annealing at 50oC or 55oC, and extension 

for 1 min at 72oC. For allelotyping and PCR-SSCP, 1 µCi [alpha-32P]dATP (Amersham, 

Buckinghamshire, UK) was added to the 15 µl reaction mixture. For allelotyping with 

polymorphic microsatellite markers, radiolabeled PCR products were separated on a 

polyacrylamide sequence gel. For allelotyping with single nucleotide polymorphisms 

(SNPs), and for SSCP, radiolabeled PCR products were separated on a 6% non-
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denaturing polyacrylamide gel containing 10% glycerol at low power, overnight at room 

temperature. Gels were dried and exposed to X-ray film for an appropriate period. Non-

radioactive PCR amplifications were performed in a 50 µl reaction volume. Amplified 

fragments were separated on a 2% agarose gel. 

 

Markers for allelotyping of chromosome 8 

Genomic DNA was allelotyped by twenty-seven polymorphic microsatellite 

markers at 8p: D8S264, D8S1742, D8S1819, D8S1706, D8S503, D8S549, D8S1731, 

D8S261, D8S258, D8S282, D8S133, D8S1733, D8S1752, D8S1739, D8S1771, 

D8S131, D8S1820, D8S1809, D8S339, AFMa224wh5, D8S1770, D8S1769, D8S1711, 

D8S1810, D8S283, D8S1722 and D8S532, and seven markers at 8q: D8S260, 

D8S1797, D8S1705, D8S273, D8S267, D8S1774 and D8S272. Primer sequences and 

fragment lengths are available in the Genome Database (http://www.gdb.org). SNP 

markers utilized were Wiaf-3724, Wiaf-1897, Wiaf-3834, Wiaf-3345, Wiaf-283, Wiaf-72, 

Wiaf-3420, Wiaf-4228, and Wiaf-3809. For details see http://www.ncbi.nlm.nih.gov/SNP.  

 

Screening for homozygous deletions 

Screening for homozygous deletions directly downstream of WRN in genomic 

DNAs were done by standard PCR with thirty-seven STSs. Amplified fragments were 

separated on a 2% agarose gel. Details of the primer sets are available upon request.  

 

Gene prediction of genomic DNA sequences 

Human genome sequences in GenBank were searched for candidate genes by 

the on-line gene prediction programs GRAIL, Pipeline Analysis (Oak Ridge National 

Laboratory; http://compbio.ornl.gov), and Genefinder (Sanger Center; 

http://genomic.sanger.ac.uk/gf/gf.html). In addition, the UCSC database 

(http://www.cse.ucsc.edu) was searched for annotated candidate genes. 

 

Generation of a PAC/cosmid contig of the region deleted in PC133   

Gridded PAC filters (Genome Systems, St. Louis, MO), were hybridized with 32P-

labeled probes derived from the markers AFMa224wh5, 721D7R, WRN exon 26, 721C, 

WRN exon 35, 107C2-T7, 721A, D8S1770, D8S1769, D8S124, D8S1711, 978B9R, 
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872E4R, 896F4L, 192D20-T7, 13P8-Sp6, 721D7L, 693D8L, D8S1810 and 761A2L. 

Sequences of primers utilized to generate the fragments are available upon request. 

DNA of individual PACs was isolated according to the manufacturers’ protocol. 

 

Exon trapping and structural analysis of novel fragments 

Candidate exons were isolated from genomic DNA fragments, essentially 

according to the protocol of the manufacturer of the utilized exon trap kit (Life 

Technologies, Rockville, MD). In short, PACs 281D2, 107C2, 33H11, 22O23, 57E9 and 

13P8 were digested with BamHI/BglII and PstI. Fragments were ligated into the exon 

trapping vector pSPL3.  The libraries were propagated in JM109. COS cells were 

transfected with pSPL3 libraries by electroporation. After short-time culturing, total RNA 

was isolated from transfected cells and trapped exons were amplified by RT-PCR. PCR 

fragments of appropriate lengths were cloned in pGEM-T Easy (Promega, Madison, WI) 

and sequenced by the dideoxychain termination method. GenBank was searched for 

homologous sequences by BLAST programs (http://www.ncbi.nlm.nih.gov/blast).  

For candidate exons, which contained an open reading frame, and which lacked 

repetitive sequences, a forward primer was developed and used in combination with the 

site-primer (described below) in a semi-nested PCR on cDNA from fetal brain and 

normal prostate RNA to try to generate a downstream flanking fragment.  

 

mRNA expression 

mRNA expression was assayed by RT-PCR. First-strand cDNA synthesis was on 

1 µg RNA for 1 h at 37°C using 200 U M-MLV-RT (Life Technologies) and a T12-site 

primer (5-GCATGCGAATTCGGATCCT12-3) in first-strand buffer (Life Technologies), 

containing 10 mM DTT, 1 mM dNTPs, and 40 U RNAsin (Promega). The first PCR 

reaction was performed on 1/20th of the cDNA reaction mixture, utilizing a specific 

forward (F) primer in combination with site-primer 5-GCATGCGAATTCGGATCC-3. 

Next, semi-nested PCR fragments were obtained with gene specific forward and reverse 

primers (F/R) on 1/500th of the first PCR product. Gene specific primer combinations for 

RT-PCR of WRN were: WRN-F 5-TCTTCTGGGAGCCTACGTGAG-3 and WRN-R 5-

TGCGGTTTCATTTTCACTGCCCTG-3, respectively. Primer combinations for RT-PCR 

of EST sts-N22494 was; sts-N22494-F 5-ACTGAGAACAGCAGCATTGT-3 and sts-

N22494-R 5-GGAAACTATTACTGGTCCAC-3. Control RT-PCRs were carried out under 
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the same conditions, using RNA polymerase II specific primers: Pol-F (5-

GCTGAGAGAGCCAAGGATAT-3) and Pol-R (5-CACCACCTCTTCCTCCTCTT-3).  

 

Structural analysis of ESTs 

Sequences overlapping with sts-N22494 were found in three other cDNA clones 

derived from different libraries (AI248120, fetal liver spleen; BG029683 and BI850480, 

mammary carcinoma; AW779829, kidney).  

 EST sts-N22494 RT-PCR fragments were obtained according to the RT-PCR 

protocol as described above. Specific primer combinations for the first PCR amplification 

were: 34F 5-GGTTCTGAAGAGATCTGTTC-3 and 35R 5-CCCTGGTCAACTAATACCA-

3 or WRN/N22494 5-CCAACTCTGTGTCACAGTATAG-3. The primer set for the nested 

amplification was: 34F2 5-GCAAGGAAGAAGTAGGCATC-3 and 35R2 5-

CCAGAAGACCCAGAAACTAC-3. 

 

Structural analysis of WRN  

 For PCR-SSCP analysis of WRN, overlapping 700-800 bp cDNA fragments, 

encompassing the complete open reading frame, were amplified. Next, smaller 

overlapping fragments were obtained by (semi)nested PCR and analyzed for mutations 

and polymorphisms by SSCP and sequencing. Primer sequences are available upon 

request. For sequencing, amplified fragments were purified over QIAquick spin columns 

(Qiagen, Hilden, Germany) and ligated into pGEM-T Easy.  

 

RESULTS 

 

Identification of chromosome 8 alterations in prostate cancer derived xenografts and cell 

lines 

 Chromosome 8 alterations are the most frequent genetic defects in prostate 

cancer. Because xenografts and cell lines are important starting materials for detailed 

molecular genetic studies, chromosome 8 was investigated by CGH and allelotyping in 

these specimens. We utilized genomic DNA from the xenografts PCEW, PC82, PC133, 

PC135, PC295, PC324, PC329, PC310, PC329, PC339, and PC374, and the cell lines 

LNCaP, PC3, DU145 and TSU. 
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Comparative Genomic Hybridisation 

 In all samples, except for xenografts PCEW and PC82, and the LNCaP cell line, 

chromosome 8 alterations were detected by CGH (Fig. 1A). In PC295, PC324, PC329, 

and PC374 loss of 8p paralleled amplification of 8q. In PC133 and PC3 apparent 

chromosome break points could be found in the short arm or in the long arm, 

respectively (Fig. 1B; see also Van Alewijk et al. 1999). In PC310, only the distal parts of 

8p and 8q were deleted and amplified, respectively (Fig. 1B). Loss of 8p without 8q 

amplification was detected in TSU; 8q amplification without 8p deletion was present in 

PC346. The largest deviations from the general pattern of 8p loss and 8q gain were 

found for PC135 and PC339. CGH indicated in both xenografts additionally to gain of 

8q, amplification of parts of 8p (Fig. 1C). 
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Figure 1. (A) Chromosome 8 alterations identified by comparative genomic hybridisation in fifteen 

prostate cancer xenografts and cell lines (CGH: mean 0.85-1.15; n=12-17). A bar to the right of an 

ideogram indicates gain; a bar to the left indicates loss.  (B) Samples showing gain of 8q and proximal 8p, 

and loss of distal 8p (PC133), gain of 8q and loss of 8p (PC310), and gain of distal 8q and loss of proximal 

8q and 8p (PC3). (C) Samples showing gain of whole chromosome 8 (PC339), and gain of distal 8p and 

distal 8q (PC135). 
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Allelotyping 

 To obtain independent complementary, more detailed information on 

chromosome 8 alterations, the same genomic DNAs were allelotyped by thirty-five 

highly polymorphic microsatellite markers. The highest marker density was chosen for 

8p12-p21, where in previous studies loss of heterozygosity in DNA from prostate tumour 

samples, and a homozygous deletion in xenograft PC133 have been described by us 

(Trapman et al. 1994; Van Alewijk et al. 1999). Allelotyping results are summarized in 

Fig. 2A; some informative examples are depicted in Fig. 2B. In PC346, PC374, LNCaP 

and DU145 30-65% instability of the microsatellite markers was detected, which limited 

the accuracy of the analyses in these samples [see D8S1731 in PC346 and LNCaP as 

an example (Fig. 2B)].  

 Almost all xenografts and cell lines showed two allelic forms of at least one 

polymorphic marker on 8q. For many 8q and some 8p markers a clear imbalance of the 

two alleles was found, which is indicative of gain [see D8S1731 (PC135), D8S1722 

(PC133), D8S273 (PC135) and D8S272 (PC339) as examples in Fig. 2B]. In PC3 and 

TSU all seven 8q and twenty-eight 8p markers demonstrated one allelic form, indicating 

the loss of one copy of the whole chromosome. In PC133, PC135, PC295, PC310, 

PC324, PC329, PC339, PC346 and P374 large series of consecutive markers on 8p 

showing apparent homozygosity were detected, strongly suggesting loss of one copy of 

the corresponding chromosomal regions. The maximum number of consecutive 

markers showing one band in PCEW was five: from D8S258 till D8S1752, in a 5 Mbp 

interval. This might represent a small region of chromosomal loss. In the region 

between AFMa224wh5 and D8S283, which is completely deleted in PC133, no clear 

evidence for allelic loss was found in PCEW, PC82, PC310, PC346, LNCaP and 

DU145.   
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Figure 2. (A) Chromosome 8 alterations as 

identified by allelotyping of fifteen prostate 

cancer xenografts and cell lines. Two allelic 

bands are given as 2; 1 indicates one band, 

which might represent one allele or two alleles 

of identical length. Occasionally, one of two 

allelic bands was stronger, indicative of gain 

(data not shown). The homozygous deletion in 

PC133 (REF) is represented by “0”. MSI: 

microsatellite instability. The previous 

described LOH region (Trapman et al. 1994) 

between D8S133 and D8S87 at 8p12-p21 is 

represented by a vertical bar. (B) Selection of samples demonstrating one and two allelic forms, 

amplification (2+), and MSI. 

 

 To obtain more information on loss of chromosome 8 in the four samples with 

frequent MSI (PC346, PC374, LNCaP and DU145), they were typed by nine single 
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nucleotide polymorphisms (SNPs) scattered along 8p22-pter (see Materials and 

Methods). In both LNCaP and DU145, several SNP markers revealed two alleles across 

8p22-pter, which is indicative of absence of 8p loss in these cell lines. PC346 showed 

two allelic forms of a clusterin (CLU) SNP, which mapped between D8S1771 and 

D8S131, but one allelic form for all more distal SNPs, indicating loss of the distal part of 

8p (data not shown). In PC374 none of the 8p SNPs showed two alleles. 

 

Comparison of Comparative Genomic Hybridization and allelotyping of prostate 

cancer xenografts 

 In general, the CGH and allelotyping data matched well, although there were 

some discrepancies. Most remarkable are TSU, for which allelotyping of the whole 

chromosome showed the presence of single alleles, without indication of loss of 8q, 

PC3 with 8q amplification by CGH analysis and loss by allelotyping, and PC339 with 8p 

amplification by CGH and 8p deletion by allelotyping. 

 

The homozygous-deleted region in xenograft PC133 

Length of the homozygous-deleted region in PC133, and search for novel, 

overlapping homozygous deletions 

 As shown previously (Van Alewijk et al. 1999) and in this study (Fig. 2A and 3), 

xenograft PC133 contained a homozygous deletion at 8p12. The deletion disrupted at 

its telomeric border WRN. As deduced from YAC lengths, the length of the 

homozygous-deleted region was previously estimated to be between 0.7 and 1.3 Mbp 

(Fig. 3C; Van Alewijk et al. 1999).  

 The borders of the deleted region were more accurately determined with STS 

markers. The telomeric border mapped in WRN intron 8 (Fig. 3B). Centromeric, 

D8S1810 was found to be located in the deleted region, whereas 13P8-T7 was just 

proximal to the deletion (Fig. 3B). Comparison with the human genome sequence 

showed that the homozygous deletion spanned approximately 890 Kbp (Fig. 3E). Within 

this region, thirty-seven STS markers, together with markers that mapped at the borders 

of the homozygous-deleted region, were applied in screening for overlapping 

homozygous deletions in all available prostate cancer xenografts and cell lines. 

However, in none of the DNAs a novel homozygous deletion could be detected. 
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Gene search in the homozygous deletion by sequence analysis 

Annotation of the human genome sequence by different gene prediction 

programs (UCSC, Ensembl, NCBI) showed WRN as the only known gene in the 

homozygous deletion.  Gene finding programs like GRAIL, Genefinder, and Pipeline 

Analysis also failed to detect bona vide genes, except WRN. Sequence homology 

searches identified processed pseudogenes of IDH3A, SMT3H2 and FLJ20038 in the 

homozygous deletion (Fig. 3F).  

 Many ESTs mapped in the homozygous deletion. However, critical study of EST 

sequences and their flanking genomic sequences, absence of a polyadenylation signal, 

presence of a flanking genomic A-track, presence of a repeat sequence, absence of a 

long open reading frame, combined with low expression made it very unlikely that they 

were parts of genes. The exception was sts-N22494, which is discussed below. 

Gene search in the homozygous-deleted region by exon trapping 

 We isolated the 890 Kbp genomic segment in a PAC/Cosmid contig. Appropriate 

genomic DNA fragments from six overlapping PACs (see Fig. 3D) that covered the 

homozygous deletion were screened for novel genes by exon trapping. Approximately 

one hundred different genomic fragments were identified. From PAC P281D2 WRN 

exons 14 to 34 were isolated. None of the other trapped fragments was identical to a 

known gene or EST sequence. Twenty fragments had an open reading frame and did 

not contain repetitive sequences. To study whether these fragments were present in 

mRNA, semi-nested RT-PCRs were done on RNA from normal prostate and from fetal 

brain. However, none of the PCRs was positive, accordingly none of the fragments were 

part of a bona fide mRNA.  

Characterization of sts-N22494 

 Sts-N22494 mapped just downstream of the last WRN exon (Fig. 3F). 

Overlapping sequences were found in 4 other ESTs (see Materials and Methods). All 

contained a polyadenylation signal, but lacked a long open reading frame (data not 

shown). The genomic sequence was identical to the cDNA sequence, but lacked a 

polyA-stretch downstream of the polyadenylation signal. Sts-N22494 expression was 

analyzed by RT-PCR (Fig. 4A). Sts-N22494 was easily detected in all RNA samples 

from prostate cancer xenografts and cell lines, with the exception of PC133. The 

genomic sequence revealed that sts-N22494 was located approximately 2.2 Kbp 

downstream of the WRN gene, in the same orientation. Because no convincing open 

reading frame could be found in the genomic sequence between WRN and sts-N22494, 
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the possibility that sts-N22494 was part of a longer WRN transcript was considered (Fig. 

4B and 4C). First, a RT-PCR reaction from WRN exon 34 across the initially described 

WRN exon 35 was done (34F-WRN/N22494R, Fig. 4B). Subsequently, the product was 

visualized by a nested PCR from WRN exon 34 to exon 35 (34F2-35R2 in Fig. 4B; 335 

bp fragment in 4C); the 34F-35R RT-PCR followed by 34F2-35R2 nested PCR was 

carried out as a control (WRN in Fig. 4C). The positive result provided strong evidence 

that indeed sts-N22494 was derived from a longer WRN transcript. 

   

Expression and structural analysis of WRN 

 Because WRN turned out to be the only gene present in the homozygous 

deletion in PC133, WRN expression and structure were investigated in all other prostate 

cancer xenografts and cell lines. In all samples, except PC133, WRN mRNA was 

detectable by RT-PCR (Fig. 4). The entire open reading frame of WRN mRNA was 

analyzed for mutations by RT-PCR-SSCP. All fragments showing an altered PCR-

SSCP pattern were sequenced.  The altered sequences turned out to be previously 

described polymorphisms: TGT(Cys)171TGC(Cys); ATG(Met)387ATA(Ile); CTT 

(Leu)787CT(Leu); TTT(Phe)1074TTG(Leu); AGC(Ser)1361AGT(Ser) and 

TGT(Cys)1367CGT(Arg) (Bernardino et al. 1997; Meisslitzer et al. 1997; Ye et al. 1997). 

So, no evidence could be found for substantial downregulation of WRN expression or 

inactivating mutations in the open reading frame. 
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Figure 4. (A) RT-PCR analysis of STS-N229494 and WRN mRNA expression in prostate cancer cell lines 

and xenografts and cell lines. RNA pol II was utilized as a control. RT: reverse transcriptase. (B) Schematic 

representation of RT-PCR and nested PCR to detect WRN and STS-N22494 transcripts. (C) Amplified 

fragments obtained by nested PCR (34F2/35R2) of WRN and STS-N22494 transcripts, showing that sts-

N22494 represents a longer WRN transcript. FB: fetal brain; NP: normal prostate; RT: reverse 

transcriptase. 
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DISCUSSION  

 

 In this study, we describe the genetic characterization of chromosome 8 in fifteen 

human prostate cancer derived xenografts and cell lines, mainly focused on the 

homozygous deletion at 8p12 in xenograft PC133 (Van Alewijk et al. 1999). Xenografts 

and cell lines are unique starting materials for the identification of genes associated with 

prostate cancer and the functional characterization of such genes.  

 Loss of 8p and gain of 8q are among the most frequently observed chromosomal 

alterations in clinical prostate cancer samples (Bova et al. 1993; Trapman et al. 1994; 

Visakorpi et al. 1995; Cher et al. 1996; Vocke et al. 1996; Nupponen et al. 1998b; 

Prasad et al. 1998; Alers et al. 2000). Loss of 8p indicates the localization of one or 

more tumour suppressor genes and amplification of 8q suggests the presence of 

oncogenes. By CGH, ten out of fifteen xenografts and cell lines showed loss of 8p, 

encompassing the region 8p12-pter in eight samples. Furthermore, in eleven samples 

gain of 8q was found. So, the xenografts and cell lines reflect the chromosome 8 

alterations found in patient materials. 

 Concomitant 8p loss and 8q gain has been attributed to the presence of 

isochromosome 8q (Macoska et al. 2000). In at least four xenografts this mechanism 

might have occurred (PC295, PC324, PC329, and PC374). However, in four xenografts 

and cell lines, different chromosome alterations must have taken place. CGH data 

indicate loss of 8p without gain of 8q in TSU, amplification of 8q13-qter in PC3, loss of 

distal 8p and gain of distal 8q in PC310, and a dicentric chromosome 8 in PC133 (Van 

Alewijk et al. 1999).  

In general, CGH data matched those obtained by allelotyping. Major 

discrepancies were found for PC339, PC3, TSU and DU145. In PC339, CGH indicated 

gain of the entire chromosome 8. However, all polymorphic markers on 8p showed one 

allelic form, which is strong evidence for 8p loss. Probably, one copy of chromosome 8 

lost its p-arm, followed by amplification of the second, intact, copy. Similarly, CGH 

indicated gain of 8q in PC3, but all seven 8q markers showed one allelic band. Possibly, 

one copy of chromosome 8 was lost and the q-arm of the second copy was amplified.  In 

DU145, CGH showed 8p loss and by allelotyping two alleles for the most distal marker 

D8S264 and four 8p SNPs were found. The most likely explanation for the discrepancy 
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is loss of 8p in the partially triploid cell line DU145. In TSU, CGH indicated loss of 8p, but 

allelotyping suggested loss of one entire copy of chromosome 8. Interestingly, a similar 

observation was made by allelotyping of chromosomes 6 and 10 (Verhagen et al. 2002; 

Hermans, unpublished), suggesting a defect in chromosome segregation in this cell line. 

Our CGH data of the cell lines PC3, LNCaP, TSU and DU-145 were in accordance with 

previous CGH and SKY studies (Bernardino et al. 1997; Nupponen et al. 1998a; Pan et 

al. 1999). The complementary allelotyping showed that genomic alterations in these cell 

lines might be more complex than indicated by CGH. Small regions of amplification or 

loss might be most accurately identified by array CGH (Pinkel et al. 1998). This might 

lead to detection of high-level amplifications on 8q and small regions of loss in those 

xenografts and cell lines that seem to contain a normal 8p content. Array CGH might 

also be applied to confirm the proposed small region of loss in PCEW (Fig. 2) and to 

identify novel small homozygous deletions on 8p.  

In PC346, PC374, LNCaP and DU145 we observed a high frequency of MSI, 

implicating defects of the mismatch repair machinery. In DU145 a splice acceptor site 

mutation has been found in MLH1 (Boyer et al. 1995; Chen et al. 2001). LNCaP 

contained a homozygous deletion of MSH2 (Leach et al. 2000; Chen et al. 2001);  

Trapman, unpublished). The defects in mismatch repair genes in PC346 and PC374 

remain to be established. MSI was also detected in the clinical specimen from which 

xenograft PC346 was derived (data not shown). The frequency of MSI or aberrant 

expression of mismatch repair genes in clinical prostate cancer specimens, as reported 

so far, is very variable, ranging from 0% to 65% (Egawa et al. 1995 ; Uchida et al. 1995; 

Cunningham et al. 1996; Rohrbach et al. 1999). Our observations warrant renewed 

search for the role of mismatch repair genes in prostate cancer. 

Although we carried out an extensive search, we were unable to find in any of the 

xenografts and cell lines a homozygous deletion overlapping the one previously detected 

in PC133 (Van Alewijk et al. 1999). The deletion in PC133 has a length of approximately 

890 Kbp and disrupts WRN. The complete sequence of this genomic region is known. 

Except for WRN, no genes mapped in this region, utilizing a variety of experimental and 

gene prediction approaches. Because in PC133 the homozygous deletion was selected 

during tumour growth, it is very likely that WRN plays a role in the development of this 

tumour. WRN encodes a RecQ helicase that also contains DNA exonuclease activity. It 

is believed to function in maintaining the integrity of the genome (Moser et al. 2000a) 

reviewed by (Hickson 2003). Werner Syndrome patients are characterized by premature 
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aging and by predisposition for tumour development. In mouse models, Wrn deficiency 

accelerates tumour growth and broadens the tumour profile of p53 null mice (Lombard et 

al. 2000; Lebel et al. 2001). Although prostate cancer has never been associated with 

Werner Syndrome these properties make it a candidate tumour suppressor gene in 

PC133. WRN seems not to be involved in the other xenografts and cell lines, because 

no deletions or point mutations have been found. However, it cannot be excluded that 

diminished WRN expression, due to haplo-insufficiency contributes to tumour formation. 

Targeted inactivation of Wrn in appropriate mouse cancer models will be instrumental to 

investigate this hypothesis. 
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INTRODUCTION 
 

One of the most frequent genomic alterations in prostate cancer is partial or 

complete loss of chromosome arm 8p, which indicates the localization of one or more 

tumour suppressor genes on this chromosomal arm (Kunimi et al. 1991; Visakorpi et 

al. 1995; Cher et al. 1996; Cunningham et al. 1996; Nupponen et al. 1998b; Saric et 

al. 1999; Alers et al. 2000). An important first step in the identification of tumour 

suppressor genes is the identification of a homozygous deletion. In prostate cancer, 

several homozygous deletions have been identified at chromosome 8p (Bova et al. 

1993; Kagan et al. 1995; Prasad et al. 1998; Levy et al. 1999; Van Alewijk et al. 1999). 

However, this has so far not resulted in the isolation of a bona fide tumour suppressor 

gene. The homozygous deletion that we identified disrupted the Werner syndrome 

gene (WRN) in xenograft PC133 (Van Alewijk et al. 1999). However, structural 

alterations or absence of WRN expression could not be found in any of 11 prostate 

cancer xenografts, generated in Rotterdam (Noordzij et al. 1996; Van Weerden et al. 

1996; and references therein), or the cell lines PC-3, LNCaP, TSU and DU-145. It was 

concluded that complete inactivation of WRN had no significant role in prostate cancer 

(Chapter 5; Van Alewijk et al. submitted).  

We continued to search for a tumour suppressor gene on 8p12-p21 by two 

parallel experimental approaches. First, screening for novel homozygous deletions, 

and secondly, structural and expression analysis of candidate genes. As a start we 

investigated LZTS1/FEZ, NKX3-1, EPHX2 and CLU on 8p12-p21, POLB on 8p11 and 

PRLTS on 8p22. Except for EPHX2 and CLU, all genes were previously implicated in 

prostate cancer (Dobashi et al. 1994; Komiya et al. 1997; Ishii et al. 1999; Kim et al. 

2002a). EPHX2 and CLU were selected because of their physiological function. 

In both the screening for homozygous deletions, and the expression and 

mutation analysis we used the xenografts and cell lines as described above. 

Xenografts and cell lines are powerful tools for the genetic analysis of cancer because 

they lack contaminating normal cells of human origin. Like in prostate cancer tissues, 

deletion of 8p in xenografts and cell lines is a frequent chromosomal defect (Chapter 

5; Van Alewijk et al., submitted). If the expression and mutation analysis of the 

xenografts and cell lines showed a possible tumour related alteration, we continued by 

screening for mutations in DNAs from 43 locally progressive prostate tumour samples.  
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MATERIALS AND METHODS 

 

Prostate Cancer derived Xenografts and Cell lines  

The in vitro growing cell lines LNCaP, PC-3, DU-145 and TSU were grown under 

standard cell culture conditions. The in vivo xenografts PC82, PCEW, PC133, PC135, 

PC295, PC310, PC324, PC329, PC339, PC346 and PC374 were propagated on male 

nude mice as described (Van Weerden et al. 1996). Prostate tumour tissues were from 

patients with a confirmed clinical history of locally progressive prostate cancer. Tissue 

samples were obtained by transurethral resection (TUR). 

 

DNA and RNA preparation  

Genomic DNA from xenografts and cell lines was isolated according to standard 

procedures, including overnight proteinase K incubation at 55°C, phenol extraction and 

ethanol precipitation. DNA pellets were dissolved in TE buffer (10 mM Tris.HCl, pH7.8; 1 

mM EDTA). Tumour DNA was isolated from five consecutive 5 µm cryostate tissue 

sections according to the standard procedure. In the vast majority of cases, control DNA 

was from white blood cells. For a minority of tumours, control DNA was from non tumour 

regions of prostate tissue. 

RNA was isolated by standard guanidinium isothiocyanate (cell lines) or LiCl 

(xenografts) protocols (Sambrook et al. 2001). Total RNA from foetal brain and normal 

prostate were purchased from Clontech (Palo Alto, CA). 

 

PCR amplification and SSCP 

PCR amplifications, using Taq polymerase (Promega, Madison, WI) included 30 

cycles of denaturation for 1 min at 95°C, 1 min annealing at 50°C or 55°C, and extension 

for 1 min at 72°C. For PCR-SSCP, 1 µCi [alpha-32P]dATP (Amersham, 

Buckinghamshire, UK) was added to the 15 µl reaction mixture. For SSCP, radio-labelled 

PCR products were separated on a 6% non-denaturing polyacrylamide gel containing 

10% glycerol at low power, overnight at room temperature. Gels were dried and exposed 

to X-ray film for an appropriate period. Standard PCR amplifications were performed in a 

50 µl reaction volume. Amplified fragments were separated on a 2% agarose gel. 

 

Screening for homozygous deletions 
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The 15 xenograft and cell line DNAs were analysed by PCR for homozygous 

deletions in a 17 Mbp region on 8p12-p21, utilising approximately 300 specific markers 

(see Appendix A6 - supplementary Table I). Amplified fragments were separated on a 

2% agarose gel. Primer sets are available upon request. 

 

mRNA expression 

mRNA expression was assayed by RT-PCR. First-strand cDNA synthesis was 

on 1 µg RNA for 1 hr at 37°C using 200 U M-MLV-RT (Life Technologies, Rockville, 

MD) and a T12-site primer (5-GCATGCGAATTCGGATCCT12-3) in first-strand buffer 

(Life Technologies), containing 10 mM DTT, 1 mM dNTPs, and 40 U RNAsin 

(Promega). The first PCR reaction was performed on 5% of the cDNA reaction 

mixture, utilizing a specific forward (F) primer in combination with site-primer 5-

GCATGCGAATTCGGATCC-3. Next, semi-nested PCR fragments were obtained with 

gene specific forward and reverse primers (F/R) on 1/500 of the first PCR product. 

Gene specific primer combinations for RT-PCR of PDGFRL, LZTS1, NKX3-1, EPHX2, 

CLU, POLB, and RNA pol-II are available upon request. 

 

Structural analysis  

Amplified fragments were purified over QIAquick spin columns (Qiagen, Hilden, 

Germany), ligated into pGEM-T Easy, and sequenced by the dideoxy chain termination 

method.  

 

RESULTS AND DISCUSSION 

 

Here, the preliminary results of the search for homozygous deletions at 

chromosome 8p12-p21, and the expression and mutation analysis of the genes 

PDGFRL, LZTS1, NKX3-1, EPHX2, CLU, and POLB in prostate cancer are described.  

 

High-density screening for homozygous deletions at 8p12-p21 
 To screen the xenografts and cell lines for a homozygous deletion in a 17 Mbp 

region on 8p12-p21, approximately 300 markers mapping between LPL and 

BC028701 were selected (see Appendix A6 - supplementary Table I). Except for the 

previously described homozygous deletion in PC133 (Van Alewijk et al. 1999), no 

homozygous deletion could be identified, despite the high marker density. 
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Expression and mutation analysis of candidate tumour suppressor genes 

In previous studies, 4 genes have been claimed to be involved in prostate 

cancer, PDGFRL (8p22), LZTS1/FEZ (8p21), NKX3-1 (8p21) and POLB (8p11). 

PDGFRL was suggested as a candidate tumour suppressor gene because of 1 

missense mutation in a series of 69 prostate tumour samples (Fujiwara et al. 1995). In 

addition, missense and frameshift mutations were found in 2 out of 48 hepatocellular 

cancer and 1 out of 28 colorectal cancers (Fujiwara et al. 1995). LZTS1 was 

suggested to be a tumour suppressor gene, because expression was undetectable in 

more than 60% of epithelial tumours, whereas it is ubiquitously expressed in normal 

tissues (Ishii et al. 1999). In addition, in a series of 194 epithelial tumours, Ishii et al 

(1999) found 2 missense mutations in primary oesophageal cancers and 1 nonsense 

mutation in the prostate cancer cell line PC-3. Further, LZTS1 expression levels were 

significantly reduced in gastric carcinomas (Vecchione et al. 2001). Germ line 

sequence variants of the LZTS1 gene were associated with an increased prostate 

cancer risk (Hawkins et al. 2002). Because of its function and prostate specific 

expression the homeobox gene NKX3-1 was associated with prostate cancer (He et 

al. 1997; Sciavolino et al. 1997; Bhatia-Gaur et al. 1999). POLB showed 1 frameshift 

and 1 missense mutation in a series of 12 prostate cancer samples (Dobashi et al. 

1994). In addition, 1 missense and 1 frameshift mutation were found in 2 out of 6 

colorectal cancers (Wang et al. 1992). 

 In addition to candidate tumour suppressor genes from literature searches, 

EPHX2 (8p21) was studied because of its function as a cytosolic member of the family 

of the epoxide hydrolases (Larsson et al. 1995; Sandberg and Meijer 1996). In various 

organisms epoxide hydrolases have an important protective function because they are 

able to convert potentially harmful epoxide-containing compounds into diols, which are 

less reactive and easier to secrete (Meijer and DePierre 1988). Interestingly, a 

significant association was found between polymorphisms and activity of microsomal 

epoxide hydrolase 1 (EPHX1), and cancers of the respiratory tract (Benhamou et al. 

1998; Jourenkova-Mironova et al. 2000). The authors postulated that EPHX1 was an 

important genetic determinant for smoking-induced lung cancer.   

CLU (8p21) has also been investigated as a candidate tumour suppressor gene 

because of its function. Clusterin has been implicated in several diverse physiological 
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processes, one of these is apoptosis of normal and prostate cancer cells (Trougakos 

and Gonos 2002; Miyake et al. 2003).  

For neither PDGFRL, nor CLU or POLB any alteration in expression, as 

analysed by RT-PCR, or structure, as determined by PCR-SSCP and sequencing, 

was detected in the 15 xenografts and cell lines, indicating an insignificant role in 

prostate cancer (data not shown).  

As shown in Table I, expression of LZTS1 mRNA was detectable in all RNA 

samples, except for PC133. NKX3-1 mRNA was detectable in all RNA samples from 

prostate. As expected NKX3-1 mRNA expression was undetectable in foetal brain (He 

et al. 1997). Except for TSU, the expression of EPHX2 mRNA was detectable in all 

RNA samples. In summary, no significantly altered expression pattern in prostate 

cancer was found for these 3 genes. 

 

Table I 

Expression of candidate tumour suppressor genes on chromosome 8p in prostate cancer 

 

 

 

LZTS1 and EPHX2 were initially analysed for mutations by PCR-SSCP on 

genomic DNA of the xenografts and cell lines. Subsequently, samples showing 

aberrant SSCP bands were sequenced. Because paired control DNA was not 

available, 50 independent normal DNAs were used as controls. NKX3-1 sequence 

was analysed by PCR-SSCP of overlapping amplified cDNA fragments, encompassing 

the complete open reading frame. NKX3.1 single nucleotide polymorphisms present in 

databases were used as controls. The experimental results are listed in Table II. 

Frequently found polymorphisms are not included. 
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LZTS1 

As shown in Table II, we identified in LZTS1 1 silent polymorphism and 

mutations or rare polymorphisms in DU-145 (AAC>AGC, codon 223) and in LNCaP 

(CAG>CGG, codon 556), respectively. In both DU-145 and LNCaP the wild type allele 

was retained. We could not find the previously by Ishii et al. (1999) reported nonsense 

mutation in LZTS1 at codon 501 in PC3. Possibly, the PC3 cell line analysed by Ishii 

and co-workers has gained the mutation during culturing. Although our results 

implicated a minor role for LZTS1 in PrCa, support for LZTS1 as a tumour suppressor 

gene was published by Cabeza-Arvelaiz et al. (2001). These authors demonstrated 

that transfer of YAC and BAC clones containing the LZTS1 gene into rat prostate 

AT6.2 cells reduced their colony-forming efficiency. Subsequent experiments showed 

that over-expression of LZTS1 cDNA inhibited colony-formation in soft agar of AT6.2, 

HEK-293 and LNCaP cells (Cabeza-Arvelaiz et al. 2001).  

 

NKX3-1  

Two different NKX3-1 sequences were detected. Previously, these were 

identified as single nucleotide polymorphisms (Voeller et al. 1997). Although no 

structural indications were found, evidence is growing for a role of NKX3-1 in prostate 

cancer. The mechanism through which NKX3-1 functions in prostate cancer appears 

not to be by bi-allelic inactivation but by haplo-insufficiency (Bhatia-Gaur et al. 1999; 

Abdulkadir et al. 2002; Kim et al. 2002a). 

 

EPHX2  

Although minor differences were found in EPHX2 mRNA expression, structural 

analysis revealed interesting data. As shown in Table II, we detected in the xenografts 

PC133 and PC324 and in the cell line PC3 unique sequences, which were not present 

in the 50 control DNAs. The wild type allele was lost in all 3 DNAs. For PC324, the 

corresponding tumour tissue (T1.7) and paired control DNA were available. These 

DNAs also contained the unique TCT codon 344. 

Subsequent study of EPHX2 in DNAs from 43 prostate tumour tissues showed 

4 rare polymorphisms, leading to amino acid substitutions. Remarkably, in all cases 

the wild type allele was lost (Table II). Some of these amino acid residues were in 

conserved regions, suggesting that they could affect EPHX2 function. In a Swedish 

(n=25) and a Japanese (n=48) study (Sandberg et al. 2000; Saito et al. 2001) the 
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polymorphisms that we described were not found in normal control DNAs. Although 

absence of these rare polymorphisms might be explained by a difference in ethnic 

background and by the low number of samples, they support a possible role of EPHX2 

as a susceptibility gene in prostate cancer. This hypothesis however needs to be 

substantiated by screening of a significant larger cohort of preferably Dutch 

individuals, and by functional studies of mutated EPHX2.  
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CHAPTER 7 

GENERAL DISCUSSION  
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The work described in this thesis covers the search for tumour suppressor genes 

located in chromosomal regions at 8p and 10q that are frequently deleted in prostate 

cancer (PrCa). The study was originally guided by the paradigm that cancer is a genetic 

disease involving dominant mono-allelic activation of proto-oncogenes and recessive 

bi-allelic inactivation of tumour suppressor genes. Many tumour suppressor genes and 

oncogenes have indeed been identified that follow this classical principle. The number 

of tumour suppressor genes as well as the number of tumour types in which they are 

shown to be involved is however still relatively limited. Evidence is growing that the 

general genetic and molecular mechanisms underlying tumourigenesis is more 

complex and that the classical principles require adjustment. This seems also true for 

PrCa. 

  

PTEN: a classical PrCa tumour suppressor gene at chromosome 10q 

 Deletions of chromosome 10q are among the most frequent chromosomal 

alterations observed in advanced PrCa (50-70%). In 1997, Li and co-authors identified 

bi-allelic inactivating mutations in the PTEN gene in multiple tumour types, including 

PrCa. PTEN is located at chromosome 10q and is now known as the classical PrCa 

tumour suppressor gene. We and others found frequent bi-allelic PTEN inactivation in 

PrCa. We identified PTEN deletions or mutations in 7 out of 11 human PrCa 

xenografts (Vlietstra et al. 1998). Overall, PTEN mutations are observed in a small 

proportion of primary PrCa (5-15%) and in a majority of metastatic PrCa (30-60%). 

The frequencies of bi-allelic inactivations of the PTEN gene in PrCa are however 

consistently lower than the rates of 10q loss of heterozygosity in these tumours. 

  

Is there a classical PrCa tumour suppressor gene at chromosome 8p?  

 Loss of chromosome 8p is the most common chromosomal alteration in PrCa, 

occurring already in PIN (20-60%) and increasing during PrCa tumour progression 

(45-85%), indicative for the presence of more than one tumour suppressor gene on 

this chromosomal arm. The location of a tumour suppressor gene involved in PrCa at 8p 

was substantiated by chromosomal transfer experiments. Many independent studies, 

including several from our laboratory, have revealed a complicated picture of the allelic 

losses at 8p. There are multiple regions of frequent loss of heterozygosity at this 

chromosomal arm, including 8p22-p23, 8p12-p21, and 8p11-p12. The losses of 8p22-
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p23 and 8p21.3 correlate with tumour grade and the losses of 8p21.1-p21.2 correlate 

with tumour progression, suggesting that chromosome 8p may contain multiple tumour 

suppressor genes involved in PrCa. Obviously, the presence of multiple tumour 

suppressor genes at 8p will complicate the identification of any of these genes. Although 

we and others have taken this possibility into account and have adjusted our gene 

searches accordingly, not a single classical tumour suppressor gene at 8p has been 

found as yet. This raises the question if there exists such genes at 8p. If not, why then 

would 8p losses correlate with tumourigenesis? 

 

Haplo-insufficiency as an additional mechanism in tumourigenesis 

 Like for chromosome 8p, searches for PrCa tumour suppressor genes were 

also unsuccessful for other frequenty deleted chromosome arms such as 5q, 13q and 

16q. Similar difficulties were encountered for the characteristic losses in other tumour 

types. In 2000, Cook and McCaw proposed an important extension of the paradigm in 

cancer genetics by suggesting that mono-allelic inactivation of a tumour suppressor 

gene may eventuate in a selective growth advantage of the mutant cell. Such haplo-

insufficiency would result in a lower dosage of the encoded protein, presumably 

enough to effectuate clonal outgrowth. Ever since, a growing number of reports has 

provided evidence for a role of haplo-insufficiency in tumourigenesis (reviewed by 

Quon and Berns 2001; Fodde and Smits 2002). Importantly, haplo-insufficiency would 

very well explain the inability to find a classical PrCa tumour suppressor gene at 8p, 

as mono-allelic inactivation through loss of heterozygosity would suffice (Kim et al. 

2002a). 

 

Is haplo-insufficiency a common mechanism in PrCa? 

 Although it has been shown that PTEN is a classical tumour suppressor gene in 

PrCa and in many other human malignancies, the rate of bi-allelic inactivation seems 

significantly lower than the rate of loss of heterozygosity at the PTEN locus (Cairns et 

al. 1997; Teng et al. 1997; Feilotter et al. 1998; Whang et al. 1998). Apart from a 

second tumour suppressor gene located nearby PTEN, this could point to a role of 

PTEN haplo-insufficiency in tumour growth. In mice, concomitant inactivation of a single 

Pten allele with one or both of Cdkn1b, Cdkn2a or Nkx3-1 alleles was found to 

accelerate spontaneous neoplastic transformation (Di Cristofano et al. 2001; Kim et al. 

2002b; You et al. 2002). Crosses of TRAMP mice, having SV40 early genes driven by 
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the prostate-specific probasin promoter, with heterozygous Pten (+/-) mice also 

revealed that mono-allelic inactivation of the Pten gene promoted the progression of 

PrCa (Kwabi-Addo et al. 2001). Together these findings provide evidence that Pten 

haplo-insufficiency indeed is involved in PrCa in mice. Similarly, loss of heterozygosity 

at the PTEN locus in human PrCa may promote tumourigenesis by haplo-insufficiency 

of the gene, thus explaining the discordance between the PTEN mutation rate and the 

rate of loss of heterozygosity at 10q.  

 Whereas haplo-insufficiency may perhaps be of minor importance for the PTEN 

gene, it could be a particularly important mechanism for the multiple PrCa tumour 

suppressor genes thought to be located at 8p. It may be that the additive effect of mono-

allelic inactivation of several tumour suppressor genes at the same time by loss of a 

large part of the chromosomal arm has a stronger effect on tumour growth than the bi-

allelic inactivation of just a single tumour suppressor gene at this arm. In my opinion, at 

least four candidate tumour suppressor genes at 8p deserve attention, in particular 

because of their potential to promote PrCa by haplo-insufficiency. In mouse models, 

unambiguous evidence has been provided that the NKX3-1 gene at 8p21.2 promotes 

PrCa tumour growth by haplo-insufficincy. Mono-allelic inactivation of Nkx3-1 in adult 

mice results in the development of hyperplasia and apparent PIN lesions in the prostate 

(Abdulkadir et al. 2002; Bhatia-Gaur et al. 1999; Kim et al. 2002a). Several alterations 

have been observed for the LZTS1 gene at 8p21.3, including significantly reduced 

mRNA expression levels, sparce missense mutations and germline sequence 

variants. In addition, restoration of LZTS1 function by gene transfer experiments 

implicated LZTS1 as a tumour suppressor gene (Hawkins et al. 2002; Ishii et al. 1999; 

Vecchione et al. 2001). We found the WRN gene at 8p12 to be disrupted by a 

homozygous deletion in one of our PrCa xenografts. The WRN protein belongs to the 

highly conserved family of RecQ helicases. WRN and other family members like BLM 

and RECQ4 are associated with rare chromosomal instability disorders that also include 

a predisposition to develop cancer (Hickson 2003). Heterozygous human WRN (+/-) cells 

expressed reduced levels of WRN protein and had reduced helicase activity, which was 

associated with an increased sensitivity to DNA damaging agents and genetic instability 

(Moser et al. 2000b). Haplo-insufficiency may also be of importance for other RecQ 

helicases, because Blm (+/-) heterozygous mice showed an enhanced tumour formation 

(Goss et al. 2002). Lastly, I believe the EPHX2 gene at 8p21.1 to be a promising 

candidate tumour suppressor gene in PrCa. We identified germline sequence 
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variants of the EPHX2 gene in 4 out of 43 PrCa samples, whereas no variations 

were identified in 50 control samples. Importantly, all of 4 PrCa samples with a 

variant EPHX2 allele had lost the wild-type EPHX2 allele, suggesting bi-allelic 

inactivation of the gene. Although the numbers are small, it is tempting to speculate 

that EPHX2 is a low-penetrant susceptible gene in PrCa.  

 

How to hunt for genes inactivated by haplo-insufficiency across the genome?  

 The majority of tumour suppressor genes identified to date follow the classical 

paradigm of bi-allelic inactivation. Bi-allelic inactivation of a tumour suppressor gene is 

however presumed to have a stronger effect on clonal outgrowth than mono-allelic 

inactivation of the gene (Fero et al. 1998, Smits et al. 2000), which inevitably will have 

biased the identification of the classical tumour suppressor genes. Indeed, the tumour 

types in which they have been identified generally are rather aggressive in their growth 

pattern. In this respect, clinical diagnosed PrCa generally has a late age of onset and 

is a slow growing tumour type. It may be that the tumour suppressor genes involved in 

PrCa commonly exert their tumour promoting effect by haplo-insufficiency. If so, the 

identification of these genes may require a different approach. The more subtle the 

tumour promoting effect of a mutation in a tumour suppressor gene, the larger the 

amount of tumour samples necessary to prove such an effect. In other words, searches 

for PrCa genes should exploit high-throughput screening procedures.  

Recent technological developments, in particular microarray analysis, now allow 

the performance of many tests in parallel. On a microarray, DNA or protein fragments 

are organized in a gridded way at a flat surface, such as a glass slide or a porous 

substrate. Microarray analysis can be applied to identify both larger chromosomal 

alterations and smaller genomic changes at the nucleotide level (e.g. CGH and SNP 

microarrays, respectively). Large-scale expression analysis can be performed on RNA 

and protein level using cDNA and oligo microarrays and protein microarrays, 

respectively. The integration of such high-throughput genomics and proteomics 

analysis with functional studies should eventually result in the identification of the 

PrCa tumour suppressor genes on chromosomes 5q, 8p, 13q and 16q. 
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A1 Table I. HPC loci and candidate genes 
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A2 Table II. Details on chromosomal losses observed by CGH analysis in 
PrCa
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A HIGH-RESOLUTION PHYSICAL AND TRANSCRIPT MAP OF CHROMOSOME 
8P12-P21 
 

To facilitate search for homozygous deletions and mapping of candidate tumour 

suppressor genes we isolated the 8p12-p21 region in a large YAC contig. The contig 

was finished in 2000. YACs were identified and selected by standard PCR screening 

and Southern blotting of the CEPH YAC library (Albertsen et al. 1990) and the CEPH 

mega YAC library (Chumakov et al. 1992). Single YACs were tested for the presence 

of specific markers by PCR. The contig is bordered by the telomeric marker LPL at 

8p21.3 and the centromeric marker BC028701 at 8p12. It is composed of 172 

overlapping YACs and 303 markers, including polymorphic microsatellite markers, 

sequence-tagged sites (STSs), ESTs, genes and pseudogenes, were mapped in the 

contig (Table I). From selected YACs the end fragments were isolated and mapped. 

Chimeric YACs were included in the contig, because the 8p part of these YACs turned 

out to be of value for the construction of the contig and for accurate marker mapping. 

The final map was constructed such that a minimal number of YACs contained an 

internal deletion. 

 In 2001, the first draft sequence of the human genome was published (Lander 

et al. 2001; Venter et al. 2001). Recently, the completion of the human genome was 

announced by The International Human Genome Sequencing Consortium (Nature 

April 27, 2003). We compared the several consecutive releases of the gene maps of 

the University of California Santa Cruz (UCSC) database (http://genome.ucsc.edu) 

with the map deduced from the YAC contig. A minority of the genes and markers from 

the YAC contig were present in the 2001 UCSC map. Although the UCSC November 

2002 map was detailed, some regions were differently ordered as compared to the 

YAC map. The UCSC April 2003 release and the YAC map show a good fit (Table I). 

As calculated from the human genome sequence, the YAC contig spans 

approximately 17 Mbp. However, as shown in Table I by grey-boxed areas, there are 

some small discrepancies between both maps. The most obvious discrepancy is the 

region around the NEF3 and NEFL genes. Some of differences might be due to 

previously unrecognized internal deletions in the YACs. However, although the human 

genome sequence from which the UCSC map is derived, is considered as over 99.9% 

accurate, it might still contain some alignment errors. The UCSC genome sequence 

contains one small gap, between Mbp 29.28 and 29.78.  
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Table II summarizes the ordered genes in the UCSC map and the YAC map. 

The UCSC map contains 95 genes, 72 of these were previously mapped in the YAC 

contig. For 9 genes the positions in the YAC map and UCSC map slightly differ. 

MGC29816 could not be located on the UCSC map. Most likely, MAPKK maps in the 

gap present in the UCSC map. 8p12-p21.3 contains 3 gene poor regions, between 

Mbp 19.9 –21.3, 30.7-32.4 and 33.3-35.5, respectively. The homozygous deletion in 

PC133 maps in the Mbp 30.7-32.4 segment.   

 

LEGENDS TO THE TABLES 

 

Supplementary Table I. YAC-contig of chromosome 8p12-p21 spanning the 

region between the markers LPL and BC028701. Gene names are listed in the first 

column. Alternative names, ESTs, ESTs by which genes were mapped, and STSs 

without a locus number are listed in the second column. In case a definite order could 

not be established, markers are boxed by a dark line. In the third column, the marker 

position in the UCSC April 2003 database are listed (Mbp from the top of 8p). In the 

fourth column, marker types are listed: (p) polymorphic marker; (s) STS; (e) EST; (g) 

gene; (pg) pseudogene.  

 

Supplementary Table II. Alignment of known genes from the YAC-contig and 

the UCSC April 2003 database. Known genes that were mapped in the YAC contig 

are listed in the first column, the UCSC genes are listed in the second column. In the 

third column, the marker positions in the UCSC April 2003 database are listed. In the 

fourth column the chromosomal band is indicated. 
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Supplementary Table II
Alignment of known genes from the YAC-contig and the UCSC April 2003 database

JNI - 2000 UCSC Apr 03 Mbp Band JNI - 2000 UCSC Apr 03 Mbp Band
LPL LPL 19.60 8p21.3 FLJ25804 FLJ25804 25.18

SLC18A1 19.81 EBF2 25.52

ATP6V1B2 ATP6V1B2 19.88 PPP2R2A PPP2R2A 26.04

LZTS1 LZTS1 19.91 BNIP3L BNIP3L 26.08

GFRA2 GFRA2 21.35 PNMA2 PNMA2 26.18

DOK2 DOK2 21.58 DPYSL2 DPYSL2 26.33

XPO7 21.68 ADRA1A ADRA1A 26.43

FGF17 21.72 STMN4 STMN4 26.91

EPB49 21.76 TRIM35 TRIM35 26.96

RAI16 RAI16 21.78 PTK2B PTK2B 27.13

FLJ22494 21.78 CHRNA2 27.14 8p21.1
HR HR 21.79 EPHX2 EPHX2 27.22

FLJ22246 21.81 CLU CLU 27.27

EPB49 ADRA1A 26.43

XP07 SCARA3 27.31

LGI3 LGI3 21.82 FLJ10853 FLJ10853 27.41

SFTPC SFTPC 21.84 TOPK TOPK 27.48

BMP1 BMP1 21.84 MGC45780 27.58

FLJ22246 ELP3 ELP3 27.83

PHYHIP PHYHIP 21.89 PNOC 28.02

POLR3D 21.92 DKFZp434K1210 28.02

PIWIL2 PIWIL2 22.03 LOC55893 LOC55893 28.02

PPP3CC PPP3CC 22.21 PNOC
SCAM-1 SCAM-1 22.25 FBX16 28.11

PDLIM2 PDLIM2 22.27 FZD3 FZD3 28.18

FLJ34715 FLJ34715 22.28 EXTL3 EXTL3 28.43

DBC-1 DBC-1 22.29 FLJ10871 FLJ10871 28.44

BIN3 BIN3 22.29 FLJ21616 FLJ21616 28.68

FLJ14107 22.32 KIF13B KIF13B 28.74 8p12
EGR3 EGR3 22.36 DUSP4 DUSP4 29.01

MGC22776 22.39 8p21.2 MAPKK gap

RHOBTB2 RHOBTB2 22.68 MGC8721 MGC8721 29.77

TNFRSF10B TNFRSF10B 22.69 LEPROTL1 LEPROTL1 29.81

MGC29816 DCTN6 DCTN6 29.89

TNFRSF10C TNFRSF10C 22.79 RBPMS 30.09

TNFRSF10D TNFRSF10D 22.81 1D12A 1D12A 30.13

TNFRSF10A 22.87 RBPMS
MGC29816 22.93 GTF2E2 GTF2E2 30.31

LYSAL1 GSR GSR 30.39

LOXL2 LOXL2 22.97 D8S2298E D8S2298E 30.48

LYSAL1 23.10 PPP2CB PPP2CB 30.49

MSCP 23.24 TEX15 30.55

PRO1496 23.21 PURG 30.74

MSCP WRN WRN 30.78

NKX3-1 NKX3-1 23.35 NRG1 NRG1 32.47

STC1 STC1 23.52 FUT10 33.09

ADAM28 ADAM28 24.03 LOC84549 33.21

ADAMDEC1 24.06 FLJ23263 33.21

NEF3 NEF3 24.59 FLJ12526 33.26

NEFL NEFL 24.63 MGC1136 MGC1136 33.30

FLJ21034 25.07 LOC84549
GNRH1 GNRH1 25.10 UNC5D UNC5D 35.50

FLJ20038 25.11 BC028701 BC028701 36.64

Mapping Mapping
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SUMMARY 

 

 Prostate cancer (PrCa) is the most frequently diagnosed cancer in men, and 

the second leading cause of male cancer death in Western countries (Chapter 1-1). In 

order to design novel targeted therapies, knowledge of the molecular mechanisms 

underlying PrCa growth are urgently needed. Like other cancers, PrCa is believed to 

result from genomic instability, leading to mutation, deletion, amplification and 

translocation of a large variety of genes that regulate cell growth and survival. 

Chromosomal loss is an indication for the localization of a tumour suppressor gene, 

whereas amplification and translocation are an indication for the localization of an 

oncogene (Chapter 1-2). One of the most frequent genetic abnormalities in PrCa is 

loss of the complete, or part of the short arm of chromosome 8. Loss of the long arm of 

chromosome 10 is another frequently observed genetic defect in PrCa (Chapter 1-3). 

The aim of this thesis is to further characterise the regions of frequent loss at 

chromosome 10q and 8p, and to identify the tumour suppressor genes located in these 

regions (Chapter 1-4).  

 This study mainly used a set of PrCa derived xenografts (11) and cell lines (4). 

Human tumours, propagated as xenografts in nude mice, or as in vitro growing cell lines 

are unique sources of tumour DNA that aid the identification of genetic defects in human 

cancer. They are available in unlimited quantities. Importantly, they lack normal cells of 

human origin, which increases the detection of chromosomal alterations, homozygous 

deletions and point mutations in individual genes and their expression level. An 

additional set of 43 prostate tumour samples was used for chromosome 8p gene 

mutation analyses. 

 The set of xenografts and cell lines was searched for chromosome 10 alterations 

by Comparative Genomic Hybridisation and allelotyping (Chapter 3). CGH revealed a 

pattern of loss of 10q in six out of fifteen samples, which were confirmed by allelotyping. 

These were all large deletions. In another seven samples, allelotyping revealed small 

regions of loss of 10q23.3, in particular. Recently, the PTEN tumour suppressor gene 

was identified and mapped to this chromosomal locus. A PTEN structure and expression 

analysis of the xenografts and cell lines demonstrated five homozygous deletions, two 

nonsense mutations, and two frame-shift mutations (Chapter 2). Except for the samples 

with a large homozygous deletion, no aberrant PTEN mRNA expression was found. This 
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indicates that expressional down-regulation is no important mechanism of PTEN 

inactivation. The high percentage (60%) of deletions and mutations implicates a 

significant role for PTEN in the pathogenesis of PrCa. Nevertheless, not all losses of 

10q23.3 were found in combination with a PTEN inactivation. Four samples with loss of 

10q showed an intact PTEN gene (Chapter 3). Apart from haplo-insufficiency, which has 

been assigned as a mechanism of PTEN inactivation, another 10q tumour suppressor 

gene may also be involved. We therefore analysed the deletion and down-regulation of 

expression of genes flanking the PTEN locus in both PTEN positive and negative 

samples (Chapter 3). Candidate gene FLJ11218 appeared particularly interesting 

because of its differential expression in several samples and a missense mutation in one 

sample, and because it accompanied all losses and homozygous deletions of PTEN. A 

search for tumour suppressor genes on distal 10p and 10q did not reveal alteration of 

expression or structure of the KLF6 and MXI genes. The DMBT1 gene at 10q was 

deleted in one xenograft and down-regulated in two. 

 The set of xenografts was also searched for chromosome 8 alterations by 

Comparative Genomic Hybridisation (CGH) and allelotyping (Chapter 5). CGH showed 

8p loss in ten DNAs. In eight of the samples 8p loss included the 8p12-p21 interval. In 

most DNAs allelotyping matched with the CGH data. Lack of a previously identified 

tumour suppressor gene on 8p forced us to fine map the position of a tumour 

suppressor gene. In the past, the search for a homozygous deletion has been pivotal 

in the identification of a number of tumour suppressor genes, including BRCA2, DPC4, 

and PTEN. We searched for homozygous deletions in the 8p12-p21 interval by using 

known and novel polymorphic and nonpolymorphic sequence tagged sites (STSs) 

between the markers D8S87 and D8S133. The interest for this specific region arose 

from our previous results, showing allelic loss in 69% of the PrCa samples. In 

xenograft PC133, the presence of a small homozygous deleted region of 730-1320 Kb 

was unambiguously established (Chapter 4). At one site, the deletion was found to 

disrupt the major part of the Werner Syndrome gene (WRN). To facilitate the 

identification and isolation of candidate tumour suppressor genes in this area, we 

generated a contiguous PAC/cosmid contig (Chapter 5). Thirty-seven STSs were 

localized in this map that were subsequently used to screen the panel of xenografts and 

cell lines for an overlapping homozygous deletion. No additional homozygous deletion 

was found. Exon trapping, database analysis of sequenced genomic DNA, or expressed 

sequence tag (EST) characterization did not reveal a novel bona fide gene other than 
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the WRN gene. A single EST, sts-N22494, was identified as part of the 3'-UTR of a 

longer WRN transcript. To test WRN as a candidate tumour suppressor gene in PrCa, a 

mutation and expression analysis was performed. Except for PC133, no alteration in 

WRN was found. Although absence of WRN may have contributed to PC133 tumour 

growth, no further evidence was found for a role of WRN in PrCa tumour development. 

This suggests another tumour suppressor gene on 8p12-p21. To facilitate the 

identification and isolation of candidate tumour suppressor genes in this area, we 

isolated the BC028701 - LPL segment, which completely contains the D8S87-D8S133 

region, in a single contig of approximately 17 Mbp, composed of 172 YACs (Appendix). 

We then ordered 303 markers within this contig, including polymorphic sequence tagged 

sites (STSs), nonpolymorphic STSs, expressed sequence tags (ESTs), genes, and 

pseudogenes. The availability of this robust physical and transcript map facilitated and 

justified an extensive search for a homozygous deletion on 8p12-p21 (Chapter 6). Again 

no homozygous deletion was found. We therefore continued our search for tumour 

suppressor genes by analysis of positional and functional candidate genes at 8p. An 

extensive mutation and expression analysis of the LZTS1, PRLTS, NKX3-1, EPHX2, 

CLU and POLB genes was performed. We did not find convincing evidence that any of 

these genes are frequently bi-allelic inactivated in human PrCa, although the EPHX2 

gene may require further analysis.  

 In conclusion, except for PTEN not a single gene on chromosome 8p or 

elsewhere on 10q was found to be frequently inactivated due to a double hit deletion 

and or mutation (Chapter 7). Haplo-insufficiency as an additional mechanism of gene 

inactivation and its possible implications for PrCa tumorigenesis are discussed in a 

larger context.  
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SAMENVATTING 

 

 Prostaatkanker is de meest voorkomende vorm van kanker bij mannen in 

Westerse landen, en de op een na meest frequente oorzaak van overlijden aan 

kanker bij mannen (Hoofdstuk 1.1). Om nieuwe therapieën te kunnen ontwikkelen is 

kennis van de moleculaire mechanismen die ten grondslag liggen aan het ontstaan en 

de groei van de tumor noodzakelijk. Net zoals bij andere tumoren, wordt gedacht dat 

prostaatkanker het gevolg is van instabiliteit van het genoom. Deze instabiliteit 

resulteert in mutatie, deletie, amplificatie en translocatie van een grote variëteit aan 

genen die betrokken zijn bij de regulering van celgroei en celdood. Verlies, amplificatie 

en translocatie van specifieke delen van chromosomen zijn karakteristieken van 

tumorcellen. Verlies is een aanwijzing voor de locatie van een gen dat de groei van 

een tumor remt, oftewel een tumorsuppressorgen. Een amplificatie of translocatie is 

daarentegen een aanwijzing voor de locatie van een gen dat de groei van een tumor 

stimuleert, oftewel een oncogen (Hoofdstuk 1.2). Een van de meest voorkomende 

afwijkingen van het genoom in prostaatkanker is geheel of gedeeltelijk verlies van de 

korte arm van chromosoom 8. Verlies van de lange arm van chromosoom 10 is 

eveneens een veel voorkomend defect van het genoom in prostaatkanker (Hoofdstuk 

1.3). Doel van dit proefschrift is de karakterisering van de delen van chromosoom 8p 

en 10q, die het meest frequent verloren gaan, en de identificatie van de 

tumorsuppressorgenen in deze regio’s (Hoofdstuk 1.4).  

 In deze studie is voornamelijk gebruik gemaakt van een set xenograften (11) en 

cellijnen (4) die zijn afgeleid van prostaattumoren van de mens. Xenograften zijn 

tumoren, die als een transplantaat groeien in muizen met een verzwakt 

immuunsysteem (naakte muizen). Xenograften en in vitro groeiende cellijnen zijn 

unieke bronnen van tumor-DNA, die een belangrijk hulpmiddel zijn bij de identificatie 

van veranderingen in het genoom van humane tumoren. Ze zijn in principe in 

onbeperkte hoeveelheden beschikbaar. Nog belangrijker is dat ze, in tegenstelling tot 

direct van de mens afkomstig tumorweefsel, geheel vrij zijn van normale cellen van 

humane oorsprong zoals de cellen van steun- en vaatweefsel. Dit vergroot de kans op 

het vinden van veranderingen in chromosomen en het detecteren van homozygote 

deleties en puntmutaties in individuele genen. Om dezelfde reden kan genexpressie 

beter bestudeerd worden. Voor de analyse van mutaties in genen op chromosoom 8p 

is tevens gebruik gemaakt van weefsel van 43 prostaattumoren.  
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 De xenograften en cellijnen zijn onderzocht op afwijkingen van chromosoom 10 

door middel van CGH (Comparative Genomic Hybridization) en allelotypering 

(Hoofdstuk 3). In zes van de vijftien monsters werd verlies van 10q aangetoond. Dit 

werd bevestigd met allelotypering. Daarnaast werden met allelotypering in zeven 

andere monsters verliezen van een klein deel van de chromosomale band 10q23.3 

gevonden. Hierin is het PTEN tumorsuppressorgen gelegen. Analyse van de structuur 

en expressie van PTEN toonde vijf homozygote deleties aan, twee nonsense-mutaties 

en twee frame-shift-mutaties (Hoofdstuk 2).  Behalve in monsters met een grote 

homozygote deletie werd geen afwijking in de expressie van PTEN gevonden. Dit is 

een aanwijzing dat vermindering van expressie geen belangrijk mechanisme van 

inactivering van PTEN is. Het hoge percentage (60%) deleties en mutaties suggereert 

nochtans een significante rol voor PTEN bij prostaatkanker. Vier DNA’s met verlies 

van 10q bezaten een intact tweede kopie van het PTEN-gen (Hoofdstuk 3). Mogelijk 

kan verlies van één kopie van PTEN al een rol spelen bij de groei van de tumor. Dit 

staat bekend als haplo-insufficientie. Daarnaast is het mogelijk dat een ander 

tumorsuppressorgen op 10q een rol speelt in prostaatkanker. Genen die het PTEN-

gen flankeren zijn daarom onderzocht op deleties en verlaagde expressie. Hiervoor 

zijn zowel PTEN-positieve als -negatieve samples gebruikt (Hoofdstuk 3). Met name 

kandidaatgen FLJ11218 lijkt interessant omdat het betrokken is bij homozygote 

deleties en het differentieel tot expressie komt in normaal en tumorweefsel. Bovendien 

is een missense-mutatie aangetoond in het DNA van een prostaat carcinoom. Andere 

kandidaten zijn MINPP1 en PAPSS2. Onderzoek naar de eerder beschreven 

kandidaat-tumorsuppressorgenen KLF6 en MXI1, gelegen op respectievelijk het 

uiteinde van chromosoom 10p en 10q, heeft geen afwijkingen laten zien. Het DMBT1-

gen op 10q bevat in een xenograft een intragenetische homozygote deletie. 

Daarnaast is de expressie van dit gen laag in twee xenograften. 

 De xenograften en cellijnen zijn eveneens onderzocht op afwijkingen van 

chromosoom 8 door middel van CGH en allelotypering (Hoofdstuk 5). In het DNA van 

tien verschillende tumoren/cellijnen werd verlies van 8p aangetoond met CGH, waarbij 

in acht gevallen het gebied 8p12-p21 verloren was gegaan. In de meeste gevallen 

kwamen de resultaten van allelotypering en CGH overeen. Het ontbreken van een 

eerder geïdentificeerd tumorsuppressorgen op 8p noodzaakte ons de positie van zo’n 

gen te bepalen. In het verleden zijn homozygote deleties cruciaal gebleken voor de 
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identificatie van tumorsuppressorgenen zoals BRCA2, DPC4 en PTEN. Daarom werd 

in het gebied 8p12-p21, met behulp van polymorfe en niet polymorfe markers (STSs), 

gezocht naar homozygote deleties. Specifiek is gezocht tussen de markers D8S87 en 

D8S133. De interesse voor dit deel van 8p kwam voort uit eerder onderzoek waarin 

frequent verlies (69%) van dit gebied werd aangetoond in prostaattumoren. In 

xenograft PC133 werd een kleine homozygote deletie (730 – 1320 Kb) vastgesteld 

(Hoofdstuk 4). Deze deletie omvatte een deel van het Werner Syndroom-gen (WRN). 

Om andere kandidaat-tumorsuppressorgenen in dit gebied te kunnen ontdekken,  

werd hiervan een PAC/cosmide contig gegenereerd (Hoofdstuk 5). In het 

gedeleteerde gebied werden  37 markers (STSs) gelokaliseerd. Deze werden 

vervolgens gebruikt bij het onderzoek op kleine homozygote deleties in de andere 

xenograften en cellijnen. Dit was zonder succes. Exon trapping en onderzoek van de 

sequentie van het genomische DNA en analyse van fragmenten van onbekende 

genen (ESTs), leverde alleen het WRN-gen op. Een EST, sts-N22494, bleek een deel 

van het 3’UTR van een langer WRN transcript te zijn. Om te testen of het WRN-gen 

een kandidaat tumorsuppressorgen is in prostaatkanker, werd een analyse van 

mutatie en expressie van dit gen uitgevoerd. Behalve bij PC133 werd er geen 

afwijking in WRN gevonden. Hoewel afwezigheid van WRN een bijdrage kan hebben 

geleverd aan de groei van PC133, zij geen nieuwe argumenten gevonden voor een rol 

van WRN in prostaatkanker. Dit suggereert dat één of meer andere genen op 8p12-

p21 hierbij van belang zijn. Om de identificatie en isolatie van kandidaat-

tumorsuppressorgenen te vergemakkelijken is het gebied tussen BC028701 en LPL 

geïsoleerd in een YAC contig (Appendix). Dit gebied bevat de gehele regio tussen 

D8S87 en D8S133, in een contig van 172 YACs met een omvang van 17 Mbp 

(Appendix A6). In dit contig konden 303 markers worden geordend, waaronder 

polymorfe markers, STSs, ESTs, genen en pseudogenen. Deze gedetailleerde 

fysische- en transcriptie-kaart maakte het vervolgens mogelijk en verantwoord 

chromosoom 8p12-p21 in detail te screenen op homozygote deleties (Hoofdstuk 6). 

Wederom werd geen homozygote deletie gevonden. Het zoeken naar 

tumorsuppressorgenen is daarom voortgezet middels mutatie- en expressieanalyse 

van de 8p kandidaatgenen LZTS1, PRLTS, NKX3-1, EPHX2, CLU en POLB. Behalve 

vanwege hun locatie werden deze genen geselecteerd omdat het biologisch plausibel 

is dat ze een rol spelen in prostaatkanker. We vonden voor geen van deze genen 
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overtuigend bewijs dat zij frequent bi-allelisch geinactiveerd zijn in prostaatkanker. 

Alleen aan EPHX2 is verder onderzoek gerechtvaardigd.  

 In conclusie, behalve PTEN, is op 8p en 10q geen enkel gen gevonden dat 

frequent is gedeleteerd en / of gemuteerd in beide allelen (Hoofdstuk 7). Gezien deze 

negatieve bevindingen moet worden overwogen dat in prostaatkanker haplo-

insufficiency vaker een rol speelt dan tot nu toe werd aangenomen.  
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