
Tuple-based Coordination of Distributed Systems
Distributed Systems

Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2013/2014

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 1 / 73

Outline

1 Tuple-based Coordination Models

2 Programming Tuple Spaces

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 2 / 73

Tuple-based Coordination

Outline

1 Tuple-based Coordination Models
Linda & Tuple-based Coordination
Hybrid Coordination Models

2 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Informal Semantics

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 3 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Outline

1 Tuple-based Coordination Models
Linda & Tuple-based Coordination
Hybrid Coordination Models

2 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Informal Semantics

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 4 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

The Tuple-space Meta-model

The basics

Coordinables synchronise,
cooperate, compete

based on tuples
available in the tuple space
by associatively accessing,
consuming and producing
tuples

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 5 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Tuple-based / Space-based Coordination Systems

Adopting the constructive coordination meta-model [Ciancarini, 1996]

coordination media tuple spaces

as multiset / bag of data objects / structures called
tuples

communication language tuples

as ordered collections of (possibly heterogeneous)
information items

coordination language tuple space primitives

as a set of operations to put, browse and retrieve tuples
to/from the space

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 6 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Communication Language [Gelernter, 1985]

Communication Language

tuples ordered collections of possibly heterogeneous information
chunks

examples: p(1), printer(’HP’,dpi(300)), [0,0.5],
matrix(m0,3,3,0.5),
tree node(node00,value(13),left(),right(node01)), . . .

templates / anti-tuples specifications of set / classes of tuples

examples: p(X), [?int,?int], tree node(N), . . .

tuple matching mechanism the mechanism that matches tuples and
templates

examples: pattern matching, unification, . . .

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 7 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Coordination Language [Gelernter, 1985] I

out(T)

out(T) puts tuple T in to the tuple space

examples out(p(1)), out(0,0.5), out(course(’Antonio
Natali’,’Poetry’,hours(150)) . . .

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 8 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Coordination Language [Gelernter, 1985] II

in(TT)

in(TT) retrieves a tuple matching template TT from to the tuple
space

destructive reading the tuple retrieved is removed from the tuple
centre

non-determinism if more than one tuple matches the template, one is
chosen non-deterministically

suspensive semantics if no matching tuples are found in the tuple
space, operation execution is suspended, and woken
when a matching tuple is finally found

examples in(p(X)), in(0,0.5), in(course(’Antonio
Natali’,Title,hours(X)) . . .

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 9 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Linda: The Coordination Language [Gelernter, 1985] III

rd(TT)

rd(TT) retrieves a tuple matching template TT from to the tuple
space

non-destructive reading the tuple retrieved is left untouched in the
tuple centre

non-determinism if more than one tuple matches the template, one is
chosen non-deterministically

suspensive semantics if no matching tuples are found in the tuple
space, operation execution is suspended, and awakened
when a matching tuple is finally found

examples rd(p(X)), rd(0,0.5), rd(course(’Alessandro
Ricci’,’Operating Systems’,hours(X)) . . .

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 10 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Predicative Primitives

inp(TT), rdp(TT)

both inp(TT) and rdp(TT) retrieve tuple T matching template TT

from the tuple space

= in(TT), rd(TT) (non-)destructive reading, non-determinism, and
syntax structure is maintained

6=in(TT), rd(TT) suspensive semantics is lost: this predicative
versions primitives just fail when no tuple matching TT

is found in the tuple space
success / failure predicative primitives introduce success / failure

semantics: when a matching tuple is found, it is
returned with a success result; when it is not, a failure is
reported

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 11 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Bulk Primitives I

in all(TT), rd all(TT)

Linda primitives deal with one tuple at a time

some coordination problems require more than one tuple to be handled
by a single primitive

rd all(TT), in all(TT) get all tuples in the tuple space matching
with TT, and returns them all

no suspensive semantics: if no matching tuple is found, an empty
collection is returned
no success / failure semantics: a collection of tuple is always
successfully returned—possibly, an empty one
in case of logic-based primitives / tuples, the form of the primitive are
rd all(TT,LT), in all(TT,LT) (or equivalent), where the (possibly
empty) list of tuples unifying with TT is unified with LT

(non-)destructive reading: in all(TT) consumes all matching tuples
in the tuple space; rd all(TT) leaves the tuple space untouched

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 12 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Bulk Primitives II

Other bulk primitives

Many other bulk primitives have been proposed and implemented to
address particular classes of problems

Most of them too specific to be considered as a general extension to
Linda, and for inclusion in tuple-based models in general

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 13 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Linda Extensions: Multiple Tuple Spaces

ts ? out(T)

Linda tuple space might be a bottleneck for coordination

Many extensions have focussed on making a multiplicity of tuple
spaces available to processes

each of them encapsulating a portion of the coordination load
either hosted by a single machine, or distributed across the network

Syntax required, and dependent on particular models and
implementations

a space for tuple space names, possibly including network location
operators to associate Linda operators to tuple spaces

For instance, ts @ node ? out(p) may denote the invocation of
operation out(p) over tuple space ts on node node

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 14 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Main Features of Tuple-based Coordination

Main features of the Linda model

tuples A tuple is an ordered collection of knowledge chunks,
possibly heterogeneous in sort

generative communication until explicitly withdrawn, the tuples generated
by coordinables have an independent existence in the tuple
space; a tuple is equally accessible to all the coordinables,
but is bound to none

associative access tuples in the tuple space are accessed through their
content & structure, rather than by name, address, or
location

suspensive semantics operations may be suspended based on unavailability
of matching tuples, and be woken up when such tuples
become available

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 15 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Tuples

A tuple is an ordered collection of knowledge chunks, possibly
heterogeneous in sort

a record-like structure
with no need of field names
easy aggregation of knowledge
raw semantic interpretation: a tuple contains all information
concerning an given item

Tuple structure based on
arity
type
position
information content

Anti-tuples / Tuple templates
to describe / define sets of tuples

Matching mechanism
to define belongingness to a set

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 16 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Generative Communication

Communication orthogonality

Both senders and the receivers can interact even without having prior
knowledge about each others

space uncoupling no need to coexist in space for two processes to
interact

time uncoupling no need for simultaneity for two processes to interact
name uncoupling no need for names for processes to interact

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 17 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Associative Access

Content-based coordination

Synchronisation based on tuple content & structure

absence / presence of tuples with some content / structure determines
the overall behaviour of the coordinables, and of the coordinated
system in the overall
based on tuple templates & matching mechanism

Information-driven coordination

patterns of coordination based on data / information availability
based on tuple templates & matching mechanism

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 18 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Features of Linda: Suspensive Semantics

Blocking primitives

in & rd primitives in Linda have a suspensive semantics

the coordination medium makes the primitives waiting in case a
matching tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served: coordination based
on absence / presence of tuples belonging to a given set

in the coordination entity the invocation may cause a wait-state in
the invoker: hypothesis on the internal behaviour of the
coordinable

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 19 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Our Running Example: The Dining Philosophers Problem

Dining Philosophers [Dijkstra, 2002]

In the classical Dining Philosopher problem, N philosophers share N
chopsticks and a spaghetti bowl

Each philosopher either eats or thinks

Each philosopher needs a pair of chopsticks to eat—and can access
the two chopsticks on his left and on his right

Each chopstick is shared by two adjacent philosophers

When a philosopher needs to think, he gets rid of chopsticks

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 20 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Concurrency issues in the Dining Philosophers Problem

shared resources Two adjacent philosophers cannot eat simultaneously

starvation If one philosopher eats all the time, the two adjacent
philosophers will starve

deadlock If every philosopher picks up the same (say, the left)
chopstick at the same time, all of them may wait indefinitely
for the other (say, the right) chopstick so as to eat

fairness If a philosopher releases one chopstick before the other one,
it favours one of his adjacent philosophers over the other one

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 21 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by the
tuple space

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

Philosophers try to eat by getting their chopstick pairs from the tuple
space as a pair of tuples chop(i) chop(i+1 mod N)

Philosophers start to think by releasing their own chopstick pairs to
the tuple space as a pair of tuples chop(i) chop(i+1 mod N)

! In the following, we will use Prolog for philosopher agents

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 22 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: A Simple Philosopher Protocol

Philosopher using ins and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), in(chop(J)), % waiting to eat

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

!, philosopher(I,J).

Issues

+ shared resources handled correctly

– starvation, deadlock and unfairness still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 23 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs

philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues

+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues
+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues
+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues
+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues
+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables

rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Another Philosopher Protocol

Philosopher using ins, inps and outs
philosopher(I,J) :-

think, % thinking

in(chop(I)), % waiting to eat

(inp(chop(J)), % if other chop available

eat, % eating

out(chop(I)), out(chop(J)), % waiting to think

; % otherwise

out(chop(I)) % releasing unused chop

)

!, philosopher(I,J).

Issues
+ shared resources handled correctly, deadlock possibly avoided

– starvation and unfairness still possible

– not-so-trivial philosopher’s interaction protocol

part of the coordination load is on the coordinables
rather than on the coordination medium

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 24 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philos in Linda: Yet Another Philosopher Protocol

Philosopher using ins and outs with chopstick pairs chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

– shared resources not handled properly

– starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 25 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Linda: Where is the Problem?

Coordination is limited to writing, reading, consuming, suspending on
one tuple at a time

the behaviour of the coordination medium is fixed once and for all
coordination problems that fits it are solved satisfactorily, those that do
not fit are not

Bulk primitives are not a general-purpose solution

adding ad hoc primitives does not solve the problem in general
and does not fit open scenarios—where instead a limited number of
well-known primitives are the perfect solution

As a result, the coordination load is typically charged upon
coordination entities

this does not fit open scenarios
neither it does follow basic software engineering principles, like
encapsulation and locality

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 26 / 73

Tuple-based Coordination Linda & Tuple-based Coordination

Dining Philosophers in Tuple-based Models: Solution?

Making the behaviour of the coordination medium adjustable
according to the coordination problem

if the behaviour of the coordination medium is not be fixed once and
for all, and can be defined in accordance to the coordination needs
then, in principle all coordination problems may fit some admissible
behaviour of the coordination medium
with no need to either add new ad hoc primitives, or change the
semantics of the old ones

In this way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour of the coordination media

What is needed is a way to define the behaviour of a coordination
medium according to the specific coordination issues

a general computational model for coordination media
along with a suitably expressive programming language to define the
behaviour of coordination media

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 27 / 73

Tuple-based Coordination Hybrid Coordination Models

Outline

1 Tuple-based Coordination Models
Linda & Tuple-based Coordination
Hybrid Coordination Models

2 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Informal Semantics

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 28 / 73

Tuple-based Coordination Hybrid Coordination Models

Data- vs. Control-driven Coordination

What if we need to start an activity after, say, at least N processes
have asked for a resource?

More generally, what if we need, in general, to coordinate based on the
coordinable actions, rather than on the information available /
exchanged?

Classical distinction in the coordination community

data-driven coordination vs. control-driven coordination

In more advanced scenario, these names do not fit

information-driven coordination vs. action-driven coordination fits
better
but we might as well use the old terms, while we understand their
limitations

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 29 / 73

Tuple-based Coordination Hybrid Coordination Models

Hybrid Coordination Models

Generally speaking, control-driven coordination does not fit so well
information-driven contexts, like Web-based ones, for instance

control-driven models like Reo [Arbab, 2004] need to be adapted to
contexts like agent-based ones, mainly to deal with the issue of
autonomy in distributed systems [Dastani et al., 2005]
control should not pass through the component boundaries in order to
avoid coupling in distributed systems

We need features of both approaches to coordination

hybrid coordination models
adding for instance a control-driven layer to a Linda-based one

What should be added to a tuple-based model to make it hybrid, and
how?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 30 / 73

Tuple-based Coordination Hybrid Coordination Models

Towards Tuple Centres

What should be left unchanged?

no new primitives
basic Linda primitives are preserved, both syntax and semantics
matching mechanism preserved, still depending on the communication
language of choice
multiple tuple spaces, flat name space

New features?

ability to define new coordinative behaviours embodying required
coordination policies
ability to associate coordinative behaviours to coordination events

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 31 / 73

Programming Tuple Spaces

Outline

1 Tuple-based Coordination Models
Linda & Tuple-based Coordination
Hybrid Coordination Models

2 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Informal Semantics

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 32 / 73

Programming Tuple Spaces Tuple Centres

Outline

1 Tuple-based Coordination Models
Linda & Tuple-based Coordination
Hybrid Coordination Models

2 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Informal Semantics

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 33 / 73

Programming Tuple Spaces Tuple Centres

Ideas from the Dining Philosophers I

1 Keeping information representation and perception separated

in the tuple space

this would enable process interaction protocols to be organised around
the desired / required process perception of the interaction space (tuple
space), independently of its actual representation in terms of tuples

2 Properly relating information representation and perception through a
suitably defined tuple-space behaviour

so, processes could get rid of the unnecessary burden of coordination,
by embedding coordination laws into the coordination media

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 34 / 73

Programming Tuple Spaces Tuple Centres

Ideas from the Dining Philosophers II

In the Dining Philosophers example. . .

. . . this would amount to representing each chopstick as a single
chop(i) tuple in the tuple space, while enabling philosophers to
perceive chopsticks as pairs (tuples chops(i,j)), so that
philosophers could acquire / release two chopsticks by means of a
single tuple space operation in(chops(i,j)) / out(chops(i,j)).

How could we do that, in the example, and in general?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 35 / 73

Programming Tuple Spaces Tuple Centres

A Possible Solution I

A twofold solution
1 maintaining the standard tuple space interface
2 making it possible to enrich the behaviour of a tuple space in terms of

the state transitions performed in response to the occurrence of
standard communication events

So, in principle, the new tuple-based abstraction should be

a tuple space whose behaviour in response to communication events is
no longer fixed once and for all by the coordination model, but can be
defined according to the required coordination policies

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 36 / 73

Programming Tuple Spaces Tuple Centres

A Possible Solution II

Consequences

Since it has exactly the same interface, a tuple centre is perceived by
processes as a standard tuple space

However, since its behaviour can be specified so as to encapsulate the
coordination rules governing process interaction, a tuple centre may
behave in a completely different way with respect to a tuple space

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 37 / 73

Programming Tuple Spaces Tuple Centres

Tuple Centres

Definition

A tuple centre is a tuple space enhanced with a behaviour
specification, defining the behaviour of a tuple centre in response to
interaction events [Omicini and Denti, 2001]

The behaviour specification of tuple centre

is expressed in terms of a reaction specification language, and
associates any tuple-centre event to a (possibly empty) set of
computational activities, which are called reactions

More precisely, a reaction specification language

enables the definitions of computational activities within a tuple centre,
called reactions, and
makes it possible to associate reactions to the events that occur in a
tuple centre

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 38 / 73

Programming Tuple Spaces Tuple Centres

Reactions

Each reaction can in principle

access and modify the current tuple centre state—like adding or
removing tuples)
access the information related to the triggering event—such as the
performing process, the primitive invoked, the tuple involved,
etc.)—which is made completely observable
invoke link primitives upon other tuple centres

As a result, the semantics of the standard tuple space communication
primitives is no longer constrained to be as simple as in the Linda
model—i.e., adding, reading, and removing tuples

instead, it can be made as complex as required by the specific
application needs

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 39 / 73

Programming Tuple Spaces Tuple Centres

Reaction Execution I

The main cycle of a tuple centre works as follows

when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed in a
non-deterministic order
once all the reactions have been executed, the primitive is served in the
same way as in standard Linda
upon completion of the invocation, the corresponding reactions (if any)
are triggered, and then executed in a non-deterministic order
once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 40 / 73

Programming Tuple Spaces Tuple Centres

Reaction Execution II

As a result, tuple centres exhibit a couple of fundamental features

since an empty behaviour specification brings no triggered reactions
independently of the invocation, the behaviour of a tuple centre
defaults to a tuple space when no behaviour specification is given

from the process’s viewpoint, the result of the invocation of a tuple
centre primitive is the sum of the effects of the primitive itself and of
all the reactions it triggers, perceived altogether as a single-step
transition of the tuple centre state

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 41 / 73

Programming Tuple Spaces Tuple Centres

Tuple Centre’s State vs. Process’s Perception

Reactions are executed in such a way that the observable behaviour of
a tuple centre in response to a communication event is still perceived
by processes as a single-step transition of the tuple-centre state

as in the case of tuple spaces
so tuple centres are perceived as tuple spaces by processes

Unlike a standard tuple space, whose state transitions are constrained
to adding, reading or deleting one single tuple, the perceived
transition of a tuple centre state can be made as complex as needed

this makes it possible to decouple the process’s view of the tuple centre
(perceived as a standard tuple space) from the actual state of a tuple
centre, and to relate them so as to embed the coordination laws
governing the distributed system

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 42 / 73

Programming Tuple Spaces Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by processes

On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

the full observability of events
the ability to selectively react to events
the ability to implement coordination rules by manipulating the
interaction space

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 43 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Outline

1 Tuple-based Coordination Models
Linda & Tuple-based Coordination
Hybrid Coordination Models

2 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Informal Semantics

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 44 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT

The spaghetti bowl, or, more easily, the table where the bowl and the
chopstick are, and the philosophers are seated, are represented by
tuple centre table

Chopsticks are represented as tuples chop(i), that represents the
left chopstick for the i − th philosopher

philosopher i needs chopsticks i (left) and (i + 1)modN (right)

A philosopher tries to eat by getting his chopstick pair from the tuple
centre by means of a in(chops(i,i+1 mod N) invocation

A philosopher starts to think by releasing his own chopstick pair to
the tuple centre by means of a out(chops(i,i+1 mod N) invocation

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 45 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 46 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 46 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 46 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 46 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 46 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 46 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 46 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol

? shared resources handled properly?
? starvation still possible?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 46 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?

? starvation still possible?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 46 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Philosopher Protocol

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
? shared resources handled properly?
? starvation still possible?

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 46 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 47 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 47 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 47 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 47 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 47 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT:
table Behaviour Specification

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 47 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

- starvation still possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 48 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers

Dining Philosophers in a distributed setting

N philosophers are distributed along the network

each philosopher is assigned a seat, represented by the tuple centre
seat(i,j)

seat(i,j) denotes that the associated philosopher needs chopstick
pair chops(i,j) so as to eat

each chopstick i is represented as a tuple chop(i) in the table

tuple centre

each philosopher expresses his intention to eat / think by emitting a
tuple wanna eat / wanna think in his seat(i,j) tuple centre

everything else is handled automatically in ReSpecT, embedded in the
tuple centre behaviour

N individual tuple centres (seat(i,j)) + 1 social tuple centre
(table) connected in a star network

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 49 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Individual Interaction

Philosopher–seat interaction (use)

four states, represented by tuple philosopher()

thinking, waiting to eat, eating, waiting to think

determined by

the out(wanna eat) / out(wanna think) invocations, expressing the
philosopher’s intentions
the interaction with the table tuple centre, expressing the availability
of chop resources

tuple chops(i,j) only occurs in tuple centre seat(i,j) in the
philosopher(eating) state

state transitions only occur when they are safe

from waiting to think to thinking only when chopsticks are safely
back on the table

from waiting to eat to eating only when chopsticks are actually at
the seat

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 50 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

ReSpecT code for seat(i,j) tuple centres

reaction(out(wanna_eat), (operation, invocation), (% (1)

in(philosopher(thinking)), out(philosopher(waiting_to_eat)),

current_target(seat(C1,C2)), table@node ? in(chops(C1,C2)))).

reaction(out(wanna_eat), (operation, completion), % (2)

in(wanna_eat)).

reaction(in(chops(C1,C2)), (link_out, completion), (% (3)

in(philosopher(waiting_to_eat)), out(philosopher(eating)),

out(chops(C1,C2)))).

reaction(out(wanna_think), (operation, invocation), (% (4)

in(philosopher(eating)), out(philosopher(waiting_to_think)),

current_target(seat(C1,C2)), in(chops(C1,C2)),

table@node ? out(chops(C1,C2)))).

reaction(out(wanna_think), (operation, completion), % (5)

in(wanna_think)).

reaction(out(chops(C1,C2)), (link_out, completion), (% (6)

in(philosopher(waiting_to_think)), out(philosopher(thinking)))).

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 51 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Social Interaction

Seat–table interaction (link)

tuple centre seat(i,j) requires / returns tuple chops(i,j) from /
to table tuple centre

tuple centre table transforms tuple chops(i,j) into a tuple pair
chop(i), chop(j) whenever required, and back chop(i), chop(j)
into chops(i,j) whenever required and possible

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 52 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

ReSpecT code for table tuple centre

reaction(out(chops(C1,C2)), (link_in, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (link_in, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (link_in, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 53 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features I

Full separation of concerns

philosophers just express their intentions, in terms of simple tuples

individual tuple centre (seat(i,j) tuple centres) handle individual
behaviours and state, and mediate interaction of individuals with social
tuple centre (table tuple centre)

the social tuple centre (table) deals with shared resources (chop
tuples) and ensures global system properties, like fairness and deadlock
avoidance

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 54 / 73

Programming Tuple Spaces Dining Philosophers with ReSpecT

Distributed Dining Philosophers: Features II

At any time, one could look at the coordination media, and find
exactly the consistent representation of the current distributed state

properly distributed, suitably encapsulated

the state of shared resources is in the shared distributed abstraction,
the state of single processes is into individual local abstractions

accessible, represented in a declarative way

the state of individual philosophers is exposed through accessible media
as far as the portion representing their social interaction is concerned

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 55 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

Outline

1 Tuple-based Coordination Models
Linda & Tuple-based Coordination
Hybrid Coordination Models

2 Programming Tuple Spaces
Tuple Centres
Dining Philosophers with ReSpecT
ReSpecT: Language & Informal Semantics

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 56 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

ReSpecT Basic Syntax for Reactions

Logic Tuples

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

while ordinary logic tuples are typically ground facts, there is nothing to
constrain them to be such

specification tuples are logic tuples of the form reaction(E ,G ,R)

if event Ev occurs in the tuple centre,
which matches event descriptor E such that θ = mgu(E,Ev), and
guard G is true,
then reaction Rθ to Ev is triggered for execution in the tuple centre

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 57 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

ReSpecT Syntax: Structure

〈Specification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(〈Event〉 , [〈Guard〉 ,] 〈ReactionBody〉)

〈Guard〉 ::= 〈GuardPredicate〉 | (〈GuardPredicate〉 {, 〈GuardPredicate〉})
〈ReactionBody〉 ::= 〈ReactionGoal〉 | (〈ReactionGoal〉 {, 〈ReactionGoal〉})

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 58 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

ReSpecT Behaviour Specification

a behaviour specification 〈Specification〉 is a logic theory of FOL
tuples reaction/3

a specification tuple contains an event descriptor 〈Event〉, a guard
〈Guard〉 (optional), and a sequence 〈ReactionBody〉 of
〈ReactionGoal〉s

a reaction/2 specification tuple implicitly defines an empty guard

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 59 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

ReSpecT Event Descriptor

〈Event〉 ::= 〈Predicate〉 (〈Tuple〉) | . . .

the simplest event descriptor 〈Event〉 is the invocation of a primitive
〈Predicate〉 (〈Tuple〉)
an event descriptor 〈Event〉 is used to match with with admissible
events

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 60 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

ReSpecT Admissible (Tuple Centre) Event

〈TCEvent〉 ::= 〈OpEvent〉 | . . .
〈OpEvent〉 ::= 〈OpStartCause〉 , 〈OpEventCause〉 , 〈OpResult〉

〈OpStartCause〉 ::= 〈CoordOp〉 , 〈AgentId〉 , 〈TCId〉
〈OpEventCause〉 ::= 〈OpStartCause〉 | 〈LinkOp〉 , 〈TCId〉 , 〈TCId〉

〈OpResult〉 ::= 〈Tuple〉 , . . .

a ReSpecT admissible event includes its prime cause 〈StartCause〉, its direct cause

〈EventCause〉, and the 〈Result〉 of the tuple centre activity

prime and direct cause may coincide—such as when a process invocation reaches its
target tuple centre
or, they might be different—such as when a link primitive is invoked by a tuple
centre reacting to a process’ primitive invocation upon another tuple centre
the result is undefined in the invocation stage: it is defined in the completion stage

a reaction specification tuple reaction(E ,G ,R) and an admissible event ε match
if E unifies with the 〈CoordOp〉 | 〈LinkOp〉 part of ε. 〈OpEventCause〉

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 61 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

Event Model vs. Event Representation

Understanding the difference between ReSpecT admissible events
〈TCEvent〉 and event descriptors 〈Event〉 is essential not to
understand ReSpecT – who cares, after all – but first of all to
understand the main issues of pervasive systems

Admissible events is how we capture and model all the relevant
events: essentially, our ontology for events

Event descriptors is how we write events in our language – here,
ReSpecT –: essentially, our language for events

The ReSpecT VM is where the two things clash, and is exactly based
on that: it’s how we capture and observe events, and how we react to
them properly

This is an essential point in any technology dealing with situated
computations

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 62 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

ReSpecT Guards

〈Guard〉 ::= 〈GuardPredicate〉 |
(〈GuardPredicate〉 {, 〈GuardPredicate〉})

〈GuardPredicate〉 ::= request | response | success | failure
endo | exo | intra | inter
from_agent | to_agent | from_tc | to_tc | . . .

A triggered reaction is actually executed only if its guard is true

All guard predicates are ground ones, so their have always a success / failure
semantics

Guard predicates concern properties of the event, so they can be used to further
select some classes of events after the initial matching between the admissible
event and the event descriptor

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 63 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

ReSpecT Reactions I

〈ReactionGoal〉 ::= 〈Predicate〉 (〈Tuple〉) |
〈TupleCentre〉 ? 〈Predicate〉 (〈Tuple〉) |
〈ObservationPredicate〉 (〈Tuple〉) |
〈ComputationGoal〉 | (〈ReactionGoal〉 ; 〈ReactionGoal〉) |
. . .

〈Predicate〉 ::= 〈StatePredicate〉 | 〈ForgePredicate〉
〈StatePredicate〉 ::= 〈BasicPredicate〉 | 〈PredicativePredicate〉 | . . .
〈BasicPredicate〉 ::= 〈GetterPredicate〉 | 〈SetterPredicate〉
〈GetterPredicate〉 ::= in | rd | no
〈SetterPredicate〉 ::= out

〈PredicativePredicate〉 ::= 〈GetterPredicate〉p
〈ForgePredicate〉 ::= 〈BasicPredicate〉_s | 〈PredicativePredicate〉_s | . . .

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 64 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

ReSpecT Reactions II

A reaction goal is either a primitive invocation (possibly, a link), a
predicate recovering properties of the event, or some logic-based
computation

Sequences of reaction goals are executed transactionally with an
overall success / failure semantics

Tuple centre predicates are uniformly used for agent invocations,
internal operations, and link invocations

The same predicates are substantially used for changing the
specification state, with essentially the same semantics

pred s invocations affect the specification state, and can be used
within reactions, also as links

no works as a test for absence, get and set work on the overall
theory (either the one of ordinary tuples, or the one of specification
tuples)

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 65 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

ReSpecT Observation Predicates

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple | source | target | . . .

event & start clearly refer to immediate and prime cause,
respectively

current refers to what is currently happening, whenever this means
something useful—typically, to the result

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 66 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

Properties of ReSpecT Tuple Centres

ReSpecT tuple centres

encapsulate knowledge in terms of logic tuples
encapsulates behaviour in terms of ReSpecT specifications

ReSpecT tuple centres are

inspectable
malleable
linkable

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 67 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

Inspectability of ReSpecT Tuple Centres

ReSpecT tuple centres: twofold space for tuples

tuple space ordinary (logic) tuples

for knowledge, information, messages, communication
working as the (logic) theory of communication for
distributed systems

specification space specification (logic, ReSpecT) tuples

for behaviour, function, coordination
working as the (logic) theory of coordination for
distributed systems

Both spaces are inspectable

by engineers, via ReSpecT inspectors
by processes, via rd & no primitives

rd & no for the tuple space; rd s & no s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 68 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

Malleability of ReSpecT Tuple Centres

The behaviour of a ReSpecT tuple centre is defined by the ReSpecT
tuples in the specification space

it can be adapted / changed by changing its ReSpecT specification

ReSpecT tuple centres are malleable

by engineers, via ReSpecT tools
by processes, via in & out primitives

in & out for the tuple space; in s & out s for the specification space
either directly or indirectly, through either a coordination primitive, or
another tuple centre

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 69 / 73

Programming Tuple Spaces ReSpecT: Language & Informal Semantics

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also an ReSpecT primitive
for reaction goals, and a primitive for linking, too

all primitives are asynchronous

so they do not affect the transactional semantics of reactions

all primitives have a request / response semantics

including out / out s

so reactions can be defined to handle both primitive invocations &
completions

all primitives could be executed within a ReSpecT reaction

as either a reaction goal executed within the same tuple centre
or as a link primitive invoked upon another tuple centre

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions
any ReSpecT reaction can invoke any coordination primitive upon any
tuple centre in the network

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 70 / 73

Conclusions

Summing Up

Tuple-based models

Governing distributed systems: from data-oriented to hybrid
coordination models

From Linda tuple spaces to ReSpecT tuple centres

ReSpecT: a language for Turing-equivalent coordination policies

an event-driven language
event modelling vs. event representation

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 71 / 73

References

References I

Arbab, F. (2004).
Reo: A channel-based coordination model for component composition.

Mathematical Structures in Computer Science, 14:329–366.

Ciancarini, P. (1996).
Coordination models and languages as software integrators.
ACM Computing Surveys, 28(2):300–302.

Dastani, M., Arbab, F., and de Boer, F. S. (2005).
Coordination and composition in multi-agent systems.
In Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M. P., and
Wooldridge, M. J., editors, 4rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2005), pages
439–446, Utrecht, The Netherlands. ACM.

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 72 / 73

References

References II

Dijkstra, E. W. (2002).
Co-operating sequential processes.
In Hansen, P. B., editor, The Origin of Concurrent Programming:
From Semaphores to Remote Procedure Calls, chapter 2, pages
65–138. Springer.
Reprinted. 1st edition: 1965.

Gelernter, D. (1985).
Generative communication in Linda.
ACM Transactions on Programming Languages and Systems,
7(1):80–112.

Omicini, A. and Denti, E. (2001).
From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294.

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 73 / 73

Tuple-based Coordination of Distributed Systems
Distributed Systems

Sistemi Distribuiti

Andrea Omicini
andrea.omicini@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna a Cesena

Academic Year 2013/2014

Andrea Omicini (DISI, Univ. Bologna) 9 – Tuple-based Coordination A.Y. 2013/2014 74 / 73

	Tuple-based Coordination Models
	Linda & Tuple-based Coordination
	Hybrid Coordination Models

	Programming Tuple Spaces
	Tuple Centres
	Dining Philosophers with ReSpecT
	ReSpecT: Language & Informal Semantics

