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Continued discoveries of negative regulators of inflammatory signaling provide detailed

molecular insights into peripheral tolerance and anti-tumor immunity. Accumulating

evidence indicates that peripheral tolerance is maintained at multiple levels of immune

responses by negative regulators of proinflammatory signaling, soluble anti-inflammatory

factors, inhibitory surface receptors & ligands, and regulatory cell subsets. This review

provides a global overview of these regulatory machineries that work in concert to

maintain peripheral tolerance at cellular and host levels, focusing on the direct and

indirect regulation of T cells. The recent success of checkpoint blockade immunotherapy

(CBI) has initiated a dramatic shift in the paradigm of cancer treatment. Unprecedented

responses to CBI have highlighted the central role of T cells in both anti-tumor immunity

and peripheral tolerance and underscored the importance of T cell exhaustion in cancer.

We discuss the therapeutic implications of modulating the negative regulators of T cell

function for tumor immunotherapy with an emphasis on inhibitory surface receptors

& ligands—central players in T cell exhaustion and targets of checkpoint blockade

immunotherapies. We then introduce a Threshold Model for Immune Activation—the

concept that these regulatory mechanisms contribute to defining a set threshold of

immunogenic (proinflammatory) signaling required to elicit an anti-tumor or autoimmune

response. We demonstrate the value of the Threshold Model in understanding clinical

responses and immune related adverse events in the context of peripheral tolerance,

tumor immunity, and the era of Checkpoint Blockade Immunotherapy.

Keywords: negative regulator, antigen presentation attenuator, threshold model, checkpoint blockade,

immunotherapy, PD-1, CTLA-4, T cell exhaustion

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00491
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00491&domain=pdf&date_stamp=2019-03-18
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:si-yi.chen@med.usc.edu
mailto:sharabi@ucsd.edu
https://doi.org/10.3389/fimmu.2019.00491
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00491/full
http://loop.frontiersin.org/people/599275/overview
http://loop.frontiersin.org/people/632737/overview
http://loop.frontiersin.org/people/653325/overview
http://loop.frontiersin.org/people/590610/overview


Guram et al. Threshold Model for T-Cell Activation

INTRODUCTION

Over the past decades, an increasing body of genetic studies
on the negative regulation of proinflammatory signaling
has demonstrated the essential role of negative regulators
of proinflammatory signal transduction pathways in the
maintenance of peripheral tolerance. Genetic deficiency in one
of these negative regulators often results in severe inflammation
and autoimmune pathologies in both mice and humans
(Tables 1, 2). These genetic studies have provided insights into
the nature of the signals, molecular processes, and regulatory
cell subsets for maintaining peripheral tolerance. Peripheral
tolerance is maintained at multiple levels of immune responses,
including (a) antigen presentation, (b) lymphocyte activation
and effector function, and (c) peripheral tissues. Each level
of immune responses is regulated synergistically by employing
diverse regulatory mechanisms, including negative regulators of
proinflammatory signaling, soluble anti-inflammatory factors,
inhibitory surface receptors & ligands, and regulatory cell
subsets (Figure 1). These interrelated, non-redundant regulatory
machineries work in concert to ensure an appropriate innate and
adaptive immune response that is sufficient to clear invading
pathogens, while preventing toxicity from over activation or
pathological autoimmunity.

Naïve CD8+ T cells that encounter antigens during immune
challenge (e.g., acute infection) set forth a cell-intrinsic program
that drives them to expand and differentiate into cytotoxic
effector cells that control and eventually clear the pathogen (53).
At peak response, these effector T cells secrete high amounts of
cytokines [interferon-γ (IFNγ) and tumor necrosis factor (TNF)]
and cytolytic molecules (granzymes and perforin). Subsequently,
if the antigenic source has been eliminated, most of these
effector T cells undergo apoptosis, and a few survive and become
central memory and effector memory T cells (54, 55). While
this differentiation process is tightly controlled, changes in the
nature, context, and duration of antigen exposure can alter
the process and lead to T cell dysfunction, unresponsiveness,
and/or death. Observed phenotypic and functional features
define T cell dysfunction as exhaustion, tolerance, or anergy,
and characterizing these cellular and molecular features can
define strategies that can overcome their dysfunction. T cell
dysfunction has been well-studied in infections associated with
high viral replication, like LCMV clone 13, hepatitis C virus,
hepatitis B virus, and HIV, but also in bacterial and parasitic
infections and cancer (56–60). Here, we discuss the various
states of T cell dysfunction, focusing on the more extensively
defined characteristics of tolerance and exhaustion in tumor
associated T cells.

In connecting these diverse regulatory mechanisms and
providing a global overview of T cell dysfunction, we introduce
the Threshold Model for Immune Activation—the concept
that an individual’s immune system has an inherent threshold
of immunogenic signaling required to elicit either an anti-
tumor immune response, auto-immune response, or both. This
threshold is determined by the interplay of these negative
regulators and their stimulatory counterparts, which work
together to modulate the functional state of individual immune

cells and achieve immune homeostasis. Consideration of the
delicate balance of T cell activation and exhaustion/tolerance
required for homeostasis is critical as we work toward
developing immunotherapies that maximize anti-tumor function
while minimizing detrimental immunological pathology. As the
decades of research in immunology and cancer biology are finally
coming to fruition in the clinic, this model provides a conceptual
framework to orient ourselves in the Era of Checkpoint Blockade.

THE THRESHOLD MODEL FOR IMMUNE
ACTIVATION

A vast number of positive and negative regulatory factors
modulate the immune system and work in concert to achieve
immune homeostasis (61–65). Regulation of the immune system
is exceedingly complex, involving the interplay of these diverse
regulatory mechanisms at multiple levels. Immune regulation
also varies greatly between individuals, and is likely a major
factor in differential outcomes and adverse effects seen in
patients treated with cancer immunotherapy (66). As described
here the Threshold Model provides a straightforward context
for understanding immune activation, autoimmunity, and anti-
tumor immunity in order to conceptualize the types of responses
we have seen in patients treated with CBI:

For an individual patient, a plotted horizontal line represents
their immune system’s “threshold” of immune activation
(Figure 2). The threshold represents the level of immunogenic
stimulation required to elicit an immune response, determined
by the sum of the negative regulatory mechanisms that work at all
levels of the immune system. Stimulation of the immune system
to any level below this threshold may still activate individual
cells of the immune system, but is insufficient to overcome
these regulatory mechanisms and mount an effective systemic
immune response.

In a given patient, there are various events that stimulate
or inhibit their baseline tumor or host immunogenicity. We
can plot the level of immunogenicity over time as sinusoidal
“immunogenicity curves” that represent different types of
baseline immunogenicity and natural variations in baseline
tumor or host immunogenicity due to host and environmental
factors (Figure 2). These curves are determined by a multitude
of factors, including the patient’s genetics, environmental
exposures, health, diet, as well as positive and negative feedback
mechanisms themselves. Notably, people who are genetically
predisposed to autoimmune conditions would have a baseline
autoimmune immunogenicity curve with higher peaks than
those without this risk factor. For instance, a patient with
systemic lupus erythematosus may live many years before
developing full blown autoimmunity due to some triggering
event which results in crossing of the threshold (67).

At rest, the peak of the immunogenicity curve lies below
the threshold of activation, and antigen specific immune
responses are not promoted (Figure 2). When the immune
system is stimulated beyond the threshold level, such as due
to presence of a bacteria, virus, or other exogenous factor an
antigen specific immune response occurs (Figure 2). Once the
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TABLE 1 | Representative negative regulators of TLR and related signal transduction pathways.

Negative

regulators

Example Expression Possible mechanism Phenotype of genetic deficient mice References

Ubiquitin E3

ligases/SUMO

E3 ubiquitin

ligases

(hundreds of

members)

TRIAD3A Constitutive Ubiquitinates TLRs for degradation NA (1)

SOCS1 Inducible Ubiquitinates Mal for degradation, in

addition to inhibiting JAK/STAT

Neonatal lethality, severe inflammation of

multiple organs, hypersensitivity to LPS,

hy peractivated DCs, M8, and T cells

(2)

A20 Inducible Ubiquitinates/deubiquitinates RIP and

TRAF6 for degradation

Neonatal death, severe inflammation,

cachexia and hypersensitivity to LPS

(3–5)

SUMO (4) SUMO1 Constitutive SUMOylate and stabilize IκB NA (not available) (6, 7)

Inhibitory

isoforms

IRAK isoforms IRAK-M Inducible Prevents dissociation of IRAK-IRAK4

and formation of IRAK-TRAF6

No gross abnormality, hypersensitive to

LPS, hyperactivated Mφ

(8)

MyD88s Inducible Inhibits MyD88 NA (9)

ST2 Inducible Inhibits TLR4 signaling by

sequestrating MyD88 and Mal

No obvious abnormalities, fail to develop

endotoxin tolerance, reduced production

of TH2 cytokines

(10, 11)

SIGIRR Constitutive,

reduced by

stimulation

Binds and inhibits TLR4–IL-1R

signaling molecules IRAK and TRAF6

No obvious abnormalities, hypersensitive

to LPS, hyperactivated Mφ and T cells

(12)

RP105 Constitutive Inhibits TLR4 binding with microbial

products

NA (13)

sTLR2/4 Constitutive Antagonists of TLR2 and 4 NA (14, 15)

Inhibitory

components of

signaling

complexes

IκB (3) IκBα Constitutive Retains NF-κB in the cytosol Neonatal death, severe dermatitis and

inflammation

(16, 17)

IKKα Constitutive Phosphorylates RelA and c-Rel,

resulting in accelerated turnover

Neonatal death, enhanced sensitivity to

LPS, hyperactivated Mφ

(17, 18)

Transcription

factors

Fox (>100

members)

Foxj1,

FoxOa3,

Foxp3

Constitutive,

reduced by

stimulation

Constitutive,

reduced by

stimulation

Constitutive in

CD25+CD4+

T cells

Transcription activator of IκBβ

Transcription activator of IκBβ/ IκBξ

Transcription repressor of

proinflammatory cytokines

Embryonic lethality, chimerization of

Rag−/− mice results in severe

inflammation, hyperactivated T cells

No gross abnormality, multiorgan

inflammation, lymphoproliferation

Neonatal death, inflamed skin (scurfy),

severe inflammation of multiple organs,

fatal IPEX syndrome in humans

(19)

(20)

(21–24)

Twist 1/2 Inducible Inhibits NF-κB binding to cytokine

promoters

Neonatal death, severe inflammation,

cachexia, and hypersensitivity to tnf

(25)

Phosphatases

(PTP)

MKP (11

members)

MKP1

MKP5

Inducible

Inducible in Mφ,

Inhibits JNK and p38 pathways

Inhibits JNK pathway

No gross abnormality Hypersensitive to

lps, hyperactivated mφ

No gross abnormality, hypersensitive to

lps, hyperactivated mφ and T cells

(26, 27)

(28)

Other

mechanisms

Dok-1/2 Constitutive Suppresses Erk activation of TLR4

signaling

No gross abnormality, hypersensitive to

LPS, hyperactivated Mφ and T cells

(29)

(30)

β-Arrestin-1/2 Constitutive Binds and inhibits TRAF6, stabilizes

IκBα

Hypersensitive to LPS, hyperactivated Mφ (31–33)

TOLLIP Constitutive Suppresses IRAK1 NA (34)

NOD2 Constitutive Inhibits TLR2-drived activation of

NF-κB and TH1 responses

Inflammatory diseases such as colitis,

Crohn’s disease in humans

(35, 36)

threshold is crossed positive feedback loops and autocrine and
paracrine signaling pathways naturally induce rapid expansion
and propagation of antigen specific T-cells or B-cells. Negative
regulatory mechanisms still play a role in modulating the extent
and duration of this response, and eventually bring the immune
system back to homeostasis or a new baseline with formation of
memory responses.

The first approach to cancer immunotherapy was to enhance
positive stimulation of the immune system with bacterial

preparations and subsequently cytokines or vaccines to drive
anti-tumor immunity (68). This effectively increased the peaks of
the baseline tumor immunogenicity curve in attempt to stimulate
beyond the threshold. However, due to the powerful negative
regulatory mechanisms we will discuss this approach was rarely
successful and the threshold for immunity was likely higher than
could be reached with these agonist agents alone in most cases.

The approach used with Checkpoint Blockade
Immunotherapy (CBI) is to directly inhibit the negative
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TABLE 2 | Representative negative regulators of cytokine receptor signaling pathways.

Negative regulator Example Expression Possible mechanism on

immune responses

Phenotype of genetic deficient mice References

SOCS (8 members) SOCS1

SOCS2

SOCS3

Inducible

Inducible

Inducible

Blocks JAK-Stat interaction and

ubiquitinates JAK for

degradation

Inhibits the signaling of growth

hormone and cytokines

Selectively inhibits IL-6 receptor

subunit

gp130-mediated signaling

Neonatal lethality, severe inflammation of multiple

organs, hypersensitivity to LPS, hyperactivated DCs, MΦ

& T cells

Gigantism, hypersensitive to microbial stimuli,

hyperactivated DCs,

Embryonic lethality due to placental defects, mice with a

conditional deletion in M8 and neutrophils are

hyposensitive to LPS

(37–41)

(42, 43).

(44–46).

PIAS (4 members) PIAS1 Constitutive Blocks DNA binding of STATs,

sumoylates STATs to inhibit their

transcription, blocks the DNA

binding of p65 to suppress

NF-κB

No gross abnormality, hypersensitivity to LPS,

hyperactivated M8

(47, 48)

PTP (107 members) SHP1

SHP2

Constitutive

Constitutive

Dephosphorylates cytokine

receptor signaling molecules

Dephosphorylates cytokine

receptor signaling molecules

Motheaten (dermatitis) phenotype

Embryonic lethality due to severe hematopoietic defects

(49, 50)

(51)

SLIM Constitutive Ubiquitinates STAT1 and STAT4

for degradation

No gross abnormality, enhanced IFN production by T

cells

(52)

FIGURE 1 | General regulatory mechanisms for the maintenance of peripheral tolerance. Peripheral tolerance is maintained by at least four interrelated,

non-redundant regulatory mechanisms that work in concert to negatively regulate multiple levels of immune responses, including antigen presentation, lymphocyte

activation and effector function, and peripheral tissues.

regulatory mechanisms and disable the major brakes on the
immune system, including the CTLA-4 or PD-1/PD-L pathways
(69, 70). This approach effectively lowers the immune threshold
and decreases the amount of stimulation required to elicit
an immune response. Dual agent checkpoint blockade would
effectively lower the threshold for immune activation even

further. We illustrate the possible outcomes of lowering the
immune threshold via CBI in Figure 2. The activity of single
agent checkpoint blockade alone and the concomitant increase
in objective response rates and immune related toxicity with dual
agent checkpoint blockade strongly support this threshold model
(71). Interestingly, the activation of an anti-tumor immune
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FIGURE 2 | A threshold model for immune activation. (A) Checkpoint Blockade Immunotherapy (CBI) lowers the threshold for immune activation but not enough to

trigger an immune response. (B) CBI lowers the threshold for immune activation to trigger an anti-tumor immune response but not an auto-immune response. (C)

Baseline immunity to self antigens is higher than immunity to tumor associated antigens. CBI lowers the threshold to induce an auto-immune response but no

anti-tumor immune response or immune-related adverse event. (D) Single agent or dual agent CBI lowers the threshold for immune activation to trigger an anti-tumor

immune response and an auto-immune response or immune-related adverse event.

response may result in development adaptive resistance or
emergence of counter-regulatory mechanisms which attempt
to subvert this response or effectively raise the threshold
back up (72). This could have important implications for
maintenance therapy or re-induction of immune responses
during re-challenge with CBI after an initial course.

Another important point derived from this model is the
concept that more stimulation is not necessarily better for
immune responses. In fact excessive stimulation in many cases
has a paradoxical response and leads to inhibition or activation
induced cell death (73). The immune system must constantly
attempt to balance under activation (risk of disseminated
infection) and over activation (risk of auto-immunity or cytokine
storm). Thus, the threshold model would predict that in the
absence of negative regulation (lowest threshold) only a minor
amount of positive stimulation would be required to elicit an
immune response. Indeed, this is evidenced by the activity of
single agent checkpoint blockade alone, where stimulatory factors
already present in the tumor microenvironment or lymphoid
organs are sufficient to activate potent anti-tumor immunity
without the need for exogenous proinflammatory or agonist
factors (69, 70). The clinical implication of this being that
in the era of checkpoint blockade as we return to testing
proimmunogenic agonist therapies less drug may be needed for
optimal induction of immune responses in certain circumstances.

In this article we will first highlight the immunologic
principles governing negative regulation of immune cells, then
more closely examine the role of T cell regulation and T cell
exhaustion in cancer. We apply the threshold model to better
understand how to overcome these regulatory mechanisms and
induce effective anti-tumor immune responses in the setting of
checkpoint blockade immunotherapy.

CHARACTERISTICS OF IMMUNE
TOLERANCE

Negative Regulation at the Level of Antigen
Presenting Cells
The first level of regulation of peripheral T cell tolerance involves
the control of antigen presentation. Antigen presentation
initiates T cell activation, and antigen-presenting cells (APCs),
such as dendritic cells (DCs) and macrophages (M8), play
a critical role in stimulating immune responses as well as
maintaining peripheral tolerance (74, 75). Innate immunity
activated by Toll-like receptor (TLR) signaling is crucial in
the detection of invading pathogens and the activation of
adaptive immunity (76). Members of the TLR family detect
conservative microbial molecules, including lipopolysaccharide
(LPS), bacterial lipoproteins, flagellin, unmethylated CpG
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DNA, and viral RNA (61, 63). After ligand binding, TLRs
dimerize and undergo the conformational change required
for recruitment of downstream signaling molecules, activating
MyD88-dependent and MyD88-independent pathways. The
subsequent activation of nuclear factor-κB (NF-κB) andmitogen-
activated protein (MAP) kinases leads to the expression of a large
number of proinflammatory molecules, such as costimulatory
molecules and cytokines, for the induction of adaptive immunity
(61, 63). The stimulatory potency of TLR signaling in the
activation of innate and adaptive immunity is reflected in the
complicated negative regulation of TLR signaling at multiple
points (Figures 3, 4). An excellent recent review by Liew et al.
(65) describes many of these negative regulators, including
intracellular IRAK-M, MyD88s, PI3K, TOLLIP, A20, TRIAD3A,
and NOD2, soluble TLR2/4, membrane-bound SIGIRR, and ST2.

Much of the study on innate and adaptive immunity
has been focused on the identification and characterization
of proinflammatory signal receptors and regulators (61, 63).
However, during the last two decades, an increasing number
of negative regulators that inhibit proinflammatory signal
transduction in APCs and other immune cells have been
discovered (Tables 1, 2). These negative regulators in APCs
function as antigen presentation attenuators (APAs) to control
the strength and duration of proinflammatory signaling in
APCs in order to set the threshold of antigen presentation
(tolerogenic state), regulate the magnitude and duration
of antigen presentation, and prevent acute toxic innate
immune hyper-response (endotoxin shock) and pathological
autoimmunity. Recent studies indicate that cytokine signaling
in APCs is critical for antigen presentation (77–80) and
is also tightly regulated at multiple points by negative
regulators (62, 64).

Additionally, certain subsets of APCs function to hinder
immune activation and promote tolerance. Tolerogenic DCs are
usually immature DCs, which have low levels of co-stimulatory
molecules (75, 81, 82). Immature DCs can induce tolerance
through the induction of regulatory T cells that suppress
immune responses by secreting anti-inflammatory cytokines
such as IL-10 and TGFβ (83). Tolerogenic DCs can also be
generated ex vivo by treating them with TGF-β or a variety
of immunosuppressive drugs. A population of DCs (CD11clow,
CD45RB+) was found to have tolerogenic activity and the ability
to induce regulatory T cells in the periphery (84). A recent
study showed that plasmacytoid DCs induced the generation of
CD25+CD4+Foxp3+ regulatory T cells in lymph nodes (85).

The transcriptional signature of dendritic cells has been
investigated to better understand their immune phenotype.
A recent study examining the role of RelB, a transcription
factor that belongs to the NF-kB/Rel family, in steady-state
dendritic cells demonstrated that absence of this transcription
factor is associated with increased populations of not only
CD25+CD4+Foxp3+ regulatory T cells, but also IL-2-producing
CD25lowCD4+CD44High T memory type 1 (Tm1) cells (86).
The transcription factor IRF4, on the other hand, has been
associated with establishing an immunogenic DC phenotype by
promoting Th2 differentiation via IL-10 and IL-33 expression
(87), however, further studies have demonstrated that IRF4 is

also involved in DC priming of peripheral Foxp3+ regulatory T
cells (88). Another transcription factor that has been investigated
is dendritic cell-specific transcript (DC-SCRIPT), which, when
knocked down, promotes expression of IL-10 and decreases
expression of IL-12 by DCs (89). To better understand the
mechanisms of this, Søndergaard et al. demonstrated that knock
down of DC-SCRIPTwas associated with decreased expression of
MAPK dual-specific phosphatases (DUSP), specifically DUSP4,
which concomitantly enhanced ERK signaling, leading to
increased IL-10 production (90).

In parallel with classic anti-inflammatory cytokines, other
metabolites present in the local immune environment can
promote immune tolerance. One critical pathway implicated
in generating tolerogenic DCs involves the catabolism of the
amino acid tryptophan. DCs can produce indoleamine 2,3
dioxygenase (IDO), the rate-limiting enzyme in the catabolic
pathway for tryptophan (91, 92), which degrades the indole
moiety of tryptophan, serotonin, and melatonin, and initiates
the production of kynurenines. IDO catalyzes the local depletion
of the essential amino acid tryptophan, which enhances the
production of proapoptotic kynurenines that inhibit T-cell
proliferation and promote T-cell apoptosis (91, 92).

Similar to IDO, the enzyme tryptophan-2,3-dioxygenase
2 (TDO) is an enzyme that is involved in the degradation of
tryptophan and represents an alternative catabolic pathway.
Previously, this enzyme was thought to be expressed only in
the liver and neuron, where it is involved in regulating levels
of tryptophan systemically and 5-hydroxy-tryptophan in the
central nervous system, respectively (93). However, there is
increasing evidence suggesting that TDO can be produced
by a variety of cancers, including hepatocellular carcinoma,
glioma, melanoma, and others (94). In addition, recent studies
have demonstrated that certain, specialized myeloid cells
can express TDO and contribute to an immunosuppressive
microenvironment (95, 96). The exact biologic and
molecular basis for such a regulatory myeloid cell subset,
however, is unclear.

APC surface ligands, particularly the B7 family molecules,
also play an important role in inducing T cell dysfunction to
promote peripheral tolerance. At least five B7-family molecules
have co-inhibitory function: B7-1 (CD80), B7-2 (CD86), B7-H1
(PD-L1), B7-DC (PD-L2), and B7-H4 (B7x) (97, 98). CD80 and
CD86 are the main co-stimulators for T cells through binding
to CD28. CD80 and CD86, however, can be co-inhibitory for
effector T cells after ligation with CTLA-4. B7-H1 and B7-DC
deliver a co-inhibitory signal to effector T cells through ligation
of programmed cell death 1 (PD-1). B7-H4 binds to a putative
receptor to deliver a negative signal to T cells. Collectively, these
B7-family molecules have both co-stimulatory or co-inhibitory
activities to balance immune responses (97, 98). In addition to
being found on APCs, the B7 family ligands can also be found
on peripheral tissue and tumor cells, which we discuss in further
detail in the following sections. The APC surface ligands in this
family and the T cell receptors they interact with are the main
targets of the therapies whose successes have transformed our
understanding of cancer medicine and brought about the Era of
Checkpoint Blockade Immunotherapy.
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FIGURE 3 | Representative, constitutively expressed negative regulators of TLR and cytokine receptor signaling in APCs. Toll-like receptor (TLR) signaling is regulated

by constitutively expressed negative regulators at multiple points. Soluble forms of Toll-like receptors (sTLR) inhibit the binding of membrane-bound TLR to microbial

ligands. Membrane-bound SIGIRR (single immunoglobulin interleukin-1-related receptor) binds to TLR4 and IRAK (interleukin-1 receptor-associated kinase), and

terminates the downstream TLR signaling pathways, whereas TRAIL-R (tumor-necrosis factor-related apoptosis-inducing ligand receptor) suppresses nuclear

factor-κB (NF-κB) activation, perhaps by stabilizing IκB (inhibitor of NF-κB) and protecting it from degradation. Intracellular TRIAD3A ubiquitinates certain TLRs for

degradation. TOLLIP (Toll-interacting protein) suppresses IRAK function by inhibiting TLR signaling. NOD2 might inhibit TLR2 signaling by suppressing NF-κB activity.

SUMO sumoylates and stabilizes the inhibitor of NF-κB. Transcription factors Foxj1 and Foxoa3 activate expression of the inhibitor of NF-κB. Cytokine receptor

signaling is also regulated by constitutively expressed negative regulators at multiple points. SHP proteins dephosphorylate activated JAKs or receptors. PIAS proteins

block the binding of STATs and SUMOylate STATs to inhibit their transcriptional activation, whereas STAT-interacting LIM protein (SLIM) ubiquitinates STAT1 and STAT4

for degradation. Many of these negative regulators also play important roles in regulating T-cell activation and function (65).

Negative Regulation of T Cells
The second level of regulation of peripheral tolerance directly
inhibits the activation and effector function of lymphocytes
such as T cells. As in the negative regulation of APCs,
negative regulators of proinflamamtory signaling, soluble anti-
inflammatory factors, inhibitory surface receptors and ligands,
and regulatory cell subsets play an important role in the
regulation of T cell function (Figures 1, 5). Additionally, negative
regulators that control T-cell receptor (TCR) signaling are
important in the maintenance of T cell tolerance. In this section,
we highlight some negative regulators that act directly on T cells
to influence activation and tolerance.

Many of the negative regulators of proinflammatory TLR and
cytokine signaling, and anti-inflammatory factors such as IL-10
and TGFβ described above are also important for the regulation
of T-cell activation and tolerance (Tables 1, 2). T cells express
TLR and cytokine receptors and are subject to the regulation
of TLR and cytokine receptor signaling by the same negative
regulators described above. T-cell receptor (TCR) signaling is
unique to T cells, and activates at least three different families

of transcription factors: the nuclear factor of activated T cells
(NFAT) family, the activating protein (AP)-1 family, and the
nuclear factor NF-κB family (99, 100). The negative regulators
of TCR signaling include NFATp, NFAT4, MKP, Cbl, Tob, MKP,
Foxj1, Foxo3a, Foxp3, Calcipressins, etc. The detailed roles of
many of these regulators of TCR signaling (101), TLR signaling
(65), and cytokine receptor signaling (102) in T cells have been
recently reviewed.

A regulatory cell subset of T cells, appropriately named
regulatory T cells (Tregs), are also important players in the
maintenance of peripheral tolerance Figure 5. Forkhead box
P3 (Foxp3), a member of the forkhead transcriptional factor
family, is a transcription factor that plays an essential role in the
development and function of CD4+CD25+ regulatory T cells
(Treg) (103, 104). Foxp3+CD25+CD4+ Treg cells play a role in
suppressing immune responses in a trans-acting way, mainly via
the production of anti-inflammatory factors such as IL-10 and
TGF-β. Mutations in the gene encoding Foxp3 were identified
as the cause of the fatal human autoimmune disorder “immune
dysregulation, polyendocrinopathy, enteropathy, X-linked”
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FIGURE 4 | Representative inducible negative regulators of TLR and cytokine receptor signaling in APCs. Toll-like receptor (TLR) signaling is further regulated by

inducible negative regulators in a feedback manner. Membrane-bound ST2 interacts with MyD88 and Mal, and sequesters MyD88-dependent nuclear factor-κB

(NF-κB) from activation. MyD88s (the short form of MyD88) antagonizes MyD88 functions. Intracellular IRAKM (interleukin-1 (IL-1) receptor-associated kinase M)

inhibits the dissociation of IRAK-IRAK4 and subsequent formation of IRAK-TRAF6. SOCS1 promotes the ubiquitination of Mal for degradation. A20 has dual functions

of ubiquitination and deubiquitination of RIP and TRAF6 (tumor-necrosis factor-receptor-associated factor 6) for their degradation, inhibiting both TLR and TNFR

signaling. Transcription repressor Twist-2 inhibits the transcription of NF-κB-targeted genes. Cytokine receptor signaling is also regulated by inducible negative

regulators. SOCS1, in addition to regulating TLR signaling, inhibits JAK activity as a pseudosubstrate or promotes the ubiquitination and subsequent degradation of

JAK. Many of these negative regulators also play important roles in regulating T-cell activation and function (65).

(IPEX) (21, 22, 105). Foxp3-deficient mice or spontaneous Foxp3
mutant scurfy mice also exhibit severe autoimmune pathologies
including dermatitis, lymphoproliferation, and lymphocytic
infiltration of multiple organs (23, 24). Foxp3 is highly expressed
in CD25+CD4+ Treg cells, although low levels of Foxp3 are
also expressed in naive and activated CD25−CD4+ T cells
(106). Several lines of evidence indicate that CD4+CD25+ Treg

cell development is critically dependent on Foxp3 expression
(103, 104): Foxp3-deficient bone marrow cannot give rise to
CD4+CD25+ Treg cells in chimeric wild-type mice; Foxp3
transgene overexpression in mice resulting in an increase in the
CD4+CD25+ Treg cell subset and acquisition of suppressive
properties by CD4+CD25− and CD8+ T cells; the acquisition
of regulatory properties by CD4+CD25− T cells after retroviral
transduction with Foxp3; and the association of induced Foxp3
expression with acquired regulatory functions of non-regulatory
T cells in both humans and mice.

Like other forkhead transcriptional factors (107), Foxp3 binds
DNA and acts as a transcriptional activator or repressor. Foxp3
may function as a transcriptional repressor of proinflammatory
cytokine genes, because Foxp3 can bind to consensus forkhead

binding domains adjacent to NFAT transcription factor binding
sites in the promoters of several cytokine genes, such as IL-2,
IL-4, and TNF (108). Foxp3-targeted genes and transcriptional
regulation, however, are still not defined. Collectively, Foxp3
functions as a negative regulator of immune responses by
repressing the production of proinflammatory cytokines in a
variety of cell types, including CD25+CD4+ Treg cells, which,
together with other regulatory cells (75, 109), provide one of
many non-redundant regulatory mechanisms for maintenance of
peripheral tolerance (Figure 5).

There additionally exist populations of regulatory CD4+ T
cells that lack expression of Foxp3, such as Tr1 cells that are
uniquely identified as expressing both cell-surface markers CD49
and LAG-3, and produce high levels of IL-10 and TGF-β (110,
111). In addition to producing anti-inflammatory cytokines,
Tr1 cells are capable directly lysing myeloid APCs by secreting
granzymes and perforins via a mechanism dependent on HLA
class 1 recognition, CD54/LFA-1 adhesion, killer cell Ig-like
receptors (KIRs), CD2, and CD226 on Tr1 cells (112). Recent
studies have elucidated the differentiation pathway for Tr1 cells–
IRF1 and BATF have been implicated as pioneer factors for
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FIGURE 5 | Maintenance of peripheral tolerance at cellular and host levels. Peripheral tolerance is first maintained by individual immune cells using a network of

negative regulators [Yin (–)], including negative regulators of inflammatory signaling, soluble anti-inflammatory factors, inhibitory surface receptors and ligands, and

regulatory cell subsets, to set up a threshold of stimulatory signaling and keep individual immune cells in an immature or a resting (anergic) state. After activation by

proinflammatory stimuli [Yang (+)] that exceed a threshold level, the inducible feedback negative regulators only allow the transduction of transient stimulatory signals,

so that temporarily activated immune cells will quickly shift to a post-activation effector state. Peripheral tolerance is also maintained at the host level by an additional

network of negative regulators, including inhibitory surface receptors on peripheral tissues and Foxp3+ Treg cells. The balanced outcome of the proinflammatory

signals mediated by pathogens and negative regulators at both the cellular and host levels results in an appropriate immune response that is sufficient to clear

pathogen-infected cells, but insufficient to cause acute innate immune toxicity and autoimmune pathologies to normal cells.

Tr1 cell development in response to IL-27 signaling (113).
Additionally, IL-2 inducible T cell kinase (ITK), serves an
important role as ITK deficiency lead to diminished expression of
AHR, cMAF, and IRF4, transcription factors involved in Tr1 cell
development (114); IRF4 in particular can modulate expression
of Blimp-1, and together, induce IL-10 production (115).

In addition to regulatory CD4+ T cells, recent studies have
identified regulatory CD8+ T cells that suppress naïve T cell
proliferation and are vital for maintaining self-tolerance (116–
120). Compared to other CD8+ T cells, regulatory CD8+ T cells
express higher levels of markers such as CTLA-4 and ICOS,
and constitutively express CD25, increasing their sensitivity
to IL-2 (116). When examining the transcriptional profile,
regulatory CD8+ T cells more closely resemble regulatory CD4+

T cells compared to other, canonical CD8+ T cells (121).
One pathway implicated in the differentiation and function
of CD8+Foxp3+ T cells is TNF/TNFR2, and TNFR2 may be
used as a marker to identify these cells (122, 123). A key
mechanism by which regulatory CD8+ T cells can mediate
naïve CD4+ T cell proliferation is via TGF-beta and IFN-
gamma secretion (124); TGF-beta is also partially involved in
promoting regulatory CD8+ T cell differentiation via p38 MAPK
signaling (125). A different mechanism to mitigate CD4+ T cell
proliferation utilized by subsets of regulatory CD8+ T cells that
express high levels of CD11c employs the Fas-FasL pathway in
an antigen-independent manner to mediate direct cytotoxicity
(126). It is becoming more appreciated that both CD4+ and
CD8+ regulatory T cells strongly contribute to maintaining

immune tolerance, and may serve to increase an individual’s
immune threshold.

A regulatory subset of B cells, termed regulatory B (Breg)
cells have been gaining recognition as playing in important role
in suppressing the immune response by producing cytokines
such as IL-10, IL-35, and TGF-β (127–129). Breg cells were
initially postulated to exist and exert an immunosuppressive
effect upon the observation that B cell deficient mice had more
severe disease and delayed recovery in a murine model of
experimental autoimmune encephalomyelitis (130). There exist
multiple subsets of Breg cells, including B10 cells, regulatory
plasma cells, Marginal Zone (MZ) B cells, and many others, and
the majority of these subsets can be identified by high surface
expression of CD1d (131). CD1d belongs to the CD1 family of
cell surface receptors that resemble MHC I, collectively bind lipid
molecules by their hydrophobic carbon chain, and presents these
antigens to invariant natural killer T (iNKT) cells (132, 133).
One such molecule that is bound by CD1d on B cells is alpha-
galactosylceramide, a potent iNKT cell agonist that performs a
vital role in regulating immune tolerance (133, 134). Mechanistic
studies have revealed that lipid presentation on CD1d by Breg
cells drives differentiation of IFN-gamma+ iNKT cells, which
successively can inhibit Th1 and Th17 responses (135).

One of the key cytokines implicated in driving Breg cell
function is IL-10, and this large subset of IL-10-producing Breg
cells is known collectively as B10 cells, the most extensively
characterized of Breg cells (136, 137). Yanaba et al. utilized high
cell surface expression of CD1d and CD5 to identify B10 cells,
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however, there is no consensus set of cell surface markers to
uniformly define this subset of Breg cells (138, 139). While the
precise molecular mechanism inducing B10 cell differentiation is
unclear, interactions with T cells do not seem to be a necessary
prerequisite, as nude mice lacking T cells can still possess B10
cells (139). B10 cells have been shown to have the ability to
regulate antigen-specific immune responses in the presence of IL-
21 and CD40-based interactions with T cells (140). In a murine
model for collagen-induced arthritis, B10 cells suppressed Th1
and Th17 differentiation in an IL-10-dependent fashion as mice
with IL-10−/− B cells developed more severe disease, increased
populations of Th1 and Th17 cells, and decreased populations
of Tr1 cells compared to mice with wild-type B cells (141).
While B10 cells secrete IL-10 to dampen the immune response,
following il10 transcription, the genes encoding transcription
factors Blimp-1 and IRF4 are transcribed, indicating an ability
to further differentiate into plasma cells, possibly to promote
clearance of antigens via antibody-mediated processes (142). In
humans, there exists a rare population of CD19+CD24hiCD38hi

B cells that that serve to regulate the immune response partially
via IL-10 (143). Concordantly, in patients with rheumatoid
arthritis, CD19+CD24hiCD38hi B cells are not only presents in
reduced numbers, but also have a decreased ability to suppress
naïve T cell differentiation into Th1 and Th17 cells and promote
differentiation into T regulatory cells (144).

In addition to IL-10, IL-35, which amongst B cells is
produced primarily by CD138+ plasma cells, has been increasing
investigated in its immune regulatory function, which parallels
those of IL-10 (129, 145, 146). IL-35 belongs to the IL-12 family
of cytokines and is comprised of p35, the IL-12-alpha chain, and
Epstein-Barr virus-induced gene 3 (Ebi3) (147). IL-35 itself is
partially governed by a positive feedback loop as IL-35 signaling
enhances binding of STAT1 to p35 and Ebi3 promotors in a
subset of Foxp3− regulatory T cells known as “iTR35” cells,
and successively increases expression and secretion of these
proteins (148). Decreased expression of IL-35 has been reported
in multiple autoimmune disease states, including inflammatory
bowel disease, Sjogren syndrome, type 1 diabetes, and others
(148–150). Importantly, treatment of mice with IL-35 strongly
promoted expansion of IL-10-producing Breg cells and decreased
IL-17 expression (151, 152). Furthermore, IL-35 has been shown
to modulate activation and antigen presenting capabilities of
B cells, as mice with p35−/− B cells expressed higher levels
of activation markers such as CD44 and CD69, and molecules
involved in antigen presentation such as MHC-II, CD80, and
CD86 (129). While further studies detailing the molecular
mechanisms governing Breg cell interactions with T cells and
other immune cells, it is becoming increasing clear that Breg cells
serve an important role in regulating the immune response.

Negative Regulation in Peripheral Tissues
The third level of regulation of peripheral tolerance occurs
in peripheral, non-lymphoid tissues. Various regulatory
mechanisms (Figure 1) are used by peripheral tissues to protect
themselves against self-reactive T cells. The defense mechanisms
of peripheral tissues are important for the maintenance of
peripheral tolerance at the host level, when other regulatory

mechanisms are unable to restrict the activation of pathogenic
self-reactive T cells at the cellular level.

The negative regulators of proinflammatory signaling are also
expressed in peripheral tissues and play a role in maintaining
peripheral tolerance at the host level. For example, it was
reported that diabetes-prone NOD mice harboring beta-cells
expressing a SOCS1 transgene had a markedly reduced incidence
of diabetes, and the disease protection was correlated with
enhanced suppression of STAT1 phosphorylation in SOCS1-
expressing beta-cells (153).

Peripheral tolerance also utilizes the Fas ligand (FasL)
response pathway to regulate apoptosis of self-reactive T cells.
FasL (CD95L, Apo-1L, CD178), a member of TNF family, binds
to its cognate surface receptor Fas (CD95, Apo-1) and triggers the
extrinsic apoptotic pathway, leading to the death of target cells
(154). The Fas/FasL apoptotic pathway is highly regulated, and
its abnormal regulation has been associated with autoimmunity
and cancer. Although predominantly expressed on activated T
cells and NK cells, FasL is also expressed on non-hematopoietic
cells such as brain, lung, and immunologically privileged sites to
protect these tissues and organs from pathogenic self-reactive T
cells (155).

As seen at the levels of APCs and lymphocytes, B7 family
members also play a critical role in maintaining self-tolerance
at the level of peripheral tissues. PD-L1, B7-H3, and B7-
H4, are important for protecting peripheral tissues against
pathogenic self-reactive T cells (98, 156). A hint of the
protective role of B7 molecules comes from the observation
that inhibitory B7 members such as PD-L1 and B7-H4 are
also expressed on non-lymphoid tissues such as heart, muscle,
lung, kidney, liver, and various cancer cells. Recently, Keir
et al. experimentally demonstrated that PD-L1 expressed on
pancreatic islets prevented diabetes by providing an inhibitory
signal to infiltrating self-reactive CD4+ T cells (156). Chronic
stimulation of T cells by these inhibitory B7 family ligands can
lead to a semi-permanent downregulation of T cell function.
Tumors exploit this system, overexpressing these ligands to create
a tolerogenic microenvironment that fosters tumorigenesis.

The negative regulatory mechanisms employed by peripheral
tissues serve as a last line of defense against the development
of autoimmunity. Taken together with the negative regulatory
mechanisms employed by APCs, T cells, and B cells, this
coordinated system maintains a heightened threshold for
immune activation. Therefore, the ability of cancer cells, which
originate from normal tissue, to utilize and upregulate these same
mechanisms creates an critical barrier to generating an effective
anti-tumor immune response.

T CELL EXHAUSTION IN CANCER

While peripheral tolerance acts to delete antigen specific T cells
as a natural means of protection, T cell exhaustion, described
more than a decade ago, is a state of T cell differentiation
that becomes evident during persistent T cell stimulation. T
cell exhaustion has been described in chronic viral, bacterial,
and parasitic infections and in cancer in various animal models
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and humans, and the functional depiction continues to become
clearer. T cell exhaustion can be best understood by considering
the extrinsic and cell-intrinsic pathways responsible for negative
regulation of T cell function.

T Cell Response to Antigen and Loss of
Effector Function
Upon acute antigen exposure, naïve CD8+ T cells expand and
differentiate into cytotoxic effector cells to control and clear the
antigen. Further differentiation results in either functional T cell
memory or T cell dysfunction as in self-tolerance or exhaustion.
The fate of the naïve T cell is dependent on the context of
antigen stimulation and defined by unique genetic signatures that
determine the functional and phenotypic properties of each T
cell differentiation state. (157, 158). When self-reactive CD8+ T
cells come in contact with self-antigen in the tolerogenic setting
of the peripheral tissues, they adopt a state of unresponsiveness.
Tolerant T cells can become activated by various conditions
that promote T cell proliferation (including cytokines IL-2 and
IL-15, and lymphopenia), but this rescue of T cell function is
transient, and self-reactive T cells are re-tolerized in the absence
of proliferative stimulation.

Another state of T cell dysfunction is T cell exhaustion.
Rather than a state of irreversible, terminal differentiation or
functional unresponsiveness, T cell exhaustion is characterized
by an adaptive state of hyporesponsiveness. By maintaining a
low level of cytotoxic function, exhausted T cells are able to
help control a chronic threat without producing a full blown
immune response that could potentially induce fatal disease in
the host (159). Properties of T cell exhaustion were first identified
in lymphocytic choriomeningitis virus (LCMV) infection, where
chronic infection led to persistent antigen presentation (160). In
chronic LCMV infection, virus-specific CD8+ T cells that do not
produce typical cytotoxic molecules were identified, suggesting
that highly cytotoxic T cells generated during initial responses
are lost upon prolonged antigen presentation. Soon after, studies
described that during exhaustion, loss of function occurs in a
hierarchical manner, where IL-2 production and proliferative
capacity are lost first, followed by loss of tumor necrosis factor
(TNF) production at intermediate stages of dysfunction. Finally,
severe exhaustion can lead to complete loss of the ability to
produce IFNγ, and the final stage of exhaustion is followed by
physical deletion of antigen-specific T cells.

A key property of memory CD8+ T cells is the ability to
survive without antigen stimulation via interleukin (IL)-7
and IL-15 to mediate self-renewal. This feature is lost upon
exhaustion, as they have decreased expression of CD122 (the
B-chain of the IL-2 and IL-15 receptor) and CD127 (the IL-7
receptor a-chain). As a result, these T cells switch to using their
cognate antigen and epitope-specific TCR signals for long-term
maintenance. Studies in mice have revealed that when exhausted
T cells are adoptively transferred into antigen-free recipients,
there is a disappearance of exhausted cells but also minimal
recovery of memory CD8+ T cells. This verified that once T cells
are committed to exhaustion, antigen removal does not restart
the memory T cell differentiation process (161). Epigenetic

studies have revealed that exhausted CD8+ T cells have an
accessible chromatin landscape, and corresponding program of
genes, that is distinct from memory T cells (162). Specifically,
a seminal study by Sen et al. identified a region in the Pdcd1
gene locus demonstrated significant chromatin accessibility
only in exhausted CD8+ T cells (162). Mechanistically,
de novo DNA methylation is critical to differentiation
into an exhausted subtype, and these DNA methylation
programs can be acquired by tumor-infiltrating CD8+ T cells
(163). Importantly, administration of DNA demethylating
agents prior to CBI may avoid T cell exhaustion in tumor-
infiltrating CD8+ T cells (163). Exhausted T cells, however,
can be rescued, and this principle has had significant clinical
implications on cancer immunotherapy, which we discuss later in
this review.

Negative Regulatory Pathways Leading to
Exhaustion
Functional, phenotypic, and molecular analyses have revealed
that despite overlapping traits, many of the states labeled in the
literature as “anergy” are regulated and maintained by distinct
factors, and require different strategies to restore cell function.
While there are various states of T cell dysfunction, T cell
exhaustion is a progressive, long-term process which involves
various negative regulatory mechanisms. These mechanisms can
be grouped into three main categories: (1) cell surface inhibitory
receptors, (2) soluble factors, and (3) immunoregulatory cell
types. These specific negative regulatory mechanisms distinguish
exhausted T cells from anergic, tolerant, or ignorant T cells.

Inhibitory receptors on the surface of T cells play vital roles in
many aspects of self-tolerance and prevention of autoimmunity.
While T cells transiently express inhibitory receptors upon
activation, prolonged and/or high expression of multiple
inhibitory receptors is a defining feature of exhaustion (164).

PD-1 is expressed on antigen-activated T cells and upregulated
in T cell exhaustion (165). In the presence of its ligands,
PD-L1 and PD-L2, on the surface of APCs and normal and
cancerous peripheral tissue, PD-1 functions to suppress T cell
inflammatory activity. Binding of either of these ligands to
PD-1 results in the recruitment of phosphatases SHP-1 and
SHP-2 to the phosphorylated cytoplasmic ITSM domain of the
receptor. These phosphatases then counteract kinases important
for signal transduction downstream of TCR, CD28, and other
costimulatory receptors. By inhibiting activation of the PI3K and
Akt pathways among others, PD-1 signaling results in decreased
proliferation, IL-2 production, protein synthesis, and survival of
T cells (166). PD-L1 is expressed on various cells throughout the
body, protecting tissues from immune-mediated damage (156).
Like CTLA-4, PD-1, as well as PD-L1, are highly expressed
on Tregs, and activation of the PD-1/PD-L pathway favors the
differentiation of naïve T cells into Tregs to create a more
immune-suppressive environment.

In addition to PD-1, various other inhibitory surface receptors
are important in regulatory T cell exhaustion. As discussed
above, CTLA-4 shares ligands, B7-1 (CD80) and B7-2 (CD86),
with CD28, a co-stimulatory receptor required for the second
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signal in T cell activation. CTLA-4 binds B7-1 (CD80) and B7-
2 (CD86) with 10-20 times greater affinity than CD28, resulting
in competitive inhibition of the co-stimulatory receptor. CTLA-4
binding also leads to endocytosis of B7 molecules, decreasing the
availability of these ligands on APCs, peripheral tissue, and tumor
cells for T cell co-stimulation via CD28.

CTLA-4 is an important negative regulator at the level of
lymphocytes, and functions to modulate the extent of early T
cell activation via two main mechanisms. First, upon activation,
T cells start expressing CTLA-4, which blocks further activation
and blunts the immune response. As a target gene of FOXP3,
the transcription factor whose presence defines the Treg cell
lineage, CTLA-4 is also expressed constitutively in high levels
on Tregs, enabling them to prevent the activation of other T
cells (24, 167, 168). CTLA-4 acts on two major subsets of
CD4+ T cells, dampening helper T cell activity while boosting
the immunosuppressive functions of Tregs. CTLA-4 also has
some direct effect on CD8+ T cells, negatively regulating their
proliferation and activation (169).

Two additional inhibitory receptors are also important in T
cell exhaustion: lymphocyte activation gene-3 (LAG3) and T
cell immunogloblulin and mucin domain 3 (TIM3). LAG3 was
discovered over 25 years ago as a receptor that is upregulated
on activated CD4+ and CD8+ T cells and also natural killer
(NK) cells, and are detectable on a T cell as early as 24 h post
activation (170). LAG3 structurally resembles the CD4+ receptor
and binds to MHC Class II, but its functional impact on CD8
and NK cells, which only interact with MHCI, implies that
LAG3 also has alternative ligands. Liver sinusoidal endothelial
cell lectin (LSECtin) and Galectin-3 have been speculated to
be additional ligands for LAG3 and have been found to be
expressed on cancer cells to inhibit IFNγ secretion by CD8+ T
cells (171). Recently, fibrinogen-like protein 1 (FGL1) has been
identified as a high-affinity LAG3 ligand that can inhibit antigen-
specific T cell responses and is upregulated in various cancers
such as lung adenocarcinoma, prostate cancer, and breast cancer
(172).Moreover, LAG3 has also been found on Treg cells, and
blocking LAG3 diminishes suppressor function (173). TIM3 has
been shown to play an inhibitory role in T cell immune responses.
TIM3 is expressed on CD4+ and CD8+ T cells and is correlated
with reduced amounts of cytokine production and also decreased
proliferation, suggesting that they play a role in exhausted T
cells. T cells isolated from chronic viral infections and various
human cancer samples include a fraction of antigen-specific,
nonfunctional CD8+ T cells that coexpress LAG3/TIM3 and PD-
1 (160). In these models, blockade of both receptors resulted in
an improved and synergistic antiviral and anti-tumor immune
response compared to singular blockade (174, 175).

Transcriptional Definitions of Exhaustion
Though exhausted cells share similar phenotypes, different
stimuli or stimuli from different species may generate
different molecular and transcriptional profiles that further
distinguish them. Genomic approaches can provide a more
detailed landscape of exhausted T cells to provide us a fuller
understanding. For example, global transcriptional profiling
has shown that exhausted CD8+ T cells are distinct from

effector and memory T cells in terms of TCR and cytokine
signaling pathways, migratory potential, chemokine expression,
and metabolism (176). Genomic profiling of exhausted cells is
important as it can potentially determine whether exhaustion
is a fixed lineage or if plasticity exists for them to become fully
functional effector or memory.

Several transcriptional pathways have already been identified
for T cell exhaustion. B lymphocyte-induced maturation protein-
1 (Blimp-1). Blimp-1 is a transcriptional repressor and is a
master regulator of terminal B cell differentiation (177). Kallies
et al. however, has recently reported that Blimp-1, found on
CD4+ and CD8+ T cells, is also a negative regulator of T-
cell differentiation and function. Blimp-1-deficient mice die
during late gestation, and Rag1−/− mice reconstituted with
fetal liver stem cells from Blimp-1-deficient mice show severe
inflammation and multiorgan autoimmune disease. Moreover,
Blimp-1 is expressed significantly higher in exhausted T cells
relative to effector T cells, and is associated with the upregulation
of many inhibitory receptors, including PD-1, LAG-3, CD160,
and CD244. Ablation of Blimp-1 reverses expression of these
receptors and restores memory differentiation, suggesting that
lesser activity of Blimp-1 promotes formation of memory
cells, intermediate amounts promote terminal differentiation of
effector activity, and higher amounts generate exhaustion (178).
Moreover, another transcription factor, T-bet, has a parallel role
to Blimp-1 in mediating terminal differentiation of CD8+ T cells
after clearance of antigen. T-bet promotes sustained responses
during chronic viral infection and represses transcription of
inhibitory receptors. Thus, Blimp-1 and T-bet represent the main
transcriptional regulation nodes involved in the exhaustion of
CD8+ T cells.

T-bet has also been shown to have a cooperative relationship
with another transcription factor, Eomesodermin (Eomes).
During early stages of CD8+ T cell activation, T-bet and
Eomes cooperate to bring out cytotoxic function by inducing
expression of perforin and granzymes (179). In addition, Eomes
has been largely implicated in driving memory differentiation,
mainly through promoting IL-15 signaling (180). While there
is expressional overlap between the two, their functional
roles are not necessarily reciprocal. T-bet represses expression
of inhibitory receptors by direct binding to the promoter
region of PD-1, while Eomes is associated with expression
of numerous inhibitory receptors. Lastly, T cells with high
levels of Eomes and PD-1 exhibited higher Blimp-1, inhibitory
receptors, and are associated with a severe state of exhaustion
(181). Importantly the threshold model proposed here relates
primarily to the initial activation of endogenous antigen specific
immune responses. After the threshold is crossed and adaptive
immune responses engage a pathogen then a natural and
physiologic contraction phase eventually occurs in attempt to
return back to homeostasis or new baseline. This contraction
phase occurs irrespective of whether a pathogen or tumor
is successful eradicated or not and may involve memory
formation in both cases or T-cell exhaustion in the later. Eomes
plays a key role during this contraction phase and is thus
involved in both memory formation and T-cell exhaustion.
Indeed, negative regulators such as Eomes and even PD-1
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have a physiologic role as negative regulation is critical for
maintaining homeostasis as well as memory formation during an
immune response.

Transcriptional profiling also indicates that the nuclear factor
of activated T cells (NFAT) transcription factor is highly
expressed in exhausted CD8+ T cells. The NFAT family, NFAT1,
NFAT2, and NFAT4, are transcription factors that promote
expression of a panel of genes required for T cell activation
and induction of numerous effector cytokines. However, recent
studies have shown that they have an additional role that
serves to limit the immune response. The duality of NFAT
function allows these transcription factors to participate in
multiple programs regulating different cell types in different
signaling contexts. Importantly, the link between NFAT and T
cell tolerance and anergy makes it a favorable target for cancer.
Lower NFAT function and dysregulation is associated with poor
cytokine production. In addition, NFAT can also regulate PD-1
expression after in vitro activation of T cells, but the link between
nuclear translocation of NFAT and PD-1 expression has yet to
be determined.

OVERCOMING TUMOR-INDUCED T CELL
DYSFUNCTION

Tumors Hijack Host Negative Regulatory
Mechanisms
In addition to the barrier of peripheral tolerance at the
host level, tumors develop strategies to hijack the host’s
negative regulatory mechanisms in order to sabotage antitumor
immunity, raising the threshold for anti-cancer immunity.
Tumors can produce soluble anti-inflammatory factors such
as IL-10, TGFβ, and others (182, 183), and express inhibitory
surface receptors such as B7-H4, PD-L1, and FasL (184,
185). Cancer-associated viruses such as human papillomavirus
(HPV) can interrupt immune responses by up-regulating
the PI3-K pathway and down-regulating MAPK pathways
(186). The enhanced expression of various natural negative
regulators by tumor cells establishes an immune-suppressive
stromal microenvironment (187), further dampening antitumor
responses. In addition, Foxp3+ Treg cells are attracted to
tumors, where they inhibit the function of infiltrating immune
cells (184).

Inhibiting Negative Regulators to Enhance
Anti-tumor Immunity
Inhibition of negative regulators that are critical for maintaining
peripheral tolerance may overcome both peripheral tolerance
at the host level and tumor-mediated immunosuppression,
since tumors do not “invent” unique immunosuppression
mechanisms, but utilize and hijack the host’s natural negative
regulatory mechanisms, likely via mutations and selective
pressure (188). By inhibiting a key negative regulator, a patient’s
immune threshold can be effectively lowered, decreasing the
magnitude of proinflammatory stimulation required to induce an
immune response.

Checkpoint Blockade Immunotherapy
Checkpoint blockade immunotherapy (CBI) is one of the most
promising examples of the application of this principle in
the treatment of cancer. The term “immune checkpoint” is
occasionally used as an umbrella term to refer to any of the
immune-inhibitory pathways. To maintain consistency with the
definition of checkpoint blockade immunotherapy as therapeutic
agents that interfere with inhibitory T cell surface receptor-
ligand engagement, we will consider only inhibitory T cell surface
receptors and their downstream immune-inhibitory pathways to
be immune checkpoints.

The multitude of inhibitory pathways that play a critical
role in maintaining self-tolerance and regulating the
duration and amplitude of the immune response are called
immune checkpoints.

Tumors have been shown to adapt and upregulate many
these immune-inhibitory pathways to evade immune detection
and destruction. An important example of this is the increased
expression of the inhibitory ligands that modulate T-effector
functions, which has been observed in various types of cancers.

In contrast with most antibodies currently used in cancer
therapy which target tumor cells, antibodies for immune
checkpoint blockade target lymphocyte receptors and their
ligands which are present on the surface of APCs as
well as cancerous and normal cells in peripheral tissues.
When these antibodies bind their targets, they prevent the
normal ligand-receptor interaction that would initiate an
important immune-inhibitory pathway. By knocking out a
critical pathway used by tumor cells to evade the immune
system, these therapies effectively release the brakes on the
immune system, lowering the immune threshold and enabling
the development of an anti-tumor immune response. Antibodies
developed to inhibit CTLA4 and PD-1 are revolutionizing cancer
immunotherapy and have brought us into the era of Checkpoint
Blockade Immunotherapy.

CTLA-4 was the first immune-checkpoint antigen to be
targeted in CBI, and clinical testing of ipilimumab and
tremelimumab, two humanized CTLA-4 antibodies, began
in 2000 (70). Ipilimumab became FDA approved for the
treatment of advanced melanoma in 2011, and treatment with
this drug showed incredible results (189). In a landmark
phase 3 study on Ipilimumab for the treatment of advanced
melanoma by Hodi et al. Ipilimumab alone demonstrated
a disease control rate of 28.5%, and 1 and 2-year survival
rates of 45.6 and 23.5%, respectively (189). The impressive
effects on long-term survival also supported the idea that
immunotherapies could potentially re-educate the immune
system to induce anti-tumor responses that are sustained long
after completion of therapy. By blocking CTLA-4 signaling
the level of co-stimulation required to activate the CD28 pro-
immunogenic pathway is decreased, thus directly reducing
the threshold for activation at this step. The early success
of CTLA-4 blockade revealed the potential of CBI and
how it could change the meaning of being diagnosed with
advanced melanoma.

Antibodies that target the PD-1/PD-L1 pathway have also
significantly improved patient outcomes in multiple clinical
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studies (69). Analogously to anti-CTLA-4, by blocking PD-1
signaling the existing co-stimulatory factors and TCR signaling
can more readily activate T-cells, thus directly reducing the
threshold for activation at this step. Two such antibodies
that have been extensively studied are pembrolizumab and
nivolumab. The KEYNOTE-001 phase I study of 173 patients
treated with pembrolizumab for advanced or unresectable
melanoma that had progressed on ipilimumab and a BRAF
inhibitor showed an overall response rate (ORR) of 26%(190).
This study lead to FDA approval of the first anti-PD-1
antibody, pembrolizumab, for advanced or unresectable
melanoma. Several months later, the results of the CheckMate
037 trial supported FDA approval of nivolumab as second-
line therapy for unresectable or metastatic melanoma (191).
The phase II and III trials of PD-1 inhibitors in melanoma
that followed, including KEYNOTE-006, KEYNOTE-002,
CheckMate 037, CheckMate 069, and CheckMate 067,
provided the basis to expand FDA approval of these PD-
1 inhibitors as first-line therapy for untreated advanced
melanoma regardless of BRAF mutation status, for ipilimumab-
refractory melanoma, and in combination with ipilimumab
as first-line therapy for unresectable or metastatic melanoma
(nivolumab) (71, 192, 193).

These studies in melanoma served as the impetus for
expanding the clinical application of PD-1 inhibitors and
exploring CBI in various tumor types. Further studies lead
to FDA approval of pembrolizumab for non-small cell lung
cancer (NSCLC) in 2015, head and neck squamous cell
carcinoma (HNSCC) in 2016, Hodgkin lymphoma, urothelial
carcinoma, all tumors with high microsatellite instability (MSI-
high), and gastric cancer in 2017. Nivolumab also received
FDA approval for treatment of renal cell carcinoma (RCC)
in 2015, Hodgkin lymphoma and HNSCC in 2016, and
urothelial, MSI-high colorectal, and hepatocellular caricinoma
(HCC) in 2017 (194).

The efficacy of anti-PD-L1 antibodies, which inhibit the
PD-1/ PD-L1 axis from a different angle, is also being
studied. Three PD-L1 inhibitors, atezolizumab, avelumab, and
durvalumab, have been clinically tested. Atezolizumab was
approved as second-line therapy for metastatic NSCLC in 2016
after the results of the POPLAR and OAK trials (195, 196).
A phase II trial studying atezolizumab for urothelial cancer
(UC), IMVigo 210, showed an overall response rate (ORR)
of 15% in patients with advanced and metastatic platinum-
based chemotherapy-refractory UC, a significant improvement
over the historical 10% response rate. (197). A separate cohort
of the IMVigor 210 trial showed similar results in patients
with treatment-naïve metastatic UC, leading to the accelerated
approval of atezolizumab as first-line therapy for cisplatin-
ineligible advanced and metastatic UC (198). Avelumab and
durvalumab, two other anti-PD-L1 antibodies, were approved
for merkel cell carcinoma (MCC) and UC, and UC, respectively
in 2017 (199–201). These drugs, as well as the other PD-
1 and PD-L1 inhibitors, are continuing to be studied in the
clinic in various tumor types and in combination with other
cancer therapies.

AUTOIMMUNITY AND IMMUNE RELATED
ADVERSE EVENTS (irAEs)

The use of cancer immunotherapies has led to the recognition
and characterization of a new category of side effects, immune-
related adverse events (irAEs). The irAEs of CBI are relatively
mild and rare compared to those seen in other systemic cancer
immunotherapies. Of the CBIs, anti-CTLA-4 is associated with
the most frequent and severe irAEs. Severe drug-related irAEs
were seen in 15–30% of patients on anti-CTLA-4 therapy,
sometimes even resulting in fatalities (202). These irAEs included
inflammation of normal tissues such as the gut, skin, and
endocrine glands. The occurrence of irAEs in individuals with
no previous history of autoimmunity reflects the ability of CBI to
decrease the threshold of immune stimulation required to elicit
an immune response. In contrast to CTLA-4, PD-1 blockade is
thought to act primarily within the tumormicroenvironment and
has been associated with fewer and less severe irAEs in the clinic.

Differences in response to anti-CTLA-4 therapy or anti-
PD-1 therapy are reflected in knockout mouse models. Mice
deficient in CTLA-4 die from lymphoproliferation, while mice
lacking PD-1 have more model-dependent autoimmunity, such
as arthritis and cardiomyopathy. These findings translate to
differences in irAE severity in the clinic. PD-1 was first
suspected of playing a role in the regulation of T-cell
tolerance and autoimmunity when Nishimura et al. observed
that PD-1 knockout mice developed mild glomerulonephritis
and detectable autoantibodies, mimicking late onset lupus-
like disease (203). Organ-specific toxic effects are observed in
patients treated with anti-PD-1 and anti-CTLA-4. Colitis and
hypophysitis are more common with anti-CTLA-4 therapy, while
pneumonitis and thyroiditis appear to be more common with
anti-PD-1 therapy. This suggests that these therapies throw off
the negative regulation in peripheral tissues. irAEs can act as a
gauge to measure how therapy is shifting the balance between
inflammation and tolerance.

Whether the severity of autoimmune side effects correlates
with efficacy of CBI induced antitumor responses is an important
question. Several studies have shown that patients with more
irAEs also have higher response rates. A recent retrospective
study of 134 patients with NSCLC treated with nivolumab
(anti-PD-1 antibody) found that the development of irAEs was
associated with increased overall survival (204). Still, it is not clear
what causes the variation in irAEs between patients. It is possible
that germline genetic factors and gastrointestinal microbiologic
composition can affect baseline host immunity. Certain genes
have been shown to increase the risk of autoimmune diseases
and studies have just begun to investigate whether these genetic
factors increase the risk of irAEs. In addition, it has been
demonstrated that presence of bacteria from the Bacteroidetes
phylum is correlated with reduced rates of ipilimumab-induced
colitis. It may be possible to skew the immune response
toward anti-cancer effector functions by increasing the cancer
antigen load via combinatorial treatments with chemotherapy
and radiation therapy, however, how to achieve only an anti-
cancer immune response while completely avoiding irAEs is
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not yet clear. A multitude of factors can influence the presence
and severity of irAEs, therefore, the general consensus is that
irAEs are not a necessary outcome of an efficient CBI-induced
antitumor response, but that their presence may be indicative of
better response to CBI in some patients.

CONCLUSION

In conclusion, with the success of checkpoint blockade
immunotherapy we now have the capability to robustly
activate the immune system and break self-tolerance to induce
anti-tumor immunity and/or auto-immunity. Each individual
likely has a baseline threshold for immune activation against
self and foreign antigens which is a function of multiple
complex and interdependent regulatory mechanisms. A better

understanding of these immuno-regulatory pathways and
activation thresholds is needed to guide rationale and strategic
use of combinatorial therapies that enhance anti-tumor immune

responses while limiting immune related toxicity. The threshold
model we describe here provides a conceptual framework for
understanding activation of immunity, tumor responses, and
toxicity in the era of checkpoint blockade immunotherapy.
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