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Autophagy is an evolutionarily conserved process of cellular self-eating which emerged
these last years as a major adaptive metabolic response to various stresses such as
fasting, hypoxia, or environmental pollutants. However, surprisingly very few data is
currently available on its role in fish species which are directly exposed to frequent
environmental perturbations. Here, we report that the treatment of fasted trout
hepatocytes with the autophagy inhibitor Bafilomycine A1 lowered the mRNA levels of
many of the gluconeogenesis-related genes and increased those of genes involved in
intracellular lipid stores. Concurrently, intracellular free amino acid levels dropped and the
expression of the main genes involved in the endoplasmic reticulum (ER) stress exhibited
a sharp increase in autophagy inhibited cells. Together these results highlight the strong
complexity of the crosstalk between ER, autophagy and metabolism and support the
importance of considering this function in future studies on metabolic adaptation of fish
to environmental stresses.
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INTRODUCTION

Macroautophagy (autophagy hereafter) is a cellular function conserved in eukaryotes that allows
the recruitment of substrates into lysosomes for their degradation (Bento et al., 2016). In addition
to its role as a “cell cleaner,” autophagy allows providing energy during fasting or other cellular stress
in order to promote survival (Yang and Klionsky, 2010). In mammals, several studies demonstrated
that autophagy maintains cellular, and energy homeostasis by degrading and recycling the main

Abbreviations: Acc2, acetyl CoA carboxylase 2; ATF6, activating transcription factor 6; Baf A1, Bafilomycine A1; chop,
C/EBP homologous protein; CoA, stearyl coenzyme A; Dgat2, diacylglycerol acetyltransferase 2; edem1, ER degradation
enhancing alpha-mannosidase like protein 1; eef1a1, eukaryotic elongation factor 1 α 1; eIF2α, eukaryotic initiation factor
2α; fas, fatty acid synthase; fbp, fructose 1,6-bisphosphatase; g6pc, glucose 6-phosphatase; IRE1, inositol requiring 1; pck1,
phosphoenol pyruvate carboxykinase 1 (cytosolic); pck2, phosphoenol pyruvate carboxykinase 2 (mitochondrial); PERK,
PKR-like ER kinase; plin2, perilipin 2; plin3, perilipin 3; Scd1, stearyl desaturase 1; SIDT2, SID-1 transmembrane family
member 2; SREBP, sterol regulatory element–binding proteins; TUBB, β-tubulin; UPR, unfolded protein response; xbp1,
X-box binding protein 1.
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energy sources (proteins, lipids or glycogen) on exposure to
various stresses (Madrigal-Matute and Cuervo, 2016). One of
the first metabolic functions attributed to autophagy has been
the release of amino acids through protein degradation during
starvation. The released amino acids not only sustain protein
synthesis under fasting condition, but also feed the tricarboxylic
acid cycle for ATP production (Lum et al., 2005; Rabinowitz
and White, 2010; Ezaki et al., 2011; Thomas et al., 2018).
Furthermore, autophagic proteolysis in liver has been shown to
makes a significant contribution to the maintenance of glycaemia
during fasting by releasing amino acids for glucose production
via gluconeogenesis (Ezaki et al., 2011). In addition to its role in
protein breakdown, autophagy has also been shown to play an
important role in the degradation of hepatic lipid stores through a
selective form of autophagy termed lipophagy (Singh et al., 2009).
During this process, autophagy-dependent breakdown of lipid
droplets supplies free fatty acids, which undergo β-oxidation in
the mitochondria to support ATP production (Singh et al., 2009;
Rambold et al., 2015; Welte, 2015). Although less studied than
the two former autophagic processes, lysosomal breakdown of
hepatic glycogen might also contribute to glucose homeostasis
during some critical periods. In mice, this process known as
glycophagy has thus been shown to be necessary to sustain life
during the period of postnatal hypoglycemia (Kotoulas et al.,
2006). Collectively, these data highlight the critical importance
of autophagy for the adaptation of intermediary metabolism to
environmental changes.

In fish, this cellular function is attracting growing interest
and the number of studies in this field is constantly increasing.
As such, induction of autophagy has been demonstrated upon
different biotic or abiotic stress situations including pollution
(Khangarot, 1992; Chen et al., 2015; Xing et al., 2015), hypoxia
(Beck et al., 2016), viral contamination (Liu et al., 2015), fasting,
or nutritional imbalance (Seiliez et al., 2012; Yabu et al., 2012;
Wei et al., 2017, 2018; Séité et al., 2018; Wang et al., 2018).
In these last few years, increasing research also focused on the
mechanisms involved in the control of this cellular function in
fish, particularly in zebrafish (He et al., 2009; Dowling et al.,
2010; He and Klionsky, 2010; Mathai et al., 2017). In contrast,
surprisingly, its metabolic role remains poorly explored in these
species and very little data is currently available on this subject.

However, we previously reported that rainbow trout treated
with the autophagy flux inhibitor agent Colchicine exhibited
severe alterations in hepatic carbohydrate and fat metabolisms,
as revealed by a significant decrease in plasma glucose levels
associated with a decrease of the concentration of some
glucogenic amino acids in the liver, but also an increase in hepatic
triglyceride and lipid droplet contents (Seiliez et al., 2016).
Similarly, recent works provided the evidence for the degradation
of lipid stores through lipophagy in the liver of fasted zebrafish
(Wang et al., 2018) and yellow catfish (pelteobagrus fulvidraco)
fed zinc supplemented diet (Wei et al., 2018). Together, these
data are in close agreement with the aforementioned metabolic
role of autophagy demonstrated in mammals (Madrigal-Matute
and Cuervo, 2016). However, they also suggest that in addition to
this previously reported role of autophagy in providing substrates
for glucose production, energy furniture, or the synthesis of

specific proteins, it could also play a major role in the regulation
of the expression of some key metabolic genes. Indeed, these
studies pointed out that autophagy inhibited fish exhibited
strong perturbations in the mRNA levels of genes involved in
hepatic carbohydrate and fat metabolisms (Seiliez et al., 2016;
Wang et al., 2018). This would be an unknown function for
autophagy. However, they show conflicting outcomes on specific
gene expression regulations, precluding a clear picture of the role
of autophagy in this process. Such differences could be explained
by the divergence of experimental protocols such as the use of
(1) different fish models (zebrafish vs. rainbow trout) and (2)
different autophagy flux inhibitors (chloroquine vs. colchicine)
and deserved further investigations.

In the present study, we treated primary cultures of trout
hepatocytes with another autophagy flux inhibitor, the Baf A1,
to assess the specificity of the previously reported in vivo effect
of colchicine-mediated autophagy inhibition on the expression
of several metabolism-related genes in this species. Baf A1 is
widely used in vitro as an autophagic flux inhibitor. This drug
inhibits the lysosomal V-ATPase to prevent its acidificationas well
as the Ca2+ pump SERCA to disrupt autophagosome-lysosome
fusion, together resulting in a strong block of autophagic flux
(Mauvezin and Neufeld, 2015). The use of primary cultures of
trout hepatocytes is an additional asset for our study, as they
allow testing the response of the studied factors to specific stimuli
independently of their systemic effects. This model is now widely
used to improve understanding of intermediary metabolism in
fish (Moon et al., 1985).

MATERIALS AND METHODS

Animals
Sexually immature rainbow trout having a mean initial weight
of 200 g were obtained from the INRA experimental facilities
at Donzacq (Landes, France). Fish were maintained in tank kept
in open circuits at a constant water temperature of 17◦C, under
natural photoperiod. They were fed to satiety every 2 days with a
commercial diet (T-3P classic, Trouw, France). The experiments
performed in the present study comply with the EUdirective
2010/63/EU on the protection of animals used for research as
well as the decree No 2013-118, 1 February 2013 of the French
legislation on the ethical treatment of animals.

Hepatocyte Cell Culture
Rainbow trout liver cells were isolated from 3 days feed-deprived
fish according to the previously detailed protocol (Lansard et al.,
2010). We measured the cell viability (>98%) with trypan
blue exclusion method (0.04% in 0.15 mol/L NaCl) and cells
were counted using Neubauer chamber. They were then plated
in a 6-well Primaria culture dish (BD) at a density of 3.106
cells/well and incubated at 18◦C, the optimal temperature for
cell cultures of trout origin, with complete medium containing
modified Hanks’ medium (136.9 mmol/L NaCl, 5.4 mmol/L
KCl, 0.8 mmol/L MgSO4, 0.44 mmol/L KH2PO4, 0.33 mmol/L
Na2HPO4, 5 mmol/L NaHCO3, and 10 mmol/L HEPES)
supplemented with 1% defatted BSA, 3 mmol/L glucose, 2%
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MEM essential amino acid mixture, 1% MEM non-essential
amino acid mixture and 1% antibiotic antimycotic solution (1X)
(sigma). The incubation medium was replaced every 24 h over the
48 h of primary cell culture. Microscopic examination ensured
that hepatocytes progressively re-associated throughout culture
to form cell heap. After 2 days of culture, the cells were incubated
in a minimal medium deprived of serum and amino acids (a
condition known to activate autophagy) in presence or absence
of 100 nM of Baf A1 a concentration commonly used to block
autophagosome-lysosome fusion in vitro (Klionsky et al., 2016).
Cells were then sampled 4, 8, 16, and 24 h after the treatment
and were prepared for western blot analysis or resuspended in
TRIZOL reagent (Invitrogen, Carlsbad, CA, United States) and
stored at −80◦C for subsequent analyses. Each experiment was
repeated 2 times.

Protein Extraction and Western Blot
Analyses
Cells were prepared for western blot analyses according to the
previously detailed protocol (Lansard et al., 2010). LC3-II levels
were measured by western blot as described previously in Belghit
et al. (2014) and using the following antibodies: anti-LC3b (#2775
Cell Signaling Technology) and anti-TUBB (#2146, Cell Signaling
Technology). These antibodies have already been validated in
rainbow trout (Belghit et al., 2014).

Quantitative RT-PCR Analyses
The protocol conditions for sample preparation and quantitative
RT-PCR have been previously published (Lansard et al., 2010).
The primers used for real time RT-PCR assays are listed in
Table 1. Primer of edem1 and xbp1 were newly designed
using Primer3 software. The primers that amplified glucose and
lipid metabolism-related genes have already been described in
previous studies (Plagnes-Juan et al., 2008; Marandel et al., 2015;

TABLE 1 | Sequences of the primer pairs used in the quantitative
real-time RT-PCR assays.

Genes Forward primer Reverse primer

Gluconeogenesis related genes

pck1 ACAGGGTGAGGCAGATGTAGG CTAGTCTGTGGAGGTCTAAGGGC

pck2 ACAATGAGATGATGTGACTGCA TGCTCCATCACCTACAACCT

fbp1b1 CTCTCAAGAACCTCTACAGCCT TCAGTTCTCCCGTTCCCTTC

g6pca GATGGCTTGACGTTCTCCT AGATCCAGGAGAGTCCTCC

g6pcb1 AGGGACAGTTCGAAAATGGAG CCAGAGAGGGAAGAAGATGAAGA

g6pcb2 CCTGCGGAACACCTTCTTTG TCAATTTGTGGCGCTGATGAG

Lipid metabolism related genes

fas TGATCTGAAGGCCCGTGTCA GGGTGACGTTGCCGTGGTAT

plin2 CATGGAGTCAGTTGAAGTCGTC AATTTGTGGCTCCAGCTTGCC

plin3 GATGTCCAACACCGTCACAG TCGATTTCCAACTCGTCCTC

ER stress related genes

chop CTGCACACGGTCTGGAGCTG GGATCTCGTCTGGGATCAGGT

edem1 GAACATCCAAACGGGACAGT TGAGAAGAGGGAGGGAGTCA

xbp1 CAACCCCGAGAACACAGTTT AAGTGACACACGCTGTGGTC

Reference gene

eef1a1 TCCTCTTGGTCGTTTCGCT ACCCGAGGGACATCCTGTG

Seiliez et al., 2016). For the expression analysis, relative
quantification of target gene expression was done using the
1CT method described by Pfaffl et al. (2002). The relative gene
expression value of eef1a1 was used for the normalization of
the measured expression values of the target mRNA, and was
found to not change significantly over sampling time or among
treatments (data not shown).

Free Amino Acid Analyses
Free amino acid concentrations in hepatocytes were determined
by ion exchange chromatography with a ninhydrin post-
column reaction (L-8900 Amino Acid Analyzer, Hitachi High-
Technologies Corporation, Tokyo, Japan).

Statistical Analyses
Data are expressed as means ± SD. Normality was assessed
using the Shaprio–test, while the equality of variances was
determined using Levene’s test. When the normality and/or
equal variances of data were respected, two-way ANOVA
was used to detect significant differences. Following two-
way ANOVA analysis, the Tukey test was used for post hoc
analysis. For all statistical analyses, the level of significance was
set at P < 0.05.

RESULTS

Baf A1 Inhibits Autophagy in Trout
Hepatocytes
We first tested the ability of Baf A1 to block autophagy in our
cell culture model. For this purpose, we analyzed by western blot
the well-established autophagy marker LC3II in cells incubated in
a serum- and amino acid-deprived medium (a condition known
to activate autophagy) and treated or not with Baf A1 for 4, 8,
16, and 24 h. During autophagy, LC3 is converted from a non-
lipidated cytosolic form (LC3-I) to a phosphatidylethanolamine-
conjugated form (LC3II) on the autophagosomal membrane
(Klionsky et al., 2016). However, LC3-II is also degraded during
the late stage of autophagy, and it is now well accepted that
the exposure of cells to lysosomal inhibitors, protease inhibitors
or agent that block fusion of autophagosome with lysosomes,
leads to LC3-II accumulation (Klionsky et al., 2016). As shown
in Figure 1, the ratio of LC3-II to TUBB reached significantly
higher levels in Baf A1 treated cells compared to non-treated
cells. These results indicated that Baf A1 treated cells displayed
a loss of autophagy function and that this drug is useful in our
cell culture model.

Baf A1 Treatment Affects the Expression
of Key Genes of the Intermediary
Metabolism in Trout Hepatocytes
We next addressed the consequences of Baf A1 treatment on
the expression of several metabolism-related genes. We first
monitored the expression of several genes of the gluconeogenesis
in cells incubated in the same conditions described above with or
without Baf A1. The obtained results showed that the addition of

Frontiers in Physiology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 263

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00263 March 15, 2019 Time: 16:58 # 4

Séité et al. Autophagy Inhibition and Intermediary Metabolism

FIGURE 1 | Baf A1 inhibits autophagy in trout hepatocytes. Representative LC3 and TUBB immunoblots of protein homogenates from trout hepatocyte treated with
DMSO or Baf A1 for 4, 8. (A) 16 or 24 h (B). Graphs show the ratio between LC3-II and TUBB used as a loading control. Values are means (n = 6), with standard
error of the mean represented by vertical bars. ∗ was used to indicate significant difference between treatment (P < 0.05; two way anova test).

Baf A1 to the media led to a significant decrease of mRNA levels
of gluconeogenesis-related genes g6pcb1 and pck1 regardless
of the time of treatment (Figures 2A,E). Similar results were
obtained for g6pca and fbp1b1 at 24 h after the treatment
(Figures 2C,D) and for pck2 at 16 and 24 h after the treatment
(Figure 2F). In contrast, we observed an increase of mRNA levels
of one of the g6pc paralogs, the g6pcb2, in trout hepatocyte treated
with Baf A1 (Figure 2B).

We then analyzed the expression of several genes involved in
lipid metabolism. The obtained results showed that mRNA levels
of fas increased in cells treated with Baf A1 (Figure 3A). Similar
results were obtained for plin2 and plin3, two critical regulators
of hepatic neutral lipid storage (Figures 3B,C).

Overall, these data confirmed our previous in vivo results
obtained with Colchicine and established a tight link between the
activity of autophagy and the expression of several glucose and
lipid metabolism-related genes.

Baf A1 Treatment Lowers the Level of
Free Amino Acids in Trout Hepatocytes
It is now well established that the expression of many
metabolism-related genes is under the tight control of amino acid
availability (Lansard et al., 2010, 2011). Autophagy being one
of the main systems for the release of free amino acids during
fasting, we wondered whether the effects of Baf A1 on metabolic
gene expression could be related to a decrease in free amino acid
levels in hepatocytes whose autophagy has been inhibited. We
therefore, monitored the concentration of the main amino acids
in fasted cells treated or not with Baf A1. As shown in Figure 4,
hepatocytes treated with Baf A1 exhibited lower levels of most of
the analyzed amino acids, in accordance with the reported role

of liver autophagy on amino acid release during starvation. This
global decrease in amino acid release in hepatocytes treated with
BafA1 could therefore contribute to perturb the expression of
the studied genes.

Baf A1 Treatment Leads to ER Stress
Another hypothesis to explain the effect of Baf A1 on the
expression of the studied genes concerns the endoplasmic
reticulum (ER) stress. Accumulating evidences demonstrated
that autophagy dysregulation causes ER stress (Yang et al.,
2010), which has been shown to strongly impact the expression
of intermediary metabolism-related genes (Lee et al., 2012;
Wang and Kaufman, 2014; Zhou and Liu, 2014). However, to
our knowledge, few if no data is available on the effect of
autophagy dysregulation-mediated ER stress on the expression
of intermediary metabolism-related genes. In the present study,
we therefore sought to determine whether Baf A1 caused ER
stress in our cells. To this end, we analyzed, in fasted hepatocytes
treated with or without Baf A1, the expression of three target
genes chop, xbp1, and edem1 of the main ER-stress sensing
pathways PERK, ATF6, and IRE1 pathways, respectively. As
shown in Figure 5A, the mRNA levels of chop significantly
increased in Baf A1 treated cells in comparison to control cells
4, 8 and 16 h after the treatment. Similar results were obtained
for xbp1, with an increase at 4 and 8 h after the treatment
(Figure 5B). Likewise, the mRNA levels of edem1 increased 24 h
after the treatment (Figure 5C), in line with previous findings
demonstrating that edem1 is a late ER-stress marker. Overall, the
results obtained clearly show that hepatocytes treated with Baf A1
display sign of ER stress, which in turn could affect the expression
of the studied genes.
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FIGURE 2 | Baf A1 treatment affects mRNA levels of gluconeogenic genes. Hepatocytes were treated with DMSO or Baf A1 for 4, 8, 16, or 24 h. Hepatocyte mRNA
levels of (A) g6pcb1, (B) g6pcb2, (C) G6pca, (D) fbp1b, (E) pck1, and (F) pck2 were measured using quantitative real time RT-PCR assays. Expression values are
normalized with the eukaryotic translation elongation factor 1 α 1 (eef1a1) mRNA. Value are means (n = 6) with standard error represented by vertical bars and were
analyzed using two-way ANOVA (P < 0.05), followed by Tukey’s post hoc test for multiple comparisons. When interaction between sampling time and treatment is
significant, lowercases letters (a, b, c, and d) represent statistically significant differences (P < 0.05, Tukey’s HSD).
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FIGURE 3 | Baf A1 treatment induces mRNA levels of lipid metabolism related genes. Hepatocytes were treated with DMSO or Baf A1 for 4, 8, 16, or 24 h.
Transcripts levels of (A) fas, (B) plin2, and (C) plin3 were measured using quantitative real time RT-PCR assays. Expression values are normalized with the eukaryotic
translation elongation factor 1 α 1 (eef1a1) mRNA. Value are means (n = 6), with standard error represented by vertical bars and were analyzed using two-way
ANOVA (P < 0.05), followed by Tukey’s post hoc test for multiple comparisons.

DISCUSSION

Autophagy has long been considered merely as a cellular waste
disposal and recycling mechanism. However, studies in recent
years have highlighted its major role for the adaptation of
metabolism to environmental changes (Kroemer et al., 2010;
Chen et al., 2015; Chiarelli et al., 2016; Tang, 2016). In this
regard, we and others showed that treatment of fasted fish
(rainbow trout or zebrafish) with autophagy flux inhibitor agents
(colchicine or chloroquine) led to strong defaults in intracellular
substrates delivery for glucose production or energy furniture
(Seiliez et al., 2016; Wang et al., 2018). Interestingly, these
studies also pointed out sever perturbations in the mRNA
levels of several intermediary metabolism-related genes in these
fish, establishing a new potential link between autophagy and
intermediary metabolism. However, probably due to divergences
of experimental protocols (including the species investigated
and the used autophagy flux inhibitors), these studies led to
conflicting results with respect to the regulations of specific gene
expression, precluding a clear picture of the role of autophagy
in this process.

In the present study, we demonstrated that Baf A1 treatment
of trout hepatocytes decreased the mRNA levels of genes involved
in gluconeogenesis and conversely, increased those of genes
involved in lipogenesis and lipid storage. Although it is well
accepted that Baf A1 is an autophagy inhibitor, it may also
have other side effects. For instance, some data reported that
it has some effects on mitochondria quality (Yuan et al., 2015;
Redmann et al., 2017), making it difficult to determine which
effects on metabolism-related mRNAs could be a consequence
of inhibiting autophagy or of direct effects on mitochondria
independently of autophagy. However, our results are in close
agreement with those previously reported in trout showing that
in vivo treatment with colchicine (which act on autophagy by

inducing microtubule disassembly) led to a similar lowering effect
on the mRNA levels of gluconeogenesis-related genes and an
increasing effect on both plin2 and plin3 (Seiliez et al., 2016),
suggesting that the observed effects are specific to autophagy
inhibition. Interestingly, previous findings in mammals also
evidenced a tight link between the activity of autophagy and
mRNA levels of some enzymes involved in glucose metabolism
(Wang et al., 2015). Acute suppression of autophagy with
lysosome inhibitors (Chloroquine or Bafilomycin A1) in statin
treated human liver cancer cell line (HepG2 cells) has thus
been shown to reduce mRNA levels of the two gluconeogenic
enzymes g6pc and pck1 (Wang et al., 2015). Similarly, the statin-
induced increase in expression of g6pc and pck1 was blocked
in Atg7-deficient hepatocytes, providing a genetic confirmation
of these results (Wang et al., 2015). However, another study
suggests the opposite role of autophagy in gluconeogenesis with
the finding that overexpression of Atg7 reduces mRNA levels of
g6pc and pck1 in the livers of mice (Yang et al., 2010); But the
induction of autophagy by Atg7 overexpression was not verified
in this study, preventing to conclude on the specific role of
this function in the observed effects. More recently, Wang et al.
(2018) showed that chloroquine treatment of fasted zebrafish
inhibited the hepatic expression of most genes related to lipid
metabolism and conversely upregulated those of carbohydrates
metabolism, making possible the existence of species-dependent
effects of autophagy inhibition. Overall, these data support a
close link between autophagy and the mRNA levels of metabolic
genes, although the exact nature of this relationship, which likely
depends on many factors (including the species studied and/or
the protocol used to monitor this link), remains to be clarified.

It is now clearly established that the expression of a wide
range of hepatic genes involved in the intermediary metabolism is
under the control of amino acid availability. In trout hepatocytes,
free amino acid addition to an amino acid-deprived medium
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FIGURE 4 | Time courses of the changes in free amino acids in fasted hepatocytes treated or not with Baf A1. Fasted trout hepatocytes were treated with DMSO or
Baf A1 for 4, 8, 16, or 24 h. The concentration of each amino acid is expressed as µmol/l cell homogenate and was determined on a pool of samples from two
independent experiments.
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FIGURE 5 | Baf A1 treatment induces ER stress markers. Hepatocytes were treated with DMSO or Baf A1 for 4, 8, 16, or 24 h. Hepatocyte mRNA levels of (A),
chop (B), xbp1, and (C) edem1 were measured using quantitative real time RT-PCR assays. Expression values are normalized with the eukaryotic translation
elongation factor 1 α 1 (eef1a1) mRNA. Value are means (n = 6), with standard error with represented by vertical bars and were analyzed using two-way ANOVA
(P < 0.05), followed by Tukey’s post hoc test for multiple comparisons. When interaction between sampling time and treatment is significant, lowercases letters (a, b,
and c) represent statistically significant differences (P < 0.05, Tukey’s HSD).

has thus been shown to up-regulate the mRNA levels of
gluconeogenesis-related enzymes (Lansard et al., 2010, 2011). As
autophagy is described as one of the main amino acid provider
during fasting (Kuma et al., 2004; Ezaki et al., 2011), we therefore
hypothesized that the observed effect of Baf A1 treatment on
the mRNA levels of metabolic genes could be due to a default
in free amino acid release in autophagy-inhibited hepatocytes.
Accordingly, Baf A1 treated cells exhibited lower levels of most of
the analyzed amino acids compared to control cells. Such an effect
of autophagy in providing amino acids endogenously to sustain
mechanistic target of rapamycin complex 1 (mTORC1) signaling
when extracellular amino acids are limited has previously been
reported in C2C12 murine myotubes (Yu and Long, 2014), and
could therefore be also at play in the observed effect of Baf A1 on
the studied genes. Interestingly, the expression of g6pcb2 which,
in contrast to the other analyzed gluconeogenesis-related genes
increased in Baf A1 treated hepatocytes, was previously shown
to exhibit an opposite regulation by feeding different levels of
proteins and by amino acids levels in hepatocytes compared to
other g6pc paralogs (Marandel et al., 2015; Lucie et al., 2016),
tipping the scale in favor of a default of autophagy-dependent
release of amino acids in the observed Baf A1 effect. However,
not all studied genes are known to be under the control of amino
acids per se. This is particularly the case for the gene fas, whose
expression has already been shown to be not directly affected
by the addition of amino acids to an amino acid-free medium
in trout hepatocytes (Lansard et al., 2010, 2011). Instead, it is
possible that the induction of ER stress observed in autophagy-
inhibited hepatocytes plays an important role in the observed
effect of Baf A1 treatment on these genes. Indeed, previous studies
have shown that ER stress plays a critical role in regulation of lipid
metabolism (Sriburi et al., 2004; Bobrovnikova-Marjon et al.,
2008; Oyadomari et al., 2008; Rutkowski et al., 2008; Kammoun

et al., 2009; Zhang et al., 2014). According to these studies,
ER stress leads to activation of the evolutionarily conserved
UPR signaling system in order to restore ER homeostasis (Shen
et al., 2004). Accumulating evidence shows that activation of the
UPR pathways can modulate lipid metabolism by controlling
the transcriptional regulation of lipogenesis and triglyceride
storage (Basseri and Austin, 2012; Han and Kaufman, 2016).
For example, PERK and eIF2α phosphorylation are induced by
antipsychotic drugs, resulting in increased lipid accumulation
in hepatocytes through activation of sterol regulatory element–
binding proteins SREBP-1c and SREBP-2, two transcription
factors that regulate the expression of critical enzymes involved
in lipogenic pathways including fas (Gosmain et al., 2005;
Lauressergues et al., 2012). XBP1 also seems to be involved in
the lipid metabolism through both direct and indirect activation
of the transcription of key lipogenic genes in the liver, including
fas, plin2 as well as CoA, desaturase 1 (Scd1), Dgat2, and Acc2
(Lee et al., 2008, 2012). Together, these data support a possible
role of ER stress in the observed effect of Baf A1 on the mRNA
levels of enzymes involved in lipid metabolism. Noteworthy, UPR
signaling has also been shown to affect the expression of genes
involved in glucose metabolism and more particularly those of
the gluconeogenesis pathway (Wagner and Moore, 2011).

Finally, recent findings in mammals reported a novel
RNA degradation system called RNautophagy, during which
direct import of RNA into lysosomes followed by degradation
takes place (Fujiwara et al., 2013). During this process,
the putative nucleic acid transporter SIDT2 predominantly
localizes to lysosomes and mediates the translocation of RNA
into lysosomes (Aizawa et al., 2016; Contu et al., 2017).
Interestingly, the authors found that treatment of cells with
lysosome inhibitors (chloroquine or Bafilomycin A1) hindered
the SIDT2 overexpression-mediated increase in intracellular
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RNA degradation. These data make therefore the impairment of
RNautophagy a possible mechanism of the observed inducing
effect of Baf A1 in the level of some mRNAs. However, it
remains to be established whether or not RNautophagy or a
RNautophagy-like process exists in fish.

Wrapping-Up
In the present study, we report that the treatment of fasted trout
hepatocytes with Baf A1 strongly perturb the mRNA expression
of several genes involved in glucose and lipid metabolisms.
These results are in close agreement with those already reported
with other autophagy inhibitors both in mammals and fish, and
support a tight link between autophagy activity and the mRNA
levels of metabolic genes. The underlying mechanisms are likely
multiple and highlight the complexity of the crosstalk between
ER, autophagy and metabolism.

Interestingly, the observed decrease in mRNA levels of
gluconeogenic genes in cells treated with Baf A1 is also consistent
with the reported role of autophagy in the maintenance
of blood glucose during fasting by releasing amino acids
for glucose production via gluconeogenesis (Ezaki et al.,
2011). Similarly, we observed an increase in mRNA levels
of FAS and the two LD-associated proteins PLIN2 and
PLIN3 in Baf A1 treated cells in agreement with the well-
established role of autophagy in the control of lipid stores
during fasting (Singh et al., 2009; Wang et al., 2018; Wei
et al., 2018). Autophagy could thus combine its role as a
supplier of substrates for the production of glucose or energy
furniture with the molecular regulation of several related
metabolic enzymes.

In the future, important issues will be to confirm these
observations by establishing fish cell lines whose autophagy is
genetically invalidated, which is now possible with the CRISPR-
Cas9 technology. Gaining knowledge in the relationships
between ER, autophagy and metabolism is of paramount for a
better understanding of the mechanisms involved in metabolic
adaptation of fish to environmental stresses.
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