
Integer Linear Programming Models for

2-staged Two-Dimensional Knapsack Problems

Andrea Lodi, Michele Monaci

Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna

Viale Risorgimento, 2 - 40136 - Bologna (Italy)

E-mails: alodi@deis.unibo.it, mmonaci@deis.unibo.it

Submitted October 2000, Revised September 2001

Abstract

We are given a unique rectangular stock of material S, with height H and width
W , and a list of m rectangular shapes to be cut from S. Each shape’s type i (i =
1, . . . ,m) is characterized by a height h̄i, a width w̄i, a profit p̄i, and an upper bound
ubi indicating the maximum number of items of type i which can be cut. We refer
to the Two-Dimensional Knapsack (TDK) as the problem of determining a cutting
pattern of S maximizing the sum of the profits of the cut items. In particular,
we consider the classical variant of TDK in which the maximum number of cuts
allowed to obtain each item is fixed to 2, and we refer to this problem as 2-staged
TDK (2TDK). For 2TDK we present two new Integer Linear Programming
models, we discuss their properties, and we compare them with other
formulations in terms of bound. Finally, both models are computationally
tested within a standard branch-and-bound framework on a large set of
instances from the literature by reinforcing them with the addition of
linear inequalities which avoid symmetries.

Keywords: Packing, Cutting, Integer Linear Programming

1 Introduction

The problem of cutting a given set of small rectangles (items) from large identical stock
rectangles of material has been regarded as a prototypical problem in the field of Cutting
& Packing (see Dyckhoff, Scheithauer, and Terno [2] for an annotated bibliography) ever
since the seminal work of Gilmore and Gomory [7]. In [7] these authors discussed a large
variety of multi-dimensional cutting problems, moving from the definition of the Two-
Dimensional Cutting Stock Problem in which the objective function is to minimize the
number of large rectangles used. In an earlier work, Gilmore and Gomory [6] proposed a
column generation approach to solve the One-Dimensional version of the above problem,
which calls for cutting a set of one-dimensional items from the minimum number of identical

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Almae Matris Studiorum Campus

https://core.ac.uk/display/20116112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

bars of material. In [7] this approach is extended to solve the two-dimensional version
of the problem, and each slave problem is as follows: a profit is associated to each item,
and a unique large rectangle has to be cut so as to obtain a subset of the items whose sum
of the profits is a maximum. This latter problem is referred in [7] as the Cutting Knapsack
Problem to emphasize that a unique stock rectangle and a set of profits are considered. In
this paper we refer to the former problem as Two-Dimensional Cutting Stock (or
Two-Dimensional Bin Packing1, see Lodi, Martello and Monaci [14] for a recent
survey), and to the latter as Two-Dimensional Knapsack (TDK).

More formally, in TDK we are given a unique rectangular stock of material S, with
height H and width W , and a list of m rectangular shapes to be cut from S. Each shape’s
type i (i = 1, . . . ,m) is characterized by a height h̄i, a width w̄i, a profit p̄i, and an upper
bound ubi indicating the maximum number of items of type i which can be cut. The
problem calls for the determination of a cutting pattern of S maximizing the sum of the
profits of the cut items (see, Figure 1(a)).

TDK can be found in the literature in many variants deriving from additional require-
ments or extensions. One of the most common of these variants is determined by the
requirement of producing cutting patterns of guillotine type, i.e., in which each item must
be cut with a sequence of edge to edge cuts parallel to the edges of S (see Figure 1(b)). A
special case of this class of problems is the so called d-staged Two-Dimensional Knap-
sack, in which the maximum number of guillotine cuts allowed to obtain each item is fixed
to d. This latter class of problems was introduced by Gilmore and Gomory [7], and has
received considerable attention due to relevant real-world applications.

1 2

3
4

5 6

7
1

2

3

4
5

6

7
8

(a) (b)

Figure 1: Examples of non-guillotine cutting (a), and guillotine cutting (b) patterns.

In this paper we consider the case of d-staged cutting with d = 2 (see Figure 2(a)),
and we denote it as 2-staged Two-Dimensional Knapsack (2TDK). Note that, if a third

1The name Cutting Stock is used when multiple copies of each item have to be cut off, while Bin
Packing is the version in which each item is considered somehow separately.

2

stage of cutting is allowed only to separate an item from a waste area, we
call this the non-exact case of 2TDK or 2TDK with trimming (see, Gilmore and
Gomory [7], and again Figure 2(a)). Otherwise, we have the exact case of 2TDK,
or 2TDK without trimming (see, Figure 2(b)).

It is easy to see (but it will be shown in detail in Section 3.2) that the
restriction introduced takes 2TDK to be suited for the column generation ap-
proach of Gilmore and Gomory since now the slave problem turns out to be
a One-Dimensional Knapsack. These problems have been addressed in the literature
by several authors, and both exact and heuristic algorithms have been proposed for some
different variants. In particular, the following problems may occur:

• 2TDK is said to be Unconstrained (U-2TDK) if there is no limit to the number of
items of each type which can be cut off (apart from the obvious geometric limit).
Otherwise, the problem is said to be Constrained (C-2TDK);

• if a 90◦ degree Rotation of the items is allowed we refer to R-2TDK; otherwise, we
consider the orientation of the items to be Fixed (F-2TDK);

• 2TDK is said to be unweighted if p̄i = h̄iw̄i (i = 1, . . . ,m); otherwise, if the profit of
an item is not equal to its area, the problem is said to be weighted.

1 2
3

4 5 6 7

8
9

1 2 3

4 5 6 7

8 9

(a) (b)

Figure 2: Examples of 2-staged patterns: non-exact (a) and exact (b) cases.

Extensive studies on 2TDK problems have been performed by Hifi [9]. In particular,
Hifi and Zissimopoulos [12], Morabito and Garcia [19], and Hifi [10] adapted and extended
the approaches proposed by Gilmore and Gomory [7] (i.e., dynamic programming and the
already mentioned column generation) to solve many of the variants of 2TDK. Hifi and
Roucairol [11] proposed both exact and heuristic algorithms for the specific case FC-2TDK.

The case in which d = 3 has been recently faced by Vanderbeck [21] by using
nested decomposition within the classical column generation formulation. The

3

general TDK has been considered by Fekete and Schepers [3, 4] who proposed
an elegant graph theory formulation, and a bounding technique based on the
definition of “dual-feasible” functions. Both the formulation and the bounding
technique can be applied to multi-dimensional cutting problems in general.

In this paper we propose two Integer Linear Programming (ILP) models for 2TDK
involving a polynomial number of variables and constraints, which can be easily adapted
to all the variants of 2TDK originated by the cases above. In the next section the models
are introduced and discussed by considering, for simplicity, the Fixed Constrained ver-
sion of the problem. In Section 3 the quality of the continuous relaxations of
these models are compared with the classical column generation formulation
by Gilmore and Gomory, and with bounds obtained by exploiting appropriate
dual-feasible functions. In Section 4 the models are computationally tested on
instances from the literature by using the branch-and-bound framework pro-
vided by Cplex 6.5.3 enriched by specific linear inequalities aimed at avoiding
symmetries and by a simple problem-oriented branching rule. In Section 5 the
extensions to the other cases are presented along with additional computational results on
each of them.

In the following we assume that all input data are positive integers.

2 ILP Models for FC-2TDK

Many of the classical heuristic results on Two-Dimensional Packing Problems are obtained
by considering the restriction of packing (cutting) the items into shelves, i.e., rows forming
levels. More precisely, a shelf is a slice of the stock rectangle with width W , and height
coincident with the height of the tallest item cut off from it. In addition, each item cut off
from the shelf has its bottom edge on a line, the basis of the shelf, and the top of the shelf
determines the basis of a following shelf (see, e.g., the slice containing items 4, 5, 6, 7 in
Figure 2(a)).

The following simple observation holds.

Observation 1 Each feasible solution of 2TDK with trimming is composed of shelves,
and, vice-versa, each item packed into a shelf can be cut off in at most two stages (plus
trimming).

Recently Lodi, Martello and Vigo [15] and Lodi [13] introduced new models for Two-
Dimensional Packing problems in which the restriction of packing into shelves is explicitly
considered. In the light of the previous observation, some of the results and the terminology
introduced in [13] can be used for 2TDK. In particular, it is also true for 2TDK that for
any optimal solution there exists an equivalent solution in which the first (leftmost) item
cut in each shelf is the tallest item of the shelf (see again Figure 2(a)). This allows us to
consider only solutions which satisfy this condition, and this first item is said to initialize
the shelf.

4

2.1 Model 1

For the first model we consider each item to be distinct, i.e., for each shape’s type i
(i = 1, . . . ,m), we define ubi identical items j such that hj = h̄i, wj = w̄i, and pj = p̄i.
Let n =

∑m
i=1 ubi indicate the overall number of items, and consider the items ordered in

such a way that h1 ≥ h2 ≥ . . . ≥ hn. The model assumes that n potential shelves may
be initialized: shelf k, if used, must be initialized by item k (k = 1, . . . , n). Then,
the possible cutting of the n items from the potential shelves is described by the following
binary variables:

xjk =

{
1 if item j is cut from shelf k
0 otherwise

(i = 1, . . . ,m; j = 1, . . . , n) (1)

The model is then as follows:

M1 max
n∑

j=1

pj

j∑
k=1

xjk (2)

subject to
j∑

k=1

xjk ≤ 1 (j = 1, . . . , n) (3)

n∑
j=k+1

wjxjk ≤ (W − wk) xkk (k = 1, . . . , n− 1) (4)

n∑
k=1

hkxkk ≤ H (5)

xjk ∈ {0, 1} (k = 1, . . . , n; j = k, . . . , n) (6)

The objective function (2) maximizes the sum of the profits of the cut items. Inequalities
(3) guarantee that each item is cut at most once, and only from shelves whose height is at
least equal to the height of the item. Inequalities (4) assure that the width constraint for
each shelf is satisfied, and that either item k is on shelf k or shelf k is empty, whereas
inequality (5) imposes the height constraint. Note that the meaning of each variable xkk

(k = 1, . . . , n) is twofold: xkk = 1 implies that item k is cut from shelf k, i.e., shelf k is
used and initialized by its corresponding item.

2.2 Model 2

In the second model the decomposition of the sets of shapes into single items is done only
in terms of shelves, i.e., we consider the items with the same shape’s type together, whereas
we separate them with respect to the initialization of the shelves. Hence, we need to define
a mapping between shape’s types i (i = 1, . . . ,m), and potential shelves k (k = 1, . . . , n).
In fact, any item of type i may be cut from shelves in the range [1,

∑i
s=1 ubs], and we define

αi =
∑i

s=1 ubs (i = 1, . . . ,m) with α0 = 0. On the other hand, any shelf k can be used to
obtain items whose type is in the range [βk,m], with βk = min{r : 1 ≤ r ≤ m,αr ≥ k}

5

(k = 1, . . . , n). Thus, βk (k = 1, . . . , n) denotes the shape’s type of the item which
must initialize shelf k. By assuming again h̄1 ≥ h̄2 ≥ . . . ≥ h̄m, we have two separate
sets of variables. The first set is composed of the following integer (non-binary) variables:

xik =

{
number of items of type i cut from shelf k if i ̸= βk

number of additional items of type i cut from shelf k if i = βk
(7)

where i = 1, . . . ,m; k ∈ [1, αi], and the term “additional” indicates that the item of type i
initializing shelf k is separately considered (if the shelf corresponds to this type of items).

The second set involves the following binary variables:

qk =

{
1 if shelf k is used
0 otherwise

(k = 1, . . . , n) (8)

The model is then as follows:

M2 max
m∑
i=1

p̄i(
αi∑
k=1

xik +
αi∑

k=αi−1+1

qk) (9)

subject to
αi∑
k=1

xik +
αi∑

k=αi−1+1

qk ≤ ubi (i = 1, . . . ,m) (10)

m∑
i=βk

w̄ixik ≤ (W − w̄βk
)qk (k = 1, . . . , n) (11)

n∑
k=1

h̄βk
qk ≤ H (12)

αi∑
s=k

xis ≤ ubi − (k − αi−1) (i = 1, . . . ,m; k ∈ [αi−1 + 1, αi]) (13)

0 ≤ xik ≤ ubi integer (i = 1, . . . ,m; k ∈ [1, αi]) (14)

qk ∈ {0, 1} (k = 1, . . . , n) (15)

The objective function (9) corresponds to the one of Model 1, so as inequalities (10), (11),
and (12) which impose the cardinality constraints, the width constraints, and the height
constraint, respectively. The purpose of inequalities (13), which are redundant in
terms of ILP formulation, is to strengthen the bound on the xik variables (given
by inequalities (14)). Indeed, it is quite easy to see that without inequalities
(13) part of the structure obtained in M1 by considering the items having the
same shape separately would be lost in M2. For any shape’s type i such that
ubi > 1, all items of type i can be packed in shelves k ∈ [αi−1 + 1, αi], whereas in
M1 an item j can be packed only in shelves k such that k ≤ j. (Note that we
have a constraint (13) for each potential shelf k (k = 1, . . . , n), and that these
inequalities are useful for improving the LP relaxation of M2, see Section 3.1.)

Immediate correspondence exists between the qk variables of Model 2 and the xkk

variables (k = 1, . . . , n) in Model 1, whereas each variable xik of Model 2 “cumulates” a

6

set of xℓk variables of Model 1. Formally, by denoting with the apex “I” (resp.
“II”) the x variables in M1 (resp. M2), a straightforward mapping of the x
variables of the two models is:

xII
ik =

αi∑
ℓ=αi−1+1

xI
ℓk (if i ̸= βk), xII

ik =
αi∑

ℓ=k+1

xI
ℓk (if i = βk) (16)

We conclude Section 2 by briefly discussing the size of M1 and M2 above. It is immediate
that M1 involves n(n + 1)/2 binary variables and 2n constraints, whereas M2 involves
2n + m + 1 constraints, n binary variables, and

∑m
i=1

∑i
s=1 ubs integer variables. This

means that the number of integer variables of M2 depends on the structure of the instance,
and, in particular, belongs to the range [n, n(n+1)/2], where the lower bound of n variables
corresponds to the case in which all the items are identical (m = 1), whereas the upper
bound is given by the case in which all items are different (m = n).

3 Upper Bounds

In this section we consider upper bound procedures for 2TDK and we computationally
compare them in Section 3.4.

3.1 Upper Bounds from the LP relaxations of the Models

Valid upper bounds for 2TDK can be obtained by solving the LP relaxation
of both M1 and M2, i.e., by replacing each constraint (6) (resp. (15)) with
0 ≤ xjk ≤ 1 (resp. 0 ≤ qk ≤ 1), and by relaxing for M2 the integrality requirement
in constraints (14).

As anticipated in Section 2.2, inequalities (13) are useful in terms of LP
relaxation. Indeed, M2 without inequalities (13) is allowed to split an item into
one part initializing the shelf (q part) and some others which can be packed
as “additional” parts (x parts) in the same shelf or in the following shelves
of that type (if any). Hence, the profit of the item is possibly taken into
account completely (see the objective function (9)), while the height of the
corresponding shelf is only partially paid (see constraint (12)). This is not
the case for M1, since if an item initializes a shelf it cannot be packed as
“additional” neither in it nor in the following shelves.

The following example shows the effectiveness of inequalities (13) in overcoming the
above drawback.

Example 1
We are given the simple instance: H = W = 10, m = 2, h̄1 = 10, w̄1 = 1, p̄1 = 1000,
ub1 = 3, h̄2 = w̄2 = 1, p̄2 = 1, ub2 = 100.
The LP relaxation of M1 gives an upper bound U I

M = 3007, whereas, without inequalities
(13), U II

M = 3070 corresponding to the solution q1 = 0.3, x11 = 2.7, plus 7 shelves full of

7

items of shape’s type 2. This solution could be forbidden by using an obvious strength-
ening of (14): 0 ≤ xik ≤ ubi − 1 if βi = k, which corresponds, in this case, to x11 ≤ 2.
However, this could be not enough: an equivalent solution is q1 = 0.2, x11 = 1.8, q2 = 0.1,
x12 = 0.9 plus 7 shelves full of items of shape’s type 2. By imposing the three inequalities
(13) (which dominate by the lifting operation the strengthening above) x11+x12+x13 ≤ 2,
x12 + x13 ≤ 1, x13 ≤ 0, we obtain U II

M2 = 3007. 2

Due to the above discussion, the following theorem holds.

Theorem 1 M1 and M2 are equivalent in terms of continuous relaxation.

Proof. It is enough to show that to each solution of the continuous relaxation of M1 (M1c
in the following) corresponds a solution of the continuous relaxation of M2 (M2c in the
following) with the same value, and vice-versa. In order to distinguish the x variables
of M1 and M2, we use the same notation introduced in Section 2.2.
M1 → M2. Given a feasible solution M1c, a corresponding solution M2c is built as follows:

for k := 1 to n qk := xI
kk;

for i := 1 to m
for k := 1 to αi

if (i ̸= βk) then xII
ik :=

αi∑
j=αi−1+1

xI
jk

else xII
ik :=

αi∑
j=k+1

xI
jk

and this solution, with exactly the same value, satisfies inequalities (13) by construc-
tion. Hence, recalling the discussion of Section 2.2, in M2c the “additional”
items of shape’s type i cut off from a shelf k ∈ [αi−1+1, αi] (i.e., βk = i) are those
items j > k (and, obviously, such that βj = i) cut off from shelf k in M1c.
M2 → M1. Given a feasible solution M2c, a corresponding solution M1c is built as follows:

for k := 1 to n
xI
kk := qk;

for i := βk to m zi := xII
ik

for j := k + 1 to n
xI
jk := min{1, zβj

}
zβj

:= zβj
− xI

jk

where zi (i = 1, . . . ,m) is, by construction, the number of “additional” items of
shape’s type i cut from the current shelf (the one defined by the outer loop).
The solution obtained with the algorithm above has the same value of the original M2c
and is feasible for the continuous relaxation of M1 since inequalities (13) assure that, given
a shelf k such that i = βk (k = 1, . . . , n), no item j of shape’s type i can be cut off from k

8

if j < k. 2

A final remark concerns the geometric bound, i.e., the most obvious upper
bound for general Two-Dimensional Knapsack problems obtained by solving
the continuous relaxation of the 0-1 Knapsack Problem in which the capacity of the
knapsack is W ·H, and to each item j (j = 1, . . . , n) corresponds an item of KP01
whose profit is pj and whose weight is wj ·hj. Not surprisingly, by denoting the
value of this continuous relaxation bound as Ug, and the value of the continuous
relaxation of the models as UM , the following simple result can be proved with
algebraic arguments (see Monaci [18]):

Proposition 1 For any instance of FC-2TDK, UM ≤ Ug.

3.2 The Column Generation Upper Bound *** new ***

A classical upper bound for FC-2TDK can be derived from the column generation approach
proposed by Gilmore and Gomory [6]. Let S := {1, . . . , NS} be the set of all “feasible”
shelves, i.e., those shelves s satisfying the condition:

m∑
i=1

w̄ir
s
i ≤ W

where rsi (0 ≤ rsi ≤ ubi, i = 1, . . . ,m) denotes the number of items with shape’s type i
which are cut from shelf s. Let As and Ps be the height and the profit of shelf s, i.e.,
formally:

As := max{h̄i : r
s
i > 0, i = 1, . . . ,m} and Ps :=

m∑
i=1

p̄ir
s
i

Thus, the LP relaxation of the column generation formulation for 2TDK (the so-called
master problem) is as follows:

UCG := max
∑
s∈S

Psys (17)

subject to
∑
s∈S

rsi ys ≤ ubi (i = 1, . . . ,m) (18)∑
s∈S

Asys ≤ H (19)

ys ≥ 0 (s ∈ S) (20)

Since the number NS of variables (columns) is in general huge, only a subset of them is
considered, thus “restricted” LP relaxations are iteratively solved until no variable with
negative reduced cost exists, i.e.

Ps ≤ ρAs +
m∑
i=1

πir
s
i (∀s ∈ S) (21)

9

where πi (i = 1, . . . ,m) and ρ are the dual variables associated with constraints (18)
and (19), respectively. Columns with negative reduced cost, violating condition (21), can
be detected by solving the so-called slave problem, i.e., the following Bounded Knapsack
Problem (BKP):

Z(BKP) := max
m∑
i=1

(p̄i − πi)ri (22)

subject to
m∑
i=1

w̄iri ≤ W (23)

0 ≤ ri ≤ ubi integer (i = 1, . . . ,m) (24)

If there exists a feasible shelf s such that Z(BKP) > ρAs, then s is added to the formulation
(17)–(20), otherwise UCG represents the value of the upper bound of the column generation
formulation.

Since we are just interested at the quality of the bound, we implemented the above
column generation approach by using Cplex for solving both the master problem and the
slave problem. For the description of an efficient implementation of column generation
techniques for cutting and packing, the reader is referred to Vanderbeck [20, 21].

Finally, it is easy to see that the presented technique can be adapted to all the variants
of 2TDK by modifying the slave problem, i.e., the way the columns are generated.

3.3 Upper Bounds from dual-feasible functions *** new ***

Recently, Fekete and Schepers [4] proposed a general bounding technique for cutting and
packing problems by using the concept of dual-feasible functions (see also Lueker [16]), and
exploited it for solving multi-dimensional knapsack problems.

Roughly speaking, a dual-feasible function u is a function mapping a given instance I
of the problem into a new instance I ′ such that any feasible solution for I is also feasible
for I ′: hence, any bound for I ′ is also valid for I. Fekete and Schepers [4] proposed a set of
mapping functions which can be used to produce different I ′, thus different valid bounds:
after this mapping, they simply compute the geometric bound (see Section 3.1) on I ′.

It is known that any function u described above is a feasible solution of the dual of the
column generation formulation of the problem (see the previous section). This fact implies
the name “dual-feasible” function, and the dominance of UCG with respect to the bounds
which can be obtained from any function u.

We used the three dual-feasible functions proposed in [4] to produce modified instances
of FC-2TDK. However, since the bound given by the LP relaxation of M1 and M2 dominates
the geometric bound (recall Proposition 1), we applied the LP relaxation of our models
as bounding procedure on the modified instances. The results were not satisfying since
we were not able to improve the bound given by M1 (and M2) on the original instances.
This behavior seems to be due to the structure of the instances (see Section 3.4) in which
there is a large number of “small” items, i.e., items whose height (resp. width) is small
with respect to the height (resp. width) of the stock unit. The dual-feasible functions in

10

[4] are known to be effective in case of “large” items. However, better results could be in
principle obtained by using specific dual-feasible functions taking into account the 2-stage
constraint.

Since no improvement has been obtained, detailed computational results using dual-
feasible functions have been omitted in the next section.

3.4 Upper Bound comparison *** new ***

We compared the column generation bound and the bound given by the Models described in
Section 2 by considering the set of 38 FC-2TDK instances2 proposed by Hifi and Roucairol
[11] and composed of 14 weighted instances and 24 unweighted ones. The results are given,
separately for weighted and unweighted instances, in Table 1. We need to note that the
literature of 2TDK distinguishes two cases: (i) the case in which the first cut is horizontal,
i.e., the case we referred to in the entire paper, and (ii) the case in which the first cut
is vertical. In the latter case, we can simply extend the terminology of shelf patterns by
referring to “shelves” also as “columns” forming levels (see the discussion at the beginning
of Section 2).

In particular, for each instance of the discussed sets, Table 1 indicates the identifier (ID),
the number of shape’s types (m), and the number of items (n). Moreover we report, for
both horizontal and vertical patterns (cases (i) and (ii), respectively), the optimal solution
value (Opt), the ratio between the bound produced by the continuous relaxation of the
models (UM) and the optimal solution value, and the ratio between the bound produced
by the column generation (UCG) and the optimal solution value3.

The computational results show that the bound produced by the column generation
is better than the one produced by the LP relaxations of our models on almost all the
instances. This fact is not surprising since it descends from a general result by Geoffrion
[5]. Specifically, the average percentage gap of UM for the weighted instances is 11.5%
(12.8% resp.) for the horizontal (vertical resp.) pattern with respect to 3.8% (4.0% resp.)
of UCG. For the unweighted instances, instead, these gaps are 5.8% (6.5% resp.) with
respect to 2.8% (2.1% resp.).

These results show a quite large difference between UM and UCG, mainly in the weighted
case. However, as will be shown in Section 4.2, these initial gaps of M1 and M2 are
efficiently closed within a branch-and-bound framework. Moreover, we have to point out
that the computation of UCG requires the solution of a set of (NP-hard) BKPs, thus the
elapsed time is exponential in m.

2Available at ftp://panoramix.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/.
3Both bounds are rounded down to the closest integer before computing their ratio with respect to the

optimal value.

11

Table 1: FC-2TDK: Models’ bound vs. Column Generation bound.

Instance First Cut is Horizontal First Cut is Vertical

ID m n Opt UM

Opt
UCG

Opt Opt UM

Opt
UCG

Opt

HH 5 18 10689 1.164 1.017 9246 1.333 1.080
2 10 23 2535 1.135 1.045 2444 1.141 1.051
3 20 62 1720 1.166 1.101 1740 1.145 1.088

A1 20 62 1820 1.180 1.032 1820 1.170 1.094
A2 20 53 2315 1.171 1.033 2310 1.161 1.057

STS2 30 78 4450 1.073 1.018 4620 1.027 1.000
STS4 20 50 9409 1.057 1.018 9468 1.048 1.030
CHL1 30 63 8360 1.091 1.049 8208 1.114 1.007
CHL2 10 19 2235 1.106 1.017 2086 1.187 1.016
CW1 25 67 6402 1.117 1.072 6402 1.123 1.007
CW2 35 63 5354 1.123 1.034 5159 1.162 1.091
CW3 40 96 5287 1.128 1.064 5689 1.060 1.028
Hchl2 35 75 9630 1.056 1.012 9528 1.069 1.008
Hchl9 35 76 5100 1.040 1.019 5060 1.049 1.003

2s 10 23 2430 1.152 1.046 2450 1.143 1.051
3s 20 62 2599 1.077 1.033 2623 1.067 1.066

A1s 20 62 2950 1.017 1.014 2910 1.031 1.009
A2s 20 53 3423 1.052 1.015 3451 1.043 1.023

STS2s 30 78 4569 1.023 1.010 4625 1.011 1.009
STS4s 20 50 9481 1.034 1.017 9481 1.034 1.011
OF1 10 23 2713 1.032 1.000 2660 1.053 1.006
OF2 10 24 2515 1.113 1.081 2522 1.110 1.071
W 20 62 2623 1.067 1.066 2599 1.077 1.033

CHL1s 30 63 13036 1.013 1.012 12602 1.047 1.006
CHL2s 10 19 3162 1.078 1.046 3198 1.066 1.000

A3 20 46 5380 1.041 1.040 5403 1.036 1.009
A4 20 35 5885 1.071 1.037 5905 1.067 1.010
A5 20 45 12553 1.052 1.050 12449 1.060 1.015

CHL5 10 18 363 1.102 1.044 344 1.163 1.108
CHL6 30 65 16572 1.020 1.020 16281 1.038 1.012
CHL7 35 75 16728 1.010 1.005 16602 1.018 1.005
CU1 25 82 12312 1.015 1.015 12200 1.025 1.012
CU2 35 90 26100 1.006 1.006 25260 1.039 1.038

Hchl3s 10 51 11961 1.041 1.015 11829 1.052 1.018
Hchl4s 10 32 11408 1.091 1.037 11258 1.106 1.015
Hchl6s 22 60 60170 1.026 1.016 59853 1.031 1.015
Hchl7s 40 90 62459 1.015 1.012 62845 1.009 1.004
Hchl8s 10 18 729 1.241 1.051 791 1.200 1.037

12

4 Computational Experiments

We tested models M1 and M2 on the instances introduced in Section 3.4 by using the
standard branch-and-bound (without specific tuning of the parameters) of the commercial
ILP solver Cplex version 6.5.3. The code runs on a Digital Alpha 533 Mhz.

We performed two sets of computational experiments: the first is aimed at improv-
ing the performance of the models within the branch-and-bound framework,
whereas the second compares the models with the existing literature. In Sec-
tion 4.1 we propose linear inequalities aimed at removing symmetric solutions
from the search space, and their effectiveness is computationally shown. More-
over, a simple improvement to the standard branching rule of Cplex 6.5.3 is
presented and tested in the same section.

In the second set of experiments (see Section 4.2) we compare the results obtained by
M1 and M2 (plus the effective linear inequalities and the branching rule) with those of the
best exact algorithm in the literature by Hifi and Roucairol [11].

4.1 Avoiding Symmetries by Linear Inequalities

Symmetries are one of the main problems when dealing with exact methods for cutting
problems. This is true in general for ILP models (e.g., Hadjiconstantinou and
Christofides [8]) when they are not based on the column generation frame-
work (see, instead, Vanderbeck [20]), and also for branch-and-bound methods
exploiting combinatorial bounds (e.g., Martello and Vigo [17]), the only excep-
tion being the graph theory modeling approach of Fekete and Schepers [3].

In our models some of these symmetries are avoided by the assumptions discussed at
the beginning of Section 2: we do not explicitly distinguish the position of an item in a
shelf (neither the position of a shelf in the rectangular stock), and the fact that n
potential shelves are considered (each of them with a prefixed height) allows to further
restrict the search space.

In addition, some other symmetries can be avoided in both models by using two sets of
linear inequalities which are presented in the following for M1, and then adapted to M2.

The first set of inequalities is aimed at removing from the search space the equivalent
solutions in which a shelf k is used instead of a shelf ℓ, both corresponding to items with
the same shape’s type, and such that k > ℓ. We call these inequalities Ordering Inequalities
(OIs), and, by using the α-notation introduced for M2 (see Section 2.2), we prove
their correctness through the following theorem.

Theorem 2 For any shape’s type i (i = 1, . . . ,m), linear inequalities

xtt ≥ xt+1,t+1 (t ∈ [αi−1 + 1, αi − 1]) (25)

do not change the optimal solution value of M1.

13

Proof. Suppose that in an optimal solution of 2TDK one of the inequalities (25), say
xkk ≥ xk+1,k+1, is violated. This implies that item k has been cut off from one of the
shelves 1, . . . , k − 1, say s, whereas item k + 1 initializes its shelf. However, since k and
k+1 are identical, it is always possible to “swap” shelves k and k+1 by: (i) cutting
item k + 1 from s, (ii) initializing shelf k with its corresponding item, and (iii)
obtaining from shelf k the items which were cut from shelf k+1. Hence, we obtain
an equivalent optimal solution such that inequality xkk ≥ xk+1,k+1 is satisfied. 2

The second set of inequalities concerns the number of additional items of a given shape’s
type, say i, which can be cut from shelves, say ℓ and k, such that (by using the β-notation
introduced for M2) βℓ = βk = i. In particular, we want to remove from the search space
those solutions in which the number of these items cut from shelf k is greater than the
number of those cut from shelf ℓ if k > ℓ. We refer to these inequalities as Extended
Ordering Inequalities (EOIs), and their correctness is proved by the following theorem.

Theorem 3 For any shape’s type i (i = 1, . . . ,m), linear inequalities

t+ubi−1∑
s=t+1

xst ≥
t+ubi−1∑
s=t+2

xs,t+1 (t ∈ [αi−1 + 1, αi − 1]) (26)

do not change the optimal solution value of M1.

Proof. The swapping argument in the proof of Theorem 2 can be easily
adapted. Suppose that in an optimal solution of 2TDK one of the inequali-
ties (26), say the one corresponding to shelves k and k + 1, is violated. Since
the corresponding items k and k + 1 have the same shape’s type, there is an
equivalent solution in which the items cut from shelf k are obtained from shelf
k + 1 and vice-versa, so as to satisfy the violated inequality. 2

Corresponding OIs and EOIs can be derived for M2: we obtain respectively

qt ≥ qt+1 (i = 1, . . . ,m; t ∈ [αi−1 + 1, αi − 1]) (27)

and
xit ≥ xi,t+1 (i = 1, . . . ,m; t ∈ [αi−1 + 1, αi − 1]) (28)

whose correctness is immediate from Theorems 2 and 3 above.
Both Ordering Inequalities and Extended Ordering Inequalities can be added to the

models in the construction phase (O(n) + O(n) inequalities in both cases), and their ef-
fectiveness is computationally tested on the same set of instances introduced in Section
3.4. Table 2 reports computational results comparing M1 and M2 in their basic
version and with the addition of OIs and EOIs. The results are given separately for
weighted and unweighted instances, and, for each model both in basic and strengthened
versions, the average computing time (in seconds) and the number of unsolved instances
within the time limit of 1,800 seconds are reported. Recalling that each of the instances

14

Table 2: FC-2TDK: Effectiveness of OIs and EOIs for M1 and M2.

Instances M1 M2
without OIs,EOIs with OIs,EOIs without OIs,EOIs with OIs,EOIs

type time unsolved time unsolved time unsolved time unsolved
weighted 38.97 - 8.66 - 121.27 1 67.75 -

unweighted 307.83 6 38.55 - 319.91 6 70.10 -

is solved twice (first cut either horizontal or vertical), the entries of the table consider 28
and 48 different runs for the weighted and unweighted cases, respectively.

The results in Table 2 show that the addition of linear inequalities in order to avoid
symmetries in the models is very effective by allowing the solution of the entire set of in-
stances. Moreover, since we considered as solution time for the unsolved instances the time
limit, the average computing times are an optimistic estimate, thus the already relevant
speed up shown by the table could be even higher. From now on, we consider the version
of M1 and M2 with the addition of OIs and EOIs.

We conclude the section by briefly mentioning the standard branching strat-
egy implemented by Cplex 6.5.3 and by proposing a simple problem-oriented
improvement. In order to show that the proposed models are effective for a
general-purpose ILP solver, we did not tune Cplex, so that, for example, we
leave Cplex automatically choose up/down branch direction and backtracking
tolerance. A simple and quite effective improvement can be, however, achieved
by defining a priority order for the variables to branch on. Specifically, we as-
sign a higher priority to the variables corresponding to the initialization of a
shelf (xkk in M1 and qk in M2). For each of these variables, the priority value
is set to the value of the profit of the corresponding item, thus giving larger
priority to items with larger profit.

Table 3 reports the results of this simple branching rule (“improved”) com-
pared with the automatic variable selection (“default”) implemented by Cplex
6.5.3. The table is organized as Table 2 where columns indicating the number
of unsolved instances are replaced by columns indicating the average number
of branch-and-bound nodes.

Table 3: FC-2TDK: A simple problem-oriented branching rule.

Instances M1 M2
default improved default improved

type time nodes time nodes time nodes time nodes
weighted 8.66 329.6 9.00 361.9 67.75 6538.2 51.80 5567.0

unweighted 38.55 4877.3 23.61 2333.9 70.10 7047.7 42.29 5023.5

The results in Table 3 suggest that the proposed ordering is quite effective

15

in the selection of the branching variable, by effecting in an overall reduction
of both computing times and number of branch-and-bound nodes.

4.2 Literature comparison

In Table 4 we report the computational comparison of our models (improved as shown in the
previous section) with respect to the exact dynamic programming approach proposed by
Hifi and Roucairol [11]. We consider again separately the weighted case (the first
14 instances) and unweighted one (the last 24 instances). For each instance of
the discussed sets and for both horizontal and vertical patterns, the computing
times of M1 (t.M1), M2 (t.M2), and the one of the algorithm [11] (t.HR) are
reported. The computing times of algorithm HR are expressed in CPU seconds on a
UltraSparc10 250 Mhz.

The results in Table 4 show that our models are competitive with the exact approach
of Hifi and Roucairol [11]. In fact, both models are able to solve in reasonable computing
times all the instances proposed in [11] where the optimality of the solution of instance
Hchl2 was not proved by Hifi and Roucairol. In particular, M2 is very effective when the
ratio n/m is high, i.e., if the average number of items of each shape’s type is relevant, see
e.g., instances Hchl3s and Hchl4s. Conversely, when only two or three items on average
have the same shape’s type, then M1 is faster, see e.g., instances Hchl2 and CHL6. This
behavior could be exploited in order to select the more suitable model according to the
structure of a given instance.

5 Models’ extensions

In the previous sections we discussed the Fixed Constrained version of 2TDK, and in
particular the non-exact case. An immediate extension to the exact case is possible for
both models: in M1 (resp. M2) it is enough to set xjk = 0 if hk ̸= hj (resp. h̄k ̸= h̄βj

), or
more efficiently not to define those variables.

In the following sections we consider the extensions needed by the models in order to
address the most common variants of 2TDK discussed in Section 1. Both M1 and M2
are considered with the addition of the symmetry-breaking inequalities and
with the simple branching rule discussed in Section 4.1.

Note that, without loss of generality, we address in the following sections only the case
in which the first cut is horizontal.

5.1 The unconstrained case

Both models can be easily extended to the case in which ubi = +∞ (i = 1, . . . ,m), i.e.,
no upper bound on the number of items of each shape’s type is defined. This case, called
unconstrained in Section 1, has been considered in the literature, e.g., [9], and can be
addressed by simply observing that such an upper bound always exists due to “shape”

16

Table 4: FC-2TDK: M1 and M2 vs. Hifi and Roucairol [11].

Instance First Cut is Horizontal First Cut is Vertical
ID t.M1 t.M2 t.HR t.M1 t.M2 t.HR

HH 0.28 0.05 0.20 0.25 0.13 0.30
2 0.35 0.32 2.90 1.33 0.42 3.80
3 0.35 0.23 0.20 1.35 0.72 0.20

A1 0.88 0.40 0.20 1.30 0.77 0.30
A2 1.33 0.58 0.80 1.37 0.75 0.70

STS2 16.82 15.27 5.60 1.25 0.65 0.50
STS4 11.42 9.98 9.20 4.88 6.00 1.90
CHL1 8.30 4.00 610.10 6.03 9.80 1496.30
CHL2 0.12 0.13 0.10 0.22 0.25 0.10
CW1 2.32 0.82 1.00 1.00 0.57 1.00
CW2 0.87 0.78 2.10 1.82 1.42 2.20
CW3 2.55 1.72 6.40 7.48 1.37 6.30
Hchl2 61.77 300.02 7200.00 93.80 1674.82 7200.00
Hchl9 3.62 1.90 858.00 6.13 5.12 1017.40

2s 0.48 0.43 4.60 0.65 0.35 4.80
3s 0.33 0.25 0.10 0.75 0.45 0.10

A1s 0.27 0.47 0.10 1.08 0.48 0.20
A2s 2.57 0.77 0.20 3.08 0.73 0.20

STS2s 10.12 11.85 1.10 4.42 1.90 0.80
STS4s 13.10 15.25 8.90 5.42 13.83 1.90
OF1 0.07 0.05 0.10 0.07 0.07 0.10
OF2 0.28 0.22 0.10 0.20 0.15 0.10
W 0.75 0.52 0.20 0.35 0.18 0.10

CHL1s 4.30 5.15 6.10 11.42 80.22 21.50
CHL2s 0.18 0.17 0.10 0.18 0.13 0.10

A3 1.78 1.87 0.30 1.68 3.25 0.40
A4 1.58 1.85 1.60 1.87 2.12 2.10
A5 3.97 1.53 2.40 8.20 3.18 2.50

CHL5 0.03 0.03 0.10 0.05 0.05 0.10
CHL6 21.50 38.52 38.20 21.43 720.00 33.40
CHL7 54.23 181.73 44.60 43.35 475.50 50.60
CU1 11.78 1.70 1.00 448.50 1.93 1.00
CU2 3.67 1.80 2.70 11.02 4.40 2.80

Hchl3s 312.93 13.97 15.30 119.42 2.22 20.40
Hchl4s 402.13 5.62 507.40 3.20 1.10 268.40
Hchl6s 19.60 45.25 14.80 37.13 139.38 7.20
Hchl7s 168.20 751.40 96.20 58.25 907.13 39.10
Hchl8s 0.72 0.42 26.40 0.42 0.28 28.70

17

reasoning. The simplest way of computing such a bound is to consider for each shape’s
type i (i = 1, . . . ,m), ubi = ⌊(HW)/(h̄iw̄i)⌋, i.e., the geometric upper bound computed as
area of the rectangular stock divided by the area of the shape’s type. A slight improvement
can be obtained by considering ubi = ⌊H/h̄i⌋ · ⌊W/w̄i⌋. This leads to a mapping of an
unconstrained instance to a constrained one, thus immediately allowing our models to be
used without any change.

The drawback of this mapping for our models is obvious: since the bound we compute
is not tight, the size of the models grows up very quickly both in terms of number of
variables and constraints. This fact dramatically decreases the effectiveness of M1 while
M2 is still usable in practice since the items of the same type are considered together at
least as x variables. We computationally verified this behavior by considering the classes
of instances4 discussed by Hifi [10], and some results are reported in Table 5.

Table 5: FU-2TDK: Performance of M1 and M2 on the Unconstrained variant.

Instance M1 M2

ID m n Opt UM

Opt nv nc t.M1 nv nc t.M2

BW 32 1214 2307817 1.088 737505 4792 1800.00 (+) 11019 4825 679.48
HZ2 5 73 7934 1.178 2701 282 10.70 247 288 1.73

MW1 10 73 3882 1.085 2701 272 3.08 415 283 0.35
UW1 25 112 6036 1.273 6328 398 14.05 1197 424 1.02
W1 20 610 161424 1.077 186355 2400 1800.00 (16.07) 5232 2421 51.50
B 32 1214 8997780∗ 1.000 737505 4792 1800.00 (+) 11019 4825 1800.00 (3.37)
H 5 87 12132 1.026 3828 338 1800.00 (0.75) 278 344 2.30

HZ1 6 257 5226 1.000 33153 1016 154.48 785 1023 8.03
U1 10 476 22167051 1.015 113526 1884 1800.00 (7.04) 3030 1895 1031.35
U2 10 189 19967604 1.029 17955 736 1800.00 (1.46) 1076 747 27.18

UU1 25 93 240346 1.040 4371 322 25.22 1054 348 3.95
(+) Upper bound undetermined within the given time limit.

∗ 8997780 is the optimal solution value as computed in [10].

We considered as an example a single instance for each class reported in [10], and we
tested both M1 and M2 as discussed in Section 4 for a given time limit of 1,800 seconds
on a Digital Alpha 533 MHz5.

In Table 5 we report, for each instance, its identifier (ID), the number of shape’s type
(m), and the number of items after the mapping (n). In addition, we report the optimal
solution value (Opt), and the ratio between the upper bound of the continuous relaxation
(UM) and Opt. Then, for each model, the number of variables and constraints (nv and nc
respectively), and the computing time (t.M1 and t.M2 respectively) are reported. Finally,
in round brackets, we report the percentage gap between lower and upper bound where
the instance is not solved to optimality within the time limit (directly reported by Cplex).

4Available at ftp://panoramix.univ-paris1.fr/pub/CERMSEM/hifi/2Dcutting/.
5In Table 5 and in the other ones of Section 5 the first set of instances refers to the weighted case, and

the second set to the unweighted one.

18

Table 5 does not report results for the instances of the class LW and LU which are un-
solvable for our model: the smallest weighted instance of this class, LW1, involves after
the mapping 102748 items (so as the corresponding unweighted one LU1), thus the size of
both models becomes intractable.

These results show that both models remain able to solve in a reasonable amount
of computing time a large set of unconstrained instances of 2TDK, thus testifying the
flexibility of the proposed framework. In particular, M2 greatly benefits from the
fact of considering items of the same shape’s type partially together.

However, it is important to point out that for pure unconstrained 2TDK,
i.e., FU-2TDK, ILP models are far from being the state of the art technique.
Indeed, FU-2TDK is solvable by computing the optimal solution of a set of
m + 1 disjoint unconstrained knapsack problems: one for each shape’s type,
m, and one for cutting the shelves from the stock unit. Moreover, as already
proposed by Gilmore and Gomory [7], these knapsack problems can be solved
in a single step by dynamic programming. Effective implementations (also for
FU-3TDK) of this framework have been proposed by Hifi [10] obtaining results
which are around 2 orders of magnitude better than those in Table 5.

5.2 The rotation case

The second variant of 2TDK we consider is the one in which the items can be rotated by
90◦, called rotation in Section 1. The basic idea for extending both models to this case
is to introduce for each possible item, say j, a “companion” item, say j′, for which the
height and weight values are swapped, and then add to the formulation suitable constraints
avoiding that j and j′ are both inserted.

More formally, since in M1 each item is considered separately, for each item j (j =
1, . . . , n) the companion item j + n is considered such that hj+n = wj and wj+n = hj, and
the 2n items are sorted by non-increasing height values. A straightforward way of imposing
the constraints on the packing of the companion items is to replace constraints (3) by

j∑
k=1

xjk +
θj∑
k=1

xθj ,k ≤ 1 (j = 1, . . . , 2n; j < θj) (29)

where θj (j = 1, . . . , 2n) indicates the companion of item j after the sorting and re-
numbering phase.

However, it is not possible to use these constraints in combination with the OIs. Con-
sider, for example, two identical items j and j + 1, and their companions (after sorting)
θj and θj+1, and suppose that in the optimal solution two shelves must be initialized with
height hj and wj. The associated OIs force the opening of shelves j (j being the first
item of height hj) and θj (θj being the first item of rotated height wj), whereas
this is forbidden by a corresponding constraint (29) since j and θj are the same item.

A simple way of overcoming this problem is to relax in a surrogate fashion con-
straints (29) in the following way. Let T = {1, . . . ,m} be the set of the shape’s types, and

19

let γj ∈ T (j = 1, . . . , 2n) indicate the shape’s type to which items j and θj belong. We
obtain the following m surrogate constraints

∑
j∈J | γj=t

j∑
k=1

xjk ≤ ubt ∀ t ∈ T (30)

where J = {1, . . . , 2n} is the set of all items.
Finally, in the other constraints of M1 we need to replace n with 2n.
A similar reasoning is applied for M2. In this case the constraints appear naturally in

a “surrogate” form, and constraints (30) can be written as

∑
i∈I | δi=t

(
αi∑
k=1

xik +
αi∑

k=αi−1+1

qk) ≤ ubt ∀ t ∈ T (31)

where I = {1, . . . , 2m} is the set of the shape’s types either in the original orientation or
rotated, and δi ∈ T (i ∈ I) indicates the original shape’s type corresponding to the new
shape type i. Constraints (31) replace constraints (10).

Obviously, the mapping discussed in Section 2.2 and denoted by arrays α and β has to
be updated, and again we need to replace n with 2n.

Both M1 and M2 were tested on a small set of the instances used in sections 3.4 and 4
in which the rotation version of the problem is solved. The results are reported in Table 6
in which for each instance we indicate the identifier (ID), the number of shape’s types (m),
and the number of items to be cut off (n). Note that in order to solve R-2TDK the instance
is almost doubled in size. In addition, for each instance we report the optimal solution
value (Opt), the ratio between the upper bound produced by the continuous relaxations of
the models (UM) and the optimal solution value, and the computing times of M1 (t.M1)
and M2 (t.M2). In round brackets, we report the percentage gap between lower and upper
bound where the instance is not solved to optimality within the time limit.

Table 6 proves that the extension of M1 and M2 are still suitable for the solution of
the rotation version of 2TDK. However, the computing times required for instances solved
by allowing the items to be rotated are in general much higher than those given in Table
4. Concerning the behavior of the models, as discussed in Section 4.2, M1 is
more effective than M2 when the ratio n/m is small, for example instance Hchl2
(n/m < 2.2). Moreover, M1 turns out to be very effective for the overall set
of instances in Table 6, and greatly benefits of the new simple branching rule
discussed in Section 4.16.

5.3 The double-Constrained case

The last variant of 2TDK we consider is the one in which also a lower bound on the number
of items of each type is specified, i.e., one is required to cut off at least lbi items of type

6See, Monaci [18] for a comparison of the performance of M1 and M2 with and without the branching
rule.

20

Table 6: RC-2TDK: Performance of M1 and M2 on the Rotation variant.

ID m n Opt UM

Opt t.M1 t.M2

HH 5 18 11301 1.101 0.92 0.32
2 10 23 2791 1.042 1.10 1.25

A1 20 62 1980 1.093 3.45 6.22
STS2 30 78 4610 1.044 24.27 25.62
CHL1 30 63 8720 1.050 42.50 181.03
CW1 25 67 6746 1.066 14.88 6.23
Hchl2 35 75 9921 1.035 311.92 1800.00 (0.45)

2s 10 23 2718 1.030 0.70 0.88
A1s 20 62 2985 1.005 2.12 2.78

STS2s 30 78 4659 1.003 16.07 9.13
OF1 10 23 2713 1.032 0.68 0.37
W 20 62 2754 1.017 5.13 2.62

CHL1s 30 63 13164 1.003 15.75 73.97
A3 20 46 5529 1.013 5.77 17.58

CHL5 10 18 399 1.002 0.13 0.07
CU1 25 82 12500 1.000 17.13 4.57

Hchl3s 10 51 12230 1.018 121.40 245.98

i (i = 1, . . . ,m). This variant, which is denoted by double-Constrained (dC-2TDK), has
been recently addressed by Cung and Hifi [1] for the more general guillotine TDK problem,
and has several practical applications.

Note that finding a feasible solution of dC-2TDK is already NP-complete, since it
corresponds to the recognition version of the Two-Dimensional Shelf Bin Packing, which
is in turn a generalization of the classical One-Dimensional Bin Packing [15].

Both M1 and M2 can be easily extended to consider this variant. In particular, for M1
we can simply write, for each i = 1, . . . ,m, the first lbi constraints of type (3) as equalities.
For M2, instead, we need to add, for each i = 1, . . . ,m, a new constraint of the following
form:

αi∑
k=1

xik +
αi∑

k=αi−1+1

qk ≥ lbi (32)

which assures that at least lbi items of type i are cut off.
We tested our models on the instances used by Cung and Hifi [1] (kindly provided by the

authors), and the results are shown in Table 7. This table contains the same information as
the previous ones with an additional column indicating the overall number of items which
must be cut off (L), i.e. L =

∑m
i=1 lbi.

Again, Table 7 shows that the addition of the lower bounding constraint is suitably
taken into account by the extensions of M1 and M2, and in fact, the computing times to
solve this more constrained variant are considerably smaller than the corresponding ones
in Table 4.

21

Table 7: FdC-2TDK: Performance of M1 and M2 on the double-Constrained variant.

ID m n L Opt UM

Opt t.M1 t.M2

2 borne 10 23 7 2336 1.168 0.15 0.25
A1 borne 20 62 5 1660 1.157 0.30 0.50

CHL1 borne 30 63 10 infeasible 0.37 0.18
CHL3 borne 15 35 10 5283 1.000 0.13 0.10
Hchl1 borne 30 65 12 9744 1.104 0.75 1.02
sts2 borne 30 78 8 4110 1.117 16.05 13.27
2s borne 10 23 7 2225 1.175 0.13 0.22

A1s borne 20 62 5 2583 1.138 0.52 0.37
CHL1s borne 30 63 10 infeasible 0.40 0.53
CHL3s borne 15 35 10 7402 1.000 0.13 0.20
Hchl1s borne 30 65 12 14538 1.113 0.88 1.23
Hchl3s borne 10 51 13 11784 1.053 119.75 9.30
chl7s borne 35 75 11 15711 1.074 53.25 194.38
sts2s borne 30 78 8 4199 1.102 9.42 11.67

6 Conclusions *** new ***

The 2-staged Two-Dimensional Knapsack problem (2TDK) is a classical variant of the
Two-Dimensional Knapsack with a long history in the cutting and packing literature and
some important real-world applications.

We introduced two new ILP models for the most classical variant of 2TDK, we studied
the characteristics of these models and we analyzed their performance in terms of quality of
the bound with respect to the classical column generation approach. Moreover, we analyzed
the effectiveness of these models within a branch-and-bound framework by comparing them
with the most effective combinatorial algorithm in the literature [11]. To this aim we used
the standard branch-and-bound algorithm implemented in Cplex 6.5.3 (enhanced by a
simple problem-oriented branching rule), and an aggressive policy of addition of linear
inequalities in order to avoid symmetries.

Finally, we extended these models to the other variants of 2TDK in the literature by
showing that they remain suitable in all of them (with some concerns with respect to the
size of the instances and their structure), i.e., that they represent an effective and flexible
algorithmic approach for this wide cutting and packing area.

Acknowledgments

We are grateful to Silvano Martello and Daniele Vigo for introducing us to the wide domain
of Cutting & Packing. Thanks are also due to Adam N. Letchford and Alberto Caprara
who read a preliminary version of the paper, and to the anonymous referees whose tight
remarks consistently improved, in our view, the paper. We acknowledge the support given
to this project by the Consiglio Nazionale delle Ricerche (CNR), Italy.

22

References

[1] V.-D. Cung and M. Hifi. Handling lower bound constraints in 2D guillotine cutting.
Talk presented at ISMP 2000, Atlanta, 2000.

[2] H. Dyckhoff, G. Scheithauer, and J. Terno. Cutting and Packing (C&P). In
M. Dell’Amico, F. Maffioli, and S. Martello, editors, Annotated Bibliographies in Com-
binatorial Optimization. John Wiley & Sons, Chichester, 1997.

[3] S.P. Fekete and J. Schepers. On more-dimensional packing I: Modeling. Technical
Report ZPR97-288, Mathematisches Institut, Universität zu Köln, 1997.

[4] S.P. Fekete and J. Schepers. On more-dimensional packing II: Bounds. Technical
Report ZPR97-289, Mathematisches Institut, Universität zu Köln, 1997.

[5] A.M. Geoffrion. Lagrangean relaxation for integer programming. Mathematical Pro-
gramming Study, 2:82–114, 1974.

[6] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting stock
problem. Operations Research, 9:849–859, 1961.

[7] P. C. Gilmore and R. E. Gomory. Multistage cutting problems of two and more
dimensions. Operations Research, 13:94–119, 1965.

[8] E. Hadjiconstantinou and N. Christofides. An exact algorithm for the orthogonal, 2-D
cutting problems using guillotine cuts. European Journal of Operational Research,
83:21–38, 1995.

[9] M. Hifi. Contribution à la résolution de quelques problèmes difficiles de l’optimization
combinatoire. Habilitation thesis, PRiSM, Universitè de Versailles St-Quentin en Yve-
lines, 1999.

[10] M. Hifi. Exact algorithms for large-scale unconstrained two and three staged cutting
problems. Combinatorial Optimization and Applications, 1999 (to appear).

[11] M. Hifi and C. Roucairol. Approximate and exact algorithm for constrained
(un)weighted two-dimensional two-staged cutting stock problems. Journal of Combi-
natorial Optimization, 2001 (to appear).

[12] M. Hifi and V. Zissimopoulos. A recursive exact algorithm for weighted two-
dimensional cutting problems. European Journal of Operational Research, 91:553–564,
1996.

[13] A. Lodi. Algorithms for Two-Dimensional Bin Packing and Assignment Problems.
PhD thesis, University of Bologna, Italy, 2000.

[14] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: a survey.
European Journal of Operational Research, 2001 (to appear).

23

[15] A. Lodi, S. Martello, and D. Vigo. Models and bounds for two-dimensional shelf
packing problems. Technical Report OR/00/2, DEIS - Università di Bologna, 2000.

[16] G. S. Lueker. Bin packing with items uniformly distributed over intervals [a,b]. In
Proc. 24th Annual Symp. Found. Comp. Sci., pages 289–297, 1983.

[17] S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin packing
problem. Management Science, 44:388–399, 1998.

[18] M. Monaci. Algorithms for Packing and Scheduling Problems. PhD thesis, University
of Bologna, Italy, 2001.

[19] R. Morabito and V. Garcia. The cutting stock problem in hardboard industry: a case
study. Computer and Operations Research, 25:469–485, 1998.

[20] F. Vanderbeck. Computational study of a column generation algorithm for bin packing
and cutting stock problems. Mathematical Programming, 86:565–594, 1999.

[21] F. Vanderbeck. A nested decomposition approach to a 3-stage 2-dimensional cutting
stock problem. Management Science, 47:864–879, 2001.

24

