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Abstract

Background: Massive high-throughput sequencing of short,
hypervariable segments of the 16S ribosomal RNA (rRNA) gene has
transformed the methodological landscape describing microbial
diversity within and across complex biomes. However, several studies
have shown that the methodology rather than the biological variation
is responsible for the observed sample composition and distribution.
This compromises meta-analyses, although this fact is often
disregarded.

Results: To facilitate true meta-analysis of microbiome studies, we
developed NG-Tax, a pipeline for 16S rRNA gene amplicon sequence
analysis that was validated with different mock communities and
benchmarked against QIIME as a frequently used pipeline. The
microbial composition of 49 independently amplified mock samples
was characterized by sequencing two variable 16S rRNA gene regions,
V4 and V5-V6, in three separate sequencing runs on Illumina’s
HiSeq2000 platform. This allowed for the evaluation of important
causes of technical bias in taxonomic classification: 1) run-to-run
sequencing variation, 2) PCR-error, and 3) region/primer specific
amplification bias. Despite the short read length (~140 nt) and all
technical biases, the average specificity of the taxonomic assignment
for the phylotypes included in the mock communities was 97.78%. On
average 99.95% and 88.43% of the reads could be assigned to at least
family or genus level, respectively, while assignment to ‘spurious
genera’ represented on average only 0.21% of the reads per sample.
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Analysis of a- and B-diversity confirmed conclusions guided by biology
rather than the aforementioned methodological aspects, which was
not achieved with QIIME.

Conclusions: Different biological outcomes are commonly observed
due to 16S rRNA region-specific performance. NG-Tax demonstrated
high robustness against choice of region and other technical biases
associated with 16S rRNA gene amplicon sequencing studies,
diminishing their impact and providing accurate qualitative and
guantitative representation of the true sample composition. This will
improve comparability between studies and facilitate efforts towards
standardization.
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(i5757:3 Amendments from Version 1

In the new manuscript we substituted RDP for SILVA
Incremental Aligner (SINA) to classify the full length sequences
and we also updated the database in NG-Tax to SILVA 128,
improving in both cases the classification. We substantially
increased the amount and detail of information on the
description of the general work flow. All the critical steps,
including barcode and primer filtering, OTU picking, mapping
rejected reads to accepted OTUs, de novo chimera filtering,
taxonomic assignment and the generation of a phylogenic tree
are now detailed in Figure 1 and explained in the user manual.

In order to further improve interpretation, we have now

added Table 1 to provide detailed information as to the
number of misclassified reads at different taxonomic levels
and Figure 5, which shows boxplots of the distances to the
expected composition. We also performed statistical tests to
quantitatively compare the performance of NG-Tax and QIIME.
We performed a permanova analysis under MC type factor
and it was significant for both pipelines meaning that some

of the variance is explained by the Mock type. But to really
evaluate accuracy and reproducibility and compare pipelines
performances we used pairwise distances and t tests (Figure 7
and Dataset 1). As suggested by the reviewers we included the
tables with the taxonomical profiles as Supplementary data,
which can be used for evaluation of the results. In an effort to
increase comparability we performed an additional analysis
using QIIME with a 0.1% abundance threshold and which is
included in the Supplementary material.

See referee reports

Background

Recent advances in massive high-throughput, short-amplicon
sequencing are revolutionizing efforts to describe microbial
diversity within and across complex biomes'. Cultivation-
independent whole metagenome sequencing has received
increasing attention in the functional characterization of individual
communities. These efforts, however, remain relatively expensive
on a per sample basis, and the richer but much more unstruc-
tured information content requires complex data modelling and
analysis procedures’. Therefore targeted surveys for specific
taxonomic marker genes, such as the 16S ribosomal RNA
(rRNA) gene’, remain essential in many microbial ecologi-
cal studies. These surveys rely on sequencing of short, PCR
amplified, hypervariable subregions rather than the full-length
gene, mostly for reasons of throughput, sequence depth and
cost-efficiency.

Despite great efforts to address the accuracy and reproducibil-
ity of scientific insights generated from 16S rRNA gene ampli-
con sequencing studies, methodology rather than biology has
been shown to be the largest driver of variation in many micro-
biome studies™’, hampering comparability. The increased
levels of standardization in analysis pipelines have enhanced
replicability rather than reproducibility, by providing widely
adopted defaults''. However, there is a large dinstintion between
the two. Drummond' suggested that exact replication of an
experiment (i.e., replicability) is less informative (although a
necessary pre-requisite for any scientific endeavour) than the
corroboration of findings by reproduction in different independent
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setups (i.e., reproducibility)’”, because biological findings that
are robust to independent methodologies are arguably more
dependable than any single-track analysis''. This distinction
is highly relevant for the field of microbial ecology, where
replicability is often confused with reproducibility, which is
apparent from many often non-interchangeable methodologies.

Accuracy can typically be evaluated by the addition of positive
controls. Generally these are synthetic or mock communities
(MCs) consisting of phylotypes that, ideally, are representative
of the ecosystem of interest. MCs allow researchers to answer
two essential questions concerning accuracy. 1) Do I retrieve
the number of species I put in, and if so are they correctly
assigned? 2) How well does the PCR, sequencing and data
analysis procedure reproduce species relative abundances?
Reproducibility can be evaluated by comparing separate sequenc-
ing runs and different primer pairs that cover distinct 16S
rRNA gene regions. Although replicability is often achieved,
accuracy has been shown to be challenging especially at
higher taxonomic resolution such as at genus level "

Central to all 16S rRNA gene amplicon studies are Operational
Taxonomic Units (OTUs). These are often regarded as a
synthetic proxy for microbial species and are typically clustered
at 97% sequence similarity. However, the prokaryotic species
definition remains a hotly debated topic without any satisfying
solution so far'®?. Moreover, the 97% sequence similarity
threshold is based on the complete 16S rRNA gene (~1500 nt),
and although sequence variability is not evenly distributed it is
routinely applied to short reads of 100-500 nt. Different regions
would therefore require their own species level cut-off. The
combination of an ambiguous prokaryotic species definition
and its application to short reads is the foundation for many
complications regarding ‘correct’” OTU clustering. So far,
there is little consensus on key experimental choices such as
primers, targeted variable regions and OTU picking/clustering
algorithms. Each of these technical aspects generate biases, and
different methods produce clearly distinct results, leading to a
situation where results of current studies cannot be easily
compared or extrapolated to other study designs.

Historically, 16S rRNA gene sequences generated in a project
were initially clustered de novo into OTUs at >97% sequence
similarity using various clustering algorithms, mostly because
available 16S rRNA gene reference databases were thought to
provide insufficient coverage’ ‘. Although new clustering
algorithms that reduce the influence of clustering parameters,
such as a hard cutoff for cluster similarity, have been specifi-
cally developed for amplicons™, cluster generation is context-
dependent, i.e. different datasets generate different clusters,
and different algorithms may produce different end-results'®'".
Therefore, even though the same analysis framework is used,
independent studies remain incomparable at OTU level.
Consequently, reference-based OTU clustering has received
increasing attention, due to the need for standardization, and
because de-novo OTU clustering for very large datasets, such
as those generated by Hiseq and Miseq sequencers has become
computationally very intensive, unless greedy heuristics are
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employed which suffer from the problems described above.
With reference-based OTU clustering, sequences are mapped
to pre-clustered reference sets of curated 16S rRNA gene
sequences, provided by dedicated databases such as the Ribos-
omal Database Project (RDP), Greengenes and SILVA**. The
consequence of this approach is that the ‘quality’ of the cluster-
ing of the reference set propagates to reference-picked OTUs.
Clustering has limited robustness'*''”’, and unbalances in data-
bases due to over- or under-representation of certain species
as well as error hotspots that are not necessarily matched to
the variable regions®, can potentially lead to a biased cluster
formation, driven by non-biological factors. These effects have
been previously ignored or underestimated in reference OTU
picking protocols''.

Another essential experimental choice concerns the selection
of a targeted variable region of the 16S rRNA gene, because it
should represent the sequence variability encountered with the
full-length gene. Despite several studies comparing the perform-
ance of diverse regions, sequence lengths, sequencing platforms
and taxon assignment methodologies, both within and across
laboratories™***"=, there still is no complete consensus about
the best variable regions of the 16S rRNA gene to asses,
although some initiatives such as the Earth Microbiome Project™
are setting some standards that are increasingly being adopted
by the field. There are several factors that can lead to the
commonly observed highly region-specific differences across
datasets: 1) PCR bias of varying degrees®**, 2) different
regions are associated with different error profiles and differ-
ent rates of chimera formation®*, and 3) the actual variation
contained in the sequence is dissimilar (e.g. some regions are not
variable enough to differentiate between genera, while others
are), which in turn can affect clustering''.

Apart from the use of a diverse range of primers and OTU pick-
ing protocols that can cause differences in results between
studies and/or laboratories, sequencing error is a third impor-
tant factor that defines data quality. Massive high throughput,
short read length sequencing platforms have not been devel-
oped for amplicon sequencing but rather for whole genome
sequencing, where sequence errors in individual reads is less
important. However, in 16S rRNA gene amplicon sequenc-
ing every sequencing error could potentially lead to an incor-
rect OTU classification which may ultimately lead to the false
discovery of a new phylotype. To avoid overestimation of
microbial diversity, stringent quality filtering is therefore
considered essential °.

To address all of the aforementioned challenges associated with
microbiota profiling, multiple standardized mock communities
(MCs) were specifically designed. Those MCs were sequenced
in multiple sequencing runs using a Illumina Hiseq2000 instru-
ment (10Int paired end). Furthermore, two tandem variable
16S rRNA gene regions were sequenced in parallel (V4 and
V5-V6). This led to the development of NG-Tax, a pipeline
that accounts for biases associated with technical aspects
associated with 16S rRNA gene amplicon sequencing. Therefore,
NG-Tax will improve comparability by removing technical bias
and facilitate efforts towards standardization, by focusing on
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reproducibility as well as accuracy. To assess the performance
regarding key output parameters such as taxonomic classification,
composition, richness and diversity measures we benchmarked
the results obtained with NG-Tax with results obtained with
QIIME", a common pipeline used for the analysis of this type
of data.

Results and discussion

NG-Tax layout

NG-Tax consists of three core elements, namely barcode-primer
filtering, OTU-picking and taxonomic assignment (Figure 1).
Examples of use and details of each step of the pipeline can be
found in the user manual in Dataset 1.

Barcode-Primer filtering. In a first step, paired end libraries
are combined, and only read pairs with perfectly matching
primers and barcodes are retained. To this end, both primers are
barcoded to facilitate identification of chimeras produced during
library generation after pooling of individual PCR products.

OTU picking. For each sample an OTU table is created with the
most abundant sequences, using a minimum user defined rela-
tive abundance threshold. In this particular study we employed
a threshold of 0.1% minimum relative abundance. Lowering
the threshold will lead to the acceptance of low abundant OTUs,
with an increased probability of these OTUs being artifacts due to
sequencing and PCR errors. Abundance thresholds are com-
monly used to remove spurious OTUs generated by sequencing
and PCR errors'™, but previous studies applied thresholds
defined by the complete dataset, thereby ignoring sample
size heterogeneity which may lead to under-representation of
asymmetrically distributed OTUs.

Commonly employed quality filtering parameters based on Phred
score, such as minimum average Phred score, maximum number
of ambiguous positions, maximum bad run length, trimming and
minimum read length after quality trimming, are not utilized in
NG-Tax because quality scores from the Illumina base caller
have been shown to be of limited use for the identification of
actual sequence errors for 16S rRNA gene amplicon studies'’-*.
Additionally, these quality scores only check for errors that
occurred during sequencing, but do not account for other sources
of error, such as PCR amplification, whereas quality filter-
ing by abundance is sensitive to any source of error. Moreover,
the application of global parameters (e.g. average Phred
score) ignores that error is sequence-specific, and hence some
sequences could be affected more than others. If a species
specific amplicon is more prone to PCR or sequencing errors, the
relative abundance of that particular species will be underesti-
mated. To compensate for this potential bias, discarded reads are
clustered to the OTUs with one mismatch.

Finally, all OTUs are subjected to non-reference based chimera
checking according to the following principle: given three OTUs
named A, B and C, C will be considered a chimera when the
following conditions are satisfied: C and A 5’ reads are identical,
C and B 3’ reads are identical and both OTUs, A and B, are at
least twice as abundant as OTU C. A complete overview of the
number of sequences retained in both pipelines, i.e. NG-Tax
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Figure 1. NG-Tax layout. Input files are depicted in blue, output files are depicted in green and clustering processes using usearch are
indicated with dashed lines. Details for some steps of the pipeline are marked with red numbers.

and QIIME, as well as the final number of OTUs, is provided
in Dataset 1.

Taxonomic assignment. In the current version of NG-Tax, tax-
onomy is assigned to OTUs utilizing the USEARCH algorithm*
and the Silva 128 SSU Ref database, containing 1.922.223
unique full length 16S rRNA gene sequences. To ensure maxi-
mum resolution and avoid the risk of errors due to clustering-
associated flaws (e.g. reference sequence error hotspots, over-
representation of certain species and lack of robustness in clus-
ter formation by clustering algorithms), we use a non-clustered
database. To speed up the procedure by several orders of mag-
nitude, 16S rRNA gene sequences from the reference data-
base are trimmed to the amplified region using the primers as a
guide. For each OTU, a taxonomic assignment is retrieved
at six different identity thresholds levels (100%, 98%, 97%,
95%, 92% and 90%) and at two taxonomic levels (genus

and family). The final taxonomic label is determined by the
assignments that show concordance at the highest taxonomic
resolution. Similar dynamic thresholds are used in rtax™.

Validation

Datasets

Our main objective was to develop a pipeline that accurately
reproduces the composition of the synthetic MCs and also
reduces the impact of experimental choices. To achieve this goal,
four synthetic communities of varying complexity were created,
consisting of full length16S rRNA gene amplicons of phylo-
types (PTs) associated with the human Gl-tract (Dataset 1).
This specific setup limited the likelihood of overfitting to a
particular OTU composition or distribution and allowed us to
assess (1) the quantification potential, (2) noise floor and (3) the
effect of richness and diversity on quality filtering parameters,
thus ensuring a higher fidelity with biological samples than by
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using a single MC. As a reference, to assess the quality of the
taxonomic classifications, full length sequences for all PTs were
obtained through Sanger sequencing. Expected MCs were
created in silico by trimming the full length sequences to the
sequenced region. MC1 and MC2 consisted of equimolar
amounts of 17 and 55 PTs, respectively. MC3 contained 55 PTs
in staggered concentrations typical for the human Gl-tract, and
MC4 included 50 PTs with relative abundances ranging between
0.001 and 2.49%. To account for pipetting errors, each of the
four MCs was produced in triplicate. These 12 MC templates
were used to sequence the MCs with different conditions that
cover most of the technical bias associated with 16S rRNA gene
amplicon studies reported in literature. To this end, we 1) tar-
geted either region V4 or region V5-V6, 2) used four PCR proto-
cols differing in the number of PCR cycles and reaction volumes
3) PCR products were analysed in three different sequencing
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runs and in seven different libraries, and 4) two different
library preparation protocols (with and without an extra
amplification of 10 cycles) were applied (Dataset 1). In addition
the sequencing depth ranged from 1911 to 334613 reads per
sample (Dataset 1).

NG-Tax classification of short reads versus full length
classification

To evaluate the accuracy and reproducibility of taxonomic clas-
sification using a low information content of ~140 nt compared
to a maximum information content of ~1500 nt, we compared
the NG-Tax classification of all 55 reference sequences trimmed
to V4 and V5-V6, with a classification of the correspond-
ing full length reference sequences using the Silva Incremental
Aligner (SINA) with SILVA taxonomy® (Figure 2). At family
level, all three classifications (i.e. full length, V4 and V5-V6)

Number of hits Specrﬁcnv
1 10 100 1000 10000 100000 O 0.5 1
SINA full length NG-tax trimmed to V5-V6 NG-tax trimmed to V4

1 Rh}odococcus Rh}odococcus Rh}odomccus ﬁl_‘m e
2 |Micrococcus Micrococcus Micrococcus _ _
3 |Bifidobacterium Bifidobacterium Bifidobacterium _ mva e
4 |Bifidobacterium Bifidobacterium Bifidobacterium _ =
5 |Bifidobacterium Bifidobacterium Bifidobacterium h e
6 |Bifidobacterium Bifidobacterium Bifidobacterium h [
7 |Bifidobacterium Bifidobacterium Bifidobacterium _ _
8 |Bifidobacterium Bifidobacterium Bifidobacterium _ e
9 |Bifidobacterium Bifidobacterium Bifidobacterium h _
10 | Bifidobacterium Bifidobacterium Bifidobacterium _ _
11 |Bacteroides Bacteroides Bacteroides _ _
12 | Bacteroides Bacteroides Bacteroides _ _
13 |Bacteroides Bacteroides Bacteroides _ _
14 | Bacteroides Bacteroides Bacteroides _ _
15 | Bacteroides Bacteroides Bacteroides - _
16 | Bacteroides Bacteroides Bacteroides _ _
17 |Parabacteroides Parabacteroides Parabacteroides _ _
18 | Prevotella 9 Prevotella 9 Prevotella 9 _ _
19| Alistipes Alistipes Alistipes e =
20 |Bacillus Bacillus Bacillus _ _
21|Bacillus Bacillus Bacillus = e
22 |Granulicatella Granulicatella Granulicatella _ _
23 |Enterococcus Enterococcus Enterococcus _ _
24 |Lactobacillus Lactobacillus Lactobacillus _ Fw——
25 |Lactobacillus Lactobacillus Lactobacillus _ _
26 |Lactobacillus Lactobacillus Lactobacillus _ _
27 | Lactococcus Lactococcus Lactococcus = =
28 |Streptococcus Streptococcus Streptococcus _ _
29 |Streptococcus Streptococcus Streptococcus _ _
30| Clostridium sensu stricto 1 Clostridium sensu stricto 1 Clostridium sensu stricto 1 _ _
31 |Anaerostipes Anaerostipes Anaerostipes _ _
32|Blautia Blautia Blautia S S———————
33|Dorea Dorea Dorea F S
34 |[Ruminococcus] gnavus group  |[Ruminococcus] gnavus group | [Ruminococcus] gnavus group _ e
35| [Eubacterium] rectale group [Eubacterium] rectale group [Eubacterium] rectale group | E———
36 |[Eubacterium] hallii group [Eubacterium] hallii group [Eubacterium] hallii group — e
37 |Roseburia Roseburia Roseburia [ e
38| [Ruminococcus] torques group _|[Ruminococcus] torques group _|[Ruminococcus] torques group [ e |
39 | Peptostreptococcaceae* Intestinibacter Peptostreptococcaceae* _ e —
40 [Ruminiclostridium 6 Ruminiclostridium 6 Ruminiclostridium 6 Y e
41 |Faecalibacterium Faecalibacterium Faecalibacterium _ )
42| Veillonella Veillonella Veillonella _ e
43 |Fusobacterium Fusobacterium Fusobacterium ey — e
44 | Victivallis Victivallis Victivallis - B
45| Citrobacter Enterobacter Enterobacteriaceae* e e —
46 | Enterobacteriaceae* Klebsiella Enterobacteriaceae* ——————— [ ——
47 |Enterobacter Enterobacter Enterobacteriaceae* = .. [ —
48 |Enterobacter Enterobacter Enterobacteriaceae* e ————— e
49 |Escherichia-Shigella Escherichia-Shigella Enterobacteriaceae* ———— [ ]
50 [Klebsiella Klebsiella Enterobacteriaceae* | .. e
51 |Enterobacteriaceae* Escherichia-Shigella Enterobacteriaceae* _ _
52 [Serratia Serratia Escherichia-Shigella | N -
53 |Pseudomonas Pseudomonas Pseudomonas e e
54 | Pseudomonas Pseudomonas Pseudomonas e e
55 | Akkermansia Akkermansia Akkermansia e )

Figure 2. NG-Tax Assignment quality of the 55 MC phylotypes. Three taxonomic assignments are shown: RDP full length, NG-Tax V5-V6
trimmed and NG-Tax V4 trimmed. If NG-Tax assignments are in agreement with SINA full length assignment, that classification is shown in
green. Assignment specificity (the fraction of hits with an identical label) and the total number of hits supporting this taxonomic label are
shown in blue for V5-V6 region and in red for V4 region
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were in complete concordance for all phylotypes. Corre-
spondingly, the consistency at genus level was very high.
Only five phylotypes for V4 that belong to the poorly
classified family Enterobacteriaceae, attained higher resolution
using the full length sequences. In turn, for Intestinibacter
(PT39, V5-V6) and Klebsiella (PT46, V5-V6), a higher
resolution was attained with short reads due to the high spe-
cificity of the hypervariable region, which can be overshadowed
when using the full length sequence. Lastly, only two assign-
ment at genus level, both Enterobacteriaceae (PT52, V4 and
PT45, V5-V6) were incongruent between classification of the
short and full length sequences. Overall, the V5-V6 ampli-
cons outperformed the V4 amplicons because this region
allowed for differentiation between Enterobacteriaceae and even
attained a higher resolution than full length sequences for some
sequences. The average taxonomic specificity (percentage of hits
with an identical taxonomic label) for all reference phylo-
types was 97.78% for both regions with an average of 4837
and 1688 hits for regions V4 and V5-V6, respectively. The
high specificity and high number of hits at very high identity
thresholds, combined with the fact that the vast majority of V4
and V5-V6 based assignments matched to each other as well
as to the full ength classification, testifies for the reliability and
quality of the assignments.

Observed versus expected microbial profiles

To assess the ability to reproduce the expected composition of
the MCs we benchmarked NG-Tax with QIIME, a common
16S rRNA gene amplicon analysis pipeline. Table 1 shows the
comparison between NG-Tax and QIIME per region and taxo-
nomic rank with the percentage of classified reads, the amount of
spurious taxa and the total percentage of misclassified reads.
The number of classified sequences without considering their
accuracy is higher for NG-Tax at each taxonomic rank, with

F1000Research 2018, 5:1791 Last updated: 03 AUG 2021

relatively small differences with QIIME. However, the number
and percentage of spurious reads is considerably higher for
QIIME with some regions generating an average of 18.65%
incorrectly assigned reads at the genus level, compared to 0.3%
for NG-Tax. Consequently, NG-Tax ensured excellent repro-
duction of the expected profiles (Figure 3), while the QIIME
profiles suffered from high a high fraction of poorly classified
and spurious OTUs (Table 1, Figure 4).

Observed versus expected diversity

To quantify the distances to the expected profiles, the sum of
weighted differences were calculated. Given two taxonomi-
cal profiles x and y, for each taxon i, we defined the difference
in abundance as difi(x,y)=(xi —yi) and a weighting factor wi as
wi(x,y)=(xi —yi)/avg(xi + yi). The weighted difference was
obtained by multiplying the difference in abundance by its
weighing factor. This weighing factor is used to take the rela-
tive change as well the absolute change into account, because
a 1% absolute change becomes a 200% or 20% relative change
depending on whether the expected abundance is 0.5% or 5%,
respectively. Distances to the expected profile were significantly
lower for NG-Tax (p<le-4) compared to QIIME using a two-tailed
t-test (Figure 5 and Dataset 1).

One template, PT17 (Parabacteroides), triggered so much
sequencing error in the V4 region that it was rendered undetect-
able although it was amplified by the primers (Supplementary
Figure 1). Therefore, to test both pipelines without this
sequencing anomaly, it was removed from the analysis.

Richness and diversity measures are important for under-
standing community complexity and dynamics. Among these
measures, o-diversity is defined as the diversity within a sample,
which is often estimated based on the abundance distribution

Table 1. Performance of NG-Tax and QIIME at different taxonomic levels

for region V4 and V5-V6. Classified reads are defined as reads mapped to a
sequence for which a genus, family or order level classification is given, without
considering accuracy. The percentage represents the average over all samples.
Spurious taxa are taxonomic classes not included in the MCs. The percentage
of spurious reads is the percentage of total reads in the misclassified classes.

F: forward read, R: reverse read.

Classified reads (%)

Spurious taxa (#)

Spurious reads (%)

NG-Tax  QIIME  NG-Tax QIMEF &R NG-Tax QIMEF &R
Genus 86.23 60.66 4 110 110 0.19 9.02 15.05
Family  99.97 96.23 1 82 81 0.19 8.43 6.42
Order 100 100.00 1 49 47 0.19 6.40 547

V5-V6

Classified reads (%) Spurious taxa (#) Spurious reads (%)

NG-Tax  QIIME  NG-Tax QIMEF &R NG-Tax QIIMEF &R
Genus  99.23 69.99 5 53 51 028 13.42 18.65
Family  99.89 93.63 0 29 29 0.00 9.64 12.05
Order 100 99.81 0 15 17 0.00 6.33 6.45
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Figure 4. Observed composition of all MCs compared with the expected ones (EXP) for both regions and each read separately

obtained with QIIME.
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Figure 5. Distances to expected taxonomical profiles. NG-Tax results are depicted in blue and QIIME in red.

(evenness) and number (richness) of species, whereas B-diversity
is defined as the partitioning of diversity among communi-
ties. The ability of researchers to quantify richness and diversity
hinges on an accurate assessment of the composition of these
communities’'. For microbial communities, this has been par-
ticularly challenging, as none of the existing molecular microbial
ecology methods normally captures more than a small proportion
of the estimated total richness in most microbial communities*.
For deep sequencing based approaches, filtering strategies that
remove low-abundance reads make it impossible to apply rich-
ness estimation metrics such as the Chaol index and the ACE
coverage estimator, because low-abundance read counts are
included in their calculations. Conversely, richness estimates
based on unfiltered datasets are unlikely to be accurate, if
many of the reads actually represent PCR and/or sequencing
errors'®. In contrast to purely OTU-based methods, divergence-
based methods account for the fact that not all species within
a sample are equally related to each other, considering two
communities to be similar if they harbour the same phylogenetic
lineages, even if the species representing those lineages in each
of the communities are different. Consequently, these methods
are more powerful than purely OTU-based methods, because
similarity in 16S rRNA gene sequence often correlates with
phenotypic similarity in key features such as metabolic capabili-
ties. An added benefit is that small errors that are likely due to
unfiltered sequencing errors, are punished less severely because
OTUs that are only a few nt distant from each other due to
error are still closely related using divergence based indices®.
Therefore, these indices probably provide a better estimate of
the true diversity for data generated by high throughput next
generation technology sequencers.

Because the aim of NG-Tax is to enhance the biological signal
as much as possible by minimizing the impact of any techni-
cal aspect, divergence-based «-diversity (Phylogenetic Diversity
(PD)*) and B-diversity (Unifrac*') metrics were used to visualize

the diversity within and between MCs (Figure 6). The results
obtained with QIIME suffered from all of the previously
described technological artifacts. The MCs clustered by primer
pair instead of MC, and within each cluster the structure,
i.e. the position of MCs relative to each other, was different.
More importantly, the true biological variation depicted by the
expected composition was reproduced by neither primer pair
(Figure 6C). Based on these results not only the Principle
Coordinates Analysis (PCoA) based conclusions would have
been different for both primer pairs, but also the differences in
taxonomic classification could lead to significant changes in
identified biomarkers, in line with what has previously been
observed by He and co-workers™ as well as Edgar*’. Here we
show that replicability within a variable region was attained.
The more important reproducibility, however, i.e. the cor-
roboration of findings by reproduction in different independent
setups that use e.g. different primers, was not. This is an important
observation because biological findings should be insensitive to
independent methodologies''. In line with the above, also the
observed «-diversity (PD) was found highly inflated and the
biological order was not reproduced (Figure 6D). In contrast,
NG-Tax provided a clear separation of samples by MC type and
their representative expected samples regardless of variable
region, PCR protocol, sequencing run, library and sequencing
depth. These results are remarkable, given the biases associated
with each of these categories and the difference in resolution
between the two regions (Figure 6A). Moreover, MC2, MC3 and
MC4 were very similar, sharing the same genera and largely
the same phylotypes, only differing in relative distribution
(Dataset 1). Correspondingly, rarefaction curves for o-diver-
sity (Figure 6B) showed excellent reproduction of the true
diversity. A perfect overlap cannot be achieved since the
expected MCs do not account for sequencing or PCR errors,
and these factors cannot be completely removed from real
sequencing data. Results for o-diversity and B-diversity using
different metrics can be found in Dataset 1.
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Figure 6. PCoA using Weighted Unifrac of all sequenced and expected MCs as obtained after processing of data using NG-Tax (A) and
QIIME (C). Darker colored triangles represent the expected composition while lighter colored circles represent sequenced samples. B/D.
Rarefaction curves of PD for all MCs and their expected counterparts for NG-Tax (B) and QIIME (D). Dashed lines represent the expected

composition while solid lines represent sequenced samples.

Small distances to expected MCs show the accuracy of NG-Tax,
reproducibility on the other hand can be evaluated by the within
MCs distances and also by the dispersion of the between MCs
distances (Figure 7). Distances to the expected MCs, within
MC distances and dispersion of the between MCs distances
were significantly (p<le-10) lower for NG-Tax (Dataset 1).
K-means cluster prediction using within groups sum of squares,
predicted 2 groups for QIIME (Supplementary Figure 2) and the
correct 4 groups for NG-Tax (Supplementary Figure 3)*.

Dataset 1. Raw data of NG-Tax pipeline for analysis of 16S rRNA
amplicons from complex biome

https://dx.doi.org/10.5256/f1000research.9227.d226015

Conclusions
An increasing number of studies have shown that the chosen
methodology rather than the natural variance is responsible for

the greatest variance in microbiome studies®'”. Some authors
raised their concern when comparing data generated using
different strategies’, which basically suggests that true repro-
ducibility (i.e. using different approaches and drawing the same
biological conclusions) is unattainble. This is an alarming
observation since studies are often used to identify biomar-
ker organisms, associated with certain host phenotypes (often
comparing a diseased state to a healthy state), yet the use of
different primers might show different biomarkers®*'"**%. So
far, neither currently available pipelines nor taxonomic classifiers
have been able to efficiently reduce the noise in this type of data.
Nevertheless, in properly de-noised datasets, taxonomical pro-
files, richness and diversity should be close to the expected values
and the abundance of unassigned and poorly assigned reads
should be low except when dealing with largely unexplored envi-
ronments that are not sufficiently covered yet by the reference
databases. At lower noise levels different variable regions should
yield similar conclusions with small variations due to region
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Figure 7. Pairwise Weighted UniFrac distances. NG-Tax results are depicted in blue and QIIME in red.

specific resolution, and minor changes in the experiment
should still deliver the same biological conclusions. Here we
presented NG-Tax, an improved pipeline for 16S rRNA gene
amplicon sequencing data, which continues to be a backbone
in the analysis of microbial ecosystems. Several novel steps
ensure much needed improved robustness against errors asso-
ciated with technical aspects of these studies, such as PCR
protocols, choice of 16S rRNA gene variable region and variable
rates of sequencing error™*'>. The commonly reported problems
such as many un- or poorly classified OTUs, inflated richness
and diversity, taxonomic profiles that do not match the expected
ones, region dependent taxonomic classification and results being
highly dependent on minor changes in the experimental setup
have been tackled with NG-Tax. Despite the short read length
(~140 nt) and all technical biases, the average taxonomic assign-
ment specificity for the phylotypes included in the MCs was
97.78%. In addition, 89,43.% of the reads could be assigned to at
genus level and 99.95% to at least family. Spurious genera
represented only 0.21% of the reads per sample. More impor-
tantly, rarefaction curves and PCoA plots confirmed improved
performance of NG-Tax with respect to clustering based on
biology rather than technical aspects, such as sequencing run,
library or choice of 16S rRNA gene region. Therefore, NG-Tax
represents a method for 16S rRNA gene amplicon analysis with
improved qualitative and quantitative representation of the true
sample composition. Additionally, the high robustness against
technical bias associated with 16S rRNA gene amplicon studies
will improve comparability between studies and facilitate
efforts towards standardization.

Methods

Primers

Primer pairs 515F (5’-GTGCCAGCMGCCGCGGTAA) - 806R
(5’-GGACTACHVGGGTWTCTAAT) and BSF784F (5’-RGGATT-
AGATACCC) - 1064R (5-CGACRRCCATGCANCACCT)

have been previously reported for amplification of the V4'” and
V5- V6° regions of the bacterial 16S rRNA gene, respectively.
They were selected based on 1) experimental validation, 2)
taxonomic coverage of the relevant ecosystem (Supplementary
Figure 4) and 4) adherence to specific rules associated with
the sequencing platform, such as a maximum amplicon size of
<500 nt. Unless noted otherwise all primers were ordered at
Biolegio (Nijmegen, Netherlands).

Barcoding strategy

At the time of sequencing Illumina’s Hiseq2000 allowed for
multiplexing of up to 12 samples per lane using an index or bar-
code read provided by Illumina. To achieve optimal sample
throughput and phylogenetic depth, 70 primers containing a
custom designed 8nt barcode were developed to combine with
the Illumina barcodes to reach a maximum throughput of 12x70
samples per lane. Each set of 70 barcoded samples are referred
to as “library”. Low diversity samples, such as 16S rRNA
gene amplicons, can lead to problems with base calling due to
overexposure of fluorescent labels. Therefore, the set of 70
barcodes was specifically designed to possess an equal base
distribution over their complete length. Additionally, to avoid
differential amplification, a two-base “linker” sequence that is
not complementary to any 16S rRNA sequence at the corre-
sponding position, from a database that contains 1132 phylotypes
associated with the Human GI tract', was inserted between
the primer and barcode. The resulting set of 70 barcoded
primers was checked for avoidance of secondary structure
formation within or between primers (i.e., primer-dimers) or
between barcodes and primers, using PrimerProspector*’.

Mock communities

All MCs were mixed in triplicate to account for pipetting error.
These MCs ranged from 17-55 species in both equimolar
and staggered compositions. One MC contained members at very
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low abundances of 0.1, 0.01 and 0.001% (Dataset 1). Amplicons
were generated either from cloned 16S rRNA gene amplicons,
isolates available in the local culture collection of the
Laboratory of Microbiology, Wageningen University, or strains
ordered from DSMZ and cultured according to DSMZ recom-
mendations, after which genomic DNA was isolated using the
Genejet genomic DNA isolation kit (Thermo fisher scientific
AG, Reinach, Zwitserland). A 16S rRNA gene specific PCR was
performed using the universal primers 27F (5’-GTTTGATC-
CTGGCTCAG) - 1492R (5’-GGTTACCTTGTTACGACTT)
to obtain full length amplicons of which size and concen-
tration were checked on a 1% agarose gel and which were
column purified and quantified with the Qubit 2.0 fluorometer,
and dsDNA BR assay kit (Invitrogen, Eugene, USA).
Amplicons were mixed in the MCs to obtain the specified
relative abundances. High quality full length reference sequences
of all MC members were obtained by Sanger sequencing at
GATC Biotech AG (Constance, Germany) with sequencing
primers 27F - 1492R in order to confirm their identity. The
MCs were diluted 10°-fold and subsequently used as templates
in PCRs for the generation of barcoded PCR products.

Barcoded PCR

Unless noted otherwise, each sample was amplified in tripli-
cate using Phusion hot start II high fidelity polymerase (Thermo
fisher scientific AG), checked for correct size and concentra-
tion on a 1% agarose gel and subsequently combined and
column-purified with the High pure PCR cleanup micro kit
(Roche diagnostics, Mannheim, Germany). Forty ul PCR reactions
contained 28.4 uL nucleotide free water (Promega, Madison,
USA), 0.4 pL of 2 U/ul polymerase, 8 uL of 5x HF buffer,
0.8 pl of 10 uM stock solutions of each of the forward (515F)
and reverse (806R) primers, 0.8 uL 10mM dNTPs (Promega)
and 0.8 uL template DNA (10* x diluted 200 ng/ul stock). Reac-
tions were held at 98°C for 30 s and amplification proceeding for
25 cycles at 98°C for 10 s, 50°C for 10 s, 72°C for 10 s and a
final extension of 7 min at 72°C. Purified amplicons were quan-
tified using Qubit. For primer pair BSF784F-1064R the thermal
cycling conditions were identical to those detailed above except
that the annealing temperature was 42°C. To quantify noise
generated by the PCR protocol, several reactions were performed
with 30 or 35 cycles and 1x 100ul reaction instead of pooling
40ul in triplicate (Dataset 1).

A composite sample for sequencing was created by combin-
ing equimolar amounts of amplicons from the individual
samples, followed by gel purification and ethanol precipitation
to remove any remaining contaminants. The resulting libraries
were sent to GATC Biotech AG for sequencing on an Illumina
Hiseq2000 instrument.
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Sequence analysis with QIIME

We have used QIIME to benchmark NG-Tax. Illumina fastq files
were de-multiplexed, quality filtered and analyzed using QIIME
(v. 1.9)" with closed reference OTU picking, using default
settings and quality parameters as previously reported'”.

NG-tax pipeline and user manual

The NG-tax pipeline, user manual and files and code to
reproduce the presented results, are available for download at
http://github.com/JavierRamiroGarcia/NG-Tax.

Abbreviations

rRNA: ribosomal RNA; MC: Mock Community; OTU: Oper-
ational Taxonomic Unit; PT: Phylotype; RDP: Ribosomal
Database Project; RDPc: RDP classifier; PD: Phylogenetic
Diversity; PCoA: Principle Coordinates Analysis
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Supplementary Figure 1. A) Nucleotide distribution of PT17 (Parabacteroides) for each of the four primers. Positions under the
black segment are fixed and specific for PT17 preventing the inclusion of sequences belonging to a different PT. B) Percentage of 10
most abundant sequences for PT17 obtained with each of the primers.

PT17 (Parabacteroides) presented a sequencing anomaly in the reverse V4 region (primer R806) (Supplementary Figure 1A). From posi-
tions 50 to 67 this region had higher error rate than the other three regions. The noise generated from this anomaly masked the biological
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signal rendering PT17 undetectable. In fact the most abundant sequence represented less than 0.45% of the total reads, while for the other
three regions the most abundant sequence represented more than 80% (Supplementary Figure 1B). We decided to remove the sequences
belonging to PT17 from V5-V6 samples to avoid region clustering due to the presence of PT17. Our intention in this study was to test
region performance under conditions in which sequencing anomalies like the one showed in Supplementary Figure 1 are not present.

Click here to access the data.

Supplementary Figure 2. K-means cluster prediction for QIIME results.
The number of clusters is chosen using the “elbow criterion”. When the marginal gain of variance explained drops the line bents indicating
the number of clusters.

Click here to access the data.

Supplementary Figure 3. K-means cluster prediction for NG-Tax results.
The number of clusters is chosen using the “elbow criterion”. When the marginal gain of variance explained drops the line bents indicating
the number of clusters.

Click here to access the data.

Supplementary Figure 4. Taxonomic coverage of primers.
Forward (left bars) and reverse (right bars) primer coverage of the major bacterial phyla associated with the human GI tract using RDP’s
probematch program with one mismatch allowed.

Click here to access the data.

Supplementary Figure 5. Beta-diversity measures for NG-Tax results.

Click here to access the data.
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The manuscript reports a new tool, NG-Tax, for analysis of 16S data which has been tested and
benchmarked utilizing several mock communities. The manuscript is well written and clear. In
particular, the introduction demonstrates the authors’ expertise and understanding of the issues
and hurdles in analyzing 16S data. The data presented depicts the performance of NG-tax as
compared to QIIME using default settings for both tools. As it stands, the manuscript is ready for
indexing following the relatively minor comments below. There is one caveat, however, to our
recommendation for indexing, stemming from the use of a now deprecated version of QIIME
(version 1.X) for benchmarking. Since the initial submission of the manuscript in July 2016, a major
revision of QIIME has been released (version 2.X) and therefore a more appropriate benchmark
would be to compare against the latest version of QIIME. Importantly, some of the changes made
in QIIME 2.X were to address the very problem that motivated the development of NG-Tax. A
similar concern was raised by a previous reviewer (J. Tremblay), who criticized the use of QIIME
with default settings given that these settings are known to be sub-optimal. The issues raised by
default settings in QIIME have been examined by the QIIME team and optimal settings analyzed’.
Nonetheless, the authors’ response to Tremblay's criticism applies to ours and therefore we don't
feel it is a requirement for recommending indexing. The real test of NG-tax will be when it is
utilized by disparate researchers on real datasets over time, and thus dwelling on which is the
most appropriate benchmark is beyond the scope of the current paper. Minor edits
required/recommended before indexing are below:

1. The authors state that RDP was replaced with SILVA SINA to classify sequences, however, the
Figure 2 column heading reads SINA, while the Figure legend still lists RDP.

2. Figure 4. The figure obfuscates the point by presenting too much material. Since the figure's
point is to show the poorer estimates of prevalence and mis-identifications in QIIME compared to
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NG-tax, it would be easier to see this point if there were fewer barcharts presented. Since any set
of charts would suffice to make the point, we would recommend that the Reverse read barcharts
(QIIME) be moved to supplemental data to simplify the figure. Similarly, move the V4 data to
supplemental and only present V5-V6 for both NG-Tax and QIIME. Further, perhaps discuss an
exemplary disparity between expected and observed in QIIME versus NG-Tax - especially one of
mis-identification. Lastly, the figure legends do not provide enough information so that the figures
stand alone without the manuscript text.

3. Figure 6. It is difficult to see that triangles are “darker”. We propose you omit the word “darker”
in the legend and only call attention to the “circles” and “triangles” that distinguish the samples.

4. Correct typo in the word “assess” in the following sentence in the introduction “still is no
complete consensus about the best variable regions of the 16S rRNA gene to asses".

5.1In the “Barcoded PCR" methods, it is stated that 30 or 35 cycles of PCR were tested to quantify
noise generated by the PCR protocol. The results are alluded to in the text as being presented in
figure 6, however, it is unclear where they are shown as the figure only lists the four mock
communities (MC1-4) and expected outcomes.
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This is a novel and important piece of research. Extensive research is being conducted using next
generation sequencing but researchers are becoming increasingly aware that many factors such
as PCR bias, region of the 16S rRNA gene targeted etc. can impact on the results achieved. This
has a negative impact on the ability to compare results across studies. This manuscript sets about
to address this with their new analysis pipeline NG-Tax.

The title of the manuscript is good.

The abstract accurately summarises the research but the results section should have less methods
and more results.

Figure 1 is vague and fails to show the unique aspects of how NG-Tax differs from e.g. QIIME.
More details would make this figure useful.

I think greater details on the filtering and the classification used by this approach would benefit
the reader. Perhaps a table showing the differences between this approach and e.g. RDP, QIIME
etc. would improve the readers ability to interpret the novelty of the work.

This work was done only using HiSeq data. Do the authors feel that the approach would be equally
successful on approaches e.g. Ion, MiSeq etc where longer reads are achieved? It would also be
nice to test the approach with a real life data set and not a mock community and see how the
results compare to those achieved using traditional analysis approaches.

Figures 3 and 4 are difficult to interpret, perhaps remake as tables.
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Are all the source data underlying the results available to ensure full reproducibility?
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I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
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Javier Ramiro-Garcia, TI Food and Nutrition (TIFN), Wageningen, The Netherlands

This is a novel and important piece of research. Extensive research is being conducted
using next generation sequencing but researchers are becoming increasingly aware
that many factors such as PCR bias, region of the 16S rRNA gene targeted etc. can
impact on the results achieved. This has a negative impact on the ability to compare
results across studies. This manuscript sets about to address this with their new
analysis pipeline NG-Tax.

The title of the manuscript is good.
Thank you.

The abstract accurately summarizes the research but the results section should have
less methods and more results.

We tried to find a proper balance between results and methods but taking into account that
the paper describes a tool, a description of it should be included because the pipeline is
both method and results at the same time. But we tried to include those results needed to
prove that NG-Tax is suitable for 16S amplicon analysis:

1) Taxonomy assignment using short reads should be comparable with the assignment
using the complete 16S rRNA gene.

2) Composition profiles based on sequencing data should resemble the real composition of
the biological sample.

3) a and B diversity should match the expected a and 3 diversity.

4) Results should be reproducible and therefore robust against biological variation
(different sample compositions) and technical (PCR and sequencing settings) biases.

We consider that these requirements were met by NG-Tax and hope that they will convince
readers of the actual improvements that were made, regarding robustness against
methodological aspects as well as a more accurate reproduction of the MC compositions. In
the new version of the manuscript we included more statistical tests to measure accuracy
and reproducibility of NG-Tax.

Figure 1 is vague and fails to show the unique aspects of how NG-Tax differs from e.g.
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QIIME. More details would make this figure useful.
As suggested by the reviewer Figure 1 now includes those unique aspects of NG-Tax.

I think greater details on the filtering and the classification used by this approach
would benefit the reader. Perhaps a table showing the differences between this
approach and e.g. RDP, QIIME etc. would improve the readers ability to interpret the
novelty of the work.

As suggested by the reviewer we detailed the filtering and the classification process in the
user manual for those readers that want to dive into the technical details.

“This script demultiplexes the raw data into samples using the information contained in the
mapping file. It also generates an OTU table per sample after removing chimeras and
assigns taxonomy to the OTUs. NG-Tax is designed for short reads, 70 nucleotides is the
recommended read length. Reads can be trimmed to this length by the script. Longer
length can be selected by the user but comparison with 70 nucleotide analysis is advisable.

OTU picking: For each sample reads are ranked by abundance and OTUs are added to an
OTU table starting from the most abundant sequence until the read abundance is lower

than a percentage defined by the user (recommendeded is at is 0.1%). Subsequently, the
discarded reads are clustered to the OTU table allowing one mismatch.

Chimera removal: OTUs are subjected to non-reference based chimera checking according
to the following principle: given three OTUs named A, B and C, C will be considered a
chimera when the following conditions are satisfied: C and A 5' reads are identical, Cand B
3'reads are identical and both OTUs, A and B, are at least twice as abundant as OTU C.

Taxonomic assignment: For each OTU, usearch is used to retrieve hits for the forward and
reverse reads against their respective trimmed reference database.

Hits that are in common between both reads are divided in 6 identity thresholds 100, 98, 97,
95, 92, 90.

A hit belongs to a certain level, for example 97, when both reads have at least a 97
percentage identity with that hit.

Using the highest available identity threshold, NG-Tax assigns the consensus taxonomy to
the OTU if this taxonomy is supported for at least half of the hits.

Genus, Family or Order remains unassigned if the maximum identity percentage level is
lower or equal to 97%, 95% and 92% respectively.”

Now we also included the main characteristics of NG-Tax in Figure 1.

The OTU generation is the main difference between NG-Tax and QIIME. NG-Tax uses a de
novo generation approach without clustering. This increases the resolution and allows for
the distinction between OTUs with one nucleotide distance. In addition, NG-Tax generates
OTUs independently for each sample, which avoids problems associated to sample size
heterogeneity. Another important feature of NG-Tax is the use of non-fixed thresholds for
the taxonomic assignment, which results in more accurate classifications. To highlight those
points we added the text “No clustering — max resolution” to Figure 1 and indicated in the
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workflow that OTUs are generated per sample. We also clearly state that NG-Tax does not
use any clustering and explain that the taxonomic classification uses different identity levels.
The authors of the RDP classifier stated that it does not perform well for short sequences,
i.e. alength of 200 nt would give accurate family level classification but shorter reads will
not, likely due to insufficient features 1. In contrast, NG-Tax has been specifically designed
for short reads.

This work was done only using HiSeq data. Do the authors feel that the approach
would be equally successful on approaches e.g. Ion, MiSeq etc where longer reads are
achieved? It would also be nice to test the approach with a real life data set and not a
mock community and see how the results compare to those achieved using traditional
analysis approaches.

NG-Tax has been the reference method for 16S rRNA gene amplicon analysis in our lab for
more than two years now, and has been used in more than 30 manuscripts that have been
submitted or are in preparation. One of these manuscripts ' was published before this
manuscript. Since then another fifteen studies using NG-Tax have been published 21,
These studies contain biological samples that belong to very different and specific
environments and were sequenced both on MiSeq and HiSeq instruments. These will
contribute to the assessment of NG-Tax's performance, however these were not included in
the current manuscript since the data is accessible in the aforementioned publications.

Figures 3 and 4 are difficult to interpret, perhaps remake as tables.

With Figure 3 and 4 we intended to visualize how close the observed sample composition
resembled the expected composition at a glance and how many different taxa are found in
the data. In order to further improve interpretation, we have now also added Table 1 to
provide detailed information as to the number of misclassified reads at different taxonomic
levels and Figure 5, which shows boxplots of the distances to the expected composition. We
also performed statistical tests to quantitatively compare the performance of NG-Tax and
QIIME. As suggested by the reviewer we included the tables with the taxonomical profiles as
supplementary data, which can be used for evaluation of the results.
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Biomonitoring, National Research Council Canada, Montreal, QC, Canada

This paper describes a pipeline for processing 16S rRNA amplicon data. They implemented an
experimental design in which they used data coming from three different HiSeq2000 runs using
two variable regions (V4 and V5-V6). It is however not clear if their data has been generated in-
house or if their data was actually coming from public databases. This should be explicitly stated
somewhere (unless I missed it). Using this data as input, the authors developed a pipeline labeled
NG-Tax, which according to them: 1) better accounts (compared to what?) for errors associated
with a range of technical aspects of 16S rRNA amplicon sequencing and 2) improves comparability
be removing technical bias and facilitating efforts towards standardization. In my view, the
problem is that why their pipeline does 1) and 2) is not addressed in depth. The description of the
technical aspects of their pipeline in the first part of the result section only very summarily
describes the general workflow of the pipeline, but nowhere do they describe how exactly OTU
picking is done (see comment below). How exactly Chimera are detected? With an open-source
package? In-house script? Taxonomic assignment methodology is unclear as well. The authors
state that they are using uclust for taxonomic assignment, while uclust is a sequence clustering
software (also see comments below).

Then the authors compares their pipeline results with the ones generate by Qiime with default
paramters. Qiime with its default parameters is already known to not perform optimally (See
UPARSE paper, Edgar, 2013). I think that comparing with Qiime for validation is okay, but do not
spend too much time dissecting the results. What the authors should focus on is, I think, on
improving substantially on the technical description of their pipeline - describe each step in
details. If open source packages are being used, say so, if not, describe your
script/software/algorithm. Also please make the source code available under a code repository
(Github or Bitbucket for instance).

In my view the paper is not acceptable in its current form.

Specific comments:
o At the sentence "mostly because available 16S rRNA gene reference databases were
thought to provide insufficient coverage13-16." Can you please elaborate on that? What do
exactly mean by that?

"there still is no standard or consensus of best choices for variable regions."

I don't fully agree with this. Depending on your field of study, a certain consensus can
usually be found. For instance, the Earth Microbiome project recommends two primer sets
(V4 and the 'newer’ V4-V5) - Many labs investigating soil or environmental samples in
general will effectively favor these primers because they are being used by a large part of
the community which readily enables inter-lab community/study comparisons.

> Concerning the OTU picking section: It is not clear how exactly you pick your OTUs.
Basically, you are kind of dereplicating/clustering your raw reads data set at 100% ID and
then create a one column OTU table for each sample? Please clarify.

> “Phred score, such as minimum average Phred score, maximum number of ambiguous
positions, maximum bad run length, trimming and minimum read length after quality
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trimming, are not utilized in NG-Tax because quality scores from the Illumina base caller
have been shown to be of limited use for the identification of actual sequence errors for 16S
rRNA gene amplicon studies9,37.”

Yes Q scores have their limitation, but it is unwise to not filter for reads containing Ns and
reads of very poor Q scores. Some basic filtering should be implemented to at least filter for
very bad data. For instance if you have a read with 10 bases with Q score lower than 10, this
read should obviously be removed.

> “To speed up the procedure by several orders of magnitude, 16S rRNA gene sequences
from the reference database are trimmed to contain only the region amplified by the
primers.”

Please specify how you generated your trimmed database of 16S rRNA genes ref. In silico
PCR? A multiple alignment that was trimmed at specific coordinates?

"In the current version of NG-Tax, taxonomy is assigned to OTUs utilizing the uclust
algorithm16 and the Silva_111_SSU Ref database, containing 731,863 unique full length 16S
rRNA gene sequences. To ensure maximum resolution and avoid the risk of errors due to
clustering-associated flaws (e.g. reference sequence error hotspots, overrepresentation of
certain species and lack of robustness in cluster formation by clustering algorithms),we use
the non-clustered database. To speed up the procedure by several orders of magnitude”,

Uclust is for clustering sequences/reads and not for taxonomic assignment...? Taxonomic
assignment is done by other means (RDP classifier), but certainly not with uclust.

For each OTU, a taxonomic assignment is retrieved at six different identity thresholds levels
(100%, 98%, 97%, 95%, 92% and 90%) and at two taxonomic levels (genus and family).

How exactly are OTUs classified? With an in-house method? The RDP classifier? Please
elaborate.

Figure 1. Please add more details. Are you using open-source packages in your pipeline? If
so please indicate.

> Table 1: Table 1 is heavy and not really meaningful. Would fit in more appropriately in suppl.
material.

Figure 3 and 4: Please find another way of displaying data of figure 3. It is simply not
feasible to associate a color to a given bar graph. Maybe consider using a heatmap with
hierarchical clustering or a PCA/PCoA? Typically for taxonomiy stacked barplots you can’t
really go above 20 different colors. After that it becomes indistinguishable.

> "Because the focus of NG-Tax is to retain as much biological signal as possible while
minimizing the impact of any technical choice,"

But how exactly does NG-Tax retain more biological signal than other pipelines, what does
that mean?
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Discussion: The authors say that their pipeline outperforms Qiime, but nowhere is discussed
how exactly does Qiime works. How exactly does Qiime generate OTUs, how are the reads
QCed? How is the classification performed, what training sets are being used for
classification? It is already known that Qiime does not perform well with default parameters
(see R. Edgar's UPARSE paper), so Qiime does not represent a gold standard, especially with
default parameters.

NG-Tax pipeline availability. Please include the pipeline on a Github or bitbucket repository.

References
1. Edgar RC: UPARSE: highly accurate OTU sequences from microbial amplicon reads.Nat Methods.
2013; 10 (10): 996-8 PubMed Abstract | Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to state that I do not consider it to be of an acceptable scientific standard, for
reasons outlined above.

Javier Ramiro-Garcia, TI Food and Nutrition (TIFN), Wageningen, The Netherlands

This paper describes a pipeline for processing 16S rRNA amplicon data. They
implemented an experimental design in which they used data coming from three
different HiSeq2000 runs using two variable regions (V4 and V5-V6). It is however not
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clear if their data has been generated in-house or if their data was actually coming
from public databases. This should be explicitly stated somewhere (unless I missed it).

To further clarify this we added the section Datasets:

Datasets:
Four synthetic communities of varying complexity were created, consisting of 16S rRNA
gene amplicons of phylotypes (PTs) associated with the human GI-tract (Dataset 1). This
specific setup limited the likelihood of overfitting to a particular OTU composition or
distribution and allowed us to assess (1) the quantification potential, (2) noise floor and (3)
the effect of richness and diversity on quality filtering parameters, thus ensuring a higher
fidelity with biological samples than by using a single MC. As a reference, to assess the
quality of the taxonomic classifications, full length sequences for all PTs were obtained
through Sanger sequencing. Expected MCs were created by trimming the full length
sequences to the sequenced region. MC1 and MC2 consisted of equimolar amounts of 17
and 55 PTs, respectively. MC3 contained 55 PTs in staggered concentrations typical for the
human GI-tract, and MC4 included 50 PTs with relative abundances ranging between 0.001
and 2.49%. To account for pipetting errors, each of the four MCs was produced in triplicate.
To design a pipeline that puts more focus on biology, these 12 MC templates were used to
sequence the MCs with different conditions that cover most of the technical bias associated
with 16S rRNA gene amplicon studies reported in literature. To this end, we:

1. Targeted either region V4 or region V5-V6,

2. Used four PCR protocols differing in the number of PCR cycles and reaction volumes.

3. PCR products were analysed in three different sequencing runs and in seven different
libraries.
4. Two different library preparation protocols (with and without an additional
amplification of 8 cycles) were applied (Dataset 1).
In addition the sequencing depth ranged from 2363 to 335822 reads per sample (Dataset 1).
One phylotype, PT17 (Parabacteroides), attracted so much sequencing error in the V4 region
that it was rendered undetectable although it was amplified by the primers (Supplementary
Figure 1). Therefore, to test both pipelines without this sequencing anomaly, it was removed
from the analysis.

In this section we explain how we created and sequenced the MCs. The sequencing data
was generated by a sequencing company (GATC, Constance, Germany; see section Materials
and Methods). The sequencing data has been submitted to the ENA repository, and we
added the following sequence data availability section:

Sequence data availability:

Sequence data have been deposited in the European Nucleotide Archive4®, accession
number [ENA:PRJEB11702]) http://www.ebi.ac.uk/ena/data/view/PRJEB11702 (amplicon
sequencing data for all 49 samples) and [ENA:LN907729-LN907783]) (full length 16S rRNA
gene sequences for all 55 Pts).”

Using this data as input, the authors developed a pipeline labeled NG-Tax, which
according to them: 1) better accounts (compared to what?) for errors associated with
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a range of technical aspects of 16S rRNA amplicon sequencing and 2) improves
comparability be removing technical bias and facilitating efforts towards
standardization. In my view, the problem is that why their pipeline does 1) and 2) is
not addressed in depth.

We agree with the reviewer that the highlighted elements were not sufficiently clear and
lacked an explanation why we believe that NG-Tax performs better. Therefore we replaced
this sentence with:

"This allowed for the development of NG-Tax, a pipeline that accounts for biases associated
with this range of technical aspects associated with 16S rRNA gene amplicon sequencing.
Therefore NG-Tax will improve comparability by removing technical bias and facilitate
efforts towards standardization, by focusing on reproducibility as well as accuracy. To
assess the performance regarding key output parameters such as taxonomic classification,
composition and richness, and a and B diversity measures, we benchmarked the results
obtained with NG-Tax.”

In order to account for errors and increase comparability by removing technical bias from
16S rRNA amplicon studies, NG-Tax should fulfill the following requirements:
1. Taxonomy assignment using short reads should be comparable with the assignment
using the complete 16S rRNA gene.
2. Composition profiles based on sequencing data should resemble the real
composition of the biological sample.
3. a and B diversity should match the expected a and 8 diversity.

4. Results should be reproducible and therefore robust against biological variation
(different sample compositions) and technical (PCR and sequencing settings) biases.
We consider that these requirements were met by NG-Tax, as supported by the following
data.

Figure 2 shows the high similarity of the taxonomic classification of the V4 and V5V6
amplicon results compared to full length sequences using SILVA Incremental Aligner (SINA).
The specificity and the number of hits testify to the reliability of the assignments.

Table 1 shows the low number and percentage of spurious reads.

Figure 3 shows that NG-Tax derived compositional profiles based on sequencing data
accurately resemble the expected profiles.

Figure 5 quantifies the distances to the expected profiles.

Figure 6 & 7: the PCoA plots show that MCs group by type, despite all technical bias
associated with 16S rRNA gene amplicons sequencing, such as PCR settings, and primer or
region selection. Figure 7 shows that all within-MC pairwise comparisons and the dispersion
of all pairwise comparisons are significantly smaller in NG-Tax meaning that distances
within and between MC types are robust. These results could not have been achieved
without a proper reduction of the aforementioned biases. This will improve comparability
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by enabling direct comparison between studies even when using slightly different
approaches.

The description of the technical aspects of their pipeline in the first part of the result
section only very summarily describes the general workflow of the pipeline, but
nowhere do they describe how exactly OTU picking is done (see comment below). How
exactly Chimera are detected? With an open-source package? In-house script?
Taxonomic assignment methodology is unclear as well. The authors state that they
are using uclust for taxonomic assignment, while uclust is a sequence clustering
software (also see comments below).

In the revised manuscript we substantially increased the amount and detail of information
on the description of the general work flow. All the critical steps, including barcode & primer
filtering, OTU picking, mapping rejected reads to accepted OTUs, de novo chimera filtering,
taxonomic assignment and the generation of a phylogenic tree are now detailed in Figure 1
and explained in the user manual.

Then the authors compares their pipeline results with the ones generate by Qiime
with default paramters. Qiime with its default parameters is already known to not
perform optimally (See UPARSE paper, Edgar, 2013). I think that comparing with Qiime
for validation is okay, but do not spend too much time dissecting the results.

We agree with the reviewer’s view on the default parameters of QIIME, however, the major
improvements are gained by not clustering and processing the reads per sample.
Therefore, the presented results cannot be achieved with QIIME independent of the
parameters we choose. Besides that, testing QIIME under different settings has been
already extensively covered elsewhere > and if we would change parameters, reviewers
could argue that our chosen parameters are less than optimal and therefore we stayed with
the default settings.

Nonetheless, as suggested by the reviewer we reproduced the QIIME analysis with a 0.1%
abundance threshold, and this is now included in the supplementary data. The results using
0.1% or 0.005% are consistent and show no performance gain (“Supplementary data. QIIME
beta-div results all settings”). This is also in line with the result shown by Bokulich et al 2013
1, supplementary material 2; pages 8, 9 and 10. This text includes a comparison of the
expected composition against real sample composition using different filtering parameters.
One of these parameters is OTU abundance and the plot shows that the obtained profiles
do not change much using different filtering abundance thresholds.

Although we agree with the reviewer that we need not to put too much emphasis on the
QIIME results, they do show the consequences when technical bias is not adequately taken
care of, which makes it easier for the non-technical reader to place the results achieved by
NG-Tax into context.

What the authors should focus on is, I think, on improving substantially on the
technical description of their pipeline - describe each step in details. If open source
packages are being used, say so, if not, describe your script/software/algorithm. Also
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please make the source code available under a code repository (Github or Bitbucket
for instance).

In my view the paper is not acceptable in its current form.

We thanks the reviewer for the constructive suggestions and hope that the changes
introduced in the manuscript and supplementary data help to change his opinion.
As suggested by the reviewer the source code is now available on Github (
https://github.com/JavierRamiroGarcia/NG-Tax.git).

Specific comments:

At the sentence "mostly because available 16S rRNA gene reference databases were
thought to provide insufficient coverage 13-16." Can you please elaborate on that?
What do exactly mean by that?

In the past, when pyrosequencing was the standard sequencing method, open reference
base OTU picking was the common strategy for two main reasons: 1) reference databases
were still very small and thought to provide insufficient coverage and 2) the more
computationally intense open reference methods were used because the amount of reads
generated were lower than nowadays. Over time databases were more complete and the
amount of data generated increased the needed computational time, so close reference
OTU picking gained popularity. Currently, with new bioinformatics solutions, open reference
OTU picking is gaining ground and NG-Tax is following that trend by implementing a new
open reference OTU picking algorithm.

"there still is no standard or consensus of best choices for variable regions."

I don't fully agree with this. Depending on your field of study, a certain consensus can
usually be found. For instance, the Earth Microbiome project recommends two primer
sets (V4 and the 'newer' V4-V5) - Many labs investigating soil or environmental
samples in general will effectively favor these primers because they are being used by
a large part of the community which readily enables inter-lab community/study
comparisons.

We agree with the reviewer that there is a certain consensus for some projects, but still
there are many publications addressing the differences in results when different primers
are used. Therefore, when choosing a primer pair, whether these primers are used by the
community becomes an important factor if afterwards the researcher wants to compare the
results with existing studies. The idea of NG-Tax is to decrease the importance of this factor
by providing comparable results across different primer sets, giving more freedom to the
researcher to explore new possibilities. But as suggested by the reviewer we softened our
statement and rephrased as:

“There still is no complete consensus regarding best choices for variable regions even if
some initiatives like the Earth Microbiome Project are setting standards that are
increasingly being adopted by the field.”
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Concerning the OTU picking section: It is not clear how exactly you pick your OTUs.
Basically, you are kind of dereplicating/clustering your raw reads data set at 100% ID
and then create a one column OTU table for each sample? Please clarify.

We tried to make the paper as readable as possible by not adding too much technical
information. Realizing that we have excessively reduced technical detail in the original
manuscript, in the new version all technical details can be found in the user manual. An
indication that this information can be found in the user manual is now included in the
manuscript.

In NG-Tax OTUs are generated per sample using the following strategy:

For each sample reads are ranked by abundance and OTUs are added to an OTU table
starting from the most abundant sequence until the read abundance is lower than a
percentage defined by the user (recommended is at is 0.1%). Subsequently, the discarded
reads are clustered to the OTU table allowing one mismatch.

In practical terms this is in fact guided clustering where seeds are determined by
abundance. The difference with an normal clustering approach is that there is no clustering
to define the seeds. This allows seeds that differ as little as one nucleotide. The clustering is
applied only afterwards to compensate for potential bias due to PCR and sequencing errors.
Error is sequence-specific, and hence some sequences could be affected more than others.
If a species specific amplicon is more prone to PCR or sequencing errors, the relative
abundance of that particular OTU will be underestimated. But after clustering, OTUs more
prone to error receive a higher percentage of discarded reads than others, this differential
recovery helps to reestablish the true composition that was lost due to sequence specific
error rates.

“Phred score, such as minimum average Phred score, maximum number of ambiguous
positions, maximum bad run length, trimming and minimum read length after quality
trimming, are not utilized in NG-Tax because quality scores from the Illumina base
caller have been shown to be of limited use for the identification of actual sequence
errors for 16S rRNA gene amplicon studies9,37.”

Yes Q scores have their limitation, but it is unwise to not filter for reads containing Ns
and reads of very poor Q scores. Some basic filtering should be implemented to at
least filter for very bad data. For instance if you have a read with 10 bases with Q
score lower than 10, this read should obviously be removed.

We fully agree with the reviewer. A filtering process is needed, and this is already
implemented in NG-Tax. The point is that it is not based in quality score but based on
abundance. Illumina have reported that 95%-97% of the reads have Q>30 (
http://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf). This 3 to
5 percent of reads with lower quality will contain reads for all the different phylotypes, and
within phylotypes there will be reads with errors in different positions and with different
base substitutions. This decreases the probability of having exactly the same erroneous
read. Therefore we expect that any specific erroneous read should be in low abundance.
Subsequently, when samples are filtered by discarding low abundance sequences, those
low quality reads will be removed without the need to check for quality scores.

Page 30 of 48


http://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf

F1000Research 2018, 5:1791 Last updated: 03 AUG 2021

In addition quality scores do not account for PCR errors since the base caller will give them
very high scores, because according to the sequencer they are real sequences. In contrast,
filtering by abundance is insensitive to the error source, and hence if the reads with PCR
errors are in low abundance (especially if high fidelity tag polymerase is used), they will be
also removed.

A good example of how stringent quality thresholds can bias the results can be found in
Bokulich et al 2013, supplementary material 2; pages 8, 9 and 10"

“To speed up the procedure by several orders of magnitude, 16S rRNA gene sequences
from the reference database are trimmed to contain only the region amplified by the
primers.”

Please specify how you generated your trimmed database of 16S rRNA genes ref. In
silico PCR? A multiple alignment that was trimmed at specific coordinates?

We thank the reviewer for the suggestion. This information is important and now it
has been added to the user manual. NG-Tax applies an in silico PCR using the primers
and a reference database given by the user. Degenerated primer positions are allowed
and alternative primers with mismatches can be supplied.

"In the current version of NG-Tax, taxonomy is assigned to OTUs utilizing the uclust
algorithm16 and the Silva_111_SSU Ref database, containing 731,863 unique full length
16S rRNA gene sequences. To ensure maximum resolution and avoid the risk of errors
due to clustering-associated flaws (e.g. reference sequence error hotspots,
overrepresentation of certain species and lack of robustness in cluster formation by
clustering algorithms),we use the non-clustered database. To speed up the procedure
by several orders of magnitude”,

Uclust is for clustering sequences/reads and not for taxonomic assignment...?
Taxonomic assignment is done by other means (RDP classifier), but certainly not with
uclust.

For each OTU, a taxonomic assignment is retrieved at six different identity thresholds
levels (100%, 98%, 97%, 95%, 92% and 90%) and at two taxonomic levels (genus and
family).

How exactly are OTUs classified? With an in-house method? The RDP classifier? Please
elaborate.

First we wanted to inform that uclust has been substituted by usearch in the scripts for the
second version of the manuscript.

Any or at least most methods for taxonomic assignment contain two main steps. First, the
read to be classified is linked to sequences in a reference database by sequence similarity,
and then the taxonomic information of linked sequences, termed hits, is transferred to the
sequence to be classified. Different methods can be used to perform the linking step. In our
case we used usearch (previously uclust). We used dynamic thresholds to get hits at 6
different identity levels, after which the taxonomic information is transferred to the read of
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unknown taxonomy by the NG-Tax classifier algorithm. Similar dynamic thresholds are used
by rtax 2.

A description of how the NG-Tax classifier works:

For each OTU, usearch is used to retrieve hits for the forward and reverse reads against
their respective trimmed reference database. Hits that are in common between both reads
are divided in 6 identity thresholds 100, 98, 97, 95, 92, 90. A hit belongs to a certain level, for
example 97, when both reads have at least a 97 percentage identity with that hit. Using the
highest available identity threshold, NG-Tax assigns the consensus taxonomy to the OTU if
this taxonomy is supported for at least half of the hits. Genus, Family or Order remains
unassigned if the maximum identity percentage level is lower or equal to 97%, 95% and 92%
respectively. The levels lower than 97% are only useful for unexplored environments;
otherwise most of the OTUs are assigned at 100% identity.

As suggested by the reviewer we have included a detailed explanation of how the algorithm
works in the user manual provided in the supplementary files.

Figure 1. Please add more details. Are you using open-source packages in your
pipeline? If so please indicate.

We thank the reviewer for the suggestion, now we added a figure with more details. As
stated in the user manual we use USEARCH and QIIME.

Table 1: Table 1 is heavy and not really meaningful. Would fit in more appropriately in
suppl. material.

As suggested by the reviewer the table 1 is now supplied as supplementary material.

Figure 3 and 4: Please find another way of displaying data of Figure 3. It is simply not
feasible to associate a color to a given bar graph. Maybe consider using a heatmap

with hierarchical clustering or a PCA/PCoA? Typically for taxonomy stacked barplots
you can't really go above 20 different colors. After that it becomes indistinguishable.

With figure 3 and 4 we just wanted to show in one glance, how close the sample
compositions resembled the expected composition and how many different taxa are found
in the data. In the new version of the manuscript we have added boxplots showing
distances to the expected profiles to improve interpretation. An excel file with taxonomic
profiles is also added to the supplementary material for further interpretation.

PCoA plots showing distances between samples and expected for both pipelines are
provided in figure 6. Figure 7 shows those distances as pairwise comparisons.

"Because the focus of NG-Tax is to retain as much biological signal as possible while
minimizing the impact of any technical choice,"

But how exactly does NG-Tax retain more biological signal than other pipelines, what
does that mean?
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We agree with the reviewer that the sentence is confusing. Therefore it has been rephrased.

"Therefore, these indices probably provide a better estimate of the true diversity for data
generated by high throughput next generation technology sequencers.

Because the aim of NG-Tax is to enhance the biological signal as much as possible by
minimizing the impact of any technical choice, divergence-based a-diversity (Phylogenetic
Diversity (PD) [41]) and B-diversity (Unifrac [39]) metrics were used to visualize the diversity
within and between MCs (Figure 6)".

Discussion: The authors say that their pipeline outperforms Qiime, but nowhere is
discussed how exactly does Qiime works. How exactly does Qiime generate OTUs, how
are the reads QCed? How is the classification performed, what training sets are being
used for classification? It is already known that Qiime does not perform well with
default parameters (see R. Edgar's UPARSE paper), so Qiime does not represent a gold
standard, especially with default parameters.

In our manuscript we applied recommended settings like those described in the Bokulich
paper. This paper extensively describes QIIME, the rationale behind the recommendations
and the way that these choices impact the data. The scope of this manuscript was not to
test QIIME under different settings. For NG-Tax analysis we also employed default and
recommended settings so we thought that even if it is not optimal and has limitations, this
could be a fair approach.

We also analyzed the MCs with QIIME to show that this dataset is not an exceptional case
with regards to the commonly reported problems (such as many un- or poorly classified
OTUs, inflated richness and diversity, taxonomic profiles that do not match the expected
ones, region dependent taxonomic classification and results which are highly dependent on
minor changes in the experimental procedures) are also found in this dataset. So in our
mind the QIIME analysis should primarily be seen as a performance comparison. In fact we
encourage researchers to use more than one method, as this will increase the amount of
information they can obtain from their datasets and determine the quality of their data. This
will benefit their research and by extension the whole field.

Nevertheless in an effort to increase comparability we also performed an additional analysis
using QIIME with a 0.1% abundance threshold (which is conservative compared to the
advised setting of 0.005%). Nevertheless this did still not reproduce the biological signal and
the results obtained with 0.1% or 0.005% are consistent. These analyses have been added to
the supplementary material as “Supplementary data. QIIME beta-div results all settings”.

NG-Tax pipeline availability. Please include the pipeline on a Github or bitbucket
repository.

NG-Tax scripts were previously available as supplementary material, and as suggested by
the reviewer they are now also available in Github (
https://github.com/JavierRamiroGarcia/NG-Tax.git)
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? Thomas S. B. Schmidt
Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland

In their manuscript, the authors introduce NG-Tax, an open-source software for the (meta-
)analysis of 16S rRNA-based microbiome datasets. Their tool focuses on an important and so-far
arguably understudied aspect of microbial ecology research: the integration of results across
studies, in view of both technical and biological variation.

The approach is interesting and addresses important points. In particular, several sequencing
datasets of different mock communities were generated, even using different primer sets: this is
great data to benchmark on, and many (most) other papers introducing tools do not provide
benchmarks on such an array of real (mock) data. In general, I feel that this is very interesting
work and that NG-Tax can be a promising alternative to existing tools in the field.

However, there are several points that I feel would need to be addressed in order for the
manuscript to stand tall, and for the reader to get a good understanding of how NG-Tax can be
useful in practice.

Major comments:
o Even after reading the manuscript and online user manual repeatedly, I have to admit that
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it is not completely clear to me how NG-Tax works in detail, and in which points exactly it
differs from existing approaches. Based on the introduction, I gather that NG-Tax relies on
closed-reference OTU picking, but this is not mentioned explicitly anywhere in the text. Also,
does reference-based OTU picking in NG-Tax rely on uclust? If yes, which version and
parameters were used, and how do they differ from QIIME's defaults? Also, the Background
and Discussion sections do not elaborate on the various disadvantages of closed-reference
approaches; most importantly, closed-ref only takes into account sequences matching the
database and removes everything else. When integrating sequence data from different
primer sets, this is arguably the most straightforward approach; however, the limitations
should be discussed.

> I gather from the text that NG-Tax's main innovations are the use of primer-tailored
reference databases and a different (more conservative) read abundance filtering scheme.
It is perfectly valid to benchmark these against QIIME'’s default settings; however, it would
be great to see how QIIME performs with similarly conservative settings, to better
understand where NG-Tax's edge in performance comes from.

Regarding taxonomy assignments, it is valid to compare NG-Tax’s uclust-based approach to
QIIME's uclust-based approach. However, I believe that the gold standard continues to be
the RDP Classifier, and it would be interesting to see a performance comparison to this tool
(on the short-read data, not only on full-length reads). Also, how does taxonomic
classification by NG-Tax differ conceptually from RTAX (
http://www.uio.no/english/services/it/research/hpc/abel/help/software/rtax.html)? I do
believe that they are not equivalent, but the approaches appear somewhat related.

> In general, the results on taxonomic classification are not discussed quantitatively. From
Figures 3&4, the visual impression is that NG-Tax indeed better approximates expected
taxonomic profiles than QIIME, but it is hard to quantify this from stacked bar charts. I
would suggest to compute e.g. Euclidean or more sophisticated distances of classified
taxonomic profiles to the expected distribution. Also, it would be interesting to see
quantitative sensitivities and specificities (or F1-scores?) on the taxonomic assignments;
particularly also when running on the exact same (more conservatively filtered) dataset for
QIIME. Some numbers on specificity are provided in the Abstract and Conclusion sections
- but I am not sure if specificity may be gained at the expense of sensitivity based on the
more rigid read filtering upstream.

> As a suggestion, but certainly not as a request, I would recommend to maybe include
additional, independent datasets to benchmark on. For example, Tremblay et al. (2015) have
published data on mock communities sequenced with different primer sets and on different
platforms. Such data could contribute to a yet more general assessment of NG-Tax
performance.

Minor comments (chronologically, not in order of importance):

o Background, “The consequence of this approach is that the ‘quality’ of the clustering of the
reference set propagates to reference-picked OTUs.” I believe that as such, this statement is
not fully valid or supported. In fact, the negative complement is arguably true: reference-
based OTU picking against a “bad” reference can never provide “good” OTUs (a garbage-in,
garbage-out problem, so to say). However, even with a good reference, a bad mapping
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algorithm can generate non-informative reference-based OTU sets. Schloss & Westcott have
recently published a study which discusses this point, among others (Westcott & Schloss,
2015).

Background, “However, in 16S rRNA gene amplicon sequencing every sequencing error
could potentially lead to the false discovery of a new species.” I have two comments on this
statement. First, I believe that the term “species” in this context can be misleading and I feel
that the neutral term OTU or diversity unit would be more appropriate. Second, there is a
large body of literature on how sequencing errors affect 16S-based diversity studies beyond
the cited Bokulich et al paper (starting from Kunin et al., 2010), and it would be worth to at
least mention these, although an in-depth discussion would probably lead away from this
study’s focus. Also, it may be worth mentioning recent algorithmic approaches to tackling
this issue, such as DADA2 (Callahan et al., 2016).

Results & Discussion, chimera filtering. The implemented method for chimera filtering
appears a little ad hoc and heuristic, although the proposed approach certainly makes sense
intuitively. However, given the long history of “chimera-slaying” algorithms and the quite
sobering benchmark studies on them, some context would be helpful for the reader here

- maybe even as a short supplement or as a reference to the user manual. For example,
how is the proposed approach conceptually different from existing tools like UCHIME etc?
And why was it implemented as is? What was the (empirical?) motivation to do it like this,
not otherwise? Personally, I am not very convinced of the performance of chimera-filtering
algorithms overall and several recent pipelines side-step the issue more or less elegantly. In
the case of NG-Tax (or other reference-based OTU callers), one could even argue that if the
reference database is perfectly chimera-free, a closed-reference approach would not need a
chimera filtering approach at all, or only one which is based on differential mapping of a
sequence to two (highly unrelated) OTUs.

» Table 1 is very large and (on the PDF) unfortunately rotated by 90 degrees. I suggest to
convert it into a supplemental Excel sheet which would be more reader-friendly.

Figure 2 has rotated horizontal axis labels, a 90deg rotated legend - maybe that's just due
to formatting of the PDF. It is also difficult to read taxonomic names on the vertical axis in
all-caps.

> “"Consequently, these methods are more powerful than purely OTU-based methods, [...].”
While I agree with this sentence to a certain extent, I believe that the statement should be
supported by referring to previous work on the topic. It is not necessarily consensus that
16S “sequence often correlates with phenotypic similarity in key features”, but it is even less
clear to what extent phylogenetic diversity estimators capture this signal in a useful way.
Arguably, a PD-estimator of UniFrac can only be as good as their underlying tree, which in
turn is based on the (representative) sequences of OTUs and thus depends on many factors
in the background.

> In particular, the weighted UniFrac measure used in this study seems to be more sensitive
to quite a number of factors (including sequencing errors and inflation of small clusters, not
irrelevant for the points made in this study) than its unweighted sister in my personal
experience, and according to a number of researchers I have talked to on this point.
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However, since “personal experience” and “people I've talked to” are certainly not a
dependable scientific source, and because performance on mock communities should not
be severely impacted, I would formulate this as a suggestion and certainly not as a
reviewer's request: were the weighted UF-based results double-checked using unweighted
UF and/or a non-phylogenetic method, such as Bray-Curtis?

o Inthe PCoA (Figure 5, A&Q), it is quite hard to decide which method looks “better” purely
based on visual impression, not least because the % variance explained on the axes is not
equivalent. It would be good to see a more quantitative statement on which approach
better recovers expected clusters from the mock communities. The most straightforward
approach would be to perform MANOVA analyses, structured by the different factors to test
for and then use the effect sizes to quantify the goodness of separation (or non-separation).
I would suggest to run e.g. Anderson's PERMANOVA (
http://www.entsoc.org/PDF/MUVE/6_NewMethod_MANOVA1_2.pdf; implementation
available through the function “adonis” in the R package vegan) or ANOSIM to this end.
Alternatively, samples could be clustered based on beta div and the resulting clusterings (or
dendrograms) quantitatively compared to expectations based on different factors.

o Thank you for providing Supplementary Figures 1&2; they are informative in the
interpretation of the presented data.

> Similarly, thank you for providing code and data as supplements!
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I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Javier Ramiro-Garcia, TI Food and Nutrition (TIFN), Wageningen, The Netherlands

In their manuscript, the authors introduce NG-Tax, an open-source software for the
(meta-)analysis of 16S rRNA-based microbiome datasets. Their tool focuses on an
important and so-far arguably understudied aspect of microbial ecology research: the
integration of results across studies, in view of both technical and biological variation.

The approach is interesting and addresses important points. In particular, several
sequencing datasets of different mock communities were generated, even using
different primer sets: this is great data to benchmark on, and many (most) other
papers introducing tools do not provide benchmarks on such an array of real (mock)
data. In general, I feel that this is very interesting work and that NG-Tax can be a
promising alternative to existing tools in the field.

We thank the reviewer for his nice comments and also his suggestions about the
manuscript.

However, there are several points that I feel would need to be addressed in order for
the manuscript to stand tall, and for the reader to get a good understanding of how
NG-Tax can be useful in practice.

Major comments:

o Even after reading the manuscript and online user manual repeatedly, I have to
admit that it is not completely clear to me how NG-Tax works in detail, and in
which points exactly it differs from existing approaches. Based on the
introduction, I gather that NG-Tax relies on closed-reference OTU picking, but
this is not mentioned explicitly anywhere in the text. Also, does reference-based
OTU picking in NG-Tax rely on uclust? If yes, which version and parameters were
used, and how do they differ from QIIME's defaults? Also, the Background and
Discussion sections do not elaborate on the various disadvantages of closed-
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reference approaches; most importantly, closed-ref only takes into account

sequences matching the database and removes everything else. When

integrating sequence data from different primer sets, this is arguably the most

straightforward approach; however, the limitations should be discussed.
Thanks for the suggestion. In the new version we included a more detailed Figure 1
including those unique aspects of NG-Tax.

We agree with the reviewer that close reference OTU picking has the disadvantage of only
taking sequences into account that have a match in the database, and this is incompatible
with having stable OTUs since databases change over time. For this reason, NG-Tax employs
an open reference approach to remain independent of reference databases.

Different clustering algorithms also lead to different OTUs, and hence no clustering process
is applied and the generation of OTUs is independent for each sample. Existing open
reference approaches generate OTUs for the whole study by clustering the reads from all
the samples together. Then, if new samples are included to a previous study, the OTUs need
to be regenerated with the reads from the previous study and new samples together, which
will lead to discrepancies in the former and new composition of the samples because some
of the previous OTUs may not be present in the new analysis anymore.

Instead, in NG-Tax OTUs are generated sample by sample using the following strategy:

For each sample reads are ranked by read abundance and OTUs are added to an OTU table
starting from the most abundant sequence until the read abundance is lower than a
percentage defined by the user (recommended is at is 0.1%). Subsequently, the discarded
reads are clustered to the OTU table allowing one mismatch.

In practical terms it is guided clustering where seeds are determined by abundance. The
differences with an normal clustering approach is that there is no clustering to define the
seeds, which allows seeds that differ as little as one nucleotide. The clustering is applied
only afterwards to compensate for potential bias due to PCR and sequencing errors. Error is
sequence-specific, and hence some sequences could be affected more than others. If a
species specific amplicon is more prone to PCR or sequencing errors, the relative
abundance of that particular OTU will be underestimated. But after clustering, OTUs more
prone to error receive a higher percentage of discarded reads than others, this differential
recovery helps to reestablish the true composition that was lost due to sequence specific
error rates.

We substituted uclust by usearch in the scripts of the new version.

o I gather from the text that NG-Tax's main innovations are the use of primer-
tailored reference databases and a different (more conservative) read
abundance filtering scheme. It is perfectly valid to benchmark these against
QIIME's default settings; however, it would be great to see how QIIME performs
with similarly conservative settings, to better understand where NG-Tax's edge
in performance comes from.

We think that the main innovation of NG-Tax is the way OTUs are generated. This may seem
counter-intuitive because it does not follow the standard approach but it is the discerning
step compared with other existing pipelines. This innovative OTU generation algorithm is
the reason of the NG-Tax’s edge in performance.
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With QIIME those conservative thresholds cannot be used because the filtering percentage
threshold is defined using the whole library and within a library there are samples that
contain 20 times more reads than others. A conservative threshold like 0.1% is conservative
for an average sample, not conservative for a big sample at all and extreme for small
samples. Hence, OTUs present in only small samples can be discarded even if they
represent 1% of that sample but less than 0.1% of the whole dataset. On the other hand,
NG-Tax applies thresholds defined by sample accounting for sample heterogeneity.

In the manuscript we used the setting recommended by QIIME and described in Bokulich et
al 2013 1. For NG-Tax analysis we also employed recommended default settings so we
thought that even if this is not optimal and has its limitations, this could be a fair approach.
Nevertheless, we benchmarked with QIIME not to compare performances but rather to
show that this dataset is not an exceptional case and the commonly reported problems
such as many un- or poorly classified OTUs, inflated richness and diversity, taxonomic
profiles that do not match the expected ones, region dependent taxonomic classification
and results being highly dependent on minor changes in the experimental setup are also
found in this dataset when standard approaches are used.

In Bokulich et al 2013, supplementary material 2; pages 8, 9 and 10, the authors compare
expected composition against real sample composition using different parameters, one of
them being OTU abundance, and the plot shows that the obtained profiles do not change
much using different abundance thresholds.

Nonetheless, as suggested by the reviewer we reproduced the QIIME analysis with a 0.1%
abundance threshold and this is included in the supplementary data. The results using 0.1%
or 0.005% are consistent.

o Regarding taxonomy assignments, it is valid to compare NG-Tax’s uclust-based
approach to QIIME’s uclust-based approach. However, I believe that the gold
standard continues to be the RDP Classifier, and it would be interesting to see a
performance comparison to this tool (on the short-read data, not only on full-
length reads). Also, how does taxonomic classification by NG-Tax differ
conceptually from RTAX (
http://www.uio.no/english/services/it/research/hpc/abel/help/software/rtax.htil)
I do believe that they are not equivalent, but the approaches appear somewhat
related.

In the manuscript we wanted to show that taxonomy assignment using short reads should
be comparable with the assignment using the complete 16S rRNA gene (Figure 2). This is
why we employed full length sequences. We could have included also RDP short read based
taxonomy but the reads were too short for RDP, and hence genus and many times even
family assignment could not be achieved with a minimum threshold value of 50%. In the
supplementary data we supplied the theoretical compositions for all mock communities.
The files for MC2 V4 and MC2 V5V6 contain all phylotypes and can be uploaded to the RDP
classifier to verify the poor performance. In the new manuscript we substituted RDP for
SILVA Incremental Aligner (SINA) to classify the full length sequences and we also updated
the database in NG-Tax to SILVA 128, improving in both cases the classification.

I read the manuscript suggested by the reviewer and I can say that NG-Tax taxonomic
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classification is very similar to rtax.
The NG-Tax classifier works as follows:

For each OTU, usearch is used to retrieve hits for the forward and reverse reads against
their respective trimmed reference database. Hits that are common between both reads are
divided in 6 identity thresholds 100, 98, 97, 95, 92, 90. A hit belongs to a certain level, for
example 97, when both reads have at least a 97 percentage identity with that hit. Using the
highest available identity threshold, NG-Tax assigns the consensus taxonomy to the OTU if
this taxonomy is supported for at least half of the hits. Genus, Family or Order remains
unassigned if the maximum identity percentage level is lower or equal to 97%, 95% and 92%
respectively. These are the main differences:

rtax clusters the reference database at 99%, while NG-Tax does not.

rtax averages the percentage identity for both reads and then considers the hits that have
an averaged percentage identity 0.5% lower than the maximum averaged percentage
identity as valid. NG-Tax does not average the percentage identities and uses fixed values
100, 98, 97, 95, 92 and 90 as thresholds.

For the rest they are indeed very similar approaches.

Therefore we have added rtax to the references and acknowledge in the manuscript that
similar dynamic identity thresholds have been already employed to assign taxonomy.
Furthermore, all the details about NG-Tax taxonomic assignment have been added to the
user manual.

o In general, the results on taxonomic classification are not discussed
quantitatively. From Figures 3&4, the visual impression is that NG-Tax indeed
better approximates expected taxonomic profiles than QIIME, but it is hard to
quantify this from stacked bar charts. I would suggest to compute e.g. Euclidean
or more sophisticated distances of classified taxonomic profiles to the expected
distribution. Also, it would be interesting to see quantitative sensitivities and
specificities (or F1-scores?) on the taxonomic assignments; particularly also
when running on the exact same (more conservatively filtered) dataset for
QIIME. Some numbers on specificity are provided in the Abstract and Conclusion
sections - but I am not sure if specificity may be gained at the expense of
sensitivity based on the more rigid read filtering upstream.

As suggested by the reviewer, distances between compositional profiles and expected
profiles are now shown in Figure 5. Distances between taxonomic profiles were calculated
as the sum of the weighted differences. Given two taxonomical profiles x and y, for each
taxa i, we defined the difference in abundance as difi(x,y)=( xi -yi) and a weighing factor wi
as wi(x,y)=( xi -yi )/avg(xi + yi). Weighted difference was the result of multiplying the
difference in abundance by its weighting factor. This weighting factor is useful to take into
account the relative change and not only the absolute change, because a 1% absolute
change becomes a 200% or 20% relative change depending on whether the expected
abundance is 0.5% or 5% respectively. We performed t tests to compare the performance of
NG-Tax versus QIIME from a quantitative point of view.

We have also included an Excel spreadsheet with compositional profiles in the
supplementary data.

Figure 2 shows specificity of the taxonomical assignments and has been has been modified
to improve readability.

The QIIME analysis at 0.1% abundance threshold can be found in the supplementary
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material.

o As a suggestion, but certainly not as a request, I would recommend to maybe
include additional, independent datasets to benchmark on. For example,
Tremblay et al. (2015) have published data on mock communities sequenced
with different primer sets and on different platforms. Such data could
contribute to a yet more general assessment of NG-Tax performance.

We thank the reviewer for the suggestion, but including new datasets will imply a rewrite of
a big part of the manuscript. We consider that 49 samples can give an idea of NG-Tax
performance. Additionally, we would like to mention that NG-Tax has been the reference
method for 16S rRNA gene amplicon analysis in our lab for more than two years and has
been used in more than 30 manuscripts that have been submitted or are in preparation.
One of these manuscripts 2 was published before this manuscript. Since then another
fifteen studies using NG-Tax have been published 3-17. These studies contain biological
samples that belong to very different and specific environments and were sequenced both
on MiSeq and HiSeq instruments. These will contribute to the assessment of NG-Tax
performance, however these were not included in the current manuscript since they are
accessible on the aforementioned publications.

Minor comments (chronologically, not in order of importance):

o Background, “The consequence of this approach is that the ‘quality’ of the
clustering of the reference set propagates to reference-picked OTUs.” I believe
that as such, this statement is not fully valid or supported. In fact, the negative
complement is arguably true: reference-based OTU picking against a “bad”
reference can never provide “good” OTUs (a garbage-in, garbage-out problem,
so to say). However, even with a good reference, a bad mapping algorithm can
generate non-informative reference-based OTU sets. Schloss & Westcott have
recently published a study which discusses this point, among others (Westcott &
Schloss, 2015).

With this sentence we did not imply that only ‘good quality’ is transferred from the clustered
databases to the OTUs, we meant both, pros and cons are transferred. In fact, we agree
that references have their limitations and clustered databases also contain bias due to
clustering. For this reason NG-Tax employs a de novo OTU picking with no references or
clustering involved.

o Background, “However, in 16S rRNA gene amplicon sequencing every
sequencing error could potentially lead to the false discovery of a new species.”
I have two comments on this statement. First, I believe that the term “species”
in this context can be misleading and I feel that the neutral term OTU or
diversity unit would be more appropriate. Second, there is a large body of
literature on how sequencing errors affect 16S-based diversity studies beyond
the cited Bokulich et al paper (starting from Kunin et al., 2010), and it would be
worth to at least mention these, although an in-depth discussion would
probably lead away from this study’s focus. Also, it may be worth mentioning
recent algorithmic approaches to tackling this issue, such as DADA2 (Callahan et
al., 2016).

As suggested by the reviewer we rephrased the sequence to avoid the use of “species”. Now
we stated: “However, in 16S rRNA gene amplicon sequencing every sequencing error could
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potentially lead to an incorrect OTU classification which may ultimately lead to the false
discovery of a new phylotype”

We added Kunin et al 2010 and Callahan et al. 2016 to the references but we just wanted to
point out that sequencing error is an important factor in 16S analysis rather than make an
in-depth discussion about it.

o Results & Discussion, chimera filtering. The implemented method for chimera
filtering appears a little ad hoc and heuristic, although the proposed approach
certainly makes sense intuitively. However, given the long history of “chimera-
slaying” algorithms and the quite sobering benchmark studies on them, some
context would be helpful for the reader here - maybe even as a short
supplement or as a reference to the user manual. For example, how is the
proposed approach conceptually different from existing tools like UCHIME etc?
And why was it implemented as is? What was the (empirical?) motivation to do it
like this, not otherwise? Personally, I am not very convinced of the performance
of chimera-filtering algorithms overall and several recent pipelines side-step the
issue more or less elegantly. In the case of NG-Tax (or other reference-based
OTU callers), one could even argue that if the reference database is perfectly
chimera-free, a closed-reference approach would not need a chimera filtering
approach at all, or only one which is based on differential mapping of a
sequence to two (highly unrelated) OTUs.

First, we would like to recall that NG-Tax is not reference-based.

We fully agree with the reviewer opinion about ‘chimera-slaying’ algorithms. Chimera
detectors are often validated using in-silico datasets generated by determining an initial set
of valid sequences and a chimera formation pattern. This pattern or “rule” for chimera
formation is commonly defined by considering that any two sequences in the initial dataset
are equally probable to lead to a chimera and any nucleotide is equally probable to be the
point in which these two sequences merge to form the chimera. It is conceivable that
maybe the initial set is not representative of the sequences present in a specific real
biological sample, not every pair of sequences has the same probability to form chimeras
and not all the nucleotides may have the same odd to be the merging point of two
sequences. Many different sequence sets can be selected as initial valid sequences and also
many different chimera formation patterns can be chosen, but it is very difficult to really
determine whether our choices mimic the way in which chimeras are formed in real
sequencing data and therefore it is hard to verify if those in-silico created chimeras
represent the chimeras that can be found in real sequencing samples. We consider that the
proper validation should be using the real sequencing samples. If the chimera detection
algorithm works, we would expect a very small number of non-assigned reads (since most
chimeras should be aberrant). In case we have positive controls like MC, sequencing profiles
and diversity should resemble the expected ones, and this is exactly what we observe with
the results of NG-Tax.

We think that there are no perfect chimera-free databases, and a valid OTU can be found in
the reference database and at the same time be a perfect combination of 2 other OTUs,
especially for regions with lower variability (V4). If all those 3 OTUs are present in the same
sample, how can we know whether it is a chimera or real?

In our opinion chimera detection is the weakest step in 16S pipelines because there is no
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satisfactory solution to the problem mentioned above. So the prevention against chimeras
should come from the experimental design by reducing the PCR cycles and selecting
regions of high variability. Chimera removal has many limitations and human supervision is
recommended. For this reason, we decided to simplify the chimera detection as much as
possible so the researcher can quickly identify why an OTU has been discarded. And also
apply stringent parameters (100% identity) to avoid false positives. False negatives should
be easier to detect afterwards since most of the chimeras should be aberrant.

In the manuscript of UCHIME they stated that “UCHIME searches for a chimeric alignment
between a query sequence (Q) and two candidate parents (A and B)” and “candidate parents
are required to have abundance at least A times that of the query sequence, on the
assumption that a chimera has undergone fewer rounds of amplification and will therefore
be less abundant than its parents. The parameter A is called the abundance skew, and by
default A=2 “, so NG-Tax approach is very similar to de novo UCHIME approach, but NG-Tax
treats forward and reverse reads separately.

o Table 1 is very large and (on the PDF) unfortunately rotated by 90 degrees. I
suggest to convert it into a supplemental Excel sheet which would be more
reader-friendly.

As suggested by the reviewer Table 1 is now supplied as an excel spreadsheet in the
supplementary material

o Figure 2 has rotated horizontal axis labels, a 90deg rotated legend - maybe
that's just due to formatting of the PDF. It is also difficult to read taxonomic
names on the vertical axis in all-caps.

As suggested by the reviewer we modified Figure 2 to increase readability.

o “Consequently, these methods are more powerful than purely OTU-based
methods, [...].” While I agree with this sentence to a certain extent, I believe that
the statement should be supported by referring to previous work on the topic. It
is not necessarily consensus that 16S “sequence often correlates with
phenotypic similarity in key features”, but it is even less clear to what extent
phylogenetic diversity estimators capture this signal in a useful way. Arguably,
a PD-estimator of UniFrac can only be as good as their underlying tree, which in
turn is based on the (representative) sequences of OTUs and thus depends on
many factors in the background.

Taxonomic assignment of the OTUs suffers from the same problems raised by the reviewer.
Not always does 16S rRNA gene sequence similarity correlate with phenotypic similarity and
the taxonomical assignment is as good as the reference database and the classifier
employed. But having a composition barplot with OTUs named by number rather than by
taxonomy would mean that all the information provided by the nucleotide sequence is
discarded. This information may not be perfect but we cannot neglect that this information
transformed into taxonomical assignment is useful at least to some extent.

The same criterion was applied to evaluate diversity. We used phylogenetic methods, which
retain the information of the nucleotide sequence. We acknowledge the limitations but we
argue that a sample containing 5 OTUs with a 99% pairwise sequence identity should not be
given the same (potential) diversity that a sample containing 5 OTUs with less than 85%
pairwise sequence identity. We consider that phylogenetic methods are more powerful
because they use all information available, however, we should not over extrapolate the
results. 16S rRNA gene amplicon sequencing should be taken as exploratory approach,
whereas metagenomic and metatranscriptomic sequencing provides a more suitable and
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precise approach if we really want to focus on microbial functionality.

> In particular, the weighted UniFrac measure used in this study seems to be
more sensitive to quite a number of factors (including sequencing errors and
inflation of small clusters, not irrelevant for the points made in this study) than
its unweighted sister in my personal experience, and according to a number of
researchers I have talked to on this point. However, since “personal experience”
and “people I've talked to” are certainly not a dependable scientific source, and
because performance on mock communities should not be severely impacted, I
would formulate this as a suggestion and certainly not as a reviewer’s request:
were the weighted UF-based results double-checked using unweighted UF
and/or a non-phylogenetic method, such as Bray-Curtis?

As suggested by the reviewer we have included the unweighted UniFrac and Bray-Curtis
analysis in the supplementary material. The results obtained by all three methods are in
concordance.

o In the PCoA (Figure 5, A&C), it is quite hard to decide which method looks
“better” purely based on visual impression, not least because the % variance
explained on the axes is not equivalent. It would be good to see a more
quantitative statement on which approach better recovers expected clusters
from the mock communities. The most straightforward approach would be to
perform MANOVA analyses, structured by the different factors to test for and
then use the effect sizes to quantify the goodness of separation (or non-
separation). I would suggest to run e.g. Anderson’s PERMANOVA (
http://www.entsoc.org/PDF/MUVE/6 NewMethod MANOVA1 2.pdf;
implementation available through the function “adonis” in the R package
vegan) or ANOSIM to this end. Alternatively, samples could be clustered based
on beta div and the resulting clusterings (or dendrograms) quantitatively
compared to expectations based on different factors.

Thanks for the suggestion. In the new version of the manuscript we performed a more
quantitative analysis of the sequencing data and the expected MC. We performed a
permanova analysis under MC type factor and it was significant for both pipelines meaning
that some of the variance is explained by the Mock type. But to really evaluate accuracy and
reproducibility and compare pipelines performances we used pairwise distances and t tests
(Figure 7 and Dataset 1).

o Thank you for providing Supplementary Figures 1&2; they are informative in the
interpretation of the presented data.
Thank you.
> Similarly, thank you for providing code and data as supplements!

Thank you.
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