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Abstract 
Background: Massive high-throughput sequencing of short, 
hypervariable segments of the 16S ribosomal RNA (rRNA) gene has 
transformed the methodological landscape describing microbial 
diversity within and across complex biomes. However, several studies 
have shown that the methodology rather than the biological variation 
is responsible for the observed sample composition and distribution. 
This compromises meta-analyses, although this fact is often 
disregarded. 
Results: To facilitate true meta-analysis of microbiome studies, we 
developed NG-Tax, a pipeline for 16S rRNA gene amplicon sequence 
analysis that was validated with different mock communities and 
benchmarked against QIIME as a frequently used pipeline. The 
microbial composition of 49 independently amplified mock samples 
was characterized by sequencing two variable 16S rRNA gene regions, 
V4 and V5-V6, in three separate sequencing runs on Illumina’s 
HiSeq2000 platform. This allowed for the evaluation of important 
causes of technical bias in taxonomic classification: 1) run-to-run 
sequencing variation, 2) PCR–error, and 3) region/primer specific 
amplification bias. Despite the short read length (~140 nt) and all 
technical biases, the average specificity of the taxonomic assignment 
for the phylotypes included in the mock communities was 97.78%. On 
average 99.95% and 88.43% of the reads could be assigned to at least 
family or genus level, respectively, while assignment to ‘spurious 
genera’ represented on average only 0.21% of the reads per sample. 
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Analysis of α- and β-diversity confirmed conclusions guided by biology 
rather than the aforementioned methodological aspects, which was 
not achieved with QIIME. 
Conclusions: Different biological outcomes are commonly observed 
due to 16S rRNA region-specific performance. NG-Tax demonstrated 
high robustness against choice of region and other technical biases 
associated with 16S rRNA gene amplicon sequencing studies, 
diminishing their impact and providing accurate qualitative and 
quantitative representation of the true sample composition. This will 
improve comparability between studies and facilitate efforts towards 
standardization.
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Background
Recent advances in massive high-throughput, short-amplicon  
sequencing are revolutionizing efforts to describe microbial 
diversity within and across complex biomes1. Cultivation- 
independent whole metagenome sequencing has received  
increasing attention in the functional characterization of individual  
communities. These efforts, however, remain relatively expensive 
on a per sample basis, and the richer but much more unstruc-
tured information content requires complex data modelling and  
analysis procedures2. Therefore targeted surveys for specific 
taxonomic marker genes, such as the 16S ribosomal RNA  
(rRNA) gene3,4, remain essential in many microbial ecologi-
cal studies. These surveys rely on sequencing of short, PCR 
amplified, hypervariable subregions rather than the full-length 
gene, mostly for reasons of throughput, sequence depth and  
cost-efficiency.

Despite great efforts to address the accuracy and reproducibil-
ity of scientific insights generated from 16S rRNA gene ampli-
con sequencing studies, methodology rather than biology has 
been shown to be the largest driver of variation in many micro-
biome studies5–13, hampering comparability. The increased 
levels of standardization in analysis pipelines have enhanced  
replicability rather than reproducibility, by providing widely 
adopted defaults11. However, there is a large dinstintion between 
the two. Drummond14 suggested that exact replication of an 
experiment (i.e., replicability) is less informative (although a  
necessary pre-requisite for any scientific endeavour) than the  
corroboration of findings by reproduction in different independent 

setups (i.e., reproducibility)15, because biological findings that 
are robust to independent methodologies are arguably more 
dependable than any single-track analysis11. This distinction 
is highly relevant for the field of microbial ecology, where 
replicability is often confused with reproducibility, which is  
apparent from many often non-interchangeable methodologies.

Accuracy can typically be evaluated by the addition of positive 
controls. Generally these are synthetic or mock communities 
(MCs) consisting of phylotypes that, ideally, are representative 
of the ecosystem of interest. MCs allow researchers to answer 
two essential questions concerning accuracy. 1) Do I retrieve 
the number of species I put in, and if so are they correctly  
assigned? 2) How well does the PCR, sequencing and data  
analysis procedure reproduce species relative abundances?  
Reproducibility can be evaluated by comparing separate sequenc-
ing runs and different primer pairs that cover distinct 16S 
rRNA gene regions. Although replicability is often achieved, 
accuracy has been shown to be challenging especially at  
higher taxonomic resolution such as at genus level16,17.

Central to all 16S rRNA gene amplicon studies are Operational  
Taxonomic Units (OTUs). These are often regarded as a  
synthetic proxy for microbial species and are typically clustered 
at 97% sequence similarity. However, the prokaryotic species 
definition remains a hotly debated topic without any satisfying  
solution so far18–20. Moreover, the 97% sequence similarity  
threshold is based on the complete 16S rRNA gene (~1500 nt), 
and although sequence variability is not evenly distributed it is 
routinely applied to short reads of 100–500 nt. Different regions 
would therefore require their own species level cut-off. The  
combination of an ambiguous prokaryotic species definition 
and its application to short reads is the foundation for many 
complications regarding ‘correct’ OTU clustering. So far, 
there is little consensus on key experimental choices such as  
primers, targeted variable regions and OTU picking/clustering  
algorithms. Each of these technical aspects generate biases, and 
different methods produce clearly distinct results, leading to a  
situation where results of current studies cannot be easily  
compared or extrapolated to other study designs.

Historically, 16S rRNA gene sequences generated in a project 
were initially clustered de novo into OTUs at >97% sequence  
similarity using various clustering algorithms, mostly because 
available 16S rRNA gene reference databases were thought to  
provide insufficient coverage21–24. Although new clustering  
algorithms that reduce the influence of clustering parameters, 
such as a hard cutoff for cluster similarity, have been specifi-
cally developed for amplicons25, cluster generation is context-
dependent, i.e. different datasets generate different clusters, 
and different algorithms may produce different end-results10,11. 
Therefore, even though the same analysis framework is used,  
independent studies remain incomparable at OTU level.  
Consequently, reference-based OTU clustering has received 
increasing attention, due to the need for standardization, and  
because de-novo OTU clustering for very large datasets, such 
as those generated by Hiseq and Miseq sequencers has become  
computationally very intensive, unless greedy heuristics are 

            Amendments from Version 1

In the new manuscript we substituted RDP for SILVA 
Incremental Aligner (SINA) to classify the full length sequences 
and we also updated the database in NG-Tax to SILVA 128, 
improving in both cases the classification. We substantially 
increased the amount and detail of information on the 
description of the general work flow. All the critical steps, 
including barcode and primer filtering, OTU picking, mapping 
rejected reads to accepted OTUs, de novo chimera filtering, 
taxonomic assignment and the generation of a phylogenic tree 
are now detailed in Figure 1 and explained in the user manual.

In order to further improve interpretation, we have now 
added Table 1 to provide detailed information as to the 
number of misclassified reads at different taxonomic levels 
and Figure 5, which shows boxplots of the distances to the 
expected composition. We also performed statistical tests to 
quantitatively compare the performance of NG-Tax and QIIME. 
We performed a permanova analysis under MC type factor 
and it was significant for both pipelines meaning that some 
of the variance is explained by the Mock type. But to really 
evaluate accuracy and reproducibility and compare pipelines 
performances we used pairwise distances and t tests (Figure 7 
and Dataset 1). As suggested by the reviewers we included the 
tables with the taxonomical profiles as Supplementary data, 
which can be used for evaluation of the results. In an effort to 
increase comparability we performed an additional analysis 
using QIIME with a 0.1% abundance threshold and which is 
included in the Supplementary material. 

See referee reports
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employed which suffer from the problems described above. 
With reference-based OTU clustering, sequences are mapped 
to pre-clustered reference sets of curated 16S rRNA gene 
sequences, provided by dedicated databases such as the Ribos-
omal Database Project (RDP), Greengenes and SILVA26–28. The  
consequence of this approach is that the ‘quality’ of the cluster-
ing of the reference set propagates to reference-picked OTUs. 
Clustering has limited robustness10,11,29, and unbalances in data-
bases due to over- or under-representation of certain species  
as well as error hotspots that are not necessarily matched to 
the variable regions8, can potentially lead to a biased cluster  
formation, driven by non-biological factors. These effects have 
been previously ignored or underestimated in reference OTU  
picking protocols11.

Another essential experimental choice concerns the selection 
of a targeted variable region of the 16S rRNA gene, because it 
should represent the sequence variability encountered with the 
full-length gene. Despite several studies comparing the perform-
ance of diverse regions, sequence lengths, sequencing platforms 
and taxon assignment methodologies, both within and across  
laboratories5,6,8,30–33, there still is no complete consensus about 
the best variable regions of the 16S rRNA gene to asses, 
although some initiatives such as the Earth Microbiome Project34  
are setting some standards that are increasingly being adopted 
by the field. There are several factors that can lead to the  
commonly observed highly region-specific differences across  
datasets: 1) PCR bias of varying degrees6,8,35, 2) different 
regions are associated with different error profiles and differ-
ent rates of chimera formation8,36, and 3) the actual variation  
contained in the sequence is dissimilar (e.g. some regions are not  
variable enough to differentiate between genera, while others  
are), which in turn can affect clustering11.

Apart from the use of a diverse range of primers and OTU pick-
ing protocols that can cause differences in results between 
studies and/or laboratories, sequencing error is a third impor-
tant factor that defines data quality. Massive high throughput, 
short read length sequencing platforms have not been devel-
oped for amplicon sequencing but rather for whole genome 
sequencing, where sequence errors in individual reads is less  
important. However, in 16S rRNA gene amplicon sequenc-
ing every sequencing error could potentially lead to an incor-
rect OTU classification which may ultimately lead to the false  
discovery of a new phylotype. To avoid overestimation of 
microbial diversity, stringent quality filtering is therefore  
considered essential16.

To address all of the aforementioned challenges associated with 
microbiota profiling, multiple standardized mock communities 
(MCs) were specifically designed. Those MCs were sequenced 
in multiple sequencing runs using a Illumina Hiseq2000 instru-
ment (101nt paired end). Furthermore, two tandem variable 
16S rRNA gene regions were sequenced in parallel (V4 and  
V5-V6). This led to the development of NG-Tax, a pipeline  
that accounts for biases associated with technical aspects  
associated with 16S rRNA gene amplicon sequencing. Therefore,  
NG-Tax will improve comparability by removing technical bias 
and facilitate efforts towards standardization, by focusing on 

reproducibility as well as accuracy. To assess the performance  
regarding key output parameters such as taxonomic classification, 
composition, richness and diversity measures we benchmarked 
the results obtained with NG-Tax with results obtained with  
QIIME13, a common pipeline used for the analysis of this type  
of data.

Results and discussion
NG-Tax layout
NG-Tax consists of three core elements, namely barcode-primer 
filtering, OTU-picking and taxonomic assignment (Figure 1). 
Examples of use and details of each step of the pipeline can be  
found in the user manual in Dataset 1.

Barcode-Primer filtering. In a first step, paired end libraries  
are combined, and only read pairs with perfectly matching  
primers and barcodes are retained. To this end, both primers are 
barcoded to facilitate identification of chimeras produced during  
library generation after pooling of individual PCR products.

OTU picking. For each sample an OTU table is created with the 
most abundant sequences, using a minimum user defined rela-
tive abundance threshold. In this particular study we employed 
a threshold of 0.1% minimum relative abundance. Lowering 
the threshold will lead to the acceptance of low abundant OTUs, 
with an increased probability of these OTUs being artifacts due to  
sequencing and PCR errors. Abundance thresholds are com-
monly used to remove spurious OTUs generated by sequencing 
and PCR errors17,37, but previous studies applied thresholds 
defined by the complete dataset, thereby ignoring sample 
size heterogeneity which may lead to under-representation of  
asymmetrically distributed OTUs.

Commonly employed quality filtering parameters based on Phred 
score, such as minimum average Phred score, maximum number 
of ambiguous positions, maximum bad run length, trimming and 
minimum read length after quality trimming, are not utilized in 
NG-Tax because quality scores from the Illumina base caller 
have been shown to be of limited use for the identification of 
actual sequence errors for 16S rRNA gene amplicon studies17,38.  
Additionally, these quality scores only check for errors that 
occurred during sequencing, but do not account for other sources 
of error, such as PCR amplification, whereas quality filter-
ing by abundance is sensitive to any source of error. Moreover, 
the application of global parameters (e.g. average Phred 
score) ignores that error is sequence-specific, and hence some 
sequences could be affected more than others. If a species  
specific amplicon is more prone to PCR or sequencing errors, the 
relative abundance of that particular species will be underesti-
mated. To compensate for this potential bias, discarded reads are  
clustered to the OTUs with one mismatch.

Finally, all OTUs are subjected to non-reference based chimera 
checking according to the following principle: given three OTUs 
named A, B and C, C will be considered a chimera when the  
following conditions are satisfied: C and A 5’ reads are identical,  
C and B 3’ reads are identical and both OTUs, A and B, are at  
least twice as abundant as OTU C. A complete overview of the 
number of sequences retained in both pipelines, i.e. NG-Tax  
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and QIIME, as well as the final number of OTUs, is provided  
in Dataset 1.

Taxonomic assignment. In the current version of NG-Tax, tax-
onomy is assigned to OTUs utilizing the USEARCH algorithm22 
and the Silva 128 SSU Ref database, containing 1.922.223 
unique full length 16S rRNA gene sequences. To ensure maxi-
mum resolution and avoid the risk of errors due to clustering- 
associated flaws (e.g. reference sequence error hotspots, over-
representation of certain species and lack of robustness in clus-
ter formation by clustering algorithms), we use a non-clustered 
database. To speed up the procedure by several orders of mag-
nitude, 16S rRNA gene sequences from the reference data-
base are trimmed to the amplified region using the primers as a  
guide. For each OTU, a taxonomic assignment is retrieved 
at six different identity thresholds levels (100%, 98%, 97%, 
95%, 92% and 90%) and at two taxonomic levels (genus 

and family). The final taxonomic label is determined by the  
assignments that show concordance at the highest taxonomic  
resolution. Similar dynamic thresholds are used in rtax39.

Validation
Datasets
Our main objective was to develop a pipeline that accurately 
reproduces the composition of the synthetic MCs and also 
reduces the impact of experimental choices. To achieve this goal, 
four synthetic communities of varying complexity were created,  
consisting of full length16S rRNA gene amplicons of phylo-
types (PTs) associated with the human GI-tract (Dataset 1). 
This specific setup limited the likelihood of overfitting to a  
particular OTU composition or distribution and allowed us to 
assess (1) the quantification potential, (2) noise floor and (3) the 
effect of richness and diversity on quality filtering parameters, 
thus ensuring a higher fidelity with biological samples than by 

Figure 1. NG-Tax layout. Input files are depicted in blue, output files are depicted in green and clustering processes using usearch are 
indicated with dashed lines. Details for some steps of the pipeline are marked with red numbers.
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using a single MC. As a reference, to assess the quality of the 
taxonomic classifications, full length sequences for all PTs were  
obtained through Sanger sequencing. Expected MCs were  
created in silico by trimming the full length sequences to the 
sequenced region. MC1 and MC2 consisted of equimolar  
amounts of 17 and 55 PTs, respectively. MC3 contained 55 PTs 
in staggered concentrations typical for the human GI-tract, and 
MC4 included 50 PTs with relative abundances ranging between 
0.001 and 2.49%. To account for pipetting errors, each of the 
four MCs was produced in triplicate. These 12 MC templates 
were used to sequence the MCs with different conditions that  
cover most of the technical bias associated with 16S rRNA gene 
amplicon studies reported in literature. To this end, we 1) tar-
geted either region V4 or region V5-V6, 2) used four PCR proto-
cols differing in the number of PCR cycles and reaction volumes 
3) PCR products were analysed in three different sequencing 

runs and in seven different libraries, and 4) two different  
library preparation protocols (with and without an extra  
amplification of 10 cycles) were applied (Dataset 1). In addition 
the sequencing depth ranged from 1911 to 334613 reads per  
sample (Dataset 1).

NG-Tax classification of short reads versus full length 
classification
To evaluate the accuracy and reproducibility of taxonomic clas-
sification using a low information content of ~140 nt compared 
to a maximum information content of ~1500 nt, we compared 
the NG-Tax classification of all 55 reference sequences trimmed 
to V4 and V5-V6, with a classification of the correspond-
ing full length reference sequences using the Silva Incremental 
Aligner (SINA) with SILVA taxonomy40 (Figure 2). At family 
level, all three classifications (i.e. full length, V4 and V5-V6)  

Figure 2. NG-Tax Assignment quality of the 55 MC phylotypes. Three taxonomic assignments are shown: RDP full length, NG-Tax V5-V6 
trimmed and NG-Tax V4 trimmed. If NG-Tax assignments are in agreement with SINA full length assignment, that classification is shown in 
green. Assignment specificity (the fraction of hits with an identical label) and the total number of hits supporting this taxonomic label are 
shown in blue for V5-V6 region and in red for V4 region
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were in complete concordance for all phylotypes. Corre-
spondingly, the consistency at genus level was very high. 
Only five phylotypes for V4 that belong to the poorly  
classified family Enterobacteriaceae, attained higher resolution 
using the full length sequences. In turn, for Intestinibacter 
(PT39, V5-V6) and Klebsiella (PT46, V5-V6), a higher  
resolution was attained with short reads due to the high spe-
cificity of the hypervariable region, which can be overshadowed 
when using the full length sequence. Lastly, only two assign-
ment at genus level, both Enterobacteriaceae (PT52, V4 and 
PT45, V5-V6) were incongruent between classification of the  
short and full length sequences. Overall, the V5-V6 ampli-
cons outperformed the V4 amplicons because this region 
allowed for differentiation between Enterobacteriaceae and even 
attained a higher resolution than full length sequences for some 
sequences. The average taxonomic specificity (percentage of hits  
with an identical taxonomic label) for all reference phylo-
types was 97.78% for both regions with an average of 4837 
and 1688 hits for regions V4 and V5-V6, respectively. The 
high specificity and high number of hits at very high identity 
thresholds, combined with the fact that the vast majority of V4  
and V5-V6 based assignments matched to each other as well 
as to the full ength classification, testifies for the reliability and  
quality of the assignments.

Observed versus expected microbial profiles
To assess the ability to reproduce the expected composition of 
the MCs we benchmarked NG-Tax with QIIME, a common 
16S rRNA gene amplicon analysis pipeline. Table 1 shows the 
comparison between NG-Tax and QIIME per region and taxo-
nomic rank with the percentage of classified reads, the amount of  
spurious taxa and the total percentage of misclassified reads. 
The number of classified sequences without considering their 
accuracy is higher for NG-Tax at each taxonomic rank, with 

relatively small differences with QIIME. However, the number 
and percentage of spurious reads is considerably higher for  
QIIME with some regions generating an average of 18.65%  
incorrectly assigned reads at the genus level, compared to 0.3% 
for NG-Tax. Consequently, NG-Tax ensured excellent repro-
duction of the expected profiles (Figure 3), while the QIIME 
profiles suffered from high a high fraction of poorly classified  
and spurious OTUs (Table 1, Figure 4).

Observed versus expected diversity
To quantify the distances to the expected profiles, the sum of 
weighted differences were calculated. Given two taxonomi-
cal profiles x and y, for each taxon i, we defined the difference 
in abundance as difi(x,y)=(xi –yi) and a weighting factor wi as  
wi(x,y)=(xi –yi)/avg(xi + yi). The weighted difference was 
obtained by multiplying the difference in abundance by its 
weighing factor. This weighing factor is used to take the rela-
tive change as well the absolute change into account, because 
a 1% absolute change becomes a 200% or 20% relative change 
depending on whether the expected abundance is 0.5% or 5%,  
respectively. Distances to the expected profile were significantly 
lower for NG-Tax (p<1e-4) compared to QIIME using a two-tailed 
t-test (Figure 5 and Dataset 1).

One template, PT17 (Parabacteroides), triggered so much  
sequencing error in the V4 region that it was rendered undetect-
able although it was amplified by the primers (Supplementary  
Figure 1). Therefore, to test both pipelines without this  
sequencing anomaly, it was removed from the analysis.

Richness and diversity measures are important for under-
standing community complexity and dynamics. Among these  
measures, α-diversity is defined as the diversity within a sample, 
which is often estimated based on the abundance distribution 

Table 1. Performance of NG-Tax and QIIME at different taxonomic levels 
for region V4 and V5-V6. Classified reads are defined as reads mapped to a 
sequence for which a genus, family or order level classification is given, without 
considering accuracy. The percentage represents the average over all samples. 
Spurious taxa are taxonomic classes not included in the MCs. The percentage 
of spurious reads is the percentage of total reads in the misclassified classes.  
F: forward read, R: reverse read.

V4 

 Classified reads (%) Spurious taxa (#) Spurious reads (%)

NG-Tax QIIME NG-Tax QIIME F & R NG-Tax QIIME F & R

Genus 86.23 60.66 4 110 110 0.19 9.02 15.05

Family 99.97 96.23 1 82 81 0.19 8.43 6.42

Order 100 100.00 1 49 47 0.19 6.40 5.47

V5-V6 

Classified reads (%) Spurious taxa (#) Spurious reads (%)

NG-Tax QIIME NG-Tax QIIME F & R NG-Tax QIIME F & R

Genus 99.23 69.99 5 53 51 0.28 13.42 18.65

Family 99.89 93.63 0 29 29 0.00 9.64 12.05

Order 100 99.81 0 15 17 0.00 6.33 6.45
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Figure  4.  Observed  composition  of  all  MCs  compared  with  the  expected  ones  (EXP)  for  both  regions  and  each  read  separately 
obtained with QIIME.
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Figure 5. Distances to expected taxonomical profiles. NG-Tax results are depicted in blue and QIIME in red.

(evenness) and number (richness) of species, whereas β-diversity 
is defined as the partitioning of diversity among communi-
ties. The ability of researchers to quantify richness and diversity 
hinges on an accurate assessment of the composition of these 
communities41. For microbial communities, this has been par-
ticularly challenging, as none of the existing molecular microbial  
ecology methods normally captures more than a small proportion 
of the estimated total richness in most microbial communities42. 
For deep sequencing based approaches, filtering strategies that 
remove low-abundance reads make it impossible to apply rich-
ness estimation metrics such as the Chao1 index and the ACE 
coverage estimator, because low-abundance read counts are  
included in their calculations. Conversely, richness estimates 
based on unfiltered datasets are unlikely to be accurate, if 
many of the reads actually represent PCR and/or sequencing  
errors16. In contrast to purely OTU-based methods, divergence-
based methods account for the fact that not all species within  
a sample are equally related to each other, considering two  
communities to be similar if they harbour the same phylogenetic 
lineages, even if the species representing those lineages in each 
of the communities are different. Consequently, these methods 
are more powerful than purely OTU-based methods, because 
similarity in 16S rRNA gene sequence often correlates with  
phenotypic similarity in key features such as metabolic capabili-
ties. An added benefit is that small errors that are likely due to 
unfiltered sequencing errors, are punished less severely because  
OTUs that are only a few nt distant from each other due to 
error are still closely related using divergence based indices43.  
Therefore, these indices probably provide a better estimate of 
the true diversity for data generated by high throughput next  
generation technology sequencers.

Because the aim of NG-Tax is to enhance the biological signal 
as much as possible by minimizing the impact of any techni-
cal aspect, divergence-based α-diversity (Phylogenetic Diversity  
(PD)44) and β-diversity (Unifrac41) metrics were used to visualize 

the diversity within and between MCs (Figure 6). The results 
obtained with QIIME suffered from all of the previously 
described technological artifacts. The MCs clustered by primer 
pair instead of MC, and within each cluster the structure, 
i.e. the position of MCs relative to each other, was different. 
More importantly, the true biological variation depicted by the 
expected composition was reproduced by neither primer pair  
(Figure 6C). Based on these results not only the Principle  
Coordinates Analysis (PCoA) based conclusions would have 
been different for both primer pairs, but also the differences in  
taxonomic classification could lead to significant changes in 
identified biomarkers, in line with what has previously been 
observed by He and co-workers30 as well as Edgar43. Here we  
show that replicability within a variable region was attained. 
The more important reproducibility, however, i.e. the cor-
roboration of findings by reproduction in different independent  
setups that use e.g. different primers, was not. This is an important 
observation because biological findings should be insensitive to  
independent methodologies11. In line with the above, also the 
observed α-diversity (PD) was found highly inflated and the 
biological order was not reproduced (Figure 6D). In contrast, 
NG-Tax provided a clear separation of samples by MC type and 
their representative expected samples regardless of variable 
region, PCR protocol, sequencing run, library and sequencing 
depth. These results are remarkable, given the biases associated 
with each of these categories and the difference in resolution 
between the two regions (Figure 6A). Moreover, MC2, MC3 and  
MC4 were very similar, sharing the same genera and largely 
the same phylotypes, only differing in relative distribution  
(Dataset 1). Correspondingly, rarefaction curves for α-diver-
sity (Figure 6B) showed excellent reproduction of the true 
diversity. A perfect overlap cannot be achieved since the 
expected MCs do not account for sequencing or PCR errors, 
and these factors cannot be completely removed from real 
sequencing data. Results for α-diversity and β-diversity using  
different metrics can be found in Dataset 1.
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Small distances to expected MCs show the accuracy of NG-Tax, 
reproducibility on the other hand can be evaluated by the within 
MCs distances and also by the dispersion of the between MCs 
distances (Figure 7). Distances to the expected MCs, within 
MC distances and dispersion of the between MCs distances 
were significantly (p<1e-10) lower for NG-Tax (Dataset 1).  
K-means cluster prediction using within groups sum of squares, 
predicted 2 groups for QIIME (Supplementary Figure 2) and the 
correct 4 groups for NG-Tax (Supplementary Figure 3)45.

Dataset 1. Raw data of NG-Tax pipeline for analysis of 16S rRNA 
amplicons from complex biome

https://dx.doi.org/10.5256/f1000research.9227.d226015

Conclusions
An increasing number of studies have shown that the chosen 
methodology rather than the natural variance is responsible for 

the greatest variance in microbiome studies6–12. Some authors 
raised their concern when comparing data generated using  
different strategies5, which basically suggests that true repro-
ducibility (i.e. using different approaches and drawing the same  
biological conclusions) is unattainble. This is an alarming  
observation since studies are often used to identify biomar-
ker organisms, associated with certain host phenotypes (often  
comparing a diseased state to a healthy state), yet the use of  
different primers might show different biomarkers6,8,17,29,30,35. So 
far, neither currently available pipelines nor taxonomic classifiers 
have been able to efficiently reduce the noise in this type of data.  
Nevertheless, in properly de-noised datasets, taxonomical pro-
files, richness and diversity should be close to the expected values 
and the abundance of unassigned and poorly assigned reads 
should be low except when dealing with largely unexplored envi-
ronments that are not sufficiently covered yet by the reference  
databases. At lower noise levels different variable regions should 
yield similar conclusions with small variations due to region  

Figure 6. PCoA using Weighted Unifrac of all sequenced and expected MCs as obtained after processing of data using NG-Tax (A) and 
QIIME (C). Darker colored triangles represent the expected composition while lighter colored circles represent sequenced samples. B/D. 
Rarefaction curves of PD for all MCs and their expected counterparts for NG-Tax (B) and QIIME (D). Dashed lines represent the expected 
composition while solid lines represent sequenced samples.
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specific resolution, and minor changes in the experiment 
should still deliver the same biological conclusions. Here we  
presented NG-Tax, an improved pipeline for 16S rRNA gene 
amplicon sequencing data, which continues to be a backbone 
in the analysis of microbial ecosystems. Several novel steps 
ensure much needed improved robustness against errors asso-
ciated with technical aspects of these studies, such as PCR  
protocols, choice of 16S rRNA gene variable region and variable 
rates of sequencing error5,6,12. The commonly reported problems  
such as many un- or poorly classified OTUs, inflated richness 
and diversity, taxonomic profiles that do not match the expected 
ones, region dependent taxonomic classification and results being 
highly dependent on minor changes in the experimental setup 
have been tackled with NG-Tax. Despite the short read length 
(~140 nt) and all technical biases, the average taxonomic assign-
ment specificity for the phylotypes included in the MCs was 
97.78%. In addition, 89,43.% of the reads could be assigned to at  
genus level and 99.95% to at least family. Spurious genera  
represented only 0.21% of the reads per sample. More impor-
tantly, rarefaction curves and PCoA plots confirmed improved 
performance of NG-Tax with respect to clustering based on 
biology rather than technical aspects, such as sequencing run, 
library or choice of 16S rRNA gene region. Therefore, NG-Tax 
represents a method for 16S rRNA gene amplicon analysis with 
improved qualitative and quantitative representation of the true 
sample composition. Additionally, the high robustness against  
technical bias associated with 16S rRNA gene amplicon studies 
will improve comparability between studies and facilitate  
efforts towards standardization.

Methods
Primers
Primer pairs 515F (5’-GTGCCAGCMGCCGCGGTAA) - 806R  
(5’-GGACTACHVGGGTWTCTAAT) and BSF784F (5’-RGGATT-
AGATACCC) - 1064R (5’-CGACRRCCATGCANCACCT) 

have been previously reported for amplification of the V417 and  
V5- V66 regions of the bacterial 16S rRNA gene, respectively.  
They were selected based on 1) experimental validation, 2) 
taxonomic coverage of the relevant ecosystem (Supplementary 
Figure 4) and 4) adherence to specific rules associated with 
the sequencing platform, such as a maximum amplicon size of 
<500 nt. Unless noted otherwise all primers were ordered at  
Biolegio (Nijmegen, Netherlands).

Barcoding strategy
At the time of sequencing Illumina’s Hiseq2000 allowed for 
multiplexing of up to 12 samples per lane using an index or bar-
code read provided by Illumina. To achieve optimal sample 
throughput and phylogenetic depth, 70 primers containing a  
custom designed 8nt barcode were developed to combine with 
the Illumina barcodes to reach a maximum throughput of 12×70  
samples per lane. Each set of 70 barcoded samples are referred 
to as “library”. Low diversity samples, such as 16S rRNA 
gene amplicons, can lead to problems with base calling due to  
overexposure of fluorescent labels. Therefore, the set of 70  
barcodes was specifically designed to possess an equal base 
distribution over their complete length. Additionally, to avoid  
differential amplification, a two-base “linker” sequence that is 
not complementary to any 16S rRNA sequence at the corre-
sponding position, from a database that contains 1132 phylotypes 
associated with the Human GI tract46, was inserted between 
the primer and barcode. The resulting set of 70 barcoded  
primers was checked for avoidance of secondary structure  
formation within or between primers (i.e., primer-dimers) or 
between barcodes and primers, using PrimerProspector47.

Mock communities
All MCs were mixed in triplicate to account for pipetting error. 
These MCs ranged from 17–55 species in both equimolar 
and staggered compositions. One MC contained members at very 

Figure 7. Pairwise Weighted UniFrac distances. NG-Tax results are depicted in blue and QIIME in red.
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low abundances of 0.1, 0.01 and 0.001% (Dataset 1). Amplicons 
were generated either from cloned 16S rRNA gene amplicons,  
isolates available in the local culture collection of the  
Laboratory of Microbiology, Wageningen University, or strains  
ordered from DSMZ and cultured according to DSMZ recom-
mendations, after which genomic DNA was isolated using the 
Genejet genomic DNA isolation kit (Thermo fisher scientific  
AG, Reinach, Zwitserland). A 16S rRNA gene specific PCR was  
performed using the universal primers 27F (5’-GTTTGATC-
CTGGCTCAG) - 1492R (5’-GGTTACCTTGTTACGACTT)  
to obtain full length amplicons of which size and concen-
tration were checked on a 1% agarose gel and which were  
column purified and quantified with the Qubit 2.0 fluorometer,  
and dsDNA BR assay kit (Invitrogen, Eugene, USA). 
Amplicons were mixed in the MCs to obtain the specified  
relative abundances. High quality full length reference sequences 
of all MC members were obtained by Sanger sequencing at 
GATC Biotech AG (Constance, Germany) with sequencing  
primers 27F - 1492R in order to confirm their identity. The  
MCs were diluted 103-fold and subsequently used as templates  
in PCRs for the generation of barcoded PCR products.

Barcoded PCR
Unless noted otherwise, each sample was amplified in tripli-
cate using Phusion hot start II high fidelity polymerase (Thermo 
fisher scientific AG), checked for correct size and concentra-
tion on a 1% agarose gel and subsequently combined and  
column-purified with the High pure PCR cleanup micro kit 
(Roche diagnostics, Mannheim, Germany). Forty μl PCR reactions  
contained 28.4 μL nucleotide free water (Promega, Madison,  
USA), 0.4 μL of 2 U/μl polymerase, 8 μL of 5× HF buffer,  
0.8 μl of 10 μM stock solutions of each of the forward (515F) 
and reverse (806R) primers, 0.8 μL 10mM dNTPs (Promega) 
and 0.8 μL template DNA (103 × diluted 200 ng/μl stock). Reac-
tions were held at 98°C for 30 s and amplification proceeding for 
25 cycles at 98°C for 10 s, 50°C for 10 s, 72°C for 10 s and a 
final extension of 7 min at 72°C. Purified amplicons were quan-
tified using Qubit. For primer pair BSF784F-1064R the thermal 
cycling conditions were identical to those detailed above except 
that the annealing temperature was 42°C. To quantify noise  
generated by the PCR protocol, several reactions were performed 
with 30 or 35 cycles and 1× 100μl reaction instead of pooling  
40μl in triplicate (Dataset 1).

A composite sample for sequencing was created by combin-
ing equimolar amounts of amplicons from the individual  
samples, followed by gel purification and ethanol precipitation 
to remove any remaining contaminants. The resulting libraries 
were sent to GATC Biotech AG for sequencing on an Illumina  
Hiseq2000 instrument.

Sequence analysis with QIIME
We have used QIIME to benchmark NG-Tax. Illumina fastq files 
were de-multiplexed, quality filtered and analyzed using QIIME 
(v. 1.9)13 with closed reference OTU picking, using default  
settings and quality parameters as previously reported12.

NG-tax pipeline and user manual
The NG-tax pipeline, user manual and files and code to  
reproduce the presented results, are available for download at  
http://github.com/JavierRamiroGarcia/NG-Tax.
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rRNA: ribosomal RNA; MC: Mock Community; OTU: Oper-
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Supplementary material
Supplementary Figure 1. A) Nucleotide distribution of PT17 (Parabacteroides) for each of the four primers. Positions under the 
black segment are fixed and specific for PT17 preventing the inclusion of sequences belonging to a different PT. B) Percentage of 10 
most abundant sequences for PT17 obtained with each of the primers. 
PT17 (Parabacteroides) presented a sequencing anomaly in the reverse V4 region (primer R806) (Supplementary Figure 1A). From posi-
tions 50 to 67 this region had higher error rate than the other three regions. The noise generated from this anomaly masked the biological 
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signal rendering PT17 undetectable. In fact the most abundant sequence represented less than 0.45% of the total reads, while for the other 
three regions the most abundant sequence represented more than 80% (Supplementary Figure 1B). We decided to remove the sequences 
belonging to PT17 from V5-V6 samples to avoid region clustering due to the presence of PT17. Our intention in this study was to test  
region performance under conditions in which sequencing anomalies like the one showed in Supplementary Figure 1 are not present.

Click here to access the data.

Supplementary Figure 2. K-means cluster prediction for QIIME results. 
The number of clusters is chosen using the “elbow criterion”. When the marginal gain of variance explained drops the line bents indicating 
the number of clusters.

Click here to access the data.

Supplementary Figure 3. K-means cluster prediction for NG-Tax results. 
The number of clusters is chosen using the “elbow criterion”. When the marginal gain of variance explained drops the line bents indicating 
the number of clusters.

Click here to access the data.

Supplementary Figure 4. Taxonomic coverage of primers. 
Forward (left bars) and reverse (right bars) primer coverage of the major bacterial phyla associated with the human GI tract using RDP’s 
probematch program with one mismatch allowed.

Click here to access the data.

Supplementary Figure 5. Beta-diversity measures for NG-Tax results. 

Click here to access the data.
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The manuscript reports a new tool, NG-Tax, for analysis of 16S data which has been tested and 
benchmarked utilizing several mock communities. The manuscript is well written and clear. In 
particular, the introduction demonstrates the authors’ expertise and understanding of the issues 
and hurdles in analyzing 16S data. The data presented depicts the performance of NG-tax as 
compared to QIIME using default settings for both tools. As it stands, the manuscript is ready for 
indexing following the relatively minor comments below. There is one caveat, however, to our 
recommendation for indexing, stemming from the use of a now deprecated version of QIIME 
(version 1.X) for benchmarking. Since the initial submission of the manuscript in July 2016, a major 
revision of QIIME has been released (version 2.X) and therefore a more appropriate benchmark 
would be to compare against the latest version of QIIME. Importantly, some of the changes made 
in QIIME 2.X were to address the very problem that motivated the development of NG-Tax. A 
similar concern was raised by a previous reviewer (J. Tremblay), who criticized the use of QIIME 
with default settings given that these settings are known to be sub-optimal. The issues raised by 
default settings in QIIME have been examined by the QIIME team and optimal settings analyzed1. 
Nonetheless, the authors’ response to Tremblay’s criticism applies to ours and therefore we don’t 
feel it is a requirement for recommending indexing. The real test of NG-tax will be when it is 
utilized by disparate researchers on real datasets over time, and thus dwelling on which is the 
most appropriate benchmark is beyond the scope of the current paper. Minor edits 
required/recommended before indexing are below: 
 
1. The authors state that RDP was replaced with SILVA SINA to classify sequences, however, the 
Figure 2 column heading reads SINA, while the Figure legend still lists RDP. 
 
2. Figure 4. The figure obfuscates the point by presenting too much material. Since the figure’s 
point is to show the poorer estimates of prevalence and mis-identifications in QIIME compared to 
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NG-tax, it would be easier to see this point if there were fewer barcharts presented. Since any set 
of charts would suffice to make the point, we would recommend that the Reverse read barcharts 
(QIIME) be moved to supplemental data to simplify the figure. Similarly, move the V4 data to 
supplemental and only present V5-V6 for both NG-Tax and QIIME. Further, perhaps discuss an 
exemplary disparity between expected and observed in QIIME versus NG-Tax - especially one of 
mis-identification. Lastly, the figure legends do not provide enough information so that the figures 
stand alone without the manuscript text.   
 
3. Figure 6. It is difficult to see that triangles are “darker”. We propose you omit the word “darker” 
in the legend and only call attention to the “circles” and “triangles” that distinguish the samples. 
 
4. Correct typo in the word “assess” in the following sentence in the introduction “still is no 
complete consensus about the best variable regions of the 16S rRNA gene to asses”.  
 
5. In the “Barcoded PCR” methods, it is stated that 30 or 35 cycles of PCR were tested to quantify 
noise generated by the PCR protocol. The results are alluded to in the text as being presented in 
figure 6, however, it is unclear where they are shown as the figure only lists the four mock 
communities (MC1-4) and expected outcomes. 
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This is a novel and important piece of research. Extensive research is being conducted using next 
generation sequencing but researchers are becoming increasingly aware that many factors such 
as PCR bias, region of the 16S rRNA gene targeted etc. can impact on the results achieved. This 
has a negative impact on the ability to compare results across studies. This manuscript sets about 
to address this with their new analysis pipeline NG-Tax. 
 
The title of the manuscript is good. 
 
The abstract accurately summarises the research but the results section should have less methods 
and more results. 
 
Figure 1 is vague and fails to show the unique aspects of how NG-Tax differs from e.g. QIIME. 
More details would make this figure useful. 
 
I think greater details on the filtering and the classification used by this approach would benefit 
the reader. Perhaps a table showing the differences between this approach and e.g. RDP , QIIME 
etc. would improve the readers ability to interpret the novelty of the work. 
 
This work was done only using HiSeq data. Do the authors feel that the approach would be equally 
successful on approaches e.g. Ion, MiSeq etc where longer reads are achieved? It would also be 
nice to test the approach with a real life data set and not a mock community and see how the 
results compare to those achieved using traditional analysis approaches. 
 
Figures 3 and 4 are difficult to interpret, perhaps remake as tables.
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This is a novel and important piece of research. Extensive research is being conducted 
using next generation sequencing but researchers are becoming increasingly aware 
that many factors such as PCR bias, region of the 16S rRNA gene targeted etc. can 
impact on the results achieved. This has a negative impact on the ability to compare 
results across studies. This manuscript sets about to address this with their new 
analysis pipeline NG-Tax. 
 
The title of the manuscript is good. 
 
Thank you. 
 
The abstract accurately summarizes the research but the results section should have 
less methods and more results. 
 
We tried to find a proper balance between results and methods but taking into account that 
the paper describes a tool, a description of it should be included because the pipeline is 
both method and results at the same time. But we tried to include those results needed to 
prove that NG-Tax is suitable for 16S amplicon analysis: 
 
1) Taxonomy assignment using short reads should be comparable with the assignment 
using the complete 16S rRNA gene. 
2) Composition profiles based on sequencing data should resemble the real composition of 
the biological sample. 
3) α and β diversity should match the expected α and β diversity. 
4) Results should be reproducible and therefore robust against biological variation 
(different sample compositions) and technical (PCR and sequencing settings) biases. 
 
We consider that these requirements were met by NG-Tax and hope that they will convince 
readers of the actual improvements that were made, regarding robustness against 
methodological aspects as well as a more accurate reproduction of the MC compositions. In 
the new version of the manuscript we included more statistical tests to measure accuracy 
and reproducibility of NG-Tax. 
 
Figure 1 is vague and fails to show the unique aspects of how NG-Tax differs from e.g. 
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QIIME. More details would make this figure useful. 
 
As suggested by the reviewer Figure 1 now includes those unique aspects of NG-Tax. 
 
I think greater details on the filtering and the classification used by this approach 
would benefit the reader. Perhaps a table showing the differences between this 
approach and e.g. RDP , QIIME etc. would improve the readers ability to interpret the 
novelty of the work. 
 
As suggested by the reviewer we detailed the filtering and the classification process in the 
user manual for those readers that want to dive into the technical details. 
 
“This script demultiplexes the raw data into samples using the information contained in the 
mapping file. It also generates an OTU table per sample after removing chimeras and 
assigns taxonomy to the OTUs. NG-Tax is designed for short reads, 70 nucleotides is the 
recommended read length. Reads can be trimmed to this length by the script. Longer 
length can be selected by the user but comparison with 70 nucleotide analysis is advisable. 
 
OTU picking: For each sample reads are ranked by abundance and OTUs are added to an 
OTU table starting from the most abundant sequence until the read abundance is lower 
than a percentage defined by the user (recommendeded is at is 0.1%). Subsequently, the 
discarded reads are clustered to the OTU table allowing one mismatch. 
 
Chimera removal: OTUs are subjected to non-reference based chimera checking according 
to the following principle: given three OTUs named A, B and C, C will be considered a 
chimera when the following conditions are satisfied: C and A 5’ reads are identical, C and B 
3’ reads are identical and both OTUs, A and B, are at least twice as abundant as OTU C. 
 
Taxonomic assignment: For each OTU, usearch is used to retrieve hits for the forward and 
reverse reads against their respective trimmed reference database. 
Hits that are in common between both reads are divided in 6 identity thresholds 100, 98, 97, 
95, 92, 90. 
A hit belongs to a certain level, for example 97, when both reads have at least a 97 
percentage identity with that hit. 
Using the highest available identity threshold, NG-Tax assigns the consensus taxonomy to 
the OTU if this taxonomy is supported for at least half of the hits. 
Genus, Family or Order remains unassigned if the maximum identity percentage level is 
lower or equal to 97%, 95% and 92% respectively.” 
 
Now we also included the main characteristics of NG-Tax in Figure 1. 
The OTU generation is the main difference between NG-Tax and QIIME. NG-Tax uses a de 
novo generation approach without clustering. This increases the resolution and allows for 
the distinction between OTUs with one nucleotide distance. In addition, NG-Tax generates 
OTUs independently for each sample, which avoids problems associated to sample size 
heterogeneity. Another important feature of NG-Tax is the use of non-fixed thresholds for 
the taxonomic assignment, which results in more accurate classifications. To highlight those 
points we added the text “No clustering → max resolution” to Figure 1 and indicated in the 
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workflow that OTUs are generated per sample. We also clearly state that NG-Tax does not 
use any clustering and explain that the taxonomic classification uses different identity levels. 
The authors of the RDP classifier stated that it does not perform well for short sequences, 
i.e. a length of 200 nt would give accurate family level classification but shorter reads will 
not, likely due to insufficient features 1. In contrast, NG-Tax has been specifically designed 
for short reads. 
 
This work was done only using HiSeq data. Do the authors feel that the approach 
would be equally successful on approaches e.g. Ion, MiSeq etc where longer reads are 
achieved? It would also be nice to test the approach with a real life data set and not a 
mock community and see how the results compare to those achieved using traditional 
analysis approaches. 
 
NG-Tax has been the reference method for 16S rRNA gene amplicon analysis in our lab for 
more than two years now, and has been used in more than 30 manuscripts that have been 
submitted or are in preparation. One of these manuscripts 1 was published before this 
manuscript. Since then another fifteen studies using NG-Tax have been published 2-16. 
These studies contain biological samples that belong to very different and specific 
environments and were sequenced both on MiSeq and HiSeq instruments. These will 
contribute to the assessment of NG-Tax’s performance, however these were not included in 
the current manuscript since the data is accessible in the aforementioned publications. 
 
Figures 3 and 4 are difficult to interpret, perhaps remake as tables.  
 
With Figure 3 and 4 we intended to visualize how close the observed sample composition 
resembled the expected composition at a glance and how many different taxa are found in 
the data. In order to further improve interpretation, we have now also added Table 1 to 
provide detailed information as to the number of misclassified reads at different taxonomic 
levels and Figure 5, which shows boxplots of the distances to the expected composition. We 
also performed statistical tests to quantitatively compare the performance of NG-Tax and 
QIIME. As suggested by the reviewer we included the tables with the taxonomical profiles as 
supplementary data, which can be used for evaluation of the results.  
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Biomonitoring, National Research Council Canada, Montreal, QC, Canada 

This paper describes a pipeline for processing 16S rRNA amplicon data. They implemented an 
experimental design in which they used data coming from three different HiSeq2000 runs using 
two variable regions (V4 and V5-V6). It is however not clear if their data has been generated in-
house or if their data was actually coming from public databases. This should be explicitly stated 
somewhere (unless I missed it). Using this data as input, the authors developed a pipeline labeled 
NG-Tax, which according to them: 1) better accounts (compared to what?) for errors associated 
with a range of technical aspects of 16S rRNA amplicon sequencing and 2) improves comparability 
be removing technical bias and facilitating efforts towards standardization.  In my view, the 
problem is that why their pipeline does 1) and 2) is not addressed in depth. The description of the 
technical aspects of their pipeline in the first part of the result section only very summarily 
describes the general workflow of the pipeline, but nowhere do they describe how exactly OTU 
picking is done (see comment below). How exactly Chimera are detected? With an open-source 
package? In-house script? Taxonomic assignment methodology is unclear as well. The authors 
state that they are using uclust for taxonomic assignment, while uclust is a sequence clustering 
software (also see comments below). 
 
Then the authors compares their pipeline results with the ones generate by Qiime with default 
paramters. Qiime with its default parameters is already known to not perform optimally (See 
UPARSE paper, Edgar, 2013). I think that comparing with Qiime for validation is okay, but do not 
spend too much time dissecting the results. What the authors should focus on is, I think, on 
improving substantially on the technical description of their pipeline – describe each step in 
details. If open source packages are being used, say so, if not, describe your 
script/software/algorithm. Also please make the source code available under a code repository 
(Github or Bitbucket for instance). 
 
In my view the paper is not acceptable in its current form. 
  
Specific comments:

At the sentence "mostly because available 16S rRNA gene reference databases were 
thought to provide insufficient coverage13–16." Can you please elaborate on that? What do 
exactly mean by that? 
 

○

"there still is no standard or consensus of best choices for variable regions." 
 
I don't fully agree with this. Depending on your field of study, a certain consensus can 
usually be found. For instance, the Earth Microbiome project recommends two primer sets 
(V4 and the 'newer' V4-V5) - Many labs investigating soil or environmental samples in 
general will effectively favor these primers because they are being used by a large part of 
the community which readily enables inter-lab community/study comparisons. 
 

○

Concerning the OTU picking section: It is not clear how exactly you pick your OTUs. 
Basically, you are kind of dereplicating/clustering your raw reads data set at 100% ID and 
then create a one column OTU table for each sample? Please clarify. 
 

○

“Phred score, such as minimum average Phred score, maximum number of ambiguous 
positions, maximum bad run length, trimming and minimum read length after quality 

○
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trimming, are not utilized in NG-Tax because quality scores from the Illumina base caller 
have been shown to be of limited use for the identification of actual sequence errors for 16S 
rRNA gene amplicon studies9,37.” 
 
Yes Q scores have their limitation, but it is unwise to not filter for reads containing Ns and 
reads of very poor Q scores. Some basic filtering should be implemented to at least filter for 
very bad data. For instance if you have a read with 10 bases with Q score lower than 10, this 
read should obviously be removed. 
 
“To speed up the procedure by several orders of magnitude, 16S rRNA gene sequences 
from the reference database are trimmed to contain only the region amplified by the 
primers.” 
 
Please specify how you generated your trimmed database of 16S rRNA genes ref. In silico 
PCR? A multiple alignment that was trimmed at specific coordinates? 
 

○

"In the current version of NG-Tax, taxonomy is assigned to OTUs utilizing the uclust 
algorithm16 and the Silva_111_SSU Ref database, containing 731,863 unique full length 16S 
rRNA gene sequences. To ensure maximum resolution and avoid the risk of errors due to 
clustering-associated flaws (e.g. reference sequence error hotspots, overrepresentation of 
certain species and lack of robustness in cluster formation by clustering algorithms),we use 
the non-clustered database. To speed up the procedure by several orders of magnitude", 
 
Uclust is for clustering sequences/reads and not for taxonomic assignment…? Taxonomic 
assignment is done by other means (RDP classifier), but certainly not with uclust. 
 

○

For each OTU, a taxonomic assignment is retrieved at six different identity thresholds levels 
(100%, 98%, 97%, 95%, 92% and 90%) and at two taxonomic levels (genus and family). 
 
How exactly are OTUs classified? With an in-house method? The RDP classifier? Please 
elaborate. 
 

○

Figure 1. Please add more details. Are you using open-source packages in your pipeline? If 
so please indicate. 
 

○

Table 1: Table 1 is heavy and not really meaningful. Would fit in more appropriately in suppl. 
material. 
 

○

Figure 3 and 4: Please find another way of displaying data of figure 3. It is simply not 
feasible to associate a color to a given bar graph. Maybe consider using a heatmap with 
hierarchical clustering or a PCA/PCoA? Typically for taxonomiy stacked barplots you can’t 
really go above 20 different colors. After that it becomes indistinguishable. 
 

○

"Because the focus of NG-Tax is to retain as much biological signal as possible while 
minimizing the impact of any technical choice," 
 
But how exactly does NG-Tax retain more biological signal than other pipelines, what does 
that mean? 

○
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Discussion: The authors say that their pipeline outperforms Qiime, but nowhere is discussed 
how exactly does Qiime works. How exactly does Qiime generate OTUs, how are the reads 
QCed? How is the classification performed, what training sets are being used for 
classification? It is already known that Qiime does not perform well with default parameters 
(see R. Edgar’s UPARSE paper), so Qiime does not represent a gold standard, especially with 
default parameters. 
 
 

○

NG-Tax pipeline availability. Please include the pipeline on a Github or bitbucket repository.○

 
 
References 
1. Edgar RC: UPARSE: highly accurate OTU sequences from microbial amplicon reads.Nat Methods. 
2013; 10 (10): 996-8 PubMed Abstract | Publisher Full Text  
 
Is the work clearly and accurately presented and does it cite the current literature?
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Is the study design appropriate and is the work technically sound?
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Are sufficient details of methods and analysis provided to allow replication by others?
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Yes
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Author Response 14 Nov 2018
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This paper describes a pipeline for processing 16S rRNA amplicon data. They 
implemented an experimental design in which they used data coming from three 
different HiSeq2000 runs using two variable regions (V4 and V5-V6). It is however not 
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clear if their data has been generated in-house or if their data was actually coming 
from public databases. This should be explicitly stated somewhere (unless I missed it).  
 
To further clarify this we added the section Datasets: 
 
Datasets: 
Four synthetic communities of varying complexity were created, consisting of 16S rRNA 
gene amplicons of phylotypes (PTs) associated with the human GI-tract (Dataset 1). This 
specific setup limited the likelihood of overfitting to a particular OTU composition or 
distribution and allowed us to assess (1) the quantification potential, (2) noise floor and (3) 
the effect of richness and diversity on quality filtering parameters, thus ensuring a higher 
fidelity with biological samples than by using a single MC. As a reference, to assess the 
quality of the taxonomic classifications, full length sequences for all PTs were obtained 
through Sanger sequencing. Expected MCs were created by trimming the full length 
sequences to the sequenced region. MC1 and MC2 consisted of equimolar amounts of 17 
and 55 PTs, respectively. MC3 contained 55 PTs in staggered concentrations typical for the 
human GI-tract, and MC4 included 50 PTs with relative abundances ranging between 0.001 
and 2.49%. To account for pipetting errors, each of the four MCs was produced in triplicate. 
To design a pipeline that puts more focus on biology, these 12 MC templates were used to 
sequence the MCs with different conditions that cover most of the technical bias associated 
with 16S rRNA gene amplicon studies reported in literature. To this end, we:

Targeted either region V4 or region V5-V6,1. 
Used four PCR protocols differing in the number of PCR cycles and reaction volumes.2. 
PCR products were analysed in three different sequencing runs and in seven different 
libraries.

3. 

Two different library preparation protocols (with and without an additional 
amplification of 8 cycles) were applied (Dataset 1).

4. 

In addition the sequencing depth ranged from 2363 to 335822 reads per sample (Dataset 1). 
One phylotype, PT17 (Parabacteroides), attracted so much sequencing error in the V4 region 
that it was rendered undetectable although it was amplified by the primers (Supplementary 
Figure 1). Therefore, to test both pipelines without this sequencing anomaly, it was removed 
from the analysis. 
 
In this section we explain how we created and sequenced the MCs. The sequencing data 
was generated by a sequencing company (GATC, Constance, Germany; see section Materials 
and Methods). The sequencing data has been submitted to the ENA repository, and we 
added the following sequence data availability section: 
 
Sequence data availability: 
Sequence data have been deposited in the European Nucleotide Archive46, accession 
number [ENA:PRJEB11702]) http://www.ebi.ac.uk/ena/data/view/PRJEB11702 (amplicon 
sequencing data for all 49 samples) and [ENA:LN907729-LN907783]) (full length 16S rRNA 
gene sequences for all 55 Pts).” 
 
Using this data as input, the authors developed a pipeline labeled NG-Tax, which 
according to them: 1) better accounts (compared to what?) for errors associated with 
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a range of technical aspects of 16S rRNA amplicon sequencing and 2) improves 
comparability be removing technical bias and facilitating efforts towards 
standardization. In my view, the problem is that why their pipeline does 1) and 2) is 
not addressed in depth. 
 
We agree with the reviewer that the highlighted elements were not sufficiently clear and 
lacked an explanation why we believe that NG-Tax performs better. Therefore we replaced 
this sentence with: 
 
”This allowed for the development of NG-Tax, a pipeline that accounts for biases associated 
with this range of technical aspects associated with 16S rRNA gene amplicon sequencing. 
Therefore NG-Tax will improve comparability by removing technical bias and facilitate 
efforts towards standardization, by focusing on reproducibility as well as accuracy. To 
assess the performance regarding key output parameters such as taxonomic classification, 
composition and richness, and α and β diversity measures, we benchmarked the results 
obtained with NG-Tax.” 
 
In order to account for errors and increase comparability by removing technical bias from 
16S rRNA amplicon studies, NG-Tax should fulfill the following requirements:

Taxonomy assignment using short reads should be comparable with the assignment 
using the complete 16S rRNA gene.

1. 

Composition profiles based on sequencing data should resemble the real 
composition of the biological sample.

2. 

α and β diversity should match the expected α and β diversity.3. 
Results should be reproducible and therefore robust against biological variation 
(different sample compositions) and technical (PCR and sequencing settings) biases.

4. 

We consider that these requirements were met by NG-Tax, as supported by the following 
data. 
 
Figure 2 shows the high similarity of the taxonomic classification of the V4 and V5V6 
amplicon results compared to full length sequences using SILVA Incremental Aligner (SINA). 
The specificity and the number of hits testify to the reliability of the assignments. 
 
Table 1 shows the low number and percentage of spurious reads. 
 
Figure 3 shows that NG-Tax derived compositional profiles based on sequencing data 
accurately resemble the expected profiles. 
 
Figure 5 quantifies the distances to the expected profiles. 
 
Figure 6 & 7: the PCoA plots show that MCs group by type, despite all technical bias 
associated with 16S rRNA gene amplicons sequencing, such as PCR settings, and primer or 
region selection. Figure 7 shows that all within-MC pairwise comparisons and the dispersion 
of all pairwise comparisons are significantly smaller in NG-Tax meaning that distances 
within and between MC types are robust. These results could not have been achieved 
without a proper reduction of the aforementioned biases. This will improve comparability 
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by enabling direct comparison between studies even when using slightly different 
approaches. 
 
The description of the technical aspects of their pipeline in the first part of the result 
section only very summarily describes the general workflow of the pipeline, but 
nowhere do they describe how exactly OTU picking is done (see comment below). How 
exactly Chimera are detected? With an open-source package? In-house script? 
Taxonomic assignment methodology is unclear as well. The authors state that they 
are using uclust for taxonomic assignment, while uclust is a sequence clustering 
software (also see comments below). 
 
In the revised manuscript we substantially increased the amount and detail of information 
on the description of the general work flow. All the critical steps, including barcode & primer 
filtering, OTU picking, mapping rejected reads to accepted OTUs, de novo chimera filtering, 
taxonomic assignment and the generation of a phylogenic tree are now detailed in Figure 1 
and explained in the user manual. 
 
Then the authors compares their pipeline results with the ones generate by Qiime 
with default paramters. Qiime with its default parameters is already known to not 
perform optimally (See UPARSE paper, Edgar, 2013). I think that comparing with Qiime 
for validation is okay, but do not spend too much time dissecting the results.  
 
We agree with the reviewer’s view on the default parameters of QIIME, however, the major 
improvements are gained by not clustering and processing the reads per sample. 
Therefore, the presented results cannot be achieved with QIIME independent of the 
parameters we choose. Besides that, testing QIIME under different settings has been 
already extensively covered elsewhere 5 and if we would change parameters, reviewers 
could argue that our chosen parameters are less than optimal and therefore we stayed with 
the default settings. 
 
Nonetheless, as suggested by the reviewer we reproduced the QIIME analysis with a 0.1% 
abundance threshold, and this is now included in the supplementary data. The results using 
0.1% or 0.005% are consistent and show no performance gain (“Supplementary data. QIIME 
beta-div results all settings”). This is also in line with the result shown by Bokulich et al 2013 
1, supplementary material 2; pages 8, 9 and 10. This text includes a comparison of the 
expected composition against real sample composition using different filtering parameters. 
One of these parameters is OTU abundance and the plot shows that the obtained profiles 
do not change much using different filtering abundance thresholds. 
 
Although we agree with the reviewer that we need not to put too much emphasis on the 
QIIME results, they do show the consequences when technical bias is not adequately taken 
care of, which makes it easier for the non-technical reader to place the results achieved by 
NG-Tax into context. 
 
What the authors should focus on is, I think, on improving substantially on the 
technical description of their pipeline – describe each step in details. If open source 
packages are being used, say so, if not, describe your script/software/algorithm. Also 
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please make the source code available under a code repository (Github or Bitbucket 
for instance). 
 
In my view the paper is not acceptable in its current form. 
 
We thanks the reviewer for the constructive suggestions and hope that the changes 
introduced in the manuscript and supplementary data help to change his opinion. 
As suggested by the reviewer the source code is now available on Github (
https://github.com/JavierRamiroGarcia/NG-Tax.git). 
 
Specific comments: 
At the sentence "mostly because available 16S rRNA gene reference databases were 
thought to provide insufficient coverage 13–16." Can you please elaborate on that? 
What do exactly mean by that? 
 
In the past, when pyrosequencing was the standard sequencing method, open reference 
base OTU picking was the common strategy for two main reasons: 1) reference databases 
were still very small and thought to provide insufficient coverage and 2) the more 
computationally intense open reference methods were used because the amount of reads 
generated were lower than nowadays. Over time databases were more complete and the 
amount of data generated increased the needed computational time, so close reference 
OTU picking gained popularity. Currently, with new bioinformatics solutions, open reference 
OTU picking is gaining ground and NG-Tax is following that trend by implementing a new 
open reference OTU picking algorithm. 
 
"there still is no standard or consensus of best choices for variable regions." 
 
I don't fully agree with this. Depending on your field of study, a certain consensus can 
usually be found. For instance, the Earth Microbiome project recommends two primer 
sets (V4 and the 'newer' V4-V5) - Many labs investigating soil or environmental 
samples in general will effectively favor these primers because they are being used by 
a large part of the community which readily enables inter-lab community/study 
comparisons. 
 
We agree with the reviewer that there is a certain consensus for some projects, but still 
there are many publications addressing the differences in results when different primers 
are used. Therefore, when choosing a primer pair, whether these primers are used by the 
community becomes an important factor if afterwards the researcher wants to compare the 
results with existing studies. The idea of NG-Tax is to decrease the importance of this factor 
by providing comparable results across different primer sets, giving more freedom to the 
researcher to explore new possibilities. But as suggested by the reviewer we softened our 
statement and rephrased as: 
 
“There still is no complete consensus regarding best choices for variable regions even if 
some initiatives like the Earth Microbiome Project are setting standards that are 
increasingly being adopted by the field.” 
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Concerning the OTU picking section: It is not clear how exactly you pick your OTUs. 
Basically, you are kind of dereplicating/clustering your raw reads data set at 100% ID 
and then create a one column OTU table for each sample? Please clarify. 
 
We tried to make the paper as readable as possible by not adding too much technical 
information. Realizing that we have excessively reduced technical detail in the original 
manuscript, in the new version all technical details can be found in the user manual. An 
indication that this information can be found in the user manual is now included in the 
manuscript. 
In NG-Tax OTUs are generated per sample using the following strategy: 
For each sample reads are ranked by abundance and OTUs are added to an OTU table 
starting from the most abundant sequence until the read abundance is lower than a 
percentage defined by the user (recommended is at is 0.1%). Subsequently, the discarded 
reads are clustered to the OTU table allowing one mismatch. 
In practical terms this is in fact guided clustering where seeds are determined by 
abundance. The difference with an normal clustering approach is that there is no clustering 
to define the seeds. This allows seeds that differ as little as one nucleotide. The clustering is 
applied only afterwards to compensate for potential bias due to PCR and sequencing errors. 
Error is sequence-specific, and hence some sequences could be affected more than others. 
If a species specific amplicon is more prone to PCR or sequencing errors, the relative 
abundance of that particular OTU will be underestimated. But after clustering, OTUs more 
prone to error receive a higher percentage of discarded reads than others, this differential 
recovery helps to reestablish the true composition that was lost due to sequence specific 
error rates. 
 
“Phred score, such as minimum average Phred score, maximum number of ambiguous 
positions, maximum bad run length, trimming and minimum read length after quality 
trimming, are not utilized in NG-Tax because quality scores from the Illumina base 
caller have been shown to be of limited use for the identification of actual sequence 
errors for 16S rRNA gene amplicon studies9,37.” 
 
Yes Q scores have their limitation, but it is unwise to not filter for reads containing Ns 
and reads of very poor Q scores. Some basic filtering should be implemented to at 
least filter for very bad data. For instance if you have a read with 10 bases with Q 
score lower than 10, this read should obviously be removed. 
 
We fully agree with the reviewer. A filtering process is needed, and this is already 
implemented in NG-Tax. The point is that it is not based in quality score but based on 
abundance. Illumina have reported that 95%-97% of the reads have Q>30 (
http://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf). This 3 to 
5 percent of reads with lower quality will contain reads for all the different phylotypes, and 
within phylotypes there will be reads with errors in different positions and with different 
base substitutions. This decreases the probability of having exactly the same erroneous 
read. Therefore we expect that any specific erroneous read should be in low abundance. 
Subsequently, when samples are filtered by discarding low abundance sequences, those 
low quality reads will be removed without the need to check for quality scores. 
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In addition quality scores do not account for PCR errors since the base caller will give them 
very high scores, because according to the sequencer they are real sequences. In contrast, 
filtering by abundance is insensitive to the error source, and hence if the reads with PCR 
errors are in low abundance (especially if high fidelity taq polymerase is used), they will be 
also removed. 
 
A good example of how stringent quality thresholds can bias the results can be found in 
Bokulich et al 2013, supplementary material 2; pages 8, 9 and 101.  
 
“To speed up the procedure by several orders of magnitude, 16S rRNA gene sequences 
from the reference database are trimmed to contain only the region amplified by the 
primers.” 
 
Please specify how you generated your trimmed database of 16S rRNA genes ref. In 
silico PCR? A multiple alignment that was trimmed at specific coordinates? 
We thank the reviewer for the suggestion. This information is important and now it 
has been added to the user manual. NG-Tax applies an in silico PCR using the primers 
and a reference database given by the user. Degenerated primer positions are allowed 
and alternative primers with mismatches can be supplied. 
 
"In the current version of NG-Tax, taxonomy is assigned to OTUs utilizing the uclust 
algorithm16 and the Silva_111_SSU Ref database, containing 731,863 unique full length 
16S rRNA gene sequences. To ensure maximum resolution and avoid the risk of errors 
due to clustering-associated flaws (e.g. reference sequence error hotspots, 
overrepresentation of certain species and lack of robustness in cluster formation by 
clustering algorithms),we use the non-clustered database. To speed up the procedure 
by several orders of magnitude", 
 
Uclust is for clustering sequences/reads and not for taxonomic assignment…? 
Taxonomic assignment is done by other means (RDP classifier), but certainly not with 
uclust. 
 
For each OTU, a taxonomic assignment is retrieved at six different identity thresholds 
levels (100%, 98%, 97%, 95%, 92% and 90%) and at two taxonomic levels (genus and 
family). 
 
How exactly are OTUs classified? With an in-house method? The RDP classifier? Please 
elaborate. 
 
First we wanted to inform that uclust has been substituted by usearch in the scripts for the 
second version of the manuscript. 
Any or at least most methods for taxonomic assignment contain two main steps. First, the 
read to be classified is linked to sequences in a reference database by sequence similarity, 
and then the taxonomic information of linked sequences, termed hits, is transferred to the 
sequence to be classified. Different methods can be used to perform the linking step. In our 
case we used usearch (previously uclust). We used dynamic thresholds to get hits at 6 
different identity levels, after which the taxonomic information is transferred to the read of 
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unknown taxonomy by the NG-Tax classifier algorithm. Similar dynamic thresholds are used 
by rtax 2. 
 
A description of how the NG-Tax classifier works: 
 
For each OTU, usearch is used to retrieve hits for the forward and reverse reads against 
their respective trimmed reference database. Hits that are in common between both reads 
are divided in 6 identity thresholds 100, 98, 97, 95, 92, 90. A hit belongs to a certain level, for 
example 97, when both reads have at least a 97 percentage identity with that hit. Using the 
highest available identity threshold, NG-Tax assigns the consensus taxonomy to the OTU if 
this taxonomy is supported for at least half of the hits. Genus, Family or Order remains 
unassigned if the maximum identity percentage level is lower or equal to 97%, 95% and 92% 
respectively. The levels lower than 97% are only useful for unexplored environments; 
otherwise most of the OTUs are assigned at 100% identity. 
 
As suggested by the reviewer we have included a detailed explanation of how the algorithm 
works in the user manual provided in the supplementary files. 
 
Figure 1. Please add more details. Are you using open-source packages in your 
pipeline? If so please indicate. 
 
We thank the reviewer for the suggestion, now we added a figure with more details. As 
stated in the user manual we use USEARCH and QIIME. 
 
Table 1: Table 1 is heavy and not really meaningful. Would fit in more appropriately in 
suppl. material. 
 
As suggested by the reviewer the table 1 is now supplied as supplementary material. 
 
Figure 3 and 4: Please find another way of displaying data of Figure 3. It is simply not 
feasible to associate a color to a given bar graph. Maybe consider using a heatmap 
with hierarchical clustering or a PCA/PCoA? Typically for taxonomy stacked barplots 
you can’t really go above 20 different colors. After that it becomes indistinguishable. 
 
With figure 3 and 4 we just wanted to show in one glance, how close the sample 
compositions resembled the expected composition and how many different taxa are found 
in the data. In the new version of the manuscript we have added boxplots showing 
distances to the expected profiles to improve interpretation. An excel file with taxonomic 
profiles is also added to the supplementary material for further interpretation. 
PCoA plots showing distances between samples and expected for both pipelines are 
provided in figure 6. Figure 7 shows those distances as pairwise comparisons. 
 
"Because the focus of NG-Tax is to retain as much biological signal as possible while 
minimizing the impact of any technical choice," 
 
But how exactly does NG-Tax retain more biological signal than other pipelines, what 
does that mean? 
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We agree with the reviewer that the sentence is confusing. Therefore it has been rephrased. 
 
”Therefore, these indices probably provide a better estimate of the true diversity for data 
generated by high throughput next generation technology sequencers. 
 
Because the aim of NG-Tax is to enhance the biological signal as much as possible by 
minimizing the impact of any technical choice, divergence-based α-diversity (Phylogenetic 
Diversity (PD) [41]) and β-diversity (Unifrac [39]) metrics were used to visualize the diversity 
within and between MCs (Figure 6)”. 
 
Discussion: The authors say that their pipeline outperforms Qiime, but nowhere is 
discussed how exactly does Qiime works. How exactly does Qiime generate OTUs, how 
are the reads QCed? How is the classification performed, what training sets are being 
used for classification? It is already known that Qiime does not perform well with 
default parameters (see R. Edgar’s UPARSE paper), so Qiime does not represent a gold 
standard, especially with default parameters. 
 
In our manuscript we applied recommended settings like those described in the Bokulich 
paper. This paper extensively describes QIIME, the rationale behind the recommendations 
and the way that these choices impact the data. The scope of this manuscript was not to 
test QIIME under different settings. For NG-Tax analysis we also employed default and 
recommended settings so we thought that even if it is not optimal and has limitations, this 
could be a fair approach. 
 
We also analyzed the MCs with QIIME to show that this dataset is not an exceptional case 
with regards to the commonly reported problems (such as many un- or poorly classified 
OTUs, inflated richness and diversity, taxonomic profiles that do not match the expected 
ones, region dependent taxonomic classification and results which are highly dependent on 
minor changes in the experimental procedures) are also found in this dataset. So in our 
mind the QIIME analysis should primarily be seen as a performance comparison. In fact we 
encourage researchers to use more than one method, as this will increase the amount of 
information they can obtain from their datasets and determine the quality of their data. This 
will benefit their research and by extension the whole field. 
 
Nevertheless in an effort to increase comparability we also performed an additional analysis 
using QIIME with a 0.1% abundance threshold (which is conservative compared to the 
advised setting of 0.005%). Nevertheless this did still not reproduce the biological signal and 
the results obtained with 0.1% or 0.005% are consistent. These analyses have been added to 
the supplementary material as “Supplementary data. QIIME beta-div results all settings”. 
 
NG-Tax pipeline availability. Please include the pipeline on a Github or bitbucket 
repository. 
 
NG-Tax scripts were previously available as supplementary material, and as suggested by 
the reviewer they are now also available in Github (
https://github.com/JavierRamiroGarcia/NG-Tax.git) 
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In their manuscript, the authors introduce NG-Tax, an open-source software for the (meta-
)analysis of 16S rRNA-based microbiome datasets. Their tool focuses on an important and so-far 
arguably understudied aspect of microbial ecology research: the integration of results across 
studies, in view of both technical and biological variation. 
 
The approach is interesting and addresses important points. In particular, several sequencing 
datasets of different mock communities were generated, even using different primer sets: this is 
great data to benchmark on, and many (most) other papers introducing tools do not provide 
benchmarks on such an array of real (mock) data. In general, I feel that this is very interesting 
work and that NG-Tax can be a promising alternative to existing tools in the field. 
 
However, there are several points that I feel would need to be addressed in order for the 
manuscript to stand tall, and for the reader to get a good understanding of how NG-Tax can be 
useful in practice. 
 
 
Major comments:

Even after reading the manuscript and online user manual repeatedly, I have to admit that ○

 
Page 34 of 48

F1000Research 2018, 5:1791 Last updated: 03 AUG 2021

https://doi.org/10.5256/f1000research.9931.r15177
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-8587-4177


it is not completely clear to me how NG-Tax works in detail, and in which points exactly it 
differs from existing approaches. Based on the introduction, I gather that NG-Tax relies on 
closed-reference OTU picking, but this is not mentioned explicitly anywhere in the text. Also, 
does reference-based OTU picking in NG-Tax rely on uclust? If yes, which version and 
parameters were used, and how do they differ from QIIME’s defaults? Also, the Background 
and Discussion sections do not elaborate on the various disadvantages of closed-reference 
approaches; most importantly, closed-ref only takes into account sequences matching the 
database and removes everything else. When integrating sequence data from different 
primer sets, this is arguably the most straightforward approach; however, the limitations 
should be discussed. 
 
I gather from the text that NG-Tax’s main innovations are the use of primer-tailored 
reference databases and a different (more conservative) read abundance filtering scheme. 
It is perfectly valid to benchmark these against QIIME’s default settings; however, it would 
be great to see how QIIME performs with similarly conservative settings, to better 
understand where NG-Tax’s edge in performance comes from. 
 

○

Regarding taxonomy assignments, it is valid to compare NG-Tax’s uclust-based approach to 
QIIME’s uclust-based approach. However, I believe that the gold standard continues to be 
the RDP Classifier, and it would be interesting to see a performance comparison to this tool 
(on the short-read data, not only on full-length reads). Also, how does taxonomic 
classification by NG-Tax differ conceptually from RTAX (
http://www.uio.no/english/services/it/research/hpc/abel/help/software/rtax.html)? I do 
believe that they are not equivalent, but the approaches appear somewhat related. 
 

○

In general, the results on taxonomic classification are not discussed quantitatively. From 
Figures 3&4, the visual impression is that NG-Tax indeed better approximates expected 
taxonomic profiles than QIIME, but it is hard to quantify this from stacked bar charts. I 
would suggest to compute e.g. Euclidean or more sophisticated distances of classified 
taxonomic profiles to the expected distribution. Also, it would be interesting to see 
quantitative sensitivities and specificities (or F1-scores?) on the taxonomic assignments; 
particularly also when running on the exact same (more conservatively filtered) dataset for 
QIIME. Some numbers on specificity are provided in the Abstract and Conclusion sections 
– but I am not sure if specificity may be gained at the expense of sensitivity based on the 
more rigid read filtering upstream. 
 

○

As a suggestion, but certainly not as a request, I would recommend to maybe include 
additional, independent datasets to benchmark on. For example, Tremblay et al. (2015) have 
published data on mock communities sequenced with different primer sets and on different 
platforms. Such data could contribute to a yet more general assessment of NG-Tax 
performance.

○

 
Minor comments (chronologically, not in order of importance): 

Background, “The consequence of this approach is that the ‘quality’ of the clustering of the 
reference set propagates to reference-picked OTUs.” I believe that as such, this statement is 
not fully valid or supported. In fact, the negative complement is arguably true: reference-
based OTU picking against a “bad” reference can never provide “good” OTUs (a garbage-in, 
garbage-out problem, so to say). However, even with a good reference, a bad mapping 

○

 
Page 35 of 48

F1000Research 2018, 5:1791 Last updated: 03 AUG 2021

http://www.uio.no/english/services/it/research/hpc/abel/help/software/rtax.html)


algorithm can generate non-informative reference-based OTU sets. Schloss & Westcott have 
recently published a study which discusses this point, among others (Westcott & Schloss, 
2015). 
 
Background, “However, in 16S rRNA gene amplicon sequencing every sequencing error 
could potentially lead to the false discovery of a new species.” I have two comments on this 
statement. First, I believe that the term “species” in this context can be misleading and I feel 
that the neutral term OTU or diversity unit would be more appropriate. Second, there is a 
large body of literature on how sequencing errors affect 16S-based diversity studies beyond 
the cited Bokulich et al paper (starting from Kunin et al., 2010), and it would be worth to at 
least mention these, although an in-depth discussion would probably lead away from this 
study’s focus. Also, it may be worth mentioning recent algorithmic approaches to tackling 
this issue, such as DADA2 (Callahan et al., 2016). 
 

○

Results & Discussion, chimera filtering. The implemented method for chimera filtering 
appears a little ad hoc and heuristic, although the proposed approach certainly makes sense 
intuitively. However, given the long history of “chimera-slaying” algorithms and the quite 
sobering benchmark studies on them, some context would be helpful for the reader here 
– maybe even as a short supplement or as a reference to the user manual. For example, 
how is the proposed approach conceptually different from existing tools like UCHIME etc? 
And why was it implemented as is? What was the (empirical?) motivation to do it like this, 
not otherwise? Personally, I am not very convinced of the performance of chimera-filtering 
algorithms overall and several recent pipelines side-step the issue more or less elegantly. In 
the case of NG-Tax (or other reference-based OTU callers), one could even argue that if the 
reference database is perfectly chimera-free, a closed-reference approach would not need a 
chimera filtering approach at all, or only one which is based on differential mapping of a 
sequence to two (highly unrelated) OTUs. 
 

○

Table 1 is very large and (on the PDF) unfortunately rotated by 90 degrees. I suggest to 
convert it into a supplemental Excel sheet which would be more reader-friendly. 
 

○

Figure 2 has rotated horizontal axis labels, a 90deg rotated legend – maybe that’s just due 
to formatting of the PDF. It is also difficult to read taxonomic names on the vertical axis in 
all-caps. 
 

○

“Consequently, these methods are more powerful than purely OTU-based methods, […].” 
While I agree with this sentence to a certain extent, I believe that the statement should be 
supported by referring to previous work on the topic. It is not necessarily consensus that 
16S “sequence often correlates with phenotypic similarity in key features”, but it is even less 
clear to what extent phylogenetic diversity estimators capture this signal in a useful way. 
Arguably, a PD-estimator of UniFrac can only be as good as their underlying tree, which in 
turn is based on the (representative) sequences of OTUs and thus depends on many factors 
in the background. 
 

○

In particular, the weighted UniFrac measure used in this study seems to be more sensitive 
to quite a number of factors (including sequencing errors and inflation of small clusters, not 
irrelevant for the points made in this study) than its unweighted sister in my personal 
experience, and according to a number of researchers I have talked to on this point. 

○
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However, since “personal experience” and “people I’ve talked to” are certainly not a 
dependable scientific source, and because performance on mock communities should not 
be severely impacted, I would formulate this as a suggestion and certainly not as a 
reviewer’s request: were the weighted UF-based results double-checked using unweighted 
UF and/or a non-phylogenetic method, such as Bray-Curtis? 
 
In the PCoA (Figure 5, A&C), it is quite hard to decide which method looks “better” purely 
based on visual impression, not least because the % variance explained on the axes is not 
equivalent. It would be good to see a more quantitative statement on which approach 
better recovers expected clusters from the mock communities. The most straightforward 
approach would be to perform MANOVA analyses, structured by the different factors to test 
for and then use the effect sizes to quantify the goodness of separation (or non-separation). 
I would suggest to run e.g. Anderson’s PERMANOVA (
http://www.entsoc.org/PDF/MUVE/6_NewMethod_MANOVA1_2.pdf; implementation 
available through the function “adonis” in the R package vegan) or ANOSIM to this end. 
Alternatively, samples could be clustered based on beta div and the resulting clusterings (or 
dendrograms) quantitatively compared to expectations based on different factors. 
 

○

Thank you for providing Supplementary Figures 1&2; they are informative in the 
interpretation of the presented data. 
 

○

Similarly, thank you for providing code and data as supplements!○
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Javier Ramiro-Garcia, TI Food and Nutrition (TIFN), Wageningen, The Netherlands 

In their manuscript, the authors introduce NG-Tax, an open-source software for the 
(meta-)analysis of 16S rRNA-based microbiome datasets. Their tool focuses on an 
important and so-far arguably understudied aspect of microbial ecology research: the 
integration of results across studies, in view of both technical and biological variation. 
 
The approach is interesting and addresses important points. In particular, several 
sequencing datasets of different mock communities were generated, even using 
different primer sets: this is great data to benchmark on, and many (most) other 
papers introducing tools do not provide benchmarks on such an array of real (mock) 
data. In general, I feel that this is very interesting work and that NG-Tax can be a 
promising alternative to existing tools in the field. 
 
We thank the reviewer for his nice comments and also his suggestions about the 
manuscript. 
 
However, there are several points that I feel would need to be addressed in order for 
the manuscript to stand tall, and for the reader to get a good understanding of how 
NG-Tax can be useful in practice. 
 
Major comments:

Even after reading the manuscript and online user manual repeatedly, I have to 
admit that it is not completely clear to me how NG-Tax works in detail, and in 
which points exactly it differs from existing approaches. Based on the 
introduction, I gather that NG-Tax relies on closed-reference OTU picking, but 
this is not mentioned explicitly anywhere in the text. Also, does reference-based 
OTU picking in NG-Tax rely on uclust? If yes, which version and parameters were 
used, and how do they differ from QIIME’s defaults? Also, the Background and 
Discussion sections do not elaborate on the various disadvantages of closed-

○
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reference approaches; most importantly, closed-ref only takes into account 
sequences matching the database and removes everything else. When 
integrating sequence data from different primer sets, this is arguably the most 
straightforward approach; however, the limitations should be discussed.

Thanks for the suggestion. In the new version we included a more detailed Figure 1 
including those unique aspects of NG-Tax. 
 
We agree with the reviewer that close reference OTU picking has the disadvantage of only 
taking sequences into account that have a match in the database, and this is incompatible 
with having stable OTUs since databases change over time. For this reason, NG-Tax employs 
an open reference approach to remain independent of reference databases. 
Different clustering algorithms also lead to different OTUs, and hence no clustering process 
is applied and the generation of OTUs is independent for each sample. Existing open 
reference approaches generate OTUs for the whole study by clustering the reads from all 
the samples together. Then, if new samples are included to a previous study, the OTUs need 
to be regenerated with the reads from the previous study and new samples together, which 
will lead to discrepancies in the former and new composition of the samples because some 
of the previous OTUs may not be present in the new analysis anymore. 
 
Instead, in NG-Tax OTUs are generated sample by sample using the following strategy: 
For each sample reads are ranked by read abundance and OTUs are added to an OTU table 
starting from the most abundant sequence until the read abundance is lower than a 
percentage defined by the user (recommended is at is 0.1%). Subsequently, the discarded 
reads are clustered to the OTU table allowing one mismatch. 
In practical terms it is guided clustering where seeds are determined by abundance. The 
differences with an normal clustering approach is that there is no clustering to define the 
seeds, which allows seeds that differ as little as one nucleotide. The clustering is applied 
only afterwards to compensate for potential bias due to PCR and sequencing errors. Error is 
sequence-specific, and hence some sequences could be affected more than others. If a 
species specific amplicon is more prone to PCR or sequencing errors, the relative 
abundance of that particular OTU will be underestimated. But after clustering, OTUs more 
prone to error receive a higher percentage of discarded reads than others, this differential 
recovery helps to reestablish the true composition that was lost due to sequence specific 
error rates. 
We substituted uclust by usearch in the scripts of the new version. 
 

I gather from the text that NG-Tax’s main innovations are the use of primer-
tailored reference databases and a different (more conservative) read 
abundance filtering scheme. It is perfectly valid to benchmark these against 
QIIME’s default settings; however, it would be great to see how QIIME performs 
with similarly conservative settings, to better understand where NG-Tax’s edge 
in performance comes from.

○

We think that the main innovation of NG-Tax is the way OTUs are generated. This may seem 
counter-intuitive because it does not follow the standard approach but it is the discerning 
step compared with other existing pipelines. This innovative OTU generation algorithm is 
the reason of the NG-Tax’s edge in performance. 
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With QIIME those conservative thresholds cannot be used because the filtering percentage 
threshold is defined using the whole library and within a library there are samples that 
contain 20 times more reads than others. A conservative threshold like 0.1% is conservative 
for an average sample, not conservative for a big sample at all and extreme for small 
samples. Hence, OTUs present in only small samples can be discarded even if they 
represent 1% of that sample but less than 0.1% of the whole dataset. On the other hand, 
NG-Tax applies thresholds defined by sample accounting for sample heterogeneity. 
 
In the manuscript we used the setting recommended by QIIME and described in Bokulich et 
al 2013 1. For NG-Tax analysis we also employed recommended default settings so we 
thought that even if this is not optimal and has its limitations, this could be a fair approach. 
Nevertheless, we benchmarked with QIIME not to compare performances but rather to 
show that this dataset is not an exceptional case and the commonly reported problems 
such as many un- or poorly classified OTUs, inflated richness and diversity, taxonomic 
profiles that do not match the expected ones, region dependent taxonomic classification 
and results being highly dependent on minor changes in the experimental setup are also 
found in this dataset when standard approaches are used. 
 
In Bokulich et al 2013, supplementary material 2; pages 8, 9 and 10, the authors compare 
expected composition against real sample composition using different parameters, one of 
them being OTU abundance, and the plot shows that the obtained profiles do not change 
much using different abundance thresholds. 
 
Nonetheless, as suggested by the reviewer we reproduced the QIIME analysis with a 0.1% 
abundance threshold and this is included in the supplementary data. The results using 0.1% 
or 0.005% are consistent. 
 

Regarding taxonomy assignments, it is valid to compare NG-Tax’s uclust-based 
approach to QIIME’s uclust-based approach. However, I believe that the gold 
standard continues to be the RDP Classifier, and it would be interesting to see a 
performance comparison to this tool (on the short-read data, not only on full-
length reads). Also, how does taxonomic classification by NG-Tax differ 
conceptually from RTAX (
http://www.uio.no/english/services/it/research/hpc/abel/help/software/rtax.html)? 
I do believe that they are not equivalent, but the approaches appear somewhat 
related.

○

In the manuscript we wanted to show that taxonomy assignment using short reads should 
be comparable with the assignment using the complete 16S rRNA gene (Figure 2). This is 
why we employed full length sequences. We could have included also RDP short read based 
taxonomy but the reads were too short for RDP, and hence genus and many times even 
family assignment could not be achieved with a minimum threshold value of 50%. In the 
supplementary data we supplied the theoretical compositions for all mock communities. 
The files for MC2 V4 and MC2 V5V6 contain all phylotypes and can be uploaded to the RDP 
classifier to verify the poor performance. In the new manuscript we substituted RDP for 
SILVA Incremental Aligner (SINA) to classify the full length sequences and we also updated 
the database in NG-Tax to SILVA 128, improving in both cases the classification. 
I read the manuscript suggested by the reviewer and I can say that NG-Tax taxonomic 

 
Page 40 of 48

F1000Research 2018, 5:1791 Last updated: 03 AUG 2021

http://www.uio.no/english/services/it/research/hpc/abel/help/software/rtax.html)


classification is very similar to rtax. 
The NG-Tax classifier works as follows: 
 
For each OTU, usearch is used to retrieve hits for the forward and reverse reads against 
their respective trimmed reference database. Hits that are common between both reads are 
divided in 6 identity thresholds 100, 98, 97, 95, 92, 90. A hit belongs to a certain level, for 
example 97, when both reads have at least a 97 percentage identity with that hit. Using the 
highest available identity threshold, NG-Tax assigns the consensus taxonomy to the OTU if 
this taxonomy is supported for at least half of the hits. Genus, Family or Order remains 
unassigned if the maximum identity percentage level is lower or equal to 97%, 95% and 92% 
respectively. These are the main differences: 
rtax clusters the reference database at 99%, while NG-Tax does not. 
rtax averages the percentage identity for both reads and then considers the hits that have 
an averaged percentage identity 0.5% lower than the maximum averaged percentage 
identity as valid. NG-Tax does not average the percentage identities and uses fixed values 
100, 98, 97, 95, 92 and 90 as thresholds. 
For the rest they are indeed very similar approaches. 
Therefore we have added rtax to the references and acknowledge in the manuscript that 
similar dynamic identity thresholds have been already employed to assign taxonomy. 
Furthermore, all the details about NG-Tax taxonomic assignment have been added to the 
user manual.

In general, the results on taxonomic classification are not discussed 
quantitatively. From Figures 3&4, the visual impression is that NG-Tax indeed 
better approximates expected taxonomic profiles than QIIME, but it is hard to 
quantify this from stacked bar charts. I would suggest to compute e.g. Euclidean 
or more sophisticated distances of classified taxonomic profiles to the expected 
distribution. Also, it would be interesting to see quantitative sensitivities and 
specificities (or F1-scores?) on the taxonomic assignments; particularly also 
when running on the exact same (more conservatively filtered) dataset for 
QIIME. Some numbers on specificity are provided in the Abstract and Conclusion 
sections – but I am not sure if specificity may be gained at the expense of 
sensitivity based on the more rigid read filtering upstream.

○

As suggested by the reviewer, distances between compositional profiles and expected 
profiles are now shown in Figure 5. Distances between taxonomic profiles were calculated 
as the sum of the weighted differences. Given two taxonomical profiles x and y, for each 
taxa i, we defined the difference in abundance as difi(x,y)=( xi –yi) and a weighing factor wi 
as wi(x,y)=( xi –yi )/avg(xi + yi). Weighted difference was the result of multiplying the 
difference in abundance by its weighting factor. This weighting factor is useful to take into 
account the relative change and not only the absolute change, because a 1% absolute 
change becomes a 200% or 20% relative change depending on whether the expected 
abundance is 0.5% or 5% respectively. We performed t tests to compare the performance of 
NG-Tax versus QIIME from a quantitative point of view. 
We have also included an Excel spreadsheet with compositional profiles in the 
supplementary data. 
Figure 2 shows specificity of the taxonomical assignments and has been has been modified 
to improve readability. 
The QIIME analysis at 0.1% abundance threshold can be found in the supplementary 
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material.
As a suggestion, but certainly not as a request, I would recommend to maybe 
include additional, independent datasets to benchmark on. For example, 
Tremblay et al. (2015) have published data on mock communities sequenced 
with different primer sets and on different platforms. Such data could 
contribute to a yet more general assessment of NG-Tax performance.

○

We thank the reviewer for the suggestion, but including new datasets will imply a rewrite of 
a big part of the manuscript. We consider that 49 samples can give an idea of NG-Tax 
performance. Additionally, we would like to mention that NG-Tax has been the reference 
method for 16S rRNA gene amplicon analysis in our lab for more than two years and has 
been used in more than 30 manuscripts that have been submitted or are in preparation. 
One of these manuscripts 2 was published before this manuscript. Since then another 
fifteen studies using NG-Tax have been published 3-17. These studies contain biological 
samples that belong to very different and specific environments and were sequenced both 
on MiSeq and HiSeq instruments. These will contribute to the assessment of NG-Tax 
performance, however these were not included in the current manuscript since they are 
accessible on the aforementioned publications. 
 
Minor comments (chronologically, not in order of importance): 

Background, “The consequence of this approach is that the ‘quality’ of the 
clustering of the reference set propagates to reference-picked OTUs.” I believe 
that as such, this statement is not fully valid or supported. In fact, the negative 
complement is arguably true: reference-based OTU picking against a “bad” 
reference can never provide “good” OTUs (a garbage-in, garbage-out problem, 
so to say). However, even with a good reference, a bad mapping algorithm can 
generate non-informative reference-based OTU sets. Schloss & Westcott have 
recently published a study which discusses this point, among others (Westcott & 
Schloss, 2015).

○

With this sentence we did not imply that only ‘good quality’ is transferred from the clustered 
databases to the OTUs, we meant both, pros and cons are transferred. In fact, we agree 
that references have their limitations and clustered databases also contain bias due to 
clustering. For this reason NG-Tax employs a de novo OTU picking with no references or 
clustering involved.

Background, “However, in 16S rRNA gene amplicon sequencing every 
sequencing error could potentially lead to the false discovery of a new species.” 
I have two comments on this statement. First, I believe that the term “species” 
in this context can be misleading and I feel that the neutral term OTU or 
diversity unit would be more appropriate. Second, there is a large body of 
literature on how sequencing errors affect 16S-based diversity studies beyond 
the cited Bokulich et al paper (starting from Kunin et al., 2010), and it would be 
worth to at least mention these, although an in-depth discussion would 
probably lead away from this study’s focus. Also, it may be worth mentioning 
recent algorithmic approaches to tackling this issue, such as DADA2 (Callahan et 
al., 2016).

○

 
As suggested by the reviewer we rephrased the sequence to avoid the use of “species”. Now 
we stated: “However, in 16S rRNA gene amplicon sequencing every sequencing error could 
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potentially lead to an incorrect OTU classification which may ultimately lead to the false 
discovery of a new phylotype” 
We added Kunin et al 2010 and Callahan et al. 2016 to the references but we just wanted to 
point out that sequencing error is an important factor in 16S analysis rather than make an 
in-depth discussion about it.

Results & Discussion, chimera filtering. The implemented method for chimera 
filtering appears a little ad hoc and heuristic, although the proposed approach 
certainly makes sense intuitively. However, given the long history of “chimera-
slaying” algorithms and the quite sobering benchmark studies on them, some 
context would be helpful for the reader here – maybe even as a short 
supplement or as a reference to the user manual. For example, how is the 
proposed approach conceptually different from existing tools like UCHIME etc? 
And why was it implemented as is? What was the (empirical?) motivation to do it 
like this, not otherwise? Personally, I am not very convinced of the performance 
of chimera-filtering algorithms overall and several recent pipelines side-step the 
issue more or less elegantly. In the case of NG-Tax (or other reference-based 
OTU callers), one could even argue that if the reference database is perfectly 
chimera-free, a closed-reference approach would not need a chimera filtering 
approach at all, or only one which is based on differential mapping of a 
sequence to two (highly unrelated) OTUs.

○

First, we would like to recall that NG-Tax is not reference-based. 
We fully agree with the reviewer opinion about ‘chimera-slaying’ algorithms. Chimera 
detectors are often validated using in-silico datasets generated by determining an initial set 
of valid sequences and a chimera formation pattern. This pattern or “rule” for chimera 
formation is commonly defined by considering that any two sequences in the initial dataset 
are equally probable to lead to a chimera and any nucleotide is equally probable to be the 
point in which these two sequences merge to form the chimera. It is conceivable that 
maybe the initial set is not representative of the sequences present in a specific real 
biological sample, not every pair of sequences has the same probability to form chimeras 
and not all the nucleotides may have the same odd to be the merging point of two 
sequences. Many different sequence sets can be selected as initial valid sequences and also 
many different chimera formation patterns can be chosen, but it is very difficult to really 
determine whether our choices mimic the way in which chimeras are formed in real 
sequencing data and therefore it is hard to verify if those in-silico created chimeras 
represent the chimeras that can be found in real sequencing samples. We consider that the 
proper validation should be using the real sequencing samples. If the chimera detection 
algorithm works, we would expect a very small number of non-assigned reads (since most 
chimeras should be aberrant). In case we have positive controls like MC, sequencing profiles 
and diversity should resemble the expected ones, and this is exactly what we observe with 
the results of NG-Tax. 
 
We think that there are no perfect chimera-free databases, and a valid OTU can be found in 
the reference database and at the same time be a perfect combination of 2 other OTUs, 
especially for regions with lower variability (V4). If all those 3 OTUs are present in the same 
sample, how can we know whether it is a chimera or real? 
 
In our opinion chimera detection is the weakest step in 16S pipelines because there is no 
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satisfactory solution to the problem mentioned above. So the prevention against chimeras 
should come from the experimental design by reducing the PCR cycles and selecting 
regions of high variability. Chimera removal has many limitations and human supervision is 
recommended. For this reason, we decided to simplify the chimera detection as much as 
possible so the researcher can quickly identify why an OTU has been discarded. And also 
apply stringent parameters (100% identity) to avoid false positives. False negatives should 
be easier to detect afterwards since most of the chimeras should be aberrant. 
In the manuscript of UCHIME they stated that “UCHIME searches for a chimeric alignment 
between a query sequence (Q) and two candidate parents (A and B)” and “candidate parents 
are required to have abundance at least λ times that of the query sequence, on the 
assumption that a chimera has undergone fewer rounds of amplification and will therefore 
be less abundant than its parents. The parameter λ is called the abundance skew, and by 
default λ=2 “, so NG-Tax approach is very similar to de novo UCHIME approach, but NG-Tax 
treats forward and reverse reads separately.

Table 1 is very large and (on the PDF) unfortunately rotated by 90 degrees. I 
suggest to convert it into a supplemental Excel sheet which would be more 
reader-friendly.

○

As suggested by the reviewer Table 1 is now supplied as an excel spreadsheet in the 
supplementary material

Figure 2 has rotated horizontal axis labels, a 90deg rotated legend – maybe 
that’s just due to formatting of the PDF. It is also difficult to read taxonomic 
names on the vertical axis in all-caps.

○

As suggested by the reviewer we modified Figure 2 to increase readability.
“Consequently, these methods are more powerful than purely OTU-based 
methods, […].” While I agree with this sentence to a certain extent, I believe that 
the statement should be supported by referring to previous work on the topic. It 
is not necessarily consensus that 16S “sequence often correlates with 
phenotypic similarity in key features”, but it is even less clear to what extent 
phylogenetic diversity estimators capture this signal in a useful way. Arguably, 
a PD-estimator of UniFrac can only be as good as their underlying tree, which in 
turn is based on the (representative) sequences of OTUs and thus depends on 
many factors in the background.

○

Taxonomic assignment of the OTUs suffers from the same problems raised by the reviewer. 
Not always does 16S rRNA gene sequence similarity correlate with phenotypic similarity and 
the taxonomical assignment is as good as the reference database and the classifier 
employed. But having a composition barplot with OTUs named by number rather than by 
taxonomy would mean that all the information provided by the nucleotide sequence is 
discarded. This information may not be perfect but we cannot neglect that this information 
transformed into taxonomical assignment is useful at least to some extent. 
The same criterion was applied to evaluate diversity. We used phylogenetic methods, which 
retain the information of the nucleotide sequence. We acknowledge the limitations but we 
argue that a sample containing 5 OTUs with a 99% pairwise sequence identity should not be 
given the same (potential) diversity that a sample containing 5 OTUs with less than 85% 
pairwise sequence identity. We consider that phylogenetic methods are more powerful 
because they use all information available, however, we should not over extrapolate the 
results. 16S rRNA gene amplicon sequencing should be taken as exploratory approach, 
whereas metagenomic and metatranscriptomic sequencing provides a more suitable and 
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precise approach if we really want to focus on microbial functionality. 
 

In particular, the weighted UniFrac measure used in this study seems to be 
more sensitive to quite a number of factors (including sequencing errors and 
inflation of small clusters, not irrelevant for the points made in this study) than 
its unweighted sister in my personal experience, and according to a number of 
researchers I have talked to on this point. However, since “personal experience” 
and “people I’ve talked to” are certainly not a dependable scientific source, and 
because performance on mock communities should not be severely impacted, I 
would formulate this as a suggestion and certainly not as a reviewer’s request: 
were the weighted UF-based results double-checked using unweighted UF 
and/or a non-phylogenetic method, such as Bray-Curtis?

○

As suggested by the reviewer we have included the unweighted UniFrac and Bray-Curtis 
analysis in the supplementary material. The results obtained by all three methods are in 
concordance. 

In the PCoA (Figure 5, A&C), it is quite hard to decide which method looks 
“better” purely based on visual impression, not least because the % variance 
explained on the axes is not equivalent. It would be good to see a more 
quantitative statement on which approach better recovers expected clusters 
from the mock communities. The most straightforward approach would be to 
perform MANOVA analyses, structured by the different factors to test for and 
then use the effect sizes to quantify the goodness of separation (or non-
separation). I would suggest to run e.g. Anderson’s PERMANOVA (
http://www.entsoc.org/PDF/MUVE/6_NewMethod_MANOVA1_2.pdf; 
implementation available through the function “adonis” in the R package 
vegan) or ANOSIM to this end. Alternatively, samples could be clustered based 
on beta div and the resulting clusterings (or dendrograms) quantitatively 
compared to expectations based on different factors.

○

Thanks for the suggestion. In the new version of the manuscript we performed a more 
quantitative analysis of the sequencing data and the expected MC. We performed a 
permanova analysis under MC type factor and it was significant for both pipelines meaning 
that some of the variance is explained by the Mock type. But to really evaluate accuracy and 
reproducibility and compare pipelines performances we used pairwise distances and t tests 
(Figure 7 and Dataset 1). 
 

Thank you for providing Supplementary Figures 1&2; they are informative in the 
interpretation of the presented data.

○

Thank you.
Similarly, thank you for providing code and data as supplements!○

Thank you. 
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Competing Interests: No competing interests were disclosed.

Author Response 25 Jul 2016
Javier Ramiro-Garcia, Wageningen University and Research Centre, The Netherlands 

The proper link to download the pipeline is: 
 
http://www.systemsbiology.nl/NG-Tax/ 
 
We will correct the link in version 2 of the paper. 
Sorry for the inconveniences. 
 
Javier Ramiro-Garcia

 
Page 47 of 48

F1000Research 2018, 5:1791 Last updated: 03 AUG 2021

http://www.systemsbiology.nl/NG-Tax/


Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

 
Page 48 of 48

F1000Research 2018, 5:1791 Last updated: 03 AUG 2021

mailto:research@f1000.com

